APPENDIX G

Section 105

Outfall 018 - BMP Effectiveness, February 5, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project: Boeing BMP Effectiveness

Monitoring Program

Sampled: 02/05/08 Received: 02/05/08

Issued: 02/14/08 15:39

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY IDCLIENT IDMATRIXIRB0427-01018 EFF-1Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Boeing BMP Effectiveness Monitoring Program

618 Michillinda Avenue, Suite 200 Sampled: 02/05/08

Arcadia, CA 91007 Report Number: IRB0427 Received: 02/05/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0427-01 (018 EFF-1 - Wa Reporting Units: g/cc	ter)								
Density	Displacement	8B11085	N/A	NA	1.0	1	02/11/08	02/11/08	
Sample ID: IRB0427-01 (018 EFF-1 - Wa Reporting Units: mg/l	ter)								
Sediment	ASTM D3977	8B14087	10	10	ND	1	02/14/08	02/14/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Boeing BMP Effectiveness Monitoring Program

Sampled: 02/05/08

Report Number: IRB0427

Received: 02/05/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B11085 Extracted: 02/11/0	<u> 8</u>										
Duplicate Analyzed: 02/11/2008 (8B110	85-DUP1)				Sou	rce: IRA	3091-01				
Density	0.999	NA	N/A	g/cc		1.00			0	20	

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing Project ID: Boeing BMP Effectiveness Monitoring Program

618 Michillinda Avenue, Suite 200 Sampled: 02/05/08

Arcadia, CA 91007 Report Number: IRB0427 Received: 02/05/08

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Boeing BMP Effectiveness Monitoring Program

618 Michillinda Avenue, Suite 200 Sampled: 02/05/08

Arcadia, CA 91007 Report Number: IRB0427 Received: 02/05/08

Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Page 1 of X Comments Normal 10 Days Sample Integrity: (check)
Intact
On Ice: Turn around Time: (check)
24 Hours 5 Days 50/301 GRA B Field readings: 48 Hours 72 Hours Temp ANALYSIS REQUIRED RROYZ 1850 Date/Time: Date/Time: Date/Time: **CHAIN OF CUSTODY FORM** 1880427 Suspended Sediment Concentrazion (SSC, ASTM-D3977-1997) Bottle # 18 4 5 16 7 4 13 17 19 20 2 3 ∞ တ 9 7 22 9 **Effectiveness Monitoring** Nohe Received By Preservative Received By Received By Project: **Boeing BMF** None (626) 568-6515 Phone Number: (626) 568-6691 Fax Number: 25/08 12.25 Sampling Date/Time Program Date/Time: ate/Time: Date/Time ↑ of Cont. 2/2/2 Test America Version 12/20/07 500 mL Poly Test America Contact: Joseph Doak 500 mL Poly Project Manager: Bronwyn Kelly 500 ml Poly Container 618 Michillinda Avenue, Suite 200 Sampler: 191,99015CAL, Client Name/Address: Sample Matrix Washed By Borrood, MWH-Arc adia Arcadia, CA 91007 ≥ ∣≥ ≥ ≥ ∣≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ∣≥ ≥ ≥ ∣≥∣≥ Relinquished By Relinquished By Description 018 EFF-13 018 EFF-16 018 EFF-19 018 EFF-20 018 EFF-23 Sample 018 EFF-10 018 EFF-12 018 EFF-14 018 EFF-15 018 EFF-17 018 EFF-18 018 EFF-21 018 EFF-22 018 EFF-24 018 EFF-11 018 EFF-9 018 EFF-3 018 EFF-6 238 666 2 018 EFF-4 018 EFF-5 018 EFF-8 018 EFF-1 018 EFF-7 ldel 816

2

NPDES - 4179

APPENDIX G

Section 106

Outfall 018, February 24, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB2403

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2403

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRB2403 Project Manager: B. Kelly

Matrix: Water
QC Level: IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 018	IRB2403-01	30305-001, 8022634-01, 8616- 001	Water	02/24/08 1245	120.1, 180.1, 200.8, 245.1, 625, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174, SM2340-B

II. Sample Management

No anomalies were observed regarding sample management. The sample was received at Weck within the temperature limits of 4°C ±2°C. The samples were received at TestAmerica-Irvine and Vista below the temperature limit; however, the samples were not noted to be damaged or frozen. Eberline did not provide temperature information; however, radiological samples are not required to be chilled. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, Eberline, and Weck, custody seals were not required. Custody seals were intact upon arrival at Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT SSFL NPDES SDG: SSFL NPDES SDG: IRB2403

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2403

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2403

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT Project: SSFL NPDES

SDG: IRB2403

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: April 8, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRB2403

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS

DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: IRB2403

metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.

- Blanks: Zinc and cadmium were detected in the total metals method blank at 6.39 and 0.133 µg/L, respectively; therefore, the detect for total zinc was qualified as an estimated nondetect, "UJ." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the total ICP-MS analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solution; however, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Due to matrix interference, the total metals fraction was reported from a 2x dilution. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that cadmium and lead were detected at marginally above the MDL in the dissolved metals sample fraction but was not detected in the total metals fraction. The difference between the total and dissolved results was within the sensitivity limits of the analytical instrument and, therefore, the reviewer considered the total and dissolved results to be equivalent. Zinc was originally detected at a higher concentration in the total metals fraction but was subsequently qualified as an estimated nondetect due to method blank contamination.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2403

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 2, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
 for gross alpha and gross beta were prepared within the five-day analytical holding time
 for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total
 uranium, and gamma spectroscopy were prepared beyond the five-day holding time for
 unpreserved samples; therefore, results for these analytes were qualified as estimated,
 "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium chemical yield was at least 70% and was considered acceptable. The strontium and radium-226 continuing calibration results were within the laboratory control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRB2403

 Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin Date Reviewed: April 3, 2008

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625 and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. Initial calibration average RRFs were ≥ 0.05 and %RSDs $\le 35\%$ or $r^2 > 0.995$ for the applicable target compounds. Continuing calibration RRFs were ≥ 0.05 and %Ds $\le 20\%$.
- Blanks: The method blank had a detect above the reporting limit for bis(2-ethylhexyl)phthalate at 2.06 μg/L. The sample detect above the reporting limit for bis(2-ethylhexyl)phthalate was qualified as an estimated nondetect, "UJ," at the level of contamination.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRB2403

Surrogate Recovery: Recoveries were within laboratory-established QC limits.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on LSC/LSCD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for five semivolatile compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

E. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 3, 2008

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1 and 180.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

DATA VALIDATION REPORT SSFL NPDES
SDG: IRB2403

 Holding Times: Conductivity was measured beyond the 24-hour holding time; therefore, conductivity reported in the site sample was qualified as an estimated detect, "J." The remaining analytical holding time, 48 hours for turbidity, was met.

- Calibration: The turbidity and conductivity check standard recoveries were acceptable.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site sample.
- Blank Spikes and Laboratory Control Samples: The LCS is not applicable to conductivity or turbidity.
- Laboratory Duplicates: Laboratory duplicate analyses were performed for the sample in this SDG for conductivity. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to these analyses.
- Sample Result Verification: Review is not applicable at a Level V validation. Nondetects
 are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

	Client Data			Sample Data		Laboratory Data				
	Name: Test. Project: IRB2 Date Collected: 24-Fe Time Collected: 1245	Test America-Irvine, CA IRB2403 24-Feb-08		Matrix: Sample Size:	Aqueous 1.03 L	Lab Sample: QC Batch No.: Date Analyzed DB-5:	30305-001 9997 10-Mar-08	Date Received: Date Extracted: Date Analyzed I	Date Received: Date Extracted: Date Analyzed DB-225;	26-Feb-08 9-Mar-08 NA
	Analyte	Conc. (ug/L)	DL å	EMPC	Qualifiers	Labeled Standard	dard	%R	rcr-ncrq	Oualifiers
- 37	2,3,7,8-TCDD	2	0.000000	0871		IS 13C-2,3,7,8-TCDD	OCC	74.5	25 - 164	
-	1,2,3,7,8-PeCDD	9	0.000001	1163		13C-1,2,3,7,8-PeCDD	PeCDD	0.69	25-181	
1000	1,2,3,4,7,8-HxCDD	Q	0.00000239	39		13C-1,2,3,4,7,8-HxCDD	S-HxCDD	9.89	32 - 141	No.
-	1,2,3,6,7,8-HxCDD	8	0,00000432	32		13C-1,2,3,6,7,8-HxCDD	3-HxCDD	76.0	28 - 130	
	1,2,3,7,8,9-HxCDD	2	0.00000412	12		13C-1,2,3,4,6,7,8-HpCDD	7,8-НрСDD	71.8	23 - 140	は () () () () () () () () () (
	1,2,3,4,6,7,8-HpCDD	0.0000401				13C-OCDD		64.2	17-157	
7.5	ОСОО	0.000404				13C-2,3,7,8-TCDF	J.	76.2	24 - 169	
-	2,3,7,8-TCDF	Ð	0.00000157	57		13C-1,2,3,7,8-PeCDF	PeCDF	64.3	24 - 185	
1963	1,2,3,7,8-PeCDF	Q	0.00000162	62		13C-2,3,4,7,8-PeCDF	PeCDF	65.8	21 - 178	
- 4	2,3,4,7,8-PeCDF	Q.	0,000000987	786		13C-1,2,3,4,7,8-HxCDF	3-HxCDF	68.5	26-152	
	1,2,3,4,7,8-HxCDF	2	0.00000106	90		13C-1,2,3,6,7,8-HxCDF	-HxCDF	77.3	26-123	
	1,2,3,6,7,8-HxCDF	ND	0.00000108	908		13C-2,3,4,6,7,8-HxCDF	8-HxCDF	74.4	28 - 136	
	2,3,4,6,7,8-HxCDF	Ð	0.00000153	53		13C-1,2,3,7,8,9-HxCDF	-HxCDF	73.1	29 - 147	
2 11	1,2,3,7,8,9-HxCDF	2	0,000000844	844		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	2.99	28 - 143	
2004	1,2,3,4,6,7,8-HpCDF	0.00000916				13C-1,2,3,4,7,8,9-HpCDF	3,9-HpCDF	71.0	26-138	所 () () () () () () () () () ()
	1,2,3,4,7,8,9-HpCDF	2	0.000001	120		13C-0CDF		629	17 - 157	
9	OCDF	0.0000158			1	CRS 37CI-2,3,7,8-TCDD	CDD	109	35-197	
	Fotals					Footnotes				
r, 3	Total TCDD	QN.	0.00000087	871		a. Sample specific estimated detection limit	ted detection limit.			
Tr. A.	Tetal PeCDD	2	0.00000342	2		b. Estimated maximum possible concentration	ossible concentration.			
- K-7-(Total HxCDD	0.00000968				c. Method detection limit.				
, 1. 7 2.	Total HeCDD	0.0000812				d. Lower control limit - upper control limit.	pper control limit.			
Н	Total TCDF	QN		0.00000188	88					
L	Total PeCDF	2	を対する。	0.000000778	778					
	Total HxCDF	0.00000828	200							
	Total HnCDF	0.0000208								

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRB2403

Sampled: 02/24/08

Received: 02/25/08

Attention: Bronwyn Kelly

METALS

		1	VILL I A	LIS						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB2403-01 (Outfall 01	8 - Water) - cont.									
Reporting Units: ug/l										
Cadmium U	EPA 200.8	8B28067	0.22	2.0	ND	2	02/28/08	02/29/08	RL1	
Copper J/DN9	EPA 200.8	8B28067	1.5	4.0	3.4	2	02/28/08	02/29/08	RL1, J	
Lead ψ	EPA 200.8	8B28067	0.60	2.0	0.81	2	02/28/08	02/29/08	RL1, J	
Selenium U	EPA 200.8	8B28067	0.60	4.0	ND	2	02/28/08	02/29/08	RL1	
Zinc UJ/B	EPA 200.8	8B28067	5.0	40	28	2	02/28/08	02/29/08	B, RL1, J	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 02/24/08

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IRB2403

Received: 02/25/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 -	Water) - cont.								
Reporting Units: ug/l									
Cadmium J/DNG	EPA 200.8-Diss	8B25123	0.11	1.0	0.12	1	02/25/08	02/26/08	J
Copper 1	EPA 200.8-Diss	8B25123	0.75	2.0	0.86	1	02/25/08	02/26/08	J
Lead U	EPA 200.8-Diss	8B25123	0.30	1.0	ND	1	02/25/08	02/26/08	
Selenium ψ	EPA 200.8-Diss	8B25123	0.30	2.0	ND	1	02/25/08	02/26/08	
Zinc J/DNQ	EPA 200.8-Diss	8B25123	2.5	20	13	1	02/25/08	02/26/08	J

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Arcadia, CA 91007

Report Number: IRB2403

Sampled: 02/24/08

Received: 02/25/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 -	Water) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved ()	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	
Mercury, Total	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	

LEVEL IV

TestAmerica Irvine

Eberline Services

ANALYSIS RESULTS

SDG 8616	Client TA IRVINE
Work Order R802175-01	Contract PROJECT# IRB2403
Received Date 02/26/08	Matrix WATER

