APPENDIX G

Section 5

Outfall 006, December 19, 2007

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IQL2125

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IQL2128
Project Manager: B. Kelly

Matrix: Soil

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine, Weck, Vista

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 006	IQL2125-01	7122005-01, 30103-001	Water	12/19/07 1000	160.2, 245.1, 300.0, 413.1, 900.0, 1613, 6020, SM2540C

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Weck within the temperature limits of $4^{\circ}C$ $\pm 2^{\circ}C$. The sample was received below the temperature limits at Visa; however, the sample was not noted to have been frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Vista and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
T	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: January 15, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.

Blanks: Total TCDF was reported in the method blank at a concentration of 0.00000139 µg/l; however, total TCDF was not reported in site sample Outfall 006. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. An EMPC value for 1,2,3,4,6,7,8-HpCDD was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 245.1, 6020—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 15, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 245.1 and 6020, and the National Functional Guidelines for Inorganic Data Review (2/94).

 Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.

 Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the
 dissolved metals analyses only. Recoveries were within the method-established control
 limits. All analytes were reported in the 6020 ICSA solution; however, the reviewer was
 not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The CCV analyzed prior to the sample and the CCB analyzed after the sample both had all internal standard recoveries below the control limit; however, as the sample internal standard recoveries were acceptable, no qualifications were applied. The remaining bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. Detects reported below the reporting limit were qualified as
 estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit.
 Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 900.0 — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: January 17, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Method 900.0* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The analytical holding time for gross beta was exceeded by one day. The gross beta result was qualified as estimated, "J."
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability. The gross beta detector efficiency was greater than 20%.
- Blanks: Gross beta was not detected above the MDA in the method blank.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished control limits.
- Laboratory Duplicates: Duplicate analysis was performed for the sample in this SDG. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for the sample in this SDG. The recovery was within the laboratory-established control limits.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample result and MDA reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: January 15, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), Standard Methods 160.2, 300.0, 413.1, SM2540C and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: All holding times, 28 days for chloride, sulfate, and oil and grease, seven days for TSS and TDS, and 48 hours for nitrate/nitrite, were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Blank Spikes and Laboratory Control Samples: All recoveries and the oil and grease RPD
 were within the laboratory-established control limits. A nitrate/nitrite LCS recovery was not
 listed by the laboratory, but during the review of the raw data, the reviewer noted an
 acceptable recovery.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: The sample results were verified against the raw data. No transcription or calculation errors were noted. In order to report chloride and sulfate within the linear range of the calibrations, chloride and sulfate were analyzed at 20× dilutions.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Projected: Date of the Project of The Pro	1QL 19-L 1900 1000 CDD CDD		Size:	Agueous	Lab Sample: 30103-001	Date Received:	21-Dec-07
Analyte Conc. (ug/L) DL a EMPCb Qualifiers Labeled Standard %B 2.3.7.8-TCDD ND 0.000000661 IS 13C-2,3.7.8-TCDD 85.6 1.2.3.7.8-FCDD ND 0.00000124 13C-1,2,3.7.8-PCDD 82.3 1.2.3.7.8-FCDD ND 0.00000124 13C-1,2,3.7.8-PCDD 70.0 1.2.3.7.8-HXCDD ND 0.00000132 0.00000007 13C-1,2,3.7.8-PCDD 82.3 1.2.3.7.8-HXCDD ND 0.00000132 0.000000007 13C-1,2,3.7.8-PCDF 82.3 1.2.3.7.8-PCDF ND 0.000000007 13C-1,2,3.7.8-PCDF 82.3 1.2.3.7.8-PCDF ND 0.000000000 13C-1,2,3.7.8-PCDF 82.3 1.2.3.7.8-PCDF ND 0.00000000 13C-1,2,3.7.8-PCDF 82.3 1.2.3.7.8-PCDF ND 0.000000000 13C-1,2,3.7.8-PCDF 82.3 1.2.3.7.8-PCDF ND 0.000000000 13C-1,2,3.7.8-PCDF 82.3 1.2.3.4.8-PCDF ND 0.000000000 13C-1,2,3.7.8-PCDF 82.3 1.2.3.4.6.7.8-	CDD			11 L		Date Extracted: Date Analyzed DB-225:	23-Dec-07 NA
2.3.7.8-TCDD ND 0.000000661 IS 13C-2,3.7.8-PCDD 1.2.3.7.8-PeCDD ND 0.00000024 13C-1,2.3.7.8-PeCDD 1.2.3.4.7.8-PeCDD ND 0.00000124 13C-1,2.3.7.8-PeCDD 1.2.3.5.7.8-PeCDD ND 0.00000140 13C-1,2.3.4.5.7.8-PeCDD 1.2.3.7.8-PeCDD ND 0.00000132 13C-1,2.3.4.6.7.8-PeCDD 1.2.3.7.8-PeCDD ND 0.00000132 13C-0,2.3.7.8-PeCDF 2.3.7.8-PeCDF ND 0.000000207 13C-0,2.3.7.8-PeCDF 2.3.7.8-PeCDF ND 0.000000027 13C-2,3.7.8-PeCDF 1.2.3.7.8-PeCDF ND 0.000000000 13C-1,2.3.7.8-PeCDF 1.2.3.7.8-PeCDF ND 0.000000000 13C-1,2.3.7.8-PeCDF 1.2.3.7.8-PeCDF ND 0.00000000 13C-1,2.3.7.8-PeCDF 1.2.3.7.8-PeCDF ND 0.000000000 13C-1,2.3.7.8-PeCDF 1.2.3.7.8-PeCDF ND 0.000000000 13C-1,2.3.7.8-PeCDF 1.2.3.7.8-PeCDF ND 0.000000000 13C-1,2.3.7.8-PeCDF 1.2.3.7.8-PeCDF ND 0.000000000	00 00 00 00 00 00 00	000:0	EMPCb	alifiers	Labeled Standard	%R LCL-UCL ^d	Oualifiers
1,2,3,7,8-PeCDD ND 0.000000895 13C-1,2,3,7,8-PeCDD 1,2,3,4,7,8-HXCDD ND 0.00000124 13C-1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD ND 0.00000140 13C-1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD ND 0.00000132 13C-1,2,3,4,6,7,8-HXCDD 1,2,3,7,8-HXCDP ND 0.00000037 13C-0,2,3,4,8-HCDP 2,3,7,8-PeCDF ND 0.000000000 13C-1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF ND 0.00000090 13C-1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF ND 0.00000090 13C-1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF ND 0.00000090 13C-1,2,3,7,8-PeCDF 1,2,3,7,8-HXCDF ND 0.00000090 13C-1,2,3,7,8-PeCDF 1,2,3,4,7,8-HXCDF ND 0.00000090 13C-1,2,3,7,8-PeCDF 1,2,3,4,5,4-HXCDF ND 0.000000090 13C-1,2,3,7,8-PeCDF 1,2,3,4,6,7,8-HXCDF ND 0.000000090 13C-1,2,3,7,8-PeCDF 1,2,3,4,6,7,8-HXCDF ND 0.000000090 13C-1,2,3,4,6,7,8-PeCDF 1,2,3,4,6,7,8-HXCDF ND 0.000000000	50 96	0.000	000661		-30	85.6 25-164	
1,2,3,4,7,8-HXCDD ND 0.00000124 13C-1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD ND 0.00000140 13C-1,2,3,4,7,8-HXCDD 1,2,3,7,8-HXCDD ND 0.00000132 13C-1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDD 0.00000176 0.00000007 13C-0CDD 0,2,3,7,8-PCDF ND 0.000000000 13C-1,2,3,7,8-PCDF 1,2,3,7,8-PCDF ND 0.00000000 13C-1,2,3,7,8-PCDF 2,3,4,7,8-PCDF ND 0.00000000 13C-1,2,3,7,8-PCDF 1,2,3,7,8-PCDF ND 0.00000000 13C-1,2,3,7,8-PCDF 1,2,3,7,8-PCDF ND 0.00000000 13C-1,2,3,7,8-PCDF 1,2,3,7,8-PCDF ND 0.00000000 13C-1,2,3,7,8-PCDF 1,2,3,7,8-PCDF ND 0.00000000 13C-1,2,3,7,8-PCDF 1,2,3,4,8-PCDF ND 0.00000000 13C-1,2,3,7,8-PCDF 1,2,3,4,8-PKCDF ND 0.00000000 13C-1,2,3,7,8-PCDF 1,2,3,4,6,7,8-PHCDF ND 0.0000000 13C-1,2,3,7,8-PCDF 1,2,3,4,6,7,8-PHCDF ND 0.0000000 13C-1,2,3,7,8-PCDF <td></td> <td></td> <td>9000895</td> <td></td> <td>13C-1,2,3,7,8-PeCDD</td> <td>82.3 25-181</td> <td></td>			9000895		13C-1,2,3,7,8-PeCDD	82.3 25-181	