Client Sample ID	Lab Sample ID	Collected Analyzed	Nuclide	Results ± 20	Units	MDA
IRB2403-01	8616-001	02/24/08 03/16/08	GrossAlpha	2.15 ± 1.1	pCi/L	1.3 J/R
		03/16/08	Gross Beta	4.36 ± 1.1	pCi/L	1.7
		03/10/08	Ra-228	-0.101 ± 0.15	pCi/L	0.45 UJ/H
		03/12/08	K-40 (G)	u	pCi/L	14
		03/12/08	Cs-137 (G)	υ	pCi/L	0.94
		03/14/08	H-3	-58.7 ± 85	pCi/L	150
		03/14/08	Ra-226	2.27 ± 0.71	pCi/L	0.78 J/H
		03/10/08	Sr-90	-0.106 ± 0.36	pCi/L	HITU 88.0
		03/05/08	Total U	0.533 ± 0.060	pCi/L	0.023 J/H

LEVEL IV

Certified by Report Date 03/20/08
Page 1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRB2403

Sampled: 02/24/08

Received: 02/25/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - W	ater)								
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate UTB	EPA 625	8B26048	1.6	4.8	19	0.952	02/26/08	02/28/08	В
2,4-Dinitrotoluene	EPA 625	8B26048	0.19	8.6	ND	0.952	02/26/08	02/28/08	
N-Nitrosodimethylamine	EPA 625	8B26048	0.095	7.6	ND	0.952	02/26/08	02/28/08	
Pentachlorophenol	EPA 625	8B26048	0.095	7.6	ND	0.952	02/26/08	02/28/08	
2,4,6-Trichlorophenol	EPA 625	8B26048	0.095	5.7	ND	0.952	02/26/08	02/28/08	
Surrogate: 2-Fluorophenol (30-120%)					65 %			171.7-172.	
Surrogate: Phenol-d6 (35-120%)					59 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)	6)				108 %				
Surrogate: Nitrobenzene-d5 (45-120%)					74%				
Surrogate: 2-Fluorobiphenyl (50-120%)					77 %				
Surrogate: Terphenyl-d14 (50-125%)					107%				

Leve I

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Report Number: IRB2403

Sampled: 02/24/08

Received: 02/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - W	/ater) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil & 🗡	EPA 1664A	8C04046	1.4	4.9	1.9	1	03/04/08	03/04/08	J
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8B26101	0.30	0.50	ND	1	02/26/08	02/26/08	
Biochemical Oxygen Demand	EPA 405.1	8B25101	0.59	2.0	2.2	1	02/25/08	03/01/08	
Chloride	EPA 300.0	8B25042	0.25	0.50	22	1	02/25/08	02/25/08	
Nitrate-N	EPA 300.0	8B25042	0.060	0.11	0.68	1	02/25/08	02/25/08	
Nitrite-N	EPA 300.0	8B25042	0.090	0.15	ND	1	02/25/08	02/25/08	
Nitrate/Nitrite-N	EPA 300.0	8B25042	0.15	0.26	0.68	1	02/25/08	02/25/08	
Sulfate	EPA 300.0	8B25042	0.40	1.0	84	2	02/25/08	02/25/08	
Surfactants (MBAS)	EPA 425.1	8B25103	0.044	0.10	ND	1	02/25/08	02/25/08	
Total Dissolved Solids	EPA 160.1	8B27119	10	10	290	1	02/27/08	02/27/08	
Total Suspended Solids	EPA 160.2	8B28123	10	10	27	1	02/28/08	02/28/08	
Sample ID: IRB2403-01 (Outfall 018 - W	/ater)								
Reporting Units: ml/l/hr									
Total Settleable Solids	EPA 160.5	8B26062	0.10	0.10	ND	1	02/26/08	02/26/08	
Sample ID: IRB2403-01 (Outfall 018 - W	vater)								
Reporting Units: NTU									
Turbidity	EPA 180.1	8B26063	0.040	1.0	22	1	02/26/08	02/26/08	
Sample ID: IRB2403-01 (Outfall 018 - W	/ater)								
Reporting Units: ug/l									
Total Cyanide 💥	EPA 335.2	8B26098	2.2	5.0	ND	1	02/26/08	02/26/08	
Perchlorate	EPA 314.0	8B28045	1.5	4.0	ND	1	02/28/08	02/29/08	

* Analysis not validated

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRB2403

Sampled: 02/24/08

Received: 02/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 -	Water) - cont.								
Reporting Units: umhos/cm									
Specific Conductance 7/4	EPA 120.1	8B27117	1.0	1.0	440	1	02/27/08	02/27/08	

LEVEL IV

APPENDIX G

Section 107

Outfall 018, February 24, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/24/08 Received: 02/25/08

Issued: 03/17/08 14:10

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 1°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
IRB2403-01	Outfall 018	Water
IRB2403-02	Trip Blank	Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB2403
Sampled: 02/24/08
Received: 02/25/08

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

			MDL	Reporting		Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - Wat	er)								
Reporting Units: ug/l									
1,1,1-Trichloroethane	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
1,1,2-Trichloroethane	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
1,1-Dichloroethane	EPA 624	8B27001	0.27	0.50	ND	1	02/27/08	02/27/08	
1,1-Dichloroethene	EPA 624	8B27001	0.42	0.50	ND	1	02/27/08	02/27/08	
1,2-Dichloroethane	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Benzene	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Carbon tetrachloride	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Chloroform	EPA 624	8B27001	0.33	0.50	ND	1	02/27/08	02/27/08	
Ethylbenzene	EPA 624	8B27001	0.25	0.50	ND	1	02/27/08	02/27/08	
Tetrachloroethene	EPA 624	8B27001	0.32	0.50	ND	1	02/27/08	02/27/08	
Toluene	EPA 624	8B27001	0.36	0.50	ND	1	02/27/08	02/27/08	
Trichloroethene	EPA 624	8B27001	0.26	0.50	ND	1	02/27/08	02/27/08	
Trichlorofluoromethane	EPA 624	8B27001	0.34	0.50	ND	1	02/27/08	02/27/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B27001	0.50	5.0	ND	1	02/27/08	02/27/08	
Vinyl chloride	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
Xylenes, Total	EPA 624	8B27001	0.90	1.5	ND	1	02/27/08	02/27/08	
Surrogate: Dibromofluoromethane (80-120%)					97%				
Surrogate: Toluene-d8 (80-120%)	7				100 %				
Surrogate: 4-Bromofluorobenzene (80-120%)	5)				90 %				
Sample ID: IRB2403-02 (Trip Blank - Wat	er)								
Reporting Units: ug/l	- /								
1,1,1-Trichloroethane	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
1,1,2-Trichloroethane	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
1,1-Dichloroethane	EPA 624	8B27001	0.27	0.50	ND	1	02/27/08	02/27/08	
1,1-Dichloroethene	EPA 624	8B27001	0.42	0.50	ND	1	02/27/08	02/27/08	
1,2-Dichloroethane	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Benzene	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Carbon tetrachloride	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Chloroform	EPA 624	8B27001	0.33	0.50	ND	1	02/27/08	02/27/08	
Ethylbenzene	EPA 624	8B27001	0.25	0.50	ND	1	02/27/08	02/27/08	
Tetrachloroethene	EPA 624	8B27001	0.32	0.50	ND	1	02/27/08	02/27/08	
Toluene	EPA 624	8B27001	0.36	0.50	ND	1	02/27/08	02/27/08	
Trichloroethene	EPA 624	8B27001	0.26	0.50	ND	1	02/27/08	02/27/08	
Trichlorofluoromethane	EPA 624	8B27001	0.34	0.50	ND	1	02/27/08	02/27/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B27001	0.50	5.0	ND	1	02/27/08	02/27/08	
Vinyl chloride	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
Xylenes, Total	EPA 624	8B27001	0.90	1.5	ND	1	02/27/08	02/27/08	
Surrogate: Dibromofluoromethane (80-120%)		002/001	0.70	1.3	96 %	1	02/2//00	02/2//00	
Surrogate: Toluene-d8 (80-120%)	<i>'')</i>				90 % 101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)	3				101 % 89 %				
Surroguie. 4-Bromojiuorovenzene (80-120%)	<i>'</i>				07 70				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 02/24/08 Arcadia, CA 91007 Report Number: IRB2403 Received: 02/25/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - Water	er)								
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	8B26048	1.6	4.8	19	0.952	02/26/08	02/28/08	В
2,4-Dinitrotoluene	EPA 625	8B26048	0.19	8.6	ND	0.952	02/26/08	02/28/08	
N-Nitrosodimethylamine	EPA 625	8B26048	0.095	7.6	ND	0.952	02/26/08	02/28/08	
Pentachlorophenol	EPA 625	8B26048	0.095	7.6	ND	0.952	02/26/08	02/28/08	
2,4,6-Trichlorophenol	EPA 625	8B26048	0.095	5.7	ND	0.952	02/26/08	02/28/08	
Surrogate: 2-Fluorophenol (30-120%)					65 %				
Surrogate: Phenol-d6 (35-120%)					59 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					108 %				
Surrogate: Nitrobenzene-d5 (45-120%)					74 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					77 %				
Surrogate: Terphenyl-d14 (50-125%)					107 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403

Received: 02/25/08

ORGANOCHLORINE PESTICIDES (EPA 608)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - Water	er) - cont.								
Reporting Units: ug/l									
alpha-BHC	EPA 608	8B25062	0.0024	0.0094	ND	0.943	02/25/08	02/26/08	
Surrogate: Decachlorobiphenyl (45-120%)					77 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					77 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/24/08

Arcadia, CA 91007 Report Number: IRB2403 Received: 02/25/08 Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - V	Water) - cont.								
Reporting Units: ug/l									
Cadmium	EPA 200.8	8B28067	0.22	2.0	ND	2	02/28/08	02/29/08	RL1
Copper	EPA 200.8	8B28067	1.5	4.0	3.4	2	02/28/08	02/29/08	RL1, J
Lead	EPA 200.8	8B28067	0.60	2.0	0.81	2	02/28/08	02/29/08	RL1, J
Selenium	EPA 200.8	8B28067	0.60	4.0	ND	2	02/28/08	02/29/08	RL1
Zinc	EPA 200.8	8B28067	5.0	40	28	2	02/28/08	02/29/08	B, RL1, J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB2403
Sampled: 02/24/08
Received: 02/25/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018	- Water) - cont.								
Reporting Units: ug/l									
Cadmium	EPA 200.8-Diss	8B25123	0.11	1.0	0.12	1	02/25/08	02/26/08	J
Copper	EPA 200.8-Diss	8B25123	0.75	2.0	0.86	1	02/25/08	02/26/08	J
Lead	EPA 200.8-Diss	8B25123	0.30	1.0	ND	1	02/25/08	02/26/08	
Selenium	EPA 200.8-Diss	8B25123	0.30	2.0	ND	1	02/25/08	02/26/08	
Zinc	EPA 200.8-Diss	8B25123	2.5	20	13	1	02/25/08	02/26/08	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 02/24/08 Arcadia, CA 91007 Report Number: IRB2403 Received: 02/25/08

Attention: Bronwyn Kelly

INORGANICS

Project ID: Routine Outfall 018

		1111) I C G / I .	1100					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - V	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8C04046	1.4	4.9	1.9	1	03/04/08	03/04/08	J
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8B26101	0.30	0.50	ND	1	02/26/08	02/26/08	
Biochemical Oxygen Demand	EPA 405.1	8B25101	0.59	2.0	2.2	1	02/25/08	03/01/08	
Chloride	EPA 300.0	8B25042	0.25	0.50	22	1	02/25/08	02/25/08	
Nitrate-N	EPA 300.0	8B25042	0.060	0.11	0.68	1	02/25/08	02/25/08	
Nitrite-N	EPA 300.0	8B25042	0.090	0.15	ND	1	02/25/08	02/25/08	
Nitrate/Nitrite-N	EPA 300.0	8B25042	0.15	0.26	0.68	1	02/25/08	02/25/08	
Sulfate	EPA 300.0	8B25042	0.40	1.0	84	2	02/25/08	02/25/08	
Surfactants (MBAS)	EPA 425.1	8B25103	0.044	0.10	ND	1	02/25/08	02/25/08	
Total Dissolved Solids	EPA 160.1	8B27119	10	10	290	1	02/27/08	02/27/08	
Total Suspended Solids	EPA 160.2	8B28123	10	10	27	1	02/28/08	02/28/08	
Sample ID: IRB2403-01 (Outfall 018 - V	Water)								
Reporting Units: ml/l/hr									
Total Settleable Solids	EPA 160.5	8B26062	0.10	0.10	ND	1	02/26/08	02/26/08	
Sample ID: IRB2403-01 (Outfall 018 - V	Water)								
Reporting Units: NTU Turbidity	EPA 180.1	8B26063	0.040	1.0	22	1	02/26/08	02/26/08	
Sample ID: IRB2403-01 (Outfall 018 - V	Water)								
Reporting Units: ug/l									
Total Cyanide	EPA 335.2	8B26098	2.2	5.0	ND	1	02/26/08	02/26/08	
Perchlorate	EPA 314.0	8B28045	1.5	4.0	ND	1	02/28/08	02/29/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403

Received: 02/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - W	ater) - cont.								
Reporting Units: umhos/cm									
Specific Conductance	EPA 120.1	8B27117	1.0	1.0	440	1	02/27/08	02/27/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/24/08 Arcadia, CA 91007 Report Number: IRB2403 Received: 02/25/08

Attention: Bronwyn Kelly

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2403-01 (Outfall 018 - V	Vater) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	
Mercury, Total	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Report Number: IRB2403 Sampled: 02/24/08
Received: 02/25/08

Attention: Bronwyn Kelly

Arcadia, CA 91007

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 018 (IRB2403-01) - Water	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample 1D. Outlan 010 (1KD2+03-01) - Water					
EPA 160.5	2	02/24/2008 12:45	02/25/2008 05:20	02/26/2008 09:25	02/26/2008 09:25
EPA 180.1	2	02/24/2008 12:45	02/25/2008 05:20	02/26/2008 09:55	02/26/2008 09:55
EPA 300.0	2	02/24/2008 12:45	02/25/2008 05:20	02/25/2008 07:00	02/25/2008 10:38
EPA 405.1	2	02/24/2008 12:45	02/25/2008 05:20	02/25/2008 16:53	03/01/2008 10:00
EPA 425.1	2	02/24/2008 12:45	02/25/2008 05:20	02/25/2008 19:44	02/25/2008 22:16
Filtration	1	02/24/2008 12:45	02/25/2008 05:20	02/25/2008 09:45	02/25/2008 10:11

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRB2403

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B27001 Extracted: 02/27											
Blank Analyzed: 02/27/2008 (8B2700	1-BLK1)										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
Benzene	ND	0.50	0.28	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: Dibromofluoromethane	23.8			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.2			ug/l	25.0		89	80-120			
LCS Analyzed: 02/27/2008 (8B27001-	·BS1)										
1,1,1-Trichloroethane	22.8	0.50	0.30	ug/l	25.0		91	65-135			
1,1,2-Trichloroethane	26.2	0.50	0.30	ug/l	25.0		105	70-125			
1,1-Dichloroethane	23.7	0.50	0.27	ug/l	25.0		95	70-125			
1,1-Dichloroethene	22.6	0.50	0.42	ug/l	25.0		90	70-125			
1,2-Dichloroethane	22.6	0.50	0.28	ug/l	25.0		90	60-140			
Benzene	24.8	0.50	0.28	ug/l	25.0		99	70-120			
Carbon tetrachloride	25.0	0.50	0.28	ug/l	25.0		100	65-140			
Chloroform	24.2	0.50	0.33	ug/l	25.0		97	70-130			
Ethylbenzene	25.4	0.50	0.25	ug/l	25.0		102	75-125			
Tetrachloroethene	25.6	0.50	0.32	ug/l	25.0		102	70-125			
Toluene	25.6	0.50	0.36	ug/l	25.0		102	70-120			
Trichloroethene	26.4	0.50	0.26	ug/l	25.0		106	70-125			
Trichlorofluoromethane	23.5	0.50	0.34	ug/l	25.0		94	65-145			
Vinyl chloride	23.5	0.50	0.30	ug/l	25.0		94	55-135			
Xylenes, Total	78.8	1.5	0.90	ug/l	75.0		105	70-125			
TestAmerica Irvine											

TestAmerica Irvine

Joseph Doak Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRB2403

Sampled: 02/24/08

Received: 02/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

	D 1	Reporting	MDI	T T •.	Spike	Source	A/DEG	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B27001 Extracted: 02/27/08	_										
LCS Analyzed: 02/27/2008 (8B27001-BS	1)										
Surrogate: Dibromofluoromethane	24.6			ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	23.8			ug/l	25.0		95	80-120			
Matrix Spike Analyzed: 02/27/2008 (8B2	7001-MS1)				Sou	rce: IRB2	2405-01				
1,1,1-Trichloroethane	20.1	0.50	0.30	ug/l	25.0	ND	80	65-140			
1,1,2-Trichloroethane	23.8	0.50	0.30	ug/l	25.0	ND	95	65-130			
1,1-Dichloroethane	20.7	0.50	0.27	ug/l	25.0	ND	83	65-130			
1,1-Dichloroethene	19.6	0.50	0.42	ug/l	25.0	ND	78	60-130			
1,2-Dichloroethane	20.8	0.50	0.28	ug/l	25.0	ND	83	60-140			
Benzene	22.3	0.50	0.28	ug/l	25.0	ND	89	65-125			
Carbon tetrachloride	22.5	0.50	0.28	ug/l	25.0	ND	90	65-140			
Chloroform	21.0	0.50	0.33	ug/l	25.0	ND	84	65-135			
Ethylbenzene	23.0	0.50	0.25	ug/l	25.0	ND	92	65-130			
Tetrachloroethene	23.4	0.50	0.32	ug/l	25.0	ND	94	65-130			
Toluene	23.4	0.50	0.36	ug/l	25.0	ND	93	70-125			
Trichloroethene	23.9	0.50	0.26	ug/l	25.0	ND	96	65-125			
Trichlorofluoromethane	20.5	0.50	0.34	ug/l	25.0	ND	82	60-145			
Vinyl chloride	20.4	0.50	0.30	ug/l	25.0	ND	81	45-140			
Xylenes, Total	71.5	1.5	0.90	ug/l	75.0	ND	95	60-130			
Surrogate: Dibromofluoromethane	23.8			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	23.7			ug/l	25.0		95	80-120			
Matrix Spike Dup Analyzed: 02/27/2008	(8B27001-M	(SD1)			Sou	rce: IRB2	2405-01				
1,1,1-Trichloroethane	21.6	0.50	0.30	ug/l	25.0	ND	86	65-140	7	20	
1,1,2-Trichloroethane	26.3	0.50	0.30	ug/l	25.0	ND	105	65-130	10	25	
1,1-Dichloroethane	22.7	0.50	0.27	ug/l	25.0	ND	91	65-130	9	20	
1,1-Dichloroethene	21.0	0.50	0.42	ug/l	25.0	ND	84	60-130	7	20	
1,2-Dichloroethane	22.7	0.50	0.28	ug/l	25.0	ND	91	60-140	9	20	
Benzene	23.6	0.50	0.28	ug/l	25.0	ND	95	65-125	6	20	
Carbon tetrachloride	23.9	0.50	0.28	ug/l	25.0	ND	96	65-140	6	25	
Chloroform	23.0	0.50	0.33	ug/l	25.0	ND	92	65-135	9	20	
Ethylbenzene	24.1	0.50	0.25	ug/l	25.0	ND	96	65-130	4	20	
Tetrachloroethene	24.3	0.50	0.32	ug/l	25.0	ND	97	65-130	4	20	
Toluene	24.9	0.50	0.36	ug/l	25.0	ND	100	70-125	7	20	

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRB2403

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B27001 Extracted: 02/27/0	<u>8</u>										
		(T. 1)			~						
Matrix Spike Dup Analyzed: 02/27/2008	8 (8B27001-M	SD1)			Sou	rce: IRB2	2405-01				
Trichloroethene	25.0	0.50	0.26	ug/l	25.0	ND	100	65-125	4	20	
Trichlorofluoromethane	21.9	0.50	0.34	ug/l	25.0	ND	88	60-145	7	25	
Vinyl chloride	21.8	0.50	0.30	ug/l	25.0	ND	87	45-140	7	30	
Xylenes, Total	74.6	1.5	0.90	ug/l	75.0	ND	99	60-130	4	20	
Surrogate: Dibromofluoromethane	24.7			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.4			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	23.8			ug/l	25.0		95	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

---,----

Report Number: IRB2403

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B26048 Extracted: 02/2	26/08										
Blank Analyzed: 02/28/2008 (8B260	048-BLK1)										
Bis(2-ethylhexyl)phthalate	2.06	5.0	1.7	ug/l							J
2,4-Dinitrotoluene	ND	9.0	0.20	ug/l							
N-Nitrosodimethylamine	ND	8.0	0.10	ug/l							
Pentachlorophenol	ND	8.0	0.10	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2-Fluorophenol	13.5			ug/l	20.0		68	30-120			
Surrogate: Phenol-d6	11.1			ug/l	20.0		56	35-120			
Surrogate: 2,4,6-Tribromophenol	18.2			ug/l	20.0		91	40-120			
Surrogate: Nitrobenzene-d5	6.54			ug/l	10.0		65	45-120			
Surrogate: 2-Fluorobiphenyl	7.52			ug/l	10.0		75	50-120			
Surrogate: Terphenyl-d14	10.5			ug/l	10.0		105	50-125			
LCS Analyzed: 02/28/2008 (8B2604	8-BS1)										MNR1
Bis(2-ethylhexyl)phthalate	11.2	5.0	1.7	ug/l	10.0		112	65-130			
2,4-Dinitrotoluene	9.00	9.0	0.20	ug/l	10.0		90	65-120			
N-Nitrosodimethylamine	7.00	8.0	0.10	ug/l	10.0		70	45-120			J
Pentachlorophenol	8.94	8.0	0.10	ug/l	10.0		89	50-120			
2,4,6-Trichlorophenol	8.88	6.0	0.10	ug/l	10.0		89	55-120			
Surrogate: 2-Fluorophenol	13.3			ug/l	20.0		66	30-120			
Surrogate: Phenol-d6	13.0			ug/l	20.0		65	35-120			
Surrogate: 2,4,6-Tribromophenol	19.5			ug/l	20.0		97	40-120			
Surrogate: Nitrobenzene-d5	7.84			ug/l	10.0		78	45-120			
Surrogate: 2-Fluorobiphenyl	8.14			ug/l	10.0		81	50-120			
Surrogate: Terphenyl-d14	8.86			ug/l	10.0		89	50-125			
LCS Dup Analyzed: 02/28/2008 (8B	326048-BSD1)										
Bis(2-ethylhexyl)phthalate	11.3	5.0	1.7	ug/l	10.0		113	65-130	1	20	
2,4-Dinitrotoluene	8.88	9.0	0.20	ug/l	10.0		89	65-120	1	20	J
N-Nitrosodimethylamine	7.08	8.0	0.10	ug/l	10.0		71	45-120	1	20	J
Pentachlorophenol	8.56	8.0	0.10	ug/l	10.0		86	50-120	4	25	
2,4,6-Trichlorophenol	8.46	6.0	0.10	ug/l	10.0		85	55-120	5	30	
Surrogate: 2-Fluorophenol	13.8			ug/l	20.0		69	30-120			
Surrogate: Phenol-d6	12.5			ug/l	20.0		62	35-120			
Surrogate: 2,4,6-Tribromophenol	19.2			ug/l	20.0		96	40-120			
Surrogate: Nitrobenzene-d5	7.28			ug/l	10.0		73	45-120			
Surrogate: 2-Fluorobiphenyl	7.74			ug/l	10.0		77	50-120			

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403 Received: 02/25/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result %F	REC Limits	RPD	Limit	Qualifiers
D. () D. () D. () () D. (0									

Batch: 8B26048 Extracted: 02/26/08

LCS Dup Analyzed: 02/28/2008 (8B26048-BSD1)

Surrogate: Terphenyl-d14 9.46 ug/l 10.0 95 50-125

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403

Received: 02/25/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25062 Extracted: 02/25/08	<u>_</u>										
Blank Analyzed: 02/25/2008 (8B25062-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.434			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.427			ug/l	0.500		85	35-115			
LCS Analyzed: 02/25/2008 (8B25062-BS	1)										MNR1
alpha-BHC	0.442	0.010	0.0025	ug/l	0.500		88	45-115			
Surrogate: Decachlorobiphenyl	0.441			ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.425			ug/l	0.500		85	35-115			
LCS Dup Analyzed: 02/25/2008 (8B2506)	2-BSD1)										
alpha-BHC	0.408	0.010	0.0025	ug/l	0.500		82	45-115	8	30	
Surrogate: Decachlorobiphenyl	0.439			ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.384			ug/l	0.500		77	35-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Troject ID. Routine outlan ore