1,2,3,6,7,8-HxCDD ND 0,00000140 13C-1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD ND 0,00000132 13C-1,2,3,4,6,7,8-HpCDD 1,2,3,7,8,9-HxCDD ND 0,00000133 13C-2,3,7,8-TCDF 2,3,7,8-TCDF ND 0,000000827 13C-2,3,7,8-PeCDF 2,3,7,8-PeCDF ND 0,000000901 13C-1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF ND 0,000000901 13C-1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF ND 0,000000901 13C-1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF ND 0,000000499 13C-1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF ND 0,000000591 13C-1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF ND 0,000000591 13C-1,2,3,4,5,8-PeCDF 1,2,3,4,6,7,8-HxCDF ND 0,000000501 13C-1,2,3,4,7,8-PeCDF 1,2,3,4,6,7,8-HxCDF ND 0,000000501 13C-1,2,3,4,7,8-PeCDF 1,2,3,4,6,7,8-HxCDF ND 0,000000101 CRS 37C1-2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF ND 0,000000101 CRS 37C1-2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF ND	9051	0.000	00124	S. Salar	13C-1,2,3,4,7,8-HxCDD	70.0 32-141	
1,2,3,7,8,9-HxCDD ND 0.00000132 13C-1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD ND 0.00000207 13C-0CDD 0CDD 13C-0CDD 13C-2,3,7,8-PcCDF 2,3,7,8-PcCDF ND 0.000000827 13C-1,2,3,7,8-PcCDF 1,2,3,7,8-PcCDF ND 0.000000927 13C-1,2,3,4,7,8-PcCDF 2,3,4,7,8-PcCDF ND 0.000000927 13C-1,2,3,4,7,8-PcCDF 1,2,3,4,7,8-HxCDF ND 0.000000499 13C-1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF ND 0.000000541 13C-1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF ND 0.00000059 13C-1,2,3,4,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF ND 0.00000059 13C-1,2,3,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF ND 0.00000050 13C-1,2,3,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF ND 0.000000101 CRS 37C-1,2,3,7,8-HpCDF 1,2,3,4,7,8-HpCDF ND 0.000000101 CRS 37C-1,2,3,7,8-HpCDF 1,2,3,4,7,8-HpCDF ND 0.000000101 CRS 37C1-2,3,7,8-TCDD Total TCDD ND	915	0.000	00140		13C-1,2,3,6,7,8-HxCDD	61.7 28 - 130	
1,2,3,4,6,7,8-HpCDD ND 0.00000207 13C-CDD OCDD 0.0000176 0.00000133 13C-2,3,7,8-PeCDF 2,3,7,8-PECDF ND 0.000000827 13C-1,2,3,7,8-PeCDF 1,2,3,7,8-PECDF ND 0.000000901 13C-1,2,3,4,7,8-PeCDF 2,3,4,7,8-PECDF ND 0.000000499 13C-1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF ND 0.000000541 13C-1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF ND 0.000000541 13C-1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF ND 0.000000541 13C-1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF ND 0.000000599 13C-1,2,3,4,7,8-PECDF 1,2,3,4,6,7,8-PECDF ND 0.000000501 13C-1,2,3,4,7,8-PECDF 1,2,3,4,6,7,8-PECDF ND 0.000000101 CRS 37C1-2,3,4,7,8-PECDF 1,2,3,4,6,7,8-PECDF ND 0.000000101 CRS 37C1-2,3,7,8-PECDF 1,2,3,4,6,7,8-PECDF ND 0.000000101 CRS 37C1-2,3,7,8-TCDD 1,2,3,4,7,8,9-PECDF ND 0.0000000661 a. Sample specific estimated detection limit. Total PCDF ND		0.000	00132	No. of Lot	13C-1,2,3,4,6,7,8-HpCDD	65.5 23 - 140	
OCDD 0.0000176 J 13C-2,3,7,8-TCDF 2,3,7,8-TCDF ND 0.00000827 13C-1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF ND 0.000000827 13C-2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF ND 0.000000901 13C-1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF ND 0.000000541 13C-1,2,3,4,7,8-PeCDF 1,2,3,6,7,8-HxCDF ND 0.000000541 13C-1,2,3,4,6,7,8-PhCDF 2,3,4,6,7,8-HpCDF ND 0.0000005021 13C-1,2,3,4,6,7,8-PhCDF 1,2,3,4,6,7,8-HpCDF ND 0.000000101 13C-1,2,3,4,6,7,8-PhCDF 1,2,3,4,6,7,8-HpCDF ND 0.000000101 CRS 37C1-2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-PhCDF ND 0.000000101 CRS 37C1-2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF ND 0.000000101 CRS 37C1-2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF ND 0.000000162 a. Sample specific estimated detection limit. Total TCDD ND 0.0000000661 a. Sample specific estimated detection limit. Total PeCDD ND 0.0000000895 b. Estimated detection limit.			0.00000207		13C-0CDD	58.9 17 - 157	
ND 0.000000133 13C-1,2,3,7,8-PeCDF ND 0.000000827 13C-2,3,4,7,8-PeCDF ND 0.000000499 13C-1,2,3,4,7,8-HxCDF ND 0.000000541 13C-1,2,3,4,7,8-HxCDF ND 0.000000541 13C-2,3,4,6,7,8-HxCDF ND 0.000000521 13C-1,2,3,7,8-HxCDF ND 0.000000921 13C-1,2,3,7,8-HxCDF ND 0.000000101 13C-1,2,3,7,8-HxCDF ND 0.000000101 CRS ND 0.000000152 CRS ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000895 b. Estimated maximum possible concentration.		00176		1	13C-2,3,7,8-TCDF	82.4 24-169	
ND 0.000000827 13C-2,3,4,7,8-PeCDF ND 0.000000901 13C-1,2,3,4,7,8-HxCDF ND 0.000000541 13C-2,3,4,6,7,8-HxCDF ND 0.000000599 13C-2,3,4,6,7,8-HxCDF ND 0.00000021 13C-1,2,3,7,8,9-HxCDF ND 0.000000760 13C-1,2,3,4,7,8,9-HpCDF ND 0.00000101 CRS 37C1-2,3,4,7,8,9-HpCDF ND 0.00000152 CRS 37C1-2,3,7,8-TCDD Footnotes Footnotes ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000895 b. Estimated maximum possible concentration.		0.000	00133		13C-1,2,3,7,8-PeCDF	93.9 24-185	
ND 0.000000901 13C-1,2,3,4,7,8-HxCDF ND 0.000000541 13C-2,3,4,7,8-HxCDF ND 0.000000599 13C-1,2,3,4,7,8-HxCDF ND 0.00000059 13C-1,2,3,4,6,7,8-HxCDF ND 0.000000760 13C-1,2,3,4,6,7,8-HpCDF ND 0.000000101 CRS 37C1-2,3,4,7,8,9-HpCDF ND 0.000000152 Footnotes ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000661 b. Estimated maximum possible concentration.		0.000	000827		13C-2,3,4,7,8-PeCDF	88.7 21 - 178	
ND 0.000000499 13C-1,2,3,6,7,8-HxCDF ND 0.000000541 13C-2,3,4,6,7,8-HxCDF ND 0.000000521 13C-1,2,3,4,6,7,8-HpCDF ND 0.000000760 13C-1,2,3,4,6,7,8-HpCDF ND 0.00000101 CRS 37C1-2,3,4,7,8,9-HpCDF ND 0.00000152 CRS 37C1-2,3,7,8-TCDD ND 0.000000651 Footnotes ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000895 b. Estimated maximum possible concentration.		0.000	000001		13C-1,2,3,4,7,8-HxCDF	71.0 26-152	
ND 0.000000541 13C-2,3,4,6,7,8-HxCDF ND 0.000000521 13C-1,2,3,7,8,9-HyCDF ND 0.000000760 13C-1,2,3,4,7,8-HpCDF ND 0.00000101 CRS 37C1-2,3,4,7,8-HpCDF ND 0.00000152 CRS 37C1-2,3,7,8-TCDD ND 0.000000651 Footnotes ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000895 b. Bstimated maximum possible concentration.		0.000	000499	B 12	13C-1,2,3,6,7,8-HxCDF	60.1 26-123	
KCDF ND 0.000000599 13C-1,2,3,7,8,9-HxCDF KCDF ND 0.00000021 13C-1,2,3,4,6,7,8-HpCDF HpCDF ND 0.00000101 CRS 37C-1,2,3,4,7,8,9-HpCDF ND 0.00000152 CRS 37C1-2,3,7,8-TCDD ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000895 b. Estimated maximum possible concentration.		0000	000541		13C-2,3,4,6,7,8-HxCDF	63.8 28 - 136	
KCDF ND 0.000000921 13C-1,2,3,4,6,7,8-HpCDF HpCDF ND 0.00000101 CRS 37C1-2,3,4,7,8,9-HpCDF ND 0.00000152 CRS 37C1-2,3,7,8-TCDD ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000651 b. Estimated maximum possible concentration.		0.000	000599	神のない	13C-1,2,3,7,8,9-HxCDF	61.4 29 - 147	
HpCDF ND 0.000000760 13C-1,2,3,4,7,8,9-HpCDF HpCDF ND 0.00000101 CRS 37C1-2,3,7,8-TCDD ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000895 b. Estimated maximum possible concentration.		0000	000921		13C-1,2,3,4,6,7,8-HpCDF	57.1 28 - 143	
HpCDF ND 0.00000101 13C-OCDF ND 0.00000152 CRS 37CI-2,3,7,8-TCDD Foofnotes Foofnotes ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000895 b. Estimated maximum possible concentration.		0.000	090000		13C-1,2,3,4,7,8,9-HpCDF	57.2 26-138	
ND 0.000000152 CRS 37C1-2,3,7,8-TCDD Foofnotes Foofnotes ND 0.000000661 a. Sample specific estimated detection limit. ND 0.000000895 b. Estimated maximum possible concentration.		0000	00101		13C-OCDF	52.0 17 - 157	
ND 0.000000661 ND 0.000000895		0.000	00152		CRS 37CI-2,3,7,8-TCDD	97.9 35-197	
ND 0.000000661 ND 0.000000895	Totals				Footnotes		
ND 0.000000895		0.000	000661		a. Sample specific estimated detection limit.		
		0.000	568000		b. Estimated maximum possible concentration.		
ND 0.00000132	Total HxCDD ND	0.000	00132		c. Method detection limit.		
Total HpCDD 0.00000416 0.00000623 d. Lower control limit - upper control limit.					d. Lower control limit - upper control limit.		
Total TCDF ND 0.00000133		0.000	00133	7.000			
Total PeCDF ND 0.000000863		0.000	000863	かったい	と 一人 一人 一日 一人		
Total HxCDF ND 0.000000621		0.000	000621				
Total HpCDF ND 0.000000866		0.000	998000				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949).260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 006

618 Michillinda Avenue, Suite 200

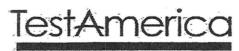
Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: 1QL2125

Sampled: 12/19/07

Received: 12/19/07

METALS

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQ	L2125-01 (Outfall 006 - Wat	er)								
Reporting	Units: ug/l							•		
Antimony	J/DN9	EPA 200.8	7L20116	0.20	2.0	0.42	1	12/20/07	12/20/07	. ј
Cadmium		EPA 200.8 ·	7L20116	0.11	. 1.0	0.12	1	12/20/07	12/20/07	J
Copper		EPA 200.8	7L20116	0.75	2.0	0.84	1	12/20/07	12/20/07	J.
Lead	V	EPA 200.8	7L20116	0.10	1.0	0.42	1	12/20/07	12/20/07	. ј
Thallium	<i>U</i> .	EPA 200.8	7L20116 ·	0.15		ND .	1	12/20/07 -	12/20/07	


LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced except in full, without written permission from TestAmerica.

OL2125 . <Page 2 of 19>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2125

Sampled: 12/19/07

Received: 12/19/07

DISSOLVED METALS

				MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	-	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: I	QL2125-01 (Outfall	006 - Water) - cont.								
Reportin	g Units: ug/l									
Antimony	J/DNQ-	EPA 200.8-Diss	7L20140 ·	0.20	2.0	0.45	1	12/20/07	12/20/07	J
Cadmium	V	EPA 200.8-Diss	7L20140	0.11	1.0	0.12	:1	12/20/07	12/20/07	J .
Copper	. 0	EPA 200.8-Diss	7L20140	0.75	2.0	ND	.1	12/20/07	12/20/07	
Lead		EPA 200.8-Diss	7L20140	0.10	1.0	ND	1	12/20/07	12/20/07	
Thallium	V.	EPA-200:8-Diss	7L20140	0.15	1.0	ND	1	12/20/07	12/20/07	

TestAmerica Irvine

Joseph Doak Project Manager

IQL2125 <Page.3 of 19>

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006 .

Report Number: IQL2125

Sampled: 12/19/07

Received: 12/19/07

Metals by EPA 200 Series Methods

				MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte		Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
									*	
Sample ID: IQL2125-01 (O	ottali 006 -	Water) - cont.								
Reporting Units: ug/l										
Mercury, Dissolved	O	EPA 245.1	W7L0889	0.050	. 0.20	ND	1	12/26/07	12/27/07	
Mercury, Total	V	EPA 245.1	W7L0889	0.050	0.20	ND	. 1	12/26/07	12/27/07	

TestAmerica Irvine

Joseph Doak Project Manager

results persain only to the samples tessed in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

Eberline Services

ANALYSIS RESULTS

 SDG 8674
 Client TA IRVINE

 Work Order R712148-01
 Contract PR0JECT# IQL2125

 Received Date 12/24/07
 Matrix WATER

LEVEL IV

Certified by NReport Date 01/02/08
Page 1

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Report Number: 1QL2125

Sampled: 12/19/07

Received: 12/19/07

INORGANICS

Project ID: Routine Outfall 006

Analyte			Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2125-01	(Outfall 00	6 - Wate	r) - cont.			-					
Reporting Units: mg	₂ /Ι										
Chloride			EPA 300.0	7L19047	5.0	10	210	20	12/19/07	12/20/07	
Nitrate/Nitrite-N			EPA 300.0	7L19047	0.15	0.26	0.35	1	12/19/07	12/20/07-	
Oil & Grease	U		EPA 413.1	7L21125	1.1	4.7	ND	1	12/22/07	12/26/07	
Sulfate			EPA 300.0	7L19047	4.0	10	60	20	12/19/07	12/20/07	
Total Dissolved Solids -			SM2540C	7L21099	10	10	670	1 ·	12/21/07	12/21/07	
Total Suspended Solids	U		EPA 160.2	7L20129	10	. 10	ND	1	12/20/07	.12/20/07	

... TestAmerica Irvine

Joseph Doak Project Manager

only to the samples tested in the laboratory. This report shall not be except in full, without written permission from TestAmerica.

APPENDIX G

Section 6

Outfall 006, December 19, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 006

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 12/19/07

Received: 12/19/07 Revised: 12/28/07 16:49

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This report was revised to correct project number from Annual Outfall 006 to Routine Outfall 006.

LABORATORY ID CLIENT ID MATRIX
IQL2125-01 Outfall 006 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IQL2125

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Sampled: 12/19/07

Received: 12/19/07

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2125-01 (Outfall 006 - Wa	iter)								
Reporting Units: ug/l									
Antimony	EPA 200.8	7L20116	0.20	2.0	0.42	1	12/20/07	12/20/07	J
Cadmium	EPA 200.8	7L20116	0.11	1.0	0.12	1	12/20/07	12/20/07	J
Copper	EPA 200.8	7L20116	0.75	2.0	0.84	1	12/20/07	12/20/07	J
Lead	EPA 200.8	7L20116	0.10	1.0	0.42	1	12/20/07	12/20/07	J
Thallium	EPA 200.8	7L20116	0.15	1.0	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

618 Michillinda Avenue, Suite 200

Sampled: 12/19/07 Report Number: IQL2125 Received: 12/19/07

Attention: Bronwyn Kelly

Arcadia, CA 91007

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2125-01 (Outfall 006 -	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	7L20140	0.20	2.0	0.45	1	12/20/07	12/20/07	J
Cadmium	EPA 200.8-Diss	7L20140	0.11	1.0	0.12	1	12/20/07	12/20/07	J
Copper	EPA 200.8-Diss	7L20140	0.75	2.0	ND	1	12/20/07	12/20/07	
Lead	EPA 200.8-Diss	7L20140	0.10	1.0	ND	1	12/20/07	12/20/07	
Thallium	EPA 200.8-Diss	7L20140	0.15	1.0	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2125

Received: 12/19/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2125-01 (Outfall 006 - V	ater) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	7L19047	5.0	10	210	20	12/19/07	12/20/07	
Nitrate/Nitrite-N	EPA 300.0	7L19047	0.15	0.26	0.35	1	12/19/07	12/20/07	
Oil & Grease	EPA 413.1	7L21125	1.1	4.7	ND	1	12/22/07	12/26/07	
Sulfate	EPA 300.0	7L19047	4.0	10	60	20	12/19/07	12/20/07	
Total Dissolved Solids	SM2540C	7L21099	10	10	670	1	12/21/07	12/21/07	
Total Suspended Solids	EPA 160.2	7L20129	10	10	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2125

Received: 12/19/07

Attention: Bronwyn Kelly

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2125-01 (Outfall 006 - Wat Reporting Units: ug/l	ter) - cont.								
Mercury, Dissolved	EPA 245.1	W7L0889	0.050	0.20	ND	1	12/26/07	12/27/07	
Mercury, Total	EPA 245.1	W7L0889	0.050	0.20	ND	1	12/26/07	12/27/07	

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IQL2125

Received: 12/19/07

DIOXIN (EPA 1613)

		2101	(22	111010)					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2125-01 (Outfall	1 006 - Water) - cont								
Reporting Units: ug/L									
2,3,7,8-TCDD	1613-Dioxin-HR Alta	9806	N/A	4.95	ND	1	12/23/07	12/25/07	
1,2,3,7,8-PeCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,4,7,8-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,6,7,8-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,7,8,9-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,4,6,7,8-HpCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
OCDD	1613-Dioxin-HR Alta	9806	N/A	49.5	0.0000176	1	12/23/07	12/25/07	Ja
2,3,7,8-TCDF	1613-Dioxin-HR Alta	9806	N/A	4.95	ND	1	12/23/07	12/25/07	
1,2,3,7,8-PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
2,3,4,7,8-PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,4,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,6,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
2,3,4,6,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,7,8,9-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,4,6,7,8-HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
1,2,3,4,7,8,9-HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
OCDF	1613-Dioxin-HR Alta	9806	N/A	49.5	ND	1	12/23/07	12/25/07	
Total TCDD	1613-Dioxin-HR Alta	9806	N/A	4.95	ND	1	12/23/07	12/25/07	
Total PeCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
Total HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
Total HpCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	0.00000416	1	12/23/07	12/25/07	
Total TCDF	1613-Dioxin-HR Alta	9806	N/A	4.95	ND	1	12/23/07	12/25/07	
Total PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
Total HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
Total HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/25/07	
Surrogate: 13C-2,3,7,8-TCDD (2.	5-164%)				85.6 %				
Surrogate: 13C-1,2,3,7,8-PeCDD	(25-181%)				82.3 %				
Surrogate: 13C-1,2,3,4,7,8-HxCD	DD (32-141%)				70 %				
Surrogate: 13C-1,2,3,6,7,8-HxCD	DD (28-130%)				61.7 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpC	CDD (23-140%)				65.5 %				
Surrogate: 13C-OCDD (17-157%)	6)				58.9 %				
Surrogate: 13C-2,3,7,8-TCDF (24	4-169%)				82.4 %				
Surrogate: 13C-1,2,3,7,8-PeCDF	(24-185%)				93.9 %				
Surrogate: 13C-2,3,4,7,8-PeCDF	(21-178%)				88.7 %				
Surrogate: 13C-1,2,3,4,7,8-HxCL	OF (26-152%)				71 %				
Surrogate: 13C-1,2,3,6,7,8-HxCL	OF (26-123%)				60.1 %				
Surrogate: 13C-2,3,4,6,7,8-HxCL	OF (28-136%)				63.8 %				
Surrogate: 13C-1,2,3,7,8,9-HxCL	OF (29-147%)				61.4 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpC	CDF (28-143%)				57.1 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpC	CDF (26-138%)				57.2 %				
Surrogate: 13C-OCDF (17-157%))				52 %				
Tost A marias Invins									

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

DIOXIN (EPA 1613)

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IQL2125-01 (Outfall 006 - Water) - cont.