Report Number: IRB2403

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

METALS

Batch: 8B28067 Extracted: 02/28/08 Limit MDL Units Level Result %REC Limits RPD Limit Qualifiers Batch: 8B28067 Extracted: 02/28/2008 02/28/2008 8B28067-BLK1 3 1.0 0.11 ug/l 3 1.0 0.1 0.0			Reporting			Spike	Source		%REC		RPD	Data
Blank Analyzed: 02/28/2008 (8B28067-BLK1)	Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Cadmium 0.133 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Zinc 6.39 20 2.5 ug/l Ug/l LCS Analyzed: 02/28/2008 (8B28067-BS1) Ug/l 80.0 96 85-115 Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 93 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Batch: 8B28067 Extracted: 02/28/08	<u>.</u>										
Cadmium 0.133 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Zinc 6.39 20 2.5 ug/l Ug/l LCS Analyzed: 02/28/2008 (8B28067-BS1) Ug/l 80.0 96 85-115 Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 93 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115												
Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Zinc 6.39 20 2.5 ug/l LCS Analyzed: 02/28/2008 (8B28067-BS1) 5 Ug/l 80.0 96 85-115 Codmium 76.7 1.0 0.11 ug/l 80.0 99 85-115 Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 93 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Blank Analyzed: 02/28/2008 (8B28067-B	LK1)										
Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Zinc 6.39 20 2.5 ug/l LCS Analyzed: 02/28/2008 (8B28067-BS1) Cadmium 76.7 1.0 0.11 ug/l 80.0 96 85-115 Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 100 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Cadmium	0.133	1.0	0.11	ug/l							J
Selenium ND 2.0 0.30 ug/l Zinc 6.39 20 2.5 ug/l J LCS Analyzed: 02/28/2008 (8B28067-BS1) Cadmium 76.7 1.0 0.11 ug/l 80.0 96 85-115 Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 100 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Copper	ND	2.0	0.75	ug/l							
Zinc 6.39 20 2.5 ug/l J LCS Analyzed: 02/28/2008 (8B28067-BS1) Cadmium 76.7 1.0 0.11 ug/l 80.0 96 85-115 Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 100 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Lead	ND	1.0	0.30	ug/l							
LCS Analyzed: 02/28/2008 (8B28067-BS1) Cadmium 76.7 1.0 0.11 ug/l 80.0 96 85-115 Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 100 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Selenium	ND	2.0	0.30	ug/l							
Cadmium 76.7 1.0 0.11 ug/l 80.0 96 85-115 Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 100 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Zinc	6.39	20	2.5	ug/l							J
Copper 79.3 2.0 0.75 ug/l 80.0 99 85-115 Lead 79.9 1.0 0.30 ug/l 80.0 100 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	LCS Analyzed: 02/28/2008 (8B28067-BS	1)										
Lead 79.9 1.0 0.30 ug/l 80.0 100 85-115 Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Cadmium	76.7	1.0	0.11	ug/l	80.0		96	85-115			
Selenium 74.4 2.0 0.30 ug/l 80.0 93 85-115	Copper	79.3	2.0	0.75	ug/l	80.0		99	85-115			
ĕ	Lead	79.9	1.0	0.30	ug/l	80.0		100	85-115			
Zinc 77.1 20 2.5 ug/l 80.0 96 85-115	Selenium	74.4	2.0	0.30	ug/l	80.0		93	85-115			
	Zinc	77.1	20	2.5	ug/l	80.0		96	85-115			
Matrix Spike Analyzed: 02/28/2008 (8B28067-MS1) Source: IRB2460-02	Matrix Spike Analyzed: 02/28/2008 (8B2	8067-MS1)				Sou	rce: IRB	2460-02				
Cadmium 74.6 1.0 0.11 ug/l 80.0 0.128 93 70-130	Cadmium	74.6	1.0	0.11	ug/l	80.0	0.128	93	70-130			
Copper 76.4 2.0 0.75 ug/l 80.0 1.05 94 70-130	Copper	76.4	2.0	0.75	ug/l	80.0	1.05	94	70-130			
Lead 77.7 1.0 0.30 ug/l 80.0 ND 97 70-130	Lead	77.7	1.0	0.30	ug/l	80.0	ND	97	70-130			
Selenium 71.5 2.0 0.30 ug/l 80.0 ND 89 70-130	Selenium	71.5	2.0	0.30	ug/l	80.0	ND	89	70-130			
Zinc 74.0 20 2.5 ug/l 80.0 6.52 84 70-130	Zinc	74.0	20	2.5	ug/l	80.0	6.52	84	70-130			
Matrix Spike Analyzed: 02/28/2008 (8B28067-MS2) Source: IRB2402-01	Matrix Spike Analyzed: 02/28/2008 (8B2	8067-MS2)				Sou	rce: IRB	2402-01				
Cadmium 75.9 1.0 0.11 ug/l 80.0 1.94 92 70-130	Cadmium	75.9	1.0	0.11	ug/l	80.0	1.94	92	70-130			
Copper 78.5 2.0 0.75 ug/l 80.0 2.79 95 70-130	Copper	78.5	2.0	0.75	ug/l	80.0		95	70-130			
Lead 79.1 1.0 0.30 ug/l 80.0 1.66 97 70-130		79.1	1.0	0.30	ug/l	80.0	1.66	97	70-130			
Selenium 69.4 2.0 0.30 ug/l 80.0 ND 87 70-130	Selenium	69.4	2.0	0.30	ug/l	80.0	ND	87	70-130			
Zinc 133 20 2.5 ug/l 80.0 65.8 84 70-130	Zinc	133	20	2.5		80.0	65.8	84	70-130			
Matrix Spike Dup Analyzed: 02/28/2008 (8B28067-MSD1) Source: IRB2460-02	Matrix Spike Dup Analyzed: 02/28/2008	(8B28067-M	(SD1)			Sou	rce: IRB	2460-02				
Cadmium 76.2 1.0 0.11 ug/l 80.0 0.128 95 70-130 2 20	Cadmium	76.2	1.0	0.11	ug/l	80.0	0.128	95	70-130	2	20	
Copper 78.4 2.0 0.75 ug/l 80.0 1.05 97 70-130 3 20	Copper		2.0	0.75				97	70-130	3		
Lead 78.3 1.0 0.30 ug/l 80.0 ND 98 70-130 1 20			1.0			80.0		98	70-130			
Selenium 72.4 2.0 0.30 ug/l 80.0 ND 91 70-130 1 20	Selenium		2.0	0.30		80.0		91	70-130	1	20	
Zinc 75.2 20 2.5 ug/l 80.0 6.52 86 70-130 2 20	Zinc	75.2	20	2.5	-	80.0	6.52	86	70-130	2		

TestAmerica Irvine

Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403 Received: 02/25/08

METHOD BLANK/QC DATA

DISSOLVED METALS

	_	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B25123 Extracted: 02/25/08	_										
Blank Analyzed: 02/26/2008 (8B25123-Bl	LK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 02/26/2008 (8B25123-BS1	a)										
Cadmium	78.9	1.0	0.11	ug/l	80.0		99	85-115			
Copper	80.6	2.0	0.75	ug/l	80.0		101	85-115			
Lead	83.1	1.0	0.30	ug/l	80.0		104	85-115			
Selenium	78.7	2.0	0.30	ug/l	80.0		98	85-115			
Zinc	80.6	20	2.5	ug/l	80.0		101	85-115			
Matrix Spike Analyzed: 02/26/2008 (8B2	5123-MS1)				Sou	rce: IRB2	2107-01				
Cadmium	77.0	1.0	0.11	ug/l	80.0	ND	96	70-130			
Copper	69.6	2.0	0.75	ug/l	80.0	1.17	85	70-130			
Lead	77.8	1.0	0.30	ug/l	80.0	ND	97	70-130			
Selenium	97.0	2.0	0.30	ug/l	80.0	0.917	120	70-130			
Zinc	72.5	20	2.5	ug/l	80.0	ND	91	70-130			
Matrix Spike Dup Analyzed: 02/26/2008	(8B25123-M	SD1)			Sou	rce: IRB2	2107-01				
Cadmium	82.5	1.0	0.11	ug/l	80.0	ND	103	70-130	7	20	
Copper	71.8	2.0	0.75	ug/l	80.0	1.17	88	70-130	3	20	
Lead	79.1	1.0	0.30	ug/l	80.0	ND	99	70-130	2	20	
Selenium	101	2.0	0.30	ug/l	80.0	0.917	125	70-130	4	20	
Zinc	75.6	20	2.5	ug/l	80.0	ND	95	70-130	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403

Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25042 Extracted: 02/25/08											
Batch: 0D23042 Extracted: 02/23/00	-										
Blank Analyzed: 02/25/2008 (8B25042-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/25/2008 (8B25042-BS)	1)										
Chloride	5.09	0.50	0.25	mg/l	5.00		102	90-110			
Nitrate-N	1.09	0.11	0.060	mg/l	1.13		96	90-110			
Nitrite-N	1.49	0.15	0.090	mg/l	1.52		98	90-110			
Sulfate	9.95	0.50	0.20	mg/l	10.0		99	90-110			M-3
Matrix Spike Analyzed: 02/25/2008 (8B2	5042-MS1)				Sou	rce: IRB2	2399-01				
Chloride	20.2	0.50	0.25	mg/l	5.00	15.9	88	80-120			
Nitrate-N	1.61	0.11	0.060	mg/l	1.13	0.512	97	80-120			
Nitrite-N	1.74	0.15	0.090	mg/l	1.52	ND	115	80-120			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25042-MS	SD1)			Sou	rce: IRB2	2399-01				
Chloride	20.2	0.50	0.25	mg/l	5.00	15.9	87	80-120	0	20	
Nitrate-N	1.56	0.11	0.060	mg/l	1.13	0.512	93	80-120	3	20	
Nitrite-N	1.76	0.15	0.090	mg/l	1.52	ND	116	80-120	1	20	
Batch: 8B25101 Extracted: 02/25/08	_										
	=										
Blank Analyzed: 03/01/2008 (8B25101-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.59	mg/l							

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403 Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC Limits	RPD	RPD Limit	Data Oualifiers
·		LIIIII	MDL	Units	Levei	Result	70KEC	Limits	KPD	Liiiit	Quaimers
Batch: 8B25101 Extracted: 02/25/08	-										
LCS Analyzed: 03/01/2008 (8B25101-BS1	1)										
Biochemical Oxygen Demand	184	100	30	mg/l	198		93	85-115			
		100	30	1115/1	170		73	05 115			
LCS Dup Analyzed: 03/01/2008 (8B25101	,										
Biochemical Oxygen Demand	184	100	30	mg/l	198		93	85-115	0	20	
Batch: 8B25103 Extracted: 02/25/08											
	_										
Blank Analyzed: 02/25/2008 (8B25103-Bl	LK1)										
Surfactants (MBAS)	ND	0.10	0.044	mg/l							
LCS Analyzed: 02/25/2008 (8B25103-BS1	1)										
Surfactants (MBAS)	0.265	0.10	0.044	mg/l	0.250		106	90-110			
Matrix Spike Analyzed: 02/25/2008 (8B2:	5103_MS1)				Sou	rce: IRB2	2/03_01				
Surfactants (MBAS)	0.287	0.10	0.044	mg/l	0.250	ND	115	50-125			
Surfaciants (MDAS)	0.207	0.10	0.044	IIIg/I				30-123			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25103-M	(SD1)			Sou	rce: IRB	2403-01				
Surfactants (MBAS)	0.276	0.10	0.044	mg/l	0.250	ND	111	50-125	4	20	
Batch: 8B26063 Extracted: 02/26/08											
	_										
Blank Analyzed: 02/26/2008 (8B26063-Bl	LK1)										
Turbidity	0.100	1.0	0.040	NTU							J
Duplicate Analyzed: 02/26/2008 (8B26063	3-DUP1)				Sou	rce: IRB2	2402-01				
Turbidity	2.98	1.0	0.040	NTU		3.03			2	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRB2403

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B26098 Extracted: 02/26/08	-										
Blank Analyzed: 02/26/2008 (8B26098-Bl	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 02/26/2008 (8B26098-BS1	1)										
Total Cyanide	197	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 02/26/2008 (8B2	6098-MS1)				Sou	rce: IRB2	2473-01				
Total Cyanide	198	5.0	2.2	ug/l	200	ND	99	70-115			
Matrix Spike Dup Analyzed: 02/26/2008	(8B26098-MS	SD1)			Sou	rce: IRB2	2473-01				
Total Cyanide	200	5.0	2.2	ug/l	200	ND	100	70-115	1	15	
Batch: 8B26101 Extracted: 02/26/08	-										
Plank Analyzad, 02/24/2009 (9P24101 Pl	(IZ1)										
Blank Analyzed: 02/26/2008 (8B26101-Bl Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 02/26/2008 (8B26101-BS))			S							
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 02/26/2008 (8B2)	6101-MS1)				Sou	rce: IRB2	399_01				
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120			
Matrix Spike Dup Analyzed: 02/26/2008	(8B26101-MS	SD1)			Sou	rce: IRB2	2399-01				
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120	0	15	
Batch: 8B27117 Extracted: 02/27/08											
	-										
Duplicate Analyzed: 02/27/2008 (8B2711'	,				Sou	rce: IRB2	2403-01			_	
Specific Conductance	442	1.0	1.0	umhos/cm		440			1	5	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403

Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
•		Limit	MDL	Cints	Level	resure	/UKEC	Limits	III D	Limit	Quanners
Batch: 8B27117 Extracted: 02/27/08	-										
Reference Analyzed: 02/27/2008 (8B2711	7-SRM1)										
Specific Conductance	549	1.0	1.0	umhos/cm	530		104	90-110			
Batch: 8B27119 Extracted: 02/27/08	-										
Blank Analyzed: 02/27/2008 (8B27119-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/27/2008 (8B27119-BS	1)										
Total Dissolved Solids	980	10	10	mg/l	1000		98	90-110			
Duplicate Analyzed: 02/27/2008 (8B2711	9-DUP1)				Sou	rce: IRB2	2154-02				
Total Dissolved Solids	4760	10	10	mg/l		4760			0	10	
Batch: 8B28045 Extracted: 02/28/08	_										
Blank Analyzed: 02/28/2008 (8B28045-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 02/28/2008 (8B28045-BS)	1)										
Perchlorate	54.9	4.0	1.5	ug/l	50.0		110	85-115			
Matrix Spike Analyzed: 02/28/2008 (8B2	8045-MS1)				Sou	rce: IRB2	2453-07				
Perchlorate	61.1	4.0	1.5	ug/l	50.0	5.03	112	80-120			
Matrix Spike Dup Analyzed: 02/28/2008	(8B28045-M	(SD1)			Sou	rce: IRB2	2453-07				
Perchlorate	60.6	4.0	1.5	ug/l	50.0	5.03	111	80-120	1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403

Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B28123 Extracted: 02/28/08	_										
Blank Analyzed: 02/28/2008 (8B28123-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/28/2008 (8B28123-BS	1)										
Total Suspended Solids	1030	10	10	mg/l	1000		103	85-115			
Duplicate Analyzed: 02/28/2008 (8B2812	3-DUP1)				Sou	rce: IRB2	2355-10				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8C04046 Extracted: 03/04/08	<u> </u>										
Blank Analyzed: 03/04/2008 (8C04046-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 03/04/2008 (8C04046-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	18.1	5.0	1.4	mg/l	20.2		90	78-114			
LCS Dup Analyzed: 03/04/2008 (8C0404	6-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.9	5.0	1.4	mg/l	20.2		94	78-114	4	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403

Received: 02/25/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0982 Extracted: 02/26/	08_										
Blank Analyzed: 02/27/2008 (W8B0982-	·BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/27/2008 (W8B0982-E	SS1)										
Mercury, Dissolved	0.920	0.20	0.050	ug/l	1.00		92	85-115			
Mercury, Total	0.920	0.20	0.050	ug/l	1.00		92	85-115			
Matrix Spike Analyzed: 02/27/2008 (W8	3B0982-MS1)				Sou	rce: 8022	631-01				
Mercury, Dissolved	1.95	0.40	0.10	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.95	0.40	0.10	ug/l	2.00	0.0950	93	70-130			
Matrix Spike Analyzed: 02/27/2008 (W8	3B0982-MS2)				Sou	rce: 8022	633-01				
Mercury, Dissolved	1.91	0.40	0.10	ug/l	2.00	ND	96	70-130			
Mercury, Total	1.91	0.40	0.10	ug/l	2.00	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/27/2008	3 (W8B0982-M	(SD1)			Sou	rce: 8022	631-01				
Mercury, Dissolved	2.00	0.40	0.10	ug/l	2.00	ND	100	70-130	2	20	
Mercury, Total	2.00	0.40	0.10	ug/l	2.00	0.0950	95	70-130	2	20	
Matrix Spike Dup Analyzed: 02/27/2008	3 (W8B0982-M	(SD2)			Sou	rce: 8022	633-01				
Mercury, Dissolved	1.93	0.40	0.10	ug/l	2.00	ND	96	70-130	1	20	
Mercury, Total	1.93	0.40	0.10	ug/l	2.00	ND	96	70-130	1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 02/24/08 Arcadia, CA 91007 Report Number: IRB2403 Received: 02/25/08

Project ID: Routine Outfall 018

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB2403-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.94	4.9	15
IRB2403-01	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.03
IRB2403-01	624-Boeing 001/002 Q (Fr113+X)	, L1,1-Dichloroethene	ug/l	0	0.50	6
IRB2403-01	624-Boeing 001/002 Q (Fr113+X)	, LTrichloroethene	ug/l	0	0.50	5
IRB2403-01	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.7	13
IRB2403-01	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	8.6	18
IRB2403-01	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	19	4.8	4
IRB2403-01	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	7.6	16
IRB2403-01	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	7.6	16
IRB2403-01	Ammonia-N, Titr (350.2) w/dist	Ammonia-N (Distilled)	mg/l	0.28	0.50	10
IRB2403-01	BOD	Biochemical Oxygen Demand	mg/l	2.25	2.0	30
IRB2403-01	Cadmium-200.8	Cadmium	ug/l	0.060	2.0	3.1
IRB2403-01	Chloride - 300.0	Chloride	mg/l	22	0.50	150
IRB2403-01	Copper-200.8	Copper	ug/l	3.43	4.0	14
IRB2403-01	Cyanide-335.2 5ppb	Total Cyanide	ug/l	-2	5.0	8.5
IRB2403-01	Hg_w 245.1	Mercury, Total	ug/l	0.015	0.20	0.2
IRB2403-01	Lead-200.8	Lead	ug/l	0.81	2.0	5.2
IRB2403-01	MBAS - 425.1	Surfactants (MBAS)	mg/l	0.026	0.10	0.5
IRB2403-01	Nitrate-N, 300.0	Nitrate-N	mg/l	0.68	0.11	8
IRB2403-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IRB2403-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.68	0.26	8
IRB2403-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRB2403-01	Selenium-200.8	Selenium	ug/l	0.23	4.0	5
IRB2403-01	Settleable Solids	Total Settleable Solids	ml/l/hr	0	0.10	0.3
IRB2403-01	Sulfate-300.0	Sulfate	mg/l	84	1.0	300
IRB2403-01	TDS - EPA 160.1	Total Dissolved Solids	mg/l	291	10	950
IRB2403-01	TSS - EPA 160.2	Total Suspended Solids	mg/l	27	10	45
IRB2403-01	Zinc-200.8	Zinc	ug/l	28	40	120

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IRB2403-02	624-Boeing 001/00	2 Q (Fr113+X), L1,1-Dichloroethene	ug/l	0	0.50	6

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB2403
Sampled: 02/24/08
Received: 02/25/08

Attention: Bronwyn Kelly

IRB2403-02 624-Boeing 001/002 Q (Fr113+X), LTrichloroethene ug/l 0 0.50 5

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/24/08

Arcadia, CA 91007 Report Number: IRB2403 Received: 02/25/08
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

В	Analyte was detected in the associated Method Blank.
---	--

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

RL1 Reporting limit raised due to sample matrix effects.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 018

Sampled: 02/24/08

Report Number: IRB2403

Received: 02/25/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	X	X
EPA 160.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 1664A	Water		
EPA 180.1	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 335.2	Water	X	X
EPA 350.2	Water		X
EPA 405.1	Water	X	X
EPA 425.1	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 02/24/08

Arcadia, CA 91007 Report Number: IRB2403 Received: 02/25/08 Attention: Bronwyn Kelly

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804 Analysis Performed: Gamma Spec

Samples: IRB2403-01

Analysis Performed: Gross Alpha

Samples: IRB2403-01

Analysis Performed: Gross Beta

Samples: IRB2403-01

Analysis Performed: Radium, Combined

Samples: IRB2403-01

Analysis Performed: Strontium 90

Samples: IRB2403-01

Analysis Performed: Tritium

Samples: IRB2403-01

Analysis Performed: Uranium, Combined

Samples: IRB2403-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRB2403-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRB2403-01

Test A	meric	Test America version 12/20/07	2/20/0	+000	CHAIN OF	F CUSTODY FORM	00	∀	ORI	>	•	ム NA NA	1RB240	77 2011	RB2400	Page 1 of 2
Client Name/Address	ne/Addr	ess		Project Boeing-SSEI NDDES	NPDES	_1_			-	-	-	7	5	i } 		
MIVVH-Arcadia 618 Michillinda Ave Arcadia, CA 91007	rcadia inda Aver A 91007	MVVH-Arcadia 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007	00	Routine Outfall 018	tfall 018				uspje) IEW)		1'				otoluene late, iste)	Field readings: Temp = 545.
Test Americ	a Contac	Test America Contact: Joseph Doak	Jak												ntini sdtr	
Project Ma	anager	Project Manager: Bronwyn Kelly	Kelly	Phone Number (626) 568-6691	ber: 391		erable Cd, S	sli co	98f) ə Səl rec	egree	ABM) DN+ _E C		DS, T	098) 1	(608) 2,4 ⊡ (5VO)	pH = / S Time of readings = / 3 '4'
Sampler: MARIS AL	MARIS	fire		Fax Number:	f. 17 4 17		·бН	(suq				orate			։ .Cb՝	
Bures	x 9 x	,		0.50-000 (0.50)	0		, Pb,	DD (rchlo	ibidı		T 9, t	Comments
Sample	Sample	Container Type	Cont.	Sampling Sampline Date/Time	Preservative	Bottle #	nე	DΤ				ъe	n⊥		2,2 i8	\dashv
Outfall 018	3	1L Poly	-	18-2-24.0	₹ HNO₃	1A	×									
Outfall 018	3	1L Poly	1	C4 77	HNO3	18	×	-								
Outfall 018	3	1L Poly	-		None	2		×								
Outfall 018	3	1L Amber	2		None	3A, 3B		×								
Outfall 018	3	1L Amber	2		HCI	4A, 4B			×							
Outfall 018	3	500 ml Polv	-		NaOH	S.			×							. 2
Outfall 018	3	1L Poly	-		None	9				×						
Outfall 018	3	500 ml Poly	2		None	7A, 7B					×					2/25/08
Outfall 018	3	500 ml Poly	2		None	8A, 8B						×				- (
Outfall 018	3	500 ml Poly	-		None	6						×				20:60
Outfall 018	3	500 ml Poly	2		None	10A, 10B						_	×			
Outfall 018	3	500 ml Polv	-		H ₂ SO ₄	11								×		
Outfall 018	3	1L Amber	2	>	None	12A, 12B						-			× :	
Outfall 018	3	1L Amber	2	30-75-6	None	13A, 13B		7		_		_	_		× -	
Relinquished By	ed By			Time:	(Received By	_)at	Date/ Lime:	,			Turn around 7	Turn around Time: (check) 24 Hours 5 Days
Chi	Der	1	8		7 8 7		A.)	Y	۲	1/2/2	50/2	7	77	48 Hours	10 Davs
Relinquished By	(By)			/ Date/Time:	545	Received By				Dat	e/Ime:				72 Hours	Normal X
Relinquished By		المرابع	2	Date/Time:	0520	Received By	*	0	ر ا	Dat	Date/Time: 2/25	me: 2508	05	97	Sample Integ	Intact Con Ioe: 3.4 1.4°C
\$ <u>1</u>		} ³	1		}			`	M							
																(

Test A	meric	est America version 12/20/07	12/20/	20/	CHAIN OF	• -	CUSTODY FORM		1 III MARKAMANANANANANANANANANANANANANANANANANANA	Page 2 of
Client Name/Address	me/Addr	.ess		Project:				ANALYSIS REQ	REQUIRED	
MWH-Arcadia 618 Michillinda Ave Arcadia, CA 91007	rcadia linda Avel A 91007	MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	500	Boeing-{	Boeing-SSFL NPDES Routine Outfall 018	S) &	Gross (H-3) (M-3) (226 (adium	tals: Cu		
Test Americ	ca Contac	Test America Contact. Joseph Doak	oak				(0.0 mui 0.80 3 mi 7 &			
Project M	anager	Project Manager: Bronwyn Kelly	Kelly	-	lumber:		009) itinT (9) 06 uibe! siD (
Sampler: www	2000			(626) 568-6691 Fax Number:	.8-6691 ղber:		0.0), , Sr-9 or 90: or 90:	lossi(,		
Kerreso, R.	4. P.	D. War		(626) 568-6515	8-6515		4 sec 09)s (0.8 nidr 0.8			
Sample	Sample	Container	# of Cont.	Sampling Date/Time	Preservative	Bottle #	00-5 19-8 (90-) 10-0 (90-) 10-0 82-2 (90-)			Comments
Outfall 018		VOAs	2	2.24.5	고 도	14A, 14B, 14C, 14D, 14E	×			
Outfall 018	3	2.5 Gal Cube 500 ml Amber			None None	15A 15B	×		:	Unfiltered and unpreserved analysis
		1 Gal								Only foct if finite and agent
		Cube		>	O LONG	0				event-officeass.
Outfall 018	3	1L Poly	-	80 HZ Z	None	17		×		Filter w/in 24hrs of receipt at lab
Trip Blanks	3	VOAs	ო		I HCI	18A, 18B, 18C	×			
						_				
Relinquished By	d By		4	Date/Time:	-	Received By	Date/Fifthe:		Turn around T	Turn around Time: (check)
	R		8	2.2408	云め人			124/08 1430		5 Days
Relinquished By	By By			Date/Time:	520/1	Received By	Date/Time:		48 Hours	10 Days
Relinquished By			_	Date/Time:		Received By	Date/Time:	\$ C\$ C\$ S	Sample Integr Intact	Sample Integrity: (check) Intact On Ice.
٠ الأل) - -	3	7	2 مسات	7	The A		3		

SUBCONTRACT ORDER

TestAmerica Irvine

IRB2403

8022 634

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone: (626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature: 4 6 °C

Ice: {Y)/ N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB2403-01	Water		Sampled: 02/24/08 12:45	
Level 4 Data Package - Wed	: N/A	03/05/08	03/23/08 12:45	
Mercury - 245.1, Diss -OUT	ug/l	03/05/08	03/23/08 12:45	Boeing, J flags
Mercury - 245.1-OUT	ug/l	03/05/08	03/23/08 12:45	Boeing, permit, J flags
Containers Supplied:				
• • • • • • • • • • • • • • • • • • • •	25 mL Poly AE)	w/HNO3		

Released By

Released By Date

Date/Time

Received By

Received By

mola

Date/Time

ros

Date/Time NPDES - 4233 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

02/28/08 07:50

17461 Derian Ave, Suite 100

Received Date:

02/26/08 12:05

Irvine, CA 92614

Turn Around:

6 days

Attention: Joseph Doak

Fax: (949) 260-3297

Work Order #:

8022634

Phone: (949) 261-1022

Client Project:

IRB2403

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 02/26/08 12:05 with the Chain of Custody document. The samples were received in good condition. The samples were received at 4.6 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022634 Project ID: IRB2403 Date Received: 02/26/08 12:05 Date Reported: 02/28/08 07:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB2403-01	Client		8022634-01	Water	02/24/08 12:45

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022634 Project ID: IRB2403 Date Received: 02/26/08 12:05 Date Reported: 02/28/08 07:50

IRB2403-01 8022634-01 (Water)