Reporting Units: ug/L

Surrogate: 37Cl-2,3,7,8-TCDD (35-197%) 97.9 %

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 006 (IQL2125-01) - Water	er				
EPA 300.0	2	12/19/2007 10:00	12/19/2007 19:10	12/19/2007 20:00	12/20/2007 03:48

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Lillit	MIDL	Ullits	Levei	Result	/OKEC	Lillits	KI D	Lillit	Quanners
Batch: 7L20116 Extracted: 12/20/07	<u>'</u>										
Blank Analyzed: 12/20/2007 (7L20116-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 12/20/2007 (7L20116-BS	1)										
Antimony	84.5	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	84.5	1.0	0.11	ug/l	80.0		106	85-115			
Copper	85.1	2.0	0.75	ug/l	80.0		106	85-115			
Lead	84.6	1.0	0.10	ug/l	80.0		106	85-115			
Thallium	86.6	1.0	0.15	ug/l	80.0		108	85-115			
Matrix Spike Analyzed: 12/20/2007 (7L2	20116-MS1)				Sou	rce: IQL	2190-01				
Antimony	80.0	2.0	0.20	ug/l	80.0	0.268	100	70-130			
Cadmium	78.8	1.0	0.11	ug/l	80.0	0.576	98	70-130			
Copper	102	2.0	0.75	ug/l	80.0	21.3	101	70-130			
Lead	103	1.0	0.10	ug/l	80.0	23.3	100	70-130			
Thallium	82.8	1.0	0.15	ug/l	80.0	ND	103	70-130			
Matrix Spike Analyzed: 12/20/2007 (7L2	20116-MS2)				Sou	rce: IQL	2059-01				
Antimony	82.3	2.0	0.20	ug/l	80.0	1.68	101	70-130			
Cadmium	78.8	1.0	0.11	ug/l	80.0	0.396	98	70-130			
Copper	101	2.0	0.75	ug/l	80.0	19.1	102	70-130			
Lead	85.1	1.0	0.10	ug/l	80.0	3.19	102	70-130			
Thallium	82.3	1.0	0.15	ug/l	80.0	ND	103	70-130			
Matrix Spike Dup Analyzed: 12/20/2007	(7L20116-M	ISD1)			Sou	rce: IQL	2190-01				
Antimony	79.3	2.0	0.20	ug/l	80.0	0.268	99	70-130	1	20	
Cadmium	78.6	1.0	0.11	ug/l	80.0	0.576	98	70-130	0	20	
Copper	101	2.0	0.75	ug/l	80.0	21.3	100	70-130	1	20	
Lead	104	1.0	0.10	ug/l	80.0	23.3	101	70-130	1	20	
Thallium	83.5	1.0	0.15	ug/l	80.0	ND	104	70-130	1	20	

TestAmerica Irvine

Joseph Doak Project Manager

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		23		CIII	20,01	11001110	,,,,,,	2,,,,,,		2	Quuiii.
Batch: 7L20140 Extracted: 12/20/07	-										
Blank Analyzed: 12/20/2007 (7L20140-Bl	L K1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 12/20/2007 (7L20140-BS1	1)										
Antimony	80.2	2.0	0.20	ug/l	80.0		100	85-115			
Cadmium	78.5	1.0	0.20	ug/l	80.0		98	85-115			
Copper	75.0	2.0	0.75	ug/l	80.0		94	85-115			
Lead	79.6	1.0	0.10	ug/l	80.0		100	85-115			
Thallium	81.8	1.0	0.15	ug/l	80.0		102	85-115			
Thuritain	01.0	1.0	0.15	ug/1	00.0		102	05 115			
Matrix Spike Analyzed: 12/20/2007 (7L20	,					rce: IQL	2118-01				
Antimony	81.3	2.0	0.20	ug/l	80.0	0.742	101	70-130			
Cadmium	75.0	1.0	0.11	ug/l	80.0	ND	94	70-130			
Copper	73.9	2.0	0.75	ug/l	80.0	2.16	90	70-130			
Lead	76.2	1.0	0.10	ug/l	80.0	0.118	95	70-130			
Thallium	78.3	1.0	0.15	ug/l	80.0	ND	98	70-130			
Matrix Spike Dup Analyzed: 12/20/2007	(7L20140-M	SD1)			Sou	rce: IQL	2118-01				
Antimony	81.5	2.0	0.20	ug/l	80.0	0.742	101	70-130	0	20	
Cadmium	75.2	1.0	0.11	ug/l	80.0	ND	94	70-130	0	20	
Copper	73.8	2.0	0.75	ug/l	80.0	2.16	90	70-130	0	20	
Lead	76.0	1.0	0.10	ug/l	80.0	0.118	95	70-130	0	20	
Thallium	78.3	1.0	0.15	ug/l	80.0	ND	98	70-130	0	20	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L19047 Extracted: 12/19/07	<u> </u>										
Blank Analyzed: 12/19/2007 (7L19047-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 12/19/2007 (7L19047-BS	1)										
Chloride	5.10	0.50	0.25	mg/l	5.00		102	90-110			
Sulfate	9.75	0.50	0.20	mg/l	10.0		98	90-110			
Matrix Spike Analyzed: 12/19/2007 (7L1	9047-MS1)				Sou	rce: IQL	2030-01				
Chloride	5.70	0.50	0.25	mg/l	5.00	0.848	97	80-120			
Sulfate	11.3	0.50	0.20	mg/l	10.0	1.85	94	80-120			
Matrix Spike Dup Analyzed: 12/19/2007	(7L19047-M	SD1)			Sou	rce: IQL	2030-01				
Chloride	5.70	0.50	0.25	mg/l	5.00	0.848	97	80-120	0	20	
Sulfate	11.3	0.50	0.20	mg/l	10.0	1.85	94	80-120	0	20	
Batch: 7L20129 Extracted: 12/20/07	-										
Blank Analyzed: 12/20/2007 (7L20129-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 12/20/2007 (7L20129-BS	1)										
Total Suspended Solids	927	10	10	mg/l	1000		93	85-115			
Duplicate Analyzed: 12/20/2007 (7L2012	9-DUP1)				Sou	rce: IQL	2122-01				
Total Suspended Solids	71.0	10	10	mg/l		73.0			3	10	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L21099 Extracted: 12/21/07	_										
Blank Analyzed: 12/21/2007 (7L21099-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 12/21/2007 (7L21099-BS)	1)										
Total Dissolved Solids	992	10	10	mg/l	1000		99	90-110			
Duplicate Analyzed: 12/21/2007 (7L2109	9-DUP1)				Sou	rce: IQL2	2115-04				
Total Dissolved Solids	492	10	10	mg/l		496			1	10	
Batch: 7L21125 Extracted: 12/22/07	-										
Blank Analyzed: 12/26/2007 (7L21125-B	LK1)										
Oil & Grease	ND	5.0	1.2	mg/l							
LCS Analyzed: 12/26/2007 (7L21125-BS)	1)										MNR1
Oil & Grease	18.8	5.0	1.2	mg/l	20.0		94	65-120			
LCS Dup Analyzed: 12/26/2007 (7L21125	5-BSD1)										
Oil & Grease	18.7	5.0	1.2	mg/l	20.0		94	65-120	1	20	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W7L0889 Extracted: 12/26/0	<u>)7</u>										
Blank Analyzed: 12/27/2007 (W7L0889-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 12/27/2007 (W7L0889-B	S1)										
Mercury, Dissolved	1.00	0.20	0.050	ug/l	1.00		100	85-115			
Mercury, Total	1.00	0.20	0.050	ug/l	1.00		100	85-115			
Matrix Spike Analyzed: 12/27/2007 (W7	L0889-MS1)				Sou	rce: 7121	925-01				
Mercury, Dissolved	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Matrix Spike Analyzed: 12/27/2007 (W7	L0889-MS2)				Sou	rce: 7121	925-03				
Mercury, Dissolved	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Matrix Spike Dup Analyzed: 12/27/2007	(W7L0889-M	SD1)			Sou	rce: 7121	925-01				
Mercury, Dissolved	0.909	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.909	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Matrix Spike Dup Analyzed: 12/27/2007	(W7L0889-M	SD2)			Sou	rce: 7121	925-03				
Mercury, Dissolved	0.907	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.907	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
: 				-							

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 9806 Extracted: 12/23/07											
Batch: 9800 Extracted: 12/25/07											
Blank Analyzed: 12/25/2007 (MB001)					Sou	rce:					
2,3,7,8-TCDD	ND	5.00	N/A	ug/L				50-150		25	
1,2,3,7,8-PeCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,6,7,8-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,7,8,9-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDD	ND	25.0	N/A	ug/L				50-150		25	
OCDD	ND	50.0	N/A	ug/L				50-150		25	
2,3,7,8-TCDF	ND	5.00	N/A	ug/L				50-150		25	
1,2,3,7,8-PeCDF	ND	25.0	N/A	ug/L				50-150		25	
2,3,4,7,8-PeCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,6,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
2,3,4,6,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,7,8,9-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8,9-HpCDF	ND	25.0	N/A	ug/L				50-150		25	
OCDF	ND	50.0	N/A	ug/L				50-150		25	
Total TCDD	ND	5.00	N/A	ug/L				50-150		25	
Total PeCDD	ND	25.0	N/A	ug/L				50-150		25	
Total HxCDD	ND	25.0	N/A	ug/L				50-150		25	
Total HpCDD	ND	25.0	N/A	ug/L				50-150		25	
Total TCDF	0.00000139	5.00	N/A	ug/L				50-150		25	
Total PeCDF	ND	25.0	N/A	ug/L				50-150		25	
Total HxCDF	ND	25.0	N/A	ug/L				50-150		25	
Total HpCDF	ND	25.0	N/A	ug/L				50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	0.00156			ug/L	2000		78	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00193			ug/L	2000		96	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00139			ug/L	2000		70	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00124			ug/L	2000		62	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00128			ug/L	2000		64	50-150			
Surrogate: 13C-OCDD	0.00237			ug/L	4000		59	50-150			
Surrogate: 13C-2,3,7,8-TCDF	0.00158			ug/L	2000		79	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00197			ug/L	2000		99	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00208			ug/L	2000		104	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00139			ug/L	2000		70	50-150			

TestAmerica Irvine

Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•				0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				C
Batch: 9806 Extracted: 12/23/07											
Blank Analyzed: 12/25/2007 (MB001)					Sou	irce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00113			ug/L	2000		57	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00129			ug/L	2000		64	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00128			ug/L	2000		64	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00112			ug/L	2000		56	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00112			ug/L	2000		56	50-150			
Surrogate: 13C-OCDF	0.00203			ug/L	4000		51	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	0.000755			ug/L	800		94	50-150			
LCS Analyzed: 12/24/2007 (OPR001)					Sou	ırce:					
2,3,7,8-TCDD	10.3	5.00	N/A	ug/L	10		103	50-150		25	
1,2,3,7,8-PeCDD	51.0	25.0	N/A	ug/L	50		102	50-150		25	
1,2,3,4,7,8-HxCDD	50.5	25.0	N/A	ug/L	50		101	50-150		25	
1,2,3,6,7,8-HxCDD	53.0	25.0	N/A	ug/L	50		106	50-150		25	
1,2,3,7,8,9-HxCDD	51.8	25.0	N/A	ug/L	50		104	50-150		25	
1,2,3,4,6,7,8-HpCDD	50.8	25.0	N/A	ug/L	50		102	50-150		25	
OCDD	100	50.0	N/A	ug/L	100		100	50-150		25	
2,3,7,8-TCDF	10.5	5.00	N/A	ug/L	10		105	50-150		25	
1,2,3,7,8-PeCDF	51.3	25.0	N/A	ug/L	50		103	50-150		25	
2,3,4,7,8-PeCDF	52.4	25.0	N/A	ug/L	50		105	50-150		25	
1,2,3,4,7,8-HxCDF	50.2	25.0	N/A	ug/L	50		100	50-150		25	
1,2,3,6,7,8-HxCDF	54.1	25.0	N/A	ug/L	50		108	50-150		25	
2,3,4,6,7,8-HxCDF	53.7	25.0	N/A	ug/L	50		107	50-150		25	
1,2,3,7,8,9-HxCDF	52.4	25.0	N/A	ug/L	50		105	50-150		25	
1,2,3,4,6,7,8-HpCDF	50.4	25.0	N/A	ug/L	50		101	50-150		25	
1,2,3,4,7,8,9-HpCDF	51.8	25.0	N/A	ug/L	50		104	50-150		25	
OCDF	104	50.0	N/A	ug/L	100		104	50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	84.4			ug/L	100		84	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	83.4			ug/L	100		83	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	81.1			ug/L	100		81	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	68.0			ug/L	100		68	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	75.4			ug/L	100		75	50-150			
Surrogate: 13C-OCDD	126			ug/L	200		63	50-150			
Surrogate: 13C-2,3,7,8-TCDF	79.7			ug/L	100		80	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	91.9			ug/L	100		92	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	88.6			ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	79.3			ug/L	100		79	50-150			
TestAmerica Irvine											

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Sampled: 12/19/07

Report Number: IQL2125

Received: 12/19/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9806 Extracted: 12/23/07											
LCS Analyzed: 12/24/2007 (OPR001)					Sou	rce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	65.5			ug/L	100		66	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	68.9			ug/L	100		69	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	68.6			ug/L	100		69	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	65.2			ug/L	100		65	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	62.5			ug/L	100		63	50-150			
Surrogate: 13C-OCDF	108			ug/L	200		54	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	39.6			ug/L	40		99	50-150			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 006

618 Michillinda Avenue, Suite 200 Sampled: 12/19/07

Arcadia, CA 91007 Report Number: IQL2125 Received: 12/19/07

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Ja The amount detected is below the Lower CalibrationLimit of the instrument

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

618 Michillinda Avenue, Suite 200

Sampled: 12/19/07 Report Number: IQL2125 Received: 12/19/07

Attention: Bronwyn Kelly

Arcadia, CA 91007

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical Perspectives

2714 Exchange Drive - Wilmington, NC 28405

Method Performed: 1613-Dioxin-HR Alta

Samples: IQL2125-01

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gross Beta

Samples: IQL2125-01

Analysis Performed: Radium, Combined

Samples: IQL2125-01

Analysis Performed: Strontium 90

Samples: IQL2125-01

Analysis Performed: Tritium

Samples: IQL2125-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IQL2125-01

Analysis Performed: EDD + Level 4

Samples: IQL2125-01

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 006

618 Michillinda Avenue, Suite 200

Report Number: IQL2125 Sampled: 12/19/07
Received: 12/19/07

Attention: Bronwyn Kelly

Arcadia, CA 91007

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IQL2125-01

TestAmerica Irvine

Joseph Doak Project Manager CHAIN OF CUSTODY FORM

of 1														132
Page 1		Field readings:	pH= 7.12	Sample Collection Time = 10°00 O								If gross beta exceeds: run total combined Ra226 & Ra228, Sr90, and gamma spectroscopy If total combined Ra226 & Ra228 exceeds: run tritium.	Filter win 24hr of receipt at lab	Turn around Time: (check) 24 Hours 48 Hours 10 Rays 72 Hours Normal On los:
	REQUIRED	tals: Sb.	eM be IT ,gl	al Dissolve Cu, l ^o b, F	Tota Cd,								×	
	ANALYSIS F	unipi (906) (ed Re	sss Beta, all Combin A 223*, T	toT							×		1660
	ANA			SST, S	SQT						×			Date/Time: Date/Time: Date/Time: Date/Time:
X		N-	² ON+	[©] ON '⁵OS	CI ⁻					×				Date (C) Date Date
FORM		ļ		e bns) (IC essen2 &					×					4 2
CUSTODY		,IT , ₁	——— 6н 'qa	al Recove Cd, Cu, F	 '9S	×	×	×						
F CUS					Bottle #	1A	18	2A, 2B	3A, 3B	4A, 4B	5A, 5B	6A, 6B	2	Received By Received By Received By
CHAIN OF		IL NPDES Itfall 006 at FSDF-2	ber:	515	Preservative	HNO ₃	HNO ₃	None	HCI	None	None	None	None	
<u>ت</u>	Project	Boeing-SSFL NPDES Routine Outfall 006 Stormwater at FSDF-2	Phone Number	(626) 568-6591 Fax Number: (626) 568-6515	Sampling Date/Time	10:00							12-19-07°	Date/Time: 162 246 346
4/28/06			<u> </u>		# of Cont.	Н	-	2	2	2	2		1	9-07 Date/Time: Date/Time: Date/Time:
a Version 0.	S.	e, Suite 200	ronwyn Ke	NACA	Container Type (1L Poly	1L Amber	1L Amber	500ml Poly	500ml Poly	2.5 Gal Cube 500 ml Amber	1L Poly	10.61.61
meric	e/Addres	cadia Ida Avenu 91007	nager: B	R. B.	Sample Matrix	W	M	W	W	M	W	*	8	
Test America version 04/28/06	Client Name/Address	MWH-Arcadia 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007	Project Manager: Bronwyn Kelly	Sampler: R.BANACA	Sample Description	Outfall 006	Outfall 006 Dup	Outfall 006	Outfall 006	Outfall 006	Outfall 006	Outfall 006	Outfall 006	Relinquished By Relinquished By Relinquished By

December 26, 2007

Vista Project I.D.: 30103

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on December 21, 2007 under your Project Name "IQL2125". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Marche Marer