Date Sampled: 02/24/08 12:45

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Analyst	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0982	02/26/08	02/27/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0982	02/26/08	02/27/08	jlp	

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022634 Project ID: IRB2403 Date Received: 02/26/08 12:05 Date Reported: 02/28/08 07:50

QUALITY CONTROL SECTION

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022634 Project ID: IRB2403 Date Received: 02/26/08 12:05 Date Reported: 02/28/08 07:50

Metals by EPA 200 Series Methods - Quality Control

%REC

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W8B0982 - EPA 245.1										
Blank (W8B0982-BLK1)				Analyzed:	02/27/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0982-BS1)				Analyzed:	Analyzed: 02/27/08					
Mercury, Dissolved	0.920	0.20	ug/l	1.00		92	85-115			
Mercury, Total	0.920	0.20	ug/l	1.00		92	85-115			
Matrix Spike (W8B0982-MS1)	So	ource: 8022631	-01	Analyzed: 02/27/08						
Mercury, Dissolved	1.95	0.40	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.95	0.40	ug/l	2.00	0.0950	93	70-130			
Matrix Spike (W8B0982-MS2)	So	ource: 8022633	-01	Analyzed: 02/27/08						
Mercury, Dissolved	1.91	0.40	ug/l	2.00	ND	96	70-130			
Mercury, Total	1.91	0.40	ug/l	2.00	ND	96	70-130			
Matrix Spike Dup (W8B0982-MSD1)	So	ource: 8022631	-01	Analyzed:	02/27/08					
Mercury, Dissolved	2.00	0.40	ug/l	2.00	ND	100	70-130	2	20	
Mercury, Total	2.00	0.40	ug/l	2.00	0.0950	95	70-130	2	20	
Matrix Spike Dup (W8B0982-MSD2)	So	ource: 8022633	-01	Analyzed: 02/27/08						
Mercury, Dissolved	1.93	0.40	ug/l	2.00	ND	96	70-130	0.9	20	
Mercury, Total	1.93	0.40	ug/l	2.00	ND	96	70-130	0.9	20	

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022634 Project ID: IRB2403 Date Received: 02/26/08 12:05 Date Reported: 02/28/08 07:50

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

March 20, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project Nos. IRB1995, IRB2337, IRB2341, IRB2342, IRB2399

IRB2400, IRB2401, IRB2403

Eberline Services NELAP Cert #01120CA

Eberline Services Reports R802140-8609, R802169-8610, R802170-8611

R802171-8612, R802172-8613, R802173-8614

R802174-8615, R802175-8616

Dear Mr. Doak:

Attached are data reports for eight water samples. The samples were received at Eberline Services on February 22, 26, 2008 under eight separate Test America subcontract orders. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were batched with QC samples 8609-002, 003, 004, and 005 for all analyses. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

melesso Mamm

MCM/njv

Enclosure: Reports

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eberlineservices.com

NPDES - 4240

Eberline Services

ANALYSIS RESULTS

 SDG
 8616
 Client
 TA IRVINE

 Work Order
 R802175-01
 Contract
 PROJECT# IRB2403

 Received Date
 02/26/08
 Matrix
 WATER

Client Sample ID	Lab Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 20	<u>Units</u>	MDA
IRB2403-01	8616-001	02/24/08 03/16/08	GrossAlpha	2.15 ± 1.1	pCi/L	1.3
		03/16/08	Gross Beta	4.36 ± 1.1	pCi/L	1.7
		03/10/08	Ra-228	-0.101 ± 0.15	pCi/L	0.45
		03/12/08	K-40 (G)	U	pCi/L	14
		03/12/08	Cs-137 (G)	U	pCi/L	0.94
		03/14/08	H-3	-58.7 ± 85	pCi/L	150
		03/14/08	Ra-226	2.27 ± 0.71	pCi/L	0.78
		03/10/08	Sr-90	-0.106 ± 0.36	pCi/L	0.88
		03/05/08	Total U	0.533 ± 0.060	pCi/L	0.023

Certified by ng
Report Date 03/20/08
Page 1

Eberline Services

QC RESULTS

SDG 8616

Received Date 02/26/08

Work Order <u>R802175-01</u>

Client TA IRVINE

Contract PROJECT# IRB2403

Matrix WATER

Lab						
Sample ID	Nuclide	Results	Units	Amount Added	MDA	Evaluation
LCS						
8609-002	GrossAlpha	12.8 ± 0.90	pCi/Smpl	10.2	0.25	125% recovery
	Gross Beta	8.65 ± 0.36	pCi/Smpl	9.37	0.27	92% recovery
	Ra-228	9.55 ± 0.58	pCi/Smpl	8.63	0.79	111% recovery
	Co-60 (G)	216 ± 6.8	pCi/Smpl	223	3.1	97% recovery
	Cs-137 (G)	247 ± 6.5	pCi/Smpl	235	4.3	105% recovery
	Am-241 (G)	208 ± 15	pCi/Smpl	254	17	82% recovery
	H-3	222 ± 14	pCi/Smpl	239	15	93% recovery
	Ra-226	4.52 ± 0.24	pCi/Smpl	4.46	0.081	101% recovery
	Sr-90	10.4 ± 0.75	pCi/Smpl	9.38	0.30	111% recovery
	Total U	1.10 ± 0.13	pCi/Smpl	1.13	0.005	97% recovery
BLANK						
8609-003	GrossAlpha	0 ± 0.15	pCi/Smpl	NA	0.28	<mda< td=""></mda<>
	Gross Beta	-0.185 ± 0.27	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.178 ± 0.26	pCi/Smpl	NA	0.76	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	140	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	5.3	<mda< td=""></mda<>
	H-3	-3.37 ± 8.5	pCi/Smpl	NA	14	<mda< td=""></mda<>
	Ra-226	-0.003 ± 0.03	5 pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	-0.157 ± 0.21	pCi/Smpl	NA	0.57	<mda< td=""></mda<>
	Total U	0.00E 00 ± 2.0E	-04 pCi/Smpl	NA	4.6E-04	<mda< td=""></mda<>
		-				

D	JPLICATES				ORIGINALS			
								3σ
Sample ID Nuc	lide	Results ± 20	MDA	Sample ID	Results ± 20	\underline{MDA}	RPD	(Tot) Eval
8609-004 Gro	ssAlpha	1.98 ± 1.7	2.4	8609-001	3.00 ± 2.0	2.8	41	164 satis.
Gro	ss Beta	4.45 ± 1.4	2.0		2.91 ± 2.0	3.3	42	108 satis.
K-4) (G)	U	20		U	39	-	0 satis.
Cs-	137 (G)	ū	1.1		U	1.7	-	0 satis.
H-3		-43.9 ± 86	150		-40.9 ± 84	140	-	0 satis.
Ra-	226	0.125 ± 0.40	0.74		-0.003 ± 0.41	0.79	-	0 satis.
Sr-	90	0.093 ± 0.38	0.86		0.137 ± 0.49	1.1	-	0 satis.
Tot	al U	1.19 ± 0.13	0.023		1.30 ± 0.15	0.023	9	31 satis.

Certified by NOV

Report Date <u>03/20/08</u>

Page 2

Eberline Services

QC RESULTS

SDG <u>8616</u>
Work Order <u>R802175-01</u>

Received Date 02/26/08

Client TA IRVINE

Contract PROJECT# IRB2403

Matrix WATER

	SPIKED SAMPLE				OR	IGINAL SAM	MPLE			
Sample ID	Nuclide	Results	<u>+ 20</u>	MDA	Sample ID	Results	<u>±</u> 2σ	MDA	Added	%Recv
8609-005	GrossAlpha	207 ±	11	2.6	8609-001	3.00 ±	2.0	2.8	164	124
	Gross Beta	148 ±	4.0	2.4		2.91 ±	2.0	3.3	144	101
	H-3	14800 ±	280	150		-40.9 ±	84	140	16000	93
	Ra-226	113 ±	4.4	0.81		-0.003 ±	0.41	0.79	112	101
	Total U	113 ±	14	2.3		1.30 ±	0.15	0.023	113	99

Certified by NOV

Report Date 03/20/08

Page 3

RECEIVING LABORATORY:

SUBCONTRACT ORDER - PROJECT # IRB2403

SENDING	G LABORATORY:	PARTIES CONTINUED TO THE PARTIES OF	RECEIVING	LABORATORY:	
TestAmerica Irvine		Eberline S	Services - SUB		
17461 Derian Avenue. Suite	100	2030 Wrig	ght Avenue		
Irvine, CA 92614			d, CA 94804		
Phone: (949) 261-1022		1 1	10) 235-2633		
Fax: (949) 260-3297		Fax: (510)) 235-0438		
Project Manager: Joseph Doa	ık	Duniant I a	cation: California		
1		Froject Loc	Catton. Camonna		
Standard TAT is requeste	ed unless specific due date is	requested. => Due Da	ate: I	nitials:	
Analysis	Expiration		Comments		
Sample ID: IRB2403-01 Wat	ter Sampled: 02/24/08 12	:45			
Gamma Spec-O	02/23/09 12:45		_	gs, K-40 and CS-137 on	ly
Gross Alpha-O	08/22/08 12:45		Boeing, J fla	_	
Gross Beta-O	08/22/08 12:45		Boeing, J fla	gs	
Level 4 Data Package - Out	03/23/08 12:45		- 1 10		
Radium, Combined-O	02/23/09 12:45		Boeing, J fla		
Strontium 90-O	02/23/09 12:45		Boeing, J fla		
Tritium-O	02/23/09 12:45		Boeing, J fla Boeing, J fla		
Uranium, Combined-O	02/23/09 12:45		Boeing, 3 Ha	gs	
Containers Supplied: 2.5 gal Poly (IRB2403-01AA))				
500 mL Amber (IRB2403-01)					
		SAMPLE INTEGRITY:			
All containers intact: Yes	No Sample labels/C	OC agree:	No Samples Rec	ceived On Ice::	□ No
Custody Seals Present: Yes	No Samples Preserv			ceived at (temp):	
Custody Seals Flescht.	AT No Samples Freserv				
		^	1 1 - 1		()
1 July	1 2/25/18 17	00	Fed-EX kelmert	425/08	1700
Released By	Date Time	Received By	·	Date	Гіте
		<i>M</i> 0	ko Danes I	2/26/08 /	3 20
FEPTY		HEER 1	receive	X126/08 /3	5 20
Released By	Date Time	Re d eived By		Date	ime
					Page 1 of 1

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

OHEIR. 1031	MUERIC	A	_ City <i>IR</i>	VINE	Stat	e CA	***************************************
Date/Time rec	eived <u>2/26/0.</u>	8 10:00 COC 1	No. 18B2	403			
					Received Yes	[] No[]	
			INSPE	CTION			
1. Custo	dy seals on ship	ping container	intact?		Yes [√]	No[] N/A	1 1
2. Custo	dy seals on ship	pping container	dated & signe	ed?	Yes [🗸]		-
3. Custo	dy seals on sam	nple containers	intact?			No[] N/A	
4. Custo	dy seals on sam	nple containers	dated & signe	ed?	Yes[]	No[] N/A	(IV)
	ng material is:				Wet[]	Drv [] v	1/4 /
8. Numb	er of samples in	shipping conta	iner:	Sample Ma	trix WATE	R	
7. Numb	er of containers	per sample:	2	(Or see CoC)		
				Yes [V]			
). Paper	work agrees wit	h samples?		Yes [🗸	No[]		
0. Samp	les have: Tap	e[] Hazard	labels [] F	Rad labels []	Appropriate sar	mple labels [V	1
1. Sampl	ies are: In g	ood condition (√ Leakin	g[] Brokei	n Container []	Missina (1
2. Sampl	es are: Preser	ved [] Not p	oreserved [V	√pH_6 Pr	reservative	- D [J
	be any anomali						
		any anomalies?	Yes	[] No[1/26/08 _{Tim}] Date)	
5. Inspec	ted by	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	
5. Inspec Customer Sample No.	ted by	AK	YesDate: $\frac{\hat{\omega}}{\omega}$	426/08 Tim	e: <u>13:20</u>)	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec Customer Sample No.	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec	Beta/Gamma	Arc Ion Chamber	Date: 💆	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec	Beta/Gamma cpm	Ion Chamber mR/hr	Wipe	Customer	e: 13:20 Beta/Gamma	lon Chamber	wipe
5. Inspec	Beta/Gamma cpm	Arc Ion Chamber	Wipe	¥26/08 Tim Customer Sample No.	e: 13:20 Beta/Gamma	lon Chamber mR/hr	wipe
Customer Sample No. RB2403 Chamber Ser. ha Meter Ser.	Beta/Gamma cpm	Ion Chamber mR/hr	Wipe	¥26/08 Tim Customer Sample No.	e: /3:20	lon Chamber mR/hr	wipe

Form SCP-02, 07-30-07

March 14, 2008

Vista Project I.D.: 30305

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 26, 2008 under your Project Name "IRB2403". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Marino More

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 2/26/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30305-001 IRB2403-01