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 12/21/2007

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30103-001 IQL2125-01

SECTION II

Project 30103 NPDES - 157
Page 3 of 258

Method Blank					EPA Method 1613	lod 1613
Matrix: Aqueous		QC Batch No.: 9	9086	Lab Sample: 0-MB001		
Sample Size: 1.00 L		Date Extracted: 2	23-Dec-07	Date Analyzed DB-5: 25-Dec-07	Date Analyzed DB-225:	NA
Analyte Conc. (ug/L)	(ng/L)	DL ^a EMPC ^b	Qualifiers	Labeled Standard	%R LCL-UCL ^d O	Oualifiers
2,3,7,8-TCDD	ND	0.000000817		<u>IS</u> 13C-2,3,7,8-TCDD	78.1 25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000065		13C-1,2,3,7,8-PeCDD	96.3 25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.00000174		13C-1,2,3,4,7,8-HxCDD	69.7 32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000175		13C-1,2,3,6,7,8-HxCDD	62.0 28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.00000174		13C-1,2,3,4,6,7,8-HpCDD	63.9 23 - 140	
1,2,3,4,6,7,8-HpCDD	ND	0.00000246		13C-OCDD	59.3 17 - 157	
OCDD	ND	0.00000423		13C-2,3,7,8-TCDF	79.1 24 - 169	
2,3,7,8-TCDF	ND	0.00000140		13C-1,2,3,7,8-PeCDF	98.6 24 - 185	
1,2,3,7,8-PeCDF	ND	0.00000129		13C-2,3,4,7,8-PeCDF	104 21 - 178	
2,3,4,7,8-PeCDF	ND	0.00000126		13C-1,2,3,4,7,8-HxCDF	69.6 26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000846		13C-1,2,3,6,7,8-HxCDF	56.7 26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000004		13C-2,3,4,6,7,8-HxCDF	64.3 28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000973		13C-1,2,3,7,8,9-HxCDF	63.8 29 - 147	
1,2,3,7,8,9-HxCDF	N N	0.00000140		13C-1,2,3,4,6,7,8-HpCDF	55.9 28 - 143	
1,2,3,4,6,7,8-HpCDF	N Q	0.00000100		13C-1,2,3,4,7,8,9-HpCDF	55.8 26 - 138	
1,2,3,4,7,8,9-HpCDF	N Q	0.00000138		13C-OCDF	50.8 17 - 157	
OCDF	ND	0.00000156		CRS 37CI-2,3,7,8-TCDD	94.4 35 - 197	
Totals				Footnotes		
Total TCDD	ND	0.000000817		a. Sample specific estimated detection limit.		
Total PeCDD	N Q	0.000000065		b. Estimated maximum possible concentration.		
Total HxCDD	ND	0.00000175		c. Method detection limit.		
Total HpCDD	ND	0.00000246		d. Lower control limit - upper control limit.		
Total TCDF	0.00000139	6				
Total PeCDF	ND	0.00000128				
Total HxCDF	N Q	0.00000101				
Total HpCDF	ND	0.00000117				
Analyst: JMH				Approved By: Martha M. Maier	Maier 26-Dec-2007 13:46	

OPR Results					EPA	EPA Method 1613	513
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9806 23-Dec-07	Lab Sample: 0-OPR001 Date Analyzed DB-5: 24-Dec-07	Date Analyzed DB-225:	ed DB-225:	NA
Analyte	Spike Conc.	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL Qualifier	Qualifier
2,3,7,8-TCDD	10.0	10.3	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	84.4	25 - 164	
1,2,3,7,8-PeCDD	50.0	51.0	35 - 71	13C-1,2,3,7,8-PeCDD	83.4	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	50.5	35 - 82	13C-1,2,3,4,7,8-HxCDD	81.1	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	53.0	38 - 67	13C-1,2,3,6,7,8-HxCDD	0.89	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	51.8	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	75.4	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	50.8	35 - 70	13C-OCDD	63.2	17 - 157	
OCDD	100	100	78 - 144	13C-2,3,7,8-TCDF	7.67	24 - 169	
2,3,7,8-TCDF	10.0	10.5	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	91.9	24 - 185	
1,2,3,7,8-PeCDF	50.0	51.3	40 - 67	13C-2,3,4,7,8-PeCDF	88.6	21 - 178	
2,3,4,7,8-PeCDF	50.0	52.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	79.3	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	50.2	36 - 67	13C-1,2,3,6,7,8-HxCDF	65.5	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	54.1	42 - 65	13C-2,3,4,6,7,8-HxCDF	6.89	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	53.7	35 - 78	13C-1,2,3,7,8,9-HxCDF	9.89	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	52.4	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	65.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	50.4	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	62.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	51.8	39 - 69	13C-OCDF	54.0	17 - 157	
OCDF	100	104	63 - 170	CRS 37CI-2,3,7,8-TCDD	99.1	35 - 197	

Approved By: Martha M. Maier 26-Dec-2007 13:46

Analyst: JMH

Sample ID: IQL2	IQL2125-01							EPA IA	EPA Method 1613
Client Data Name: Test Ame Project: IQL2125	Test America-Irvine, CA IQL2125		Sample Data Matrix:	Aqueous	Laboratory Data Lab Sample:	30103-001	Date Received:	ived:	21-Dec-07
llected: llected:	19-Dec-07 1000		Sample Size:	1.01 L	QC Batch No.: Date Analyzed DB-5:	9806 25-Dec-07	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225:	23-Dec-07 NA
Analyte	Conc. (ug/L)	DI a	$\mathbf{EMPC}^{\mathrm{b}}$	Qualifiers	Labeled Standard	ırd	%R]	rcr-ncr _q	Oualifiers
2,3,7,8-TCDD	ND	0.000000661	191		<u>IS</u> 13C-2,3,7,8-TCDD	Q	85.6	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000895	95		13C-1,2,3,7,8-PeCDD	CDD	82.3	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.00000124	4		13C-1,2,3,4,7,8-HxCDD	I xCDD	70.0	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000140	0.		13C-1,2,3,6,7,8-HxCDD	I xCDD	61.7	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.00000132	2		13C-1,2,3,4,6,7,8-HpCDD	-HpCDD	65.5	23 - 140	
1,2,3,4,6,7,8-HpCDD	ND		0.00000207	707	13C-OCDD		58.9	17 - 157	
OCDD	0.0000176			J	13C-2,3,7,8-TCDF	ΙΈ	82.4	24 - 169	
2,3,7,8-TCDF	ND	0.00000133	3		13C-1,2,3,7,8-PeCDF	CDF	93.9	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000827	.27		13C-2,3,4,7,8-PeCDF	CDF	88.7	21 - 178	
2,3,4,7,8-PeCDF	ND	0.0000000	01		13C-1,2,3,4,7,8-HxCDF	I xCDF	71.0	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000499	66:		13C-1,2,3,6,7,8-HxCDF	I xCDF	60.1	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000541	41		13C-2,3,4,6,7,8-HxCDF	H xCDF	63.8	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000599	66		13C-1,2,3,7,8,9-HxCDF	HXCDF	61.4	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000921	21		13C-1,2,3,4,6,7,8-HpCDF	-HpCDF	57.1	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000000760	09.		13C-1,2,3,4,7,8,9-HpCDF	-HpCDF	57.2	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.0000010	1		13C-OCDF		52.0	17 - 157	
OCDF	ND	0.00000152	.2		<u>CRS</u> 37CI-2,3,7,8-TCDD	OD	97.9	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.000000661	191		a. Sample specific estimated detection limit.	detection limit.			
Total PeCDD	ND	0.000000895	95		b. Estimated maximum possible concentration.	ible concentration.			
Total HxCDD	ND	0.0000013	7		c. Method detection limit.				
Total HpCDD	0.00000416		0.00000623	.23	d. Lower control limit - upper control limit.	er control limit.			
Total TCDF	ND	0.00000133	3						
Total PeCDF	ND	0.000000863	63						
Total HxCDF	ND	0.000000621	121						
Total HpCDF	ND	0.000000866	99						
Analyst: JMH					Approved By:	Martha M. Maier		26-Dec-2007 13:46	2

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IQL2125

30103

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone :(916) 673-1520 Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

°C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IQL2125-01	Water		Sampled: 12/19/07 10:00	
1613-Dioxin-HR-Alta	ug/l	12/28/07	12/26/07 10:00	J flags,17 congeners,no TEQ,ug/L,sub=Vista
EDD + Level 4	N/A	12/28/07	01/16/08 10:00	1 - 4,49,2,545
Containers Supplied:				
1 L Amber (C)	1 L Amber (D)			

Released By

Date/Time

Received By

Mata /Time

12/21/17 1027

Released By

Date/Time

Pageined Pr

Deta/Time

Page 1 of 1

SAMPLE LOG-IN CHECKLIST

Vista Project #:	30103	<u> </u>				7	TAT	7	
·	Date/Time			Initials:		Loc	cation:	WI	2-2
Samples Arrival:	12/21/07	0	947	Mad	5	She	elf/Rac	k:	NIA
	Date/Time			Initials:		Loc	cation:	WI	22
Logged In:	12/21/07	112	70	Bo	B	She	elf/Rac	k:	2-4
Delivered By:	FedEx	UI	PS	Cal	DHL	_	Har Delive		Other
Preservation:	(lce	<u>) </u>	В	lue Ice	Dr	у Ісє			None
Temp °C	3	Time	: 0	952		The	rmom	eter II	D : IR-1

				,	YES	NO	NA
Adequate Sample Volume Recei	ved?				V/		
Holding Time Acceptable?					V		
Shipping Container(s) Intact?					V)		
Shipping Custody Seals Intact?					7		
Shipping Documentation Present	t?			•			
Airbill Trk#	1909 (22047	014	l			
Sample Container Intact?		•			V	-	/
Sample Custody Seals Intact?							1
Chain of Custody / Sample Docu	ımentation P	resent?				,	-
COC Anomaly/Sample Acceptar	ice Form con	npleted?				V	
If Chlorinated or Drinking Water	Samples, Ac	ceptable Prese	ervation?				V
Na ₂ S ₂ O ₃ Preservation Document	ted?	· COC	Samp Contai		(None	
Shipping Container	Vista	(Client)	Retain (Retu	irn)	Disp	ose
Comments:							

SUBCONTRACT ORDER

TestAmerica Irvine

7122065

IQL2125

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone:(626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:

°C Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IQL2125-01	Water		Sampled: 12/19/07 10:00	
Level 4 Data Package - Wec	N/A	12/28/07	01/16/08 10:00	Provide Element transfer EDD
Mercury - 245.1, Diss -OUT	mg/l	12/28/07	01/16/08 10:00	Boeing, J flags, sub to Weck
Mercury - 245.1-OUT	mg/l	12/28/07	01/16/08 10:00	Boeing, J flags, sub to Weck
Containers Supplied:				
125 mL Poly w/HNO3 1: (N)	25 mL Poly	/ (O)		

Released By Date/Time

Received By

Received By

12/20/07 6 700 Date/Time

12/20/07 (6.00 Date/TimeNPDES Paged of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

12/28/07 15:28

17461 Derian Ave, Suite 100

Received Date:

12/20/07 10:00

Irvine, CA 92614

Turn Around:

Attention: Joseph Doak

Work Order #:

5 days

7122005

Phone: (949) 261-1022

Fax: (949) 260-3297

Client Project:

IQL2125

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 12/20/07 10:00 with the Chain of Custody document. The samples were received in good condition. The samples were received at 4.5 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122005 Project ID: IQL2125 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:28

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IQL2125-01	Client		7122005-01	Water	12/19/07 10:00

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122005 Project ID: IQL2125 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:28

IQL2125-01 7122005-01 (Water)

Date Sampled: 12/19/07 10:00

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W7L0889	12/26/07	12/27/07	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W7L0889	12/26/07	12/27/07	jlp	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122005 Project ID: IQL2125 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:28

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122005 Project ID: IQL2125 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:28

Metals by EPA 200 Series Methods - Quality Control

%REC

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W7L0889 - EPA 245.1										
Blank (W7L0889-BLK1)				Analyzed:	12/27/07					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W7L0889-BS1)				Analyzed:	12/27/07					
Mercury, Dissolved	1.00	0.20	ug/l	1.00		100	85-115			
Mercury, Total	1.00	0.20	ug/l	1.00		100	85-115			
Matrix Spike (W7L0889-MS1)	So	ource: 7121925	5-01	Analyzed:	12/27/07					
Mercury, Dissolved	0.882	0.20	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	ug/l	1.00	ND	88	70-130			
Matrix Spike (W7L0889-MS2)	So	ource: 7121925	5-03	Analyzed:	12/27/07					
Mercury, Dissolved	0.882	0.20	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	ug/l	1.00	ND	88	70-130			
Matrix Spike Dup (W7L0889-MSD1)	So	ource: 7121925	5-01	Analyzed:	12/27/07					
Mercury, Dissolved	0.909	0.20	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.909	0.20	ug/l	1.00	ND	91	70-130	3	20	
Matrix Spike Dup (W7L0889-MSD2)	So	ource: 7121925	5-03	Analyzed:	12/27/07					
Mercury, Dissolved	0.907	0.20	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.907	0.20	ug/l	1.00	ND	91	70-130	3	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122005 Project ID: IQL2125

Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:28

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

, 1	- 5	Printer mannak sasasansa														1 × 5		_	×	
		Field readings	Temp = 5 %, 5	pH= 7.12	Sample Collection Time = I_0 ; 0^0			-					if gross beta exceeds: run total combined Ra226 & Ra228, Sr90, and gamma spectroscopy If total combined Ra226 & Ra228 exceeds: run tritium.	Filter w/in 24hr of receipt at lab			around Time (chad)	24 Hours 5 Days 48 Hours 10 have	tegrity: (che	
	DECHIPED	, de			al Dissolv Cu, l ^o b, l									×				24 t		
	ANAI VOIC DE	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	muibe	Я рәг	sss Beta, Il Combil L ,*S23 &	stoT							×					162	1910	
la	ANA	<u> </u>			SST , S	SQT						×					Date/Time:	46/07	Date/Time: 12/19/07 Date/Time:	
7612125					& Grease SO ₄ , NO						×						Date	6	Date Date	
, , L	-	ļ			s bns) (](×	×				<u> </u>				ď	Non	
FCLISTODY FORM	2		,IT ,Q	——— Н '9d	al Recove Cd, Cu,	'qs	×	×									34	8	and House	
						Bottle #	14	18	2A, 2B	3A, 3B	4A, 4B	5A, 5B	6A, 6B	7			Received By	A	Received By Received By	
ONIAH		rl NPDES Itfall 006	Stormwater at FSDF-2	iber: 691	515	Preservative	HNO³	HNO3	None	HCI	None	None	None ***	None				Q	. 076	
2	Droject:	Boeing-SSFL NPDES Routine Outfall 006	otormwater	Phone Number: (626) 568-6691	Fax Number: (626) 568-6515	Sampling Date/Time	(0.61-4							12-19-070	00;0/		/Time:	162	Date/Time: Date/Time:	
90,00	00/07/1					# of Cont.			2	2	2	2		-			9-07 Date/Time:		Date	
ָ מ	S. version of	ss. e, Suite 200	: Joseph Do	ronwyn Ke	ゴみらん	Container Type (1L Poly	1L Amber	1L Amber	500ml Poly	500ml Poly	2.5 Gal Cube 500 ml Amber	1L Poly			0-61-71		1	
ָ הפוניני	VAddres	adia ta Avenu	91007 Contact:	ager: B	ሕ	Sample	>	*	W	W	W	W	*	3] `	J-X	, do	
Tect America	Client Name/Address	MWH-Arcadia 618 Michillinda Avenue, Suite 200	Arcadia, CA 91007 Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	Sampler: R.BANA6A	Sample Description	Outfall 006	Outfall 006 Dup	Outfall 006	Outfall 006	Outfall 006	Outfall 006	Outfall 006	Outfall 006			Relinquished By	li i	Relinquished By Relinquished By	

January 2, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project No. IQL2125

Eberline Services NELAP Cert #01120CA (exp. 01/31/08)

Eberline Services Report R712148-8674

Dear Mr. Doak:

Enclosed are results from the analysis of one water sample received at Eberline Services on December 24, 2007. The sample was analyzed according to the accompanying Test America Subcontract Order Form. The requested analysis was gross beta (EPA900.0). The sample was not filtered prior to analysis. Quality control samples consisted of an LCS, blank analysis, duplicate analysis, and matrix spike. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melisia Morm

MCM/niv

Enclosure:

Report

Subcontract Form Receipt checklist

Eberline Services

ANALYSIS RESULTS

SDG 8674 Client TA IRVINE Work Order <u>R712148-01</u> Contract PROJECT# IQL2125 Received Date 12/24/07Matrix WATER

Client

Lab

Sample ID

Sample ID Collected Analyzed Nuclide

Results $\pm 2\sigma$ Units

MDA

IQL2125-01

8674-001 12/19/07 12/28/07 Gross Beta

 19.4 ± 2.1 pCi/L

2.1

Certified by_ Report Date 01/02/08 Page 1

Eberline Services

QC RESULTS

 SDG 8674
 Client TA IRVINE

 Work Order R712148-01
 Contract PROJECT# IQL2125

 Received Date 12/24/07
 Matrix WATER

Lab Sample ID Nuclide Results Units Amount Added MDA <u>Evaluation</u> LCS Gross Beta 10.9 \pm 0.76 pCi/Smpl 11.3 8674-002 0.56 96% recovery BLANK 8674-003 Gross Beta -0.120 ± 0.36 pCi/Smpl NA 0.63 <MDA DUPLICATES ORIGINALS Sample ID Nuclide Results $\pm 2\sigma$ MDA Sample ID Results $\pm 2\sigma$ MDA RPD (Tot) Eval 8674-004 Gross Beta 20.0 \pm 2.6 3.3 8674-001 19.4 ± 2.1 2.1 3 50 satis. SPIKED SAMPLE ORIGINAL SAMPLE Sample ID Nuclide Results ± 2σ MDA Sample ID Results ± 2σ MDA Added %Recv

8674-001 19.4 ± 2.1 2.1 69.0 99

8674-005 Gross Beta 88.0 \pm 4.2 3.2

Certified by Report Date 01/02/08
Page 2

SUBCONTRACT ORDER

TestAmerica Irvine

IQL2125

8674

°C

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services - SUB 2030 Wright Avenue

Richmond, CA 94804 Phone:(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IQL2125-01	Water		Sampled: 12/19/07 1	0:00
Gross Beta-O	pCi/L	12/28/07	06/16/08 10:00	DONT FILTER, 900.0,RESULT>50 pCi/L,run Rad 226&228
Level 4 + EDD-OUT	N/A	12/28/07	01/16/08 10:00	Excel EDD email to pm,Include Std logs for Lvl IV
Radium, Combined-O	pCi/L	12/28/07	12/18/08 10:00	HOLD for G A&B results; EPA 903.1&904.0.NO FILTER
Strontium 90-O	pCi/L	12/28/07	12/18/08 10:00	HOLD for Ra 226&228 results,EPA 905.0, DONT FILTER
Tritium-O	pCi/L	12/28/07	12/18/08 10:00	HOLD for Ra 226&228 results,EPA 906.0, DONT FILTER
Containers Supplied:				
2.5 gal Poly (K)	500 mL Amb	per (L)		