NPDES - 4247 Page 2 of 257

SECTION II

Project 30305 NPDES - 4248
Page 3 of 257

Method Blank	S									EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	99	97	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted:	9-	Mar-08	Date	Analyzed DB-5:	10-Mar-08	Date An	alyzed DB-225: NA
Sumpre Size.	1.00 2		Date Entracted.		1 ,141 00	Bute	7 mary 200 BB 5.	10 1/141 00	Dute 1111	ary 200 DD 220. TVT
Analyte	Conc. (u	g/L)	DL a	EMPC b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	N	ND	0.000000937			<u>IS</u>	13C-2,3,7,8-TCI)D	87.0	25 - 164
1,2,3,7,8-PeCDI	D N	ND	0.00000106				13C-1,2,3,7,8-Pe	eCDD	77.8	25 - 181
1,2,3,4,7,8-HxC	DD N	ND	0.00000142				13C-1,2,3,4,7,8-	HxCDD	82.4	32 - 141
1,2,3,6,7,8-HxC	DD N	ND	0.00000142				13C-1,2,3,6,7,8-	HxCDD	88.5	28 - 130
1,2,3,7,8,9-HxC	DD N	ND	0.00000136				13C-1,2,3,4,6,7,	8-HpCDD	81.0	23 - 140
1,2,3,4,6,7,8-Hp	oCDD N	ND	0.00000250				13C-OCDD		72.3	17 - 157
OCDD	N	ND	0.00000890				13C-2,3,7,8-TCI	OF	85.2	24 - 169
2,3,7,8-TCDF	ľ	ND	0.000000547				13C-1,2,3,7,8-Pe	eCDF	73.1	24 - 185
1,2,3,7,8-PeCDI	F N	ND	0.000000924				13C-2,3,4,7,8-Pe	eCDF	73.2	21 - 178
2,3,4,7,8-PeCDI	F N	ND	0.000000985				13C-1,2,3,4,7,8-	HxCDF	82.4	26 - 152
1,2,3,4,7,8-HxC	DF N	ND	0.000000699				13C-1,2,3,6,7,8-	HxCDF	94.2	26 - 123
1,2,3,6,7,8-HxC	DF N	ND	0.000000669				13C-2,3,4,6,7,8-	HxCDF	89.8	28 - 136
2,3,4,6,7,8-HxC	DF N	ND	0.000000795				13C-1,2,3,7,8,9-	HxCDF	83.4	29 - 147
1,2,3,7,8,9-HxC	CDF N	ND	0.00000107				13C-1,2,3,4,6,7,	8-HpCDF	79.0	28 - 143
1,2,3,4,6,7,8-Hp	CDF N	ND	0.000000964				13C-1,2,3,4,7,8,9	9-HpCDF	81.7	26 - 138
1,2,3,4,7,8,9-Hp	CDF N	ND	0.00000105				13C-OCDF		72.4	17 - 157
OCDF	1	ND	0.00000275			CRS	37Cl-2,3,7,8-TC	DD	113	35 - 197
Totals						Foot	tnotes			
Total TCDD	1	ND	0.000000937			a. San	nple specific estimated	detection limit.		
Total PeCDD	1	ND	0.00000167			b. Est	imated maximum possil	ole concentration.		
Total HxCDD	1	ND	0.00000235			c. Me	thod detection limit.			
Total HpCDD	1	ND	0.00000320			d. Lov	wer control limit - upper	control limit.		
Total TCDF	1	ND	0.000000547							
Total PeCDF	ľ	ND	0.000000953							
Total HxCDF	1	ND	0.000000792							
Total HpCDF	1	ND	0.00000100							

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 11:33

OPR Results					EP	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9997 9-Mar-08	Lab Sample: 0-OPR001 Date Analyzed DB-5: 10-Mar-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	10.5	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	84.4	25 - 164	
1,2,3,7,8-PeCDD	50.0	50.9	35 - 71	13C-1,2,3,7,8-PeCDD	78.2	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	49.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	77.7	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	50.3	38 - 67	13C-1,2,3,6,7,8-HxCDD	80.5	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	50.3	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	77.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	51.0	35 - 70	13C-OCDD	67.4	17 - 157	
OCDD	100	102	78 - 144	13C-2,3,7,8-TCDF	82.6	24 - 169	
2,3,7,8-TCDF	10.0	9.70	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	72.2	24 - 185	
1,2,3,7,8-PeCDF	50.0	51.5	40 - 67	13C-2,3,4,7,8-PeCDF	73.8	21 - 178	
2,3,4,7,8-PeCDF	50.0	51.5	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.8	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	52.0	36 - 67	13C-1,2,3,6,7,8-HxCDF	82.8	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	52.6	42 - 65	13C-2,3,4,6,7,8-HxCDF	78.7	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	53.6	35 - 78	13C-1,2,3,7,8,9-HxCDF	78.2	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	51.9	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	74.8	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	52.4	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	75.3	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	52.1	39 - 69	13C-OCDF	67.4	17 - 157	
OCDF	100	103	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	107	35 - 197	

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 11:33

Sample ID: IRB	32403-01								EPA N	Method 1613
Client Data			Sample Data		Lab	oratory Data				
	t America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30305-001	Date Re	ceived:	26-Feb-08
3	32403 Feb-08		Sample Size:	1.03 L	QC	Batch No.:	9997	Date Ex	tracted:	9-Mar-08
Time Collected: 124:					Date	Analyzed DB-5:	10-Mar-08	Date An	alyzed DB-225:	NA
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers		Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	871		<u>IS</u>	13C-2,3,7,8-TCE)D	74.5	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	63			13C-1,2,3,7,8-Pe	CDD	69.0	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000002	39			13C-1,2,3,4,7,8-I	HxCDD	68.6	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000004	32			13C-1,2,3,6,7,8-I	HxCDD	76.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000004	12			13C-1,2,3,4,6,7,8	8-HpCDD	71.8	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000401					13C-OCDD		64.2	17 - 157	
OCDD	0.000404					13C-2,3,7,8-TCD	F	76.2	24 - 169	
2,3,7,8-TCDF	ND	0.000001	57			13C-1,2,3,7,8-Pe	CDF	64.3	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	62			13C-2,3,4,7,8-Pe	CDF	65.8	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	987			13C-1,2,3,4,7,8-I	HxCDF	68.5	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000001	06			13C-1,2,3,6,7,8-I	HxCDF	77.3	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000001	08			13C-2,3,4,6,7,8-I	HxCDF	74.4	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000001	53			13C-1,2,3,7,8,9-I	HxCDF	73.1	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	844			13C-1,2,3,4,6,7,8	3-HpCDF	66.7	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000916			J		13C-1,2,3,4,7,8,9	-HpCDF	71.0	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	20			13C-OCDF		65.9	17 - 157	
OCDF	0.0000158			J	CRS	37Cl-2,3,7,8-TCl	DD	109	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000000	871		a. Sa	ample specific estimated	l detection limit.			
Total PeCDD	ND	0.000003	42		b. Es	stimated maximum poss	sible concentration.			
Total HxCDD	0.00000968				c. M	ethod detection limit.				
Total HpCDD	0.0000812				d. Le	ower control limit - upp	er control limit.			
Total TCDF	ND		0.00000	188						
Total PeCDF	ND		0.000000	0778						
Total HxCDF	0.00000828									
Total HpCDF	0.0000208									

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 11:33

Project 30305

Page 6 of 257

APPENDIX

Project 30305 NPDES - 4252 Page 7 of 257

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

ANALYTICAL TESTING CORPORATION

30305 1.3°

SUBCONTRACT ORDER - PROJECT # IRB2403

SENDIN	NG LABORATORY:	11	RECEIVING LABORATO	ORY:					
TestAmerica Irvine			Laboratory- SUB						
17461 Derian Avenue. Suite	e 100	1104 Windfield							
Irvine, CA 92614		El Dorado Hills,							
Phone: (949) 261-1022		Phone :(916) 673-1520 Fax: (916) 673-0106							
Fax: (949) 260-3297		Fax: (916) 6/3-0106							
Project Manager: Joseph Do	oak	Project Location:	California						
Standard TAT is request	ted unless specific due date is reques	eted. => Due Date:	Initials:						
Analysis	Expiration		Comments						
Sample ID: IRB2403-01 Wa	nter Sampled: 02/24/08 12:45								
1613-Dioxin-HR-Alta EDD + Level 4	03/02/08 12:45 03/23/08 12:45		J flags,17 congeners,no TI Excel EDD email to pm,In						
Containers Supplied:									
1 L Amber (IRB2403-01D)									
1 L Amber (IRB2403-01E)									
,									
(
	-								
d -m €									
	SAMPI	LE INTEGRITY:							
All containers intact: Yes	☐ No Sample labels/COC agree:	Yes No	Samples Received On Ice::	☐ Yes ☐ No					
Custody Seals Present: Yes	□ No Samples Preserved Properl		Samples Received at (temp):						
Magantar Sent	14 2/25/08 1700	FEREX	2/25/08	1700					
Released By	Date Time	Received By	Date Date	Time 2/08/12					
Released By	Date Time	Received By	Date	Time					
			2-4-0	Dage 1 of 1					

SAMPLE LOG-IN CHECKLIST

Vista Project #:(3000	· · · · · · · · · · · · · · · · · · ·				т	АТ <u>U</u>	<u>nspe</u>	citied
	Date/Time			Initials:		Loc	ation:	W	2-2
Samples Arrival:	2/26/6	18 09	110	BS	B	She	elf/Rac	:k:/	1/A
	Date/Time			Initials:		Loc	ation	h	1R-2
Logged In:	2/27/08	0812		Po	B	She	elf/Rac	:k:	EZ
Delivered By:	FedEx	UPS		Cal	DHL	-	Ha Deliv		Other
Preservation:	Ice)	Blue	e Ice	Dr	y Ice			None
Temp °C /.	3	Time:	093	2		The	rmom	eter l	D : IR-1

					YES	NO	NA
Adequate Sample Volume Rece	ived?				1		
Holding Time Acceptable?				,	/		
Shipping Container(s) Intact?					V,		
Shipping Custody Seals Intact?		en e	Tay.				
Shipping Documentation Presen	t?			.*	~		
Airbill Trk# 1	2983 8	170 416	3				
Sample Container Intact?					✓		
Sample Custody Seals Intact?							
Chain of Custody / Sample Docu	ımentation P	resent?			1		
COC Anomaly/Sample Acceptar	nce Form cor	npleted?					~
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pre	servation	?	. (/
Na ₂ S ₂ O ₃ Preservation Documen	ted?	coc	1	Sample ontainer		None	
Shipping Container	Vista	Client	Retain	Re	eturn	Disp	ose

Comments:

APPENDIX G

Section 108

Outfall 018 – BMP Effectiveness, February 24-25, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: BMP Effectiveness

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Monitoring Program

Sampled: 02/24/08-02/25/08

Received: 02/26/08

Issued: 03/06/08 13:45

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IRB2514-01	018 EFF-1	Water
IRB2514-02	018 EFF-2	Water
IRB2514-03	018 EFF-3	Water
IRB2514-04	018 EFF-4	Water
IRB2514-05	018 EFF-5	Water
IRB2514-06	018 EFF-6	Water
IRB2514-07	018 EFF-7	Water
IRB2514-08	018 EFF-8	Water
IRB2514-09	018 EFF-9	Water
IRB2514-10	018 EFF-10	Water
IRB2514-11	018 EFF-11	Water
IRB2514-12	018 EFF-12	Water
IRB2514-13	018 EFF-13	Water
IRB2514-14	018 EFF-14	Water
IRB2514-15	018 EFF-15	Water
IRB2514-16	018 EFF-16	Water
IRB2514-17	018 EFF-17	Water
IRB2514-18	018 EFF-18	Water
IRB2514-19	018 EFF-19	Water
IRB2514-20	018 EFF-20	Water
IRB2514-21	018 EFF-21	Water
IRB2514-22	018 EFF-22	Water
IRB2514-23	018 EFF-23	Water

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 02/24/08-02/25/08

Arcadia, CA 91007 Report Number: IRB2514 Received: 02/26/08

Attention: Bronwyn Kelly

LABORATORY ID CLIENT ID MATRIX

IRB2514-24 018 EFF-24 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200

Monitoring Program Sampled: 02/24/08-02/25/08

Arcadia, CA 91007

Report Number: IRB2514

Received: 02/26/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB2514-01 (018 EFF-1 - Wa	nter)				Sampled: 02/24/08						
Reporting Units: g/cc Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-02 (018 EFF-2 - Wa	nter)				Sample	ed: 02/24/0	08				
Reporting Units: g/cc Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-03 (018 EFF-3 - Wa						ed: 02/24/0					
Reporting Units: g/cc	,				Sample	. U2/24/	00				
Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-04 (018 EFF-4 - Wa	nter)				Sample	ed: 02/24/	08				
Reporting Units: g/cc Density	Displacement	8C04033	N/A	NA	1.0	1	03/04/08	03/04/08			
Sample ID: IRB2514-05 (018 EFF-5 - Wa	•				Sample	ed: 02/24/0	n s				
Reporting Units: g/cc	,				Sumpre	02/21/					
Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-06 (018 EFF-6 - Wa	nter)				Sample	ed: 02/24/0	08				
Reporting Units: g/cc Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-07 (018 EFF-7 - Wa	nter)				Sample	ed: 02/24/0	08				
Reporting Units: g/cc					-						
Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-08 (018 EFF-8 - Wa	nter)				Sample	ed: 02/24/0	08				
Reporting Units: g/cc Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-09 (018 EFF-9 - Wa	nter)				Sample	ed: 02/24/0	08				
Reporting Units: g/cc	Dignlagament	8C04033	N/A	NA	1.0	1	03/04/08	03/04/08			
Density	Displacement	oCU4U33	IN/A	INA		1		03/04/08			
Sample ID: IRB2514-10 (018 EFF-10 - W Reporting Units: g/cc	ater)				Sample	ed: 02/24/0	08				
Density Density	Displacement	8C04033	N/A	NA	1.0	1	03/04/08	03/04/08			

TestAmerica Irvine

Joseph Doak Project Manager

MWH-Pasadena/Boeing

_ . . .

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRB2514

Sampled: 02/24/08-02/25/08

Received: 02/26/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB2514-11 (018 EFF-11 - W	ater)				Sampled: 02/24/08						
Reporting Units: g/cc Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-12 (018 EFF-12 - W	ater)				Sample	ed: 02/24/0	08				
Reporting Units: g/cc Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-13 (018 EFF-13 - W Reporting Units: g/cc	ater)				Sample	ed: 02/24/0	08				
Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-14 (018 EFF-14 - W Reporting Units: g/cc	ater)				Sample	ed: 02/24/0	08				
Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-15 (018 EFF-15 - W Reporting Units: g/cc	ater)				Sample	ed: 02/24/0	08				
Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-16 (018 EFF-16 - W Reporting Units: g/cc	ater)				Sample	ed: 02/24/0	08				
Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-17 (018 EFF-17 - W Reporting Units: g/cc	ater)				Sample	ed: 02/25/0	08				
Density	Displacement	8C04033	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-18 (018 EFF-18 - W Reporting Units: g/cc	ater)				Sample	ed: 02/25/0	08				
Density	Displacement	8C04033	N/A	NA	1.0	1	03/04/08	03/04/08			
Sample ID: IRB2514-19 (018 EFF-19 - W Reporting Units: g/cc	ater)				Sample	ed: 02/25/0	08				
Density	Displacement	8C04034	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-20 (018 EFF-20 - W Reporting Units: g/cc	ater)				Sample	ed: 02/25/0	08				
Density	Displacement	8C04034	N/A	NA	1.0	1	03/04/08	03/04/08			

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200

Monitoring Program Sampled: 02/24/08-02/25/08

Arcadia, CA 91007

Report Number: IRB2514

Received: 02/26/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB2514-21 (018 EFF-21 - W Reporting Units: g/cc	Vater)				Sampled: 02/25/08						
Density	Displacement	8C04034	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-22 (018 EFF-22 - W Reporting Units: g/cc	Vater)				Sample	ed: 02/25/	08				
Density	Displacement	8C04034	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-23 (018 EFF-23 - W Reporting Units: g/cc	Vater)				Sample	ed: 02/25/	08				
Density	Displacement	8C04034	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-24 (018 EFF-24 - W	Vater)				Sample	ed: 02/25/	08				
Reporting Units: g/cc Density	Displacement	8C04034	N/A	NA	0.99	1	03/04/08	03/04/08			
Sample ID: IRB2514-01 (018 EFF-1 - Ware Reporting Units: mg/l	ater)				Sample	ed: 02/24/	08				
Sediment	ASTM D3977	8C05050	10	10	11	1	03/05/08	03/05/08			
Sample ID: IRB2514-02 (018 EFF-2 - Water Reporting Units: mg/l	ater)				Sample	ed: 02/24/	08				
Sediment	ASTM D3977	8C05050	10	10	12	1	03/05/08	03/05/08			
Sample ID: IRB2514-03 (018 EFF-3 - Ware Reporting Units: mg/l	ater)				Sample	ed: 02/24/	08				
Sediment	ASTM D3977	8C05050	10	10	10	1	03/05/08	03/05/08			
Sample ID: IRB2514-04 (018 EFF-4 - Water Reporting Units: mg/l	ater)				Sample	ed: 02/24/	08				
Sediment	ASTM D3977	8C05050	10	10	ND	1	03/05/08	03/05/08			
Sample ID: IRB2514-05 (018 EFF-5 - Water Reporting Units: mg/l	ater)				Sample	ed: 02/24/	08				
Sediment	ASTM D3977	8C05050	10	10	15	1	03/05/08	03/05/08			
Sample ID: IRB2514-06 (018 EFF-6 - W	ater)				Sample	ed: 02/24/	08				
Reporting Units: mg/l Sediment	ASTM D3977	8C05050	10	10	16	1	03/05/08	03/05/08			

TestAmerica Irvine

Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRB2514

Received: 02/26/08

Sampled: 02/24/08-02/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2514-07 (018 EFF-7 - W	ater)				Sample	ed: 02/24/	08		
Reporting Units: mg/l Sediment	ASTM D3977	8C05050	10	10	11	1	03/05/08	03/05/08	
Sample ID: IRB2514-08 (018 EFF-8 - Wi	ater)				Sample	ed: 02/24/	08		
Sediment Sediment	ASTM D3977	8C05050	10	10	11	1	03/05/08	03/05/08	
Sample ID: IRB2514-09 (018 EFF-9 - Ware Reporting Units: mg/l	ater)				Sample	ed: 02/24/	08		
Sediment	ASTM D3977	8C05050	10	10	24	1	03/05/08	03/05/08	
Sample ID: IRB2514-10 (018 EFF-10 - V	Vater)				Sample	ed: 02/24/	08		
Reporting Units: mg/l Sediment	ASTM D3977	8C05050	10	10	24	1	03/05/08	03/05/08	
Sample ID: IRB2514-11 (018 EFF-11 - V Reporting Units: mg/l	Vater)				Sample	ed: 02/24/	08		
Sediment	ASTM D3977	8C05050	10	10	23	1	03/05/08	03/05/08	
Sample ID: IRB2514-12 (018 EFF-12 - V Reporting Units: mg/l	Vater)				Sample	ed: 02/24/	08		
Sediment Sediment	ASTM D3977	8C05050	10	10	20	1	03/05/08	03/05/08	
Sample ID: IRB2514-13 (018 EFF-13 - V Reporting Units: mg/l	Vater)				Sample	ed: 02/24/	08		
Sediment	ASTM D3977	8C05050	10	10	19	1	03/05/08	03/05/08	
Sample ID: IRB2514-14 (018 EFF-14 - V Reporting Units: mg/l	Vater)				Sample	ed: 02/24/	08		
Sediment Sediment	ASTM D3977	8C05050	10	10	15	1	03/05/08	03/05/08	
Sample ID: IRB2514-15 (018 EFF-15 - V Reporting Units: mg/l	Vater)				Sample	ed: 02/24/	08		
Sediment Sediment	ASTM D3977	8C05050	10	10	13	1	03/05/08	03/05/08	
Sample ID: IRB2514-16 (018 EFF-16 - V	Vater)				Sample	ed: 02/24/	08		
Reporting Units: mg/l Sediment	ASTM D3977	8C05050	10	10	12	1	03/05/08	03/05/08	

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRB2514

Sampled: 02/24/08-02/25/08

Received: 02/26/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2514-17 (018 EFF-17 - W	Vater)				Sample	ed: 02/25/0	08		
Sediment Sediment	ASTM D3977	8C05050	10	10	ND	1	03/05/08	03/05/08	
Sample ID: IRB2514-18 (018 EFF-18 - W Reporting Units: mg/l	Vater)				Sample	ed: 02/25/0	08		
Sediment Sediment	ASTM D3977	8C05050	10	10	13	1	03/05/08	03/05/08	
Sample ID: IRB2514-19 (018 EFF-19 - W Reporting Units: mg/l	Vater)				Sample	ed: 02/25/0	08		
Sediment	ASTM D3977	8C05050	10	10	14	1	03/05/08	03/05/08	
Sample ID: IRB2514-20 (018 EFF-20 - W Reporting Units: mg/l	Vater)				Sample	ed: 02/25/0	08		
Sediment	ASTM D3977	8C05051	10	10	ND	1	03/05/08	03/05/08	
Sample ID: IRB2514-21 (018 EFF-21 - W Reporting Units: mg/l	Vater)				Sample	ed: 02/25/0	08		
Sediment	ASTM D3977	8C05051	10	10	11	1	03/05/08	03/05/08	
Sample ID: IRB2514-22 (018 EFF-22 - W Reporting Units: mg/l	Vater)				Sample	ed: 02/25/0	08		
Sediment	ASTM D3977	8C05051	10	10	11	1	03/05/08	03/05/08	
Sample ID: IRB2514-23 (018 EFF-23 - W Reporting Units: mg/l	Vater)				Sample	ed: 02/25/0	08		
Sediment	ASTM D3977	8C05051	10	10	17	1	03/05/08	03/05/08	
Sample ID: IRB2514-24 (018 EFF-24 - W Reporting Units: mg/l	Vater)				Sample	ed: 02/25/0	08		
Sediment	ASTM D3977	8C05051	10	10	12	1	03/05/08	03/05/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRB2514

Sampled: 02/24/08-02/25/08

Received: 02/26/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8C04033 Extracted: 03/04/08	<u> </u>										
Duplicate Analyzed: 03/04/2008 (8C0403	3-DUP1)				Sou	rce: IRB	2355-12				
Density	0.996	NA	N/A	g/cc		0.999			0	20	
Batch: 8C04034 Extracted: 03/04/08	<u>-</u>										
Duplicate Analyzed: 03/04/2008 (8C0403	4-DUP1)				Sou	rce: IRB	2514-19				
Density	0.994	NA	N/A	g/cc		0.992			0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 02/24/08-02/25/08

Report Number: IRB2514 Received: 02/26/08

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

Monitoring Program Sampled: 02/24/08-02/25/08

Report Number: IRB2514 Received: 02/26/08

Arcadia, CA 91007 Report Number
Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Displacement

618 Michillinda Avenue, Suite 200

Method	Matrix	Nelac	California
ASTM D3977	Water		

Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Test Am	erica	Test America Version 12/20/07	_	CHAIN OF		STOL	CUSTODY FORM	HISZBAT 1	<u>2</u> 1	Page 1 of 1
Client Name/Address:	'Address			Project: Boeing BM	ng BMP				ANALYSIS REQ	REQUIRED
MWH-Arcadia	adia			Effectiveness Monitoring	s Monitorin	Ō			1	
618 Michillinda Avenue. Suite 200 Arcadia, CA 91007	a Avenue. 1007	Suite 200		Program			-MTS			
Test America Contact: Joseph Doak	Contact: ,	Joseph Doak								
Project Manager: Bronwyn Kelly	ger: Brc	onwyn Kelly		Phone Number:	er:					Commonte
Sampler: Banaga, K	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	r, <i>R</i> .		(626) 568-6591 (626) 568-6515	- 2		ended Se sentration 77-1997)			
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Conc	***		20/22/
018 EFF-1	×	500 mL Poly	_	2/24/08-0800	None	-	×			
018 EFF-2	8	500 mL Poly	-	2/24/08-0900	None	2	×			
018 EFF-3	3	500 mL Poly	-	2/24/08-1000	None	· ·	×;			
018 EFF-4	3	500 mL Poly		2/24/08-1100	None	4 u	<			
018 EFF-6	: >	500 mL Polv		2/24/08-1300	None	9	×			
018 EFF-7	×	500 mL Poly	-	2/24/08-1400	None	7	×			
018 EFF-8	×	500 mL Poly	-	2/24/08-1500	None	ھ	×			
018 EFF-9	W	500 mL Poly	1	2/24/08-1600	None	6	×			
018 EFF-10	W	500 mL Poly	1	2/24/08-1700	None	10	×	-		
018 EFF-11	Μ	500 mL Poly	-	2/24/08-1800	None	1	×			
018 EFF-12	8	500 mL Poly	-	2/24/08-1900	None	12	×			
018 EFF-13	Α	500 mL Poly	-	2/24/08-2000	None	13	×			
018 EFF-14	>	500 mL Poly	-	2/24/08-2100	None	4	×			
018 EFF-15	3	500 mL Poly	~	2/24/08-2200	None	12	×			
018 EFF-16	8	500 mL Poly		2/24/08-2300	None	10	×			
018 EFF-17	>	500 mL Poly	-	2/25/08-0000	None	14	× >			
018 EFF-18	A &	500 mL Poly	-	2/25/08-0100	None	0 0	< ×			
018 EFE-20	* 3	500 ml Poly	_	2/25/08-0300	None	2 8	< ×			
018 EFF-21	: ≥	500 mL Poly	_	2/25/08-0400	None	21	×			
018 EFF-22	8	500 mL Poly	-	2/25/08-0500	None	22	×			
018 EFF-23	Α	500 mL Poly	-	2/25/08-0600	None	23	×			
018 EFF-24	Μ	500 mL Poly	τ-	2/25/08-0700	None	24				
Relinquished By	,	۵	Da te/Time:	.i.	Received By	//	Dat	Date/Time:		Turn around Time: (check)
	1	2. 25.08	80	15/6	gast	/g	, J841	20/20/E	0/5/	24 Hours 5 Days
Relinquished By	1	Ō	Da te/Time	ë.	Received By		Dat	Date/Time:		48 Hours 10 Days
Service Contraction	/ ł	17750	2	21/80/)					72 Hours Normal X
Refinquished By		0	Da te/Time:	.e.	Received By		Dat	Date/Time:		Sample Integrity (check) Intact On Ice:
					5	2	11 11 11 11 11 11 11 11 11 11 11 11 11	920/04	1730	52/22
							- W W W	7 /		