Date/Time

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client: TESTAMERICA City/	PRVINE State A
Date/Time received 12/24/07 10:40 oc No. 122	2125
Container I.D. No Requested TAT (Da	ysı P.C. Received Yes[] N 🔾 []
INSF	PECTION
Custody seals on snipping container intact?	Yes [🛂 No [] N/A []
2 Custody seals on shipping container dated & sig	gnedî Yes [V] No [] N/4 []
Custody seals on sample containers intact?	Yes [] No [] N/4 [/]
2 Custody seals on sample containers dated & sig	
Facking material is	Wet [Drv] N/A V
Number of samples in snipping container	
Number of containers per sample 2 8 Samples are in correct container	(Or see CoC) Yes [1
9 Paperwork agrees with samples?	Yes [V
	Rad labels [] Appropriate sample labels [/
	king Broken Container () Missimu ()
52 Samples are Preserved [] Not preserved	
13 Describe any anomalies	
	res No Date
15 Inspected by Date	= 12/24/07 Time 11:20
Customer Beta/Gamma (on Chambe) Sample No. cpm mR/hr Vvide	Customer Beta/Gamma ion Chaimper Sample No. com mR/hr wipe
1862125-01 <60	WIE
1	
n Champer Ser. No.	Calibration date
iona Meter Ser. No.	Calibration date
eta/Gamma Meter Ser. No	Calibration date 9 may 2007
117	

Form SCP-01, 07-30-07

'over 55 vears of quality nuclear services'

APPENDIX G

Section 7

Outfall 006 - BMP Effectiveness, December 18-19, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project: BMP Effectiveness

Monitoring Program

Sampled: 12/18/07-12/19/07

Received: 12/19/07

Revised: 01/31/08 15:18

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IQL2160-01	006 EFF-1	Water
IQL2160-02	006 EFF-2	Water
IQL2160-03	006 EFF-3	Water
IQL2160-04	006 EFF-4	Water
IQL2160-05	006 EFF-5	Water
IQL2160-06	006 EFF-6	Water
IQL2160-07	006 EFF-7	Water
IQL2160-08	006 EFF-8	Water
IQL2160-09	006 EFF-9	Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Arandia CA 01007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IQL2160

Sampled: 12/18/07-12/19/07 Received: 12/19/07

INORGANICS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2160-01 (006 EFF-1 - Water)				Sampled:	12/18/07			
Reporting Units: g/cc Density	Displacement	7L28073	NA	1.0	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-01 (006 EFF-1 - Water) Reporting Units: mg/l				Sampled:	12/18/07			
Sediment	ASTM D3977	7L28103	10	44	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-02 (006 EFF-2 - Water) Reporting Units: g/cc				Sampled:	12/18/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-02 (006 EFF-2 - Water) Reporting Units: mg/l				Sampled:	12/18/07			
Sediment	ASTM D3977	7L28103	10	28	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-03 (006 EFF-3 - Water) Reporting Units: g/cc				Sampled:	12/18/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-03 (006 EFF-3 - Water) Reporting Units: mg/l				Sampled:	12/18/07			
Sediment	ASTM D3977	7L28103	10	16	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-04 (006 EFF-4 - Water) Reporting Units: g/cc				Sampled:	12/18/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-04 (006 EFF-4 - Water) Reporting Units: mg/l				Sampled:	12/18/07			
Sediment	ASTM D3977	7L28103	10	17	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-05 (006 EFF-5 - Water) Reporting Units: g/cc				Sampled:	12/18/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-05 (006 EFF-5 - Water) Reporting Units: mg/l				Sampled:	12/18/07			
Sediment	ASTM D3977	7L28103	10	16	1	12/28/2007	12/28/2007	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 12/18/07-12/19/07

Arcadia, CA 91007 Report Number: IQL2160 Received: 12/19/07

Attention: Bronwyn Kelly

INORGANICS

		mon	UAITES					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2160-06 (006 EFF-6 - Water) Reporting Units: g/cc)			Sampled	: 12/18/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-06 (006 EFF-6 - Water Reporting Units: mg/l)			Sampled	: 12/18/07			
Sediment	ASTM D3977	7L28103	10	17	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-07 (006 EFF-7 - Water) Reporting Units: g/cc)			Sampled	: 12/18/07			
Density	Displacement	7L28073	NA	1.0	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-07 (006 EFF-7 - Water Reporting Units: mg/l)			Sampled	: 12/18/07			
Sediment	ASTM D3977	7L28103	10	16	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-08 (006 EFF-8 - Water Reporting Units: g/cc)			Sampled	: 12/19/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-08 (006 EFF-8 - Water Reporting Units: mg/l)			Sampled	: 12/19/07			
Sediment	ASTM D3977	7L28103	10	33	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-09 (006 EFF-9 - Water) Reporting Units: g/cc)			Sampled	: 12/19/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2160-09 (006 EFF-9 - Water Reporting Units: mg/l)			Sampled	: 12/19/07			
Sediment	ASTM D3977	7L28103	10	39	1	12/28/2007	12/28/2007	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IQL2160

Sampled: 12/18/07-12/19/07

Received: 12/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L28073 Extracted: 12/28/0	<u>7</u>									
Duplicate Analyzed: 12/28/2007 (7L	.28073-DUP1)				Source: I	QL2159-0	5			
Density	0.991	NA	g/cc		0.988			0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 12/18/07-12/19/07

Report Number: IQL2160 Received: 12/19/07

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program Sampled: 12/18/07-12/19/07

Report Number: IQL2160 Received: 12/19/07

Certification Summary

TestAmerica Irvine

Method Matrix Nelac California

ASTM D3977 Water Displacement Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

opte int

Test America Version 04/28/06	∍rica ∖	/ersion 04/28/06	10	CHAIN OF		TOD	CUSTODY FORM		())/7/18		Page 1 of 1
Client Name/Address:	Address			Project: Boeing BMP	ng BMP	,		-	ANALYSI	SREQUI	
IVIVV	ula Avenue,	Suite 200		Program		מכ					Field readings:
Arcadia, CA 91	200						MTSA				42 = dmal
Test America Contact: Joseph Doak	Contact: J	oseph Doak				1	C,				
Project Ma nager: Bronwyn Kelly	ger: Bro	nwyn Kelly		Phone Number: (626) 568-6691	er: 11		SS) u				57. F = Ind
Sampler: R.	日の人	Barreso		Fax Number: (626) 568-6515	'n		S babna oitsitna: (1691-1				(4:00
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Conc				10.26.67 10.04.60
006 EFF-1	8	500 mL Poly	-	12-18-07 17:00	None	_	×				
006 EFF-2	3 3	500 mL Poly		12-18-07 18:00	None	2	××				
000 EFF-3	3	500 ml Poly		12-18-07 20:00	None	0 4	< ×				
006 EFF-5	: >	500 mL Poly		12-18-07 21:00	None	2	×				
006 EFF-6	8	500 mL Poly	-	12-18-07 22:00	None	6	×				
006 EFF-7	3	500 mL Poly	-	12-18-07 23:00	None	7	×				
006 EFF-8	3	500 mL Poly		12-19-07 00:00	None	8	× :				
006 EFF-9	3	500 mL Poly	-	12-19-07 01:00	None	6	×				
006 555 40	*	500 mt. Poly			Моте		×				
006 EFF-11	3	500 mL Poly	-		None	7	×				
006 EFF-12	3	500 mL Poly	-		None	12	×/				
006 EFF-13	8	500 mL Poly	-		None	13	<i>*</i>				
000 EFF-14	A 3	500 ML Poly	-		None	4 ,	× ;				
000 EFF-13	3 3	500 mL Poly			None	12	×'>				
000 EFF-17	3	500 ml Polv			None	17	< ×	\ \{		+	
006 EFF-18	3	500 mL Poly	-		None	18	×		1		
006 EFF-19	8	500 mL Poly	1		None	19	×			-	
006 EFF-20	^	500 mL Poly	-		None	20	×		MS /		
006 EFF-21	>	500 mL Poly	-		None	21	×		4		
006 EFF-22	>	500 mL Poly	-		None	22	×				
006 EFF-23	S	500 mL Poly	-		None	23 /	×		/		
	×	500 mL Poly	1		None	24	×				
relitiquistred by		10-4/-7	Dale/ I III e	15	Legender Dy	_	, E	Date/ I Ime:			Turn around Time: (check)
1.15			`	020	7	for	1 - m	13/19/67	1620	*****	24 Hours 5 Days
Relinguished By	X	J	Date/Time	ö	Received By)	Da	te/Time:			48 Hours 10 Days
N	8	Cen 6	Hales	, Pos	- Juan	In	Mande	13/6/07	7 (905	{	72 Hours Normal
Relinquished By	د		Date/Time:	Ö	Received By		V V Da	Date/Time:			Sample Integrity: (Check) Intact On Ice:

APPENDIX G

Section 8

Outfall 009, December 19, 2007

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IQL2128

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IQL2128
Project Manager: B. Kelly

Project Manager: B. Kel Matrix: Soil

QC Level: IV
No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine, Weck, Vista

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009	IQL2128-01	7122006-01, 30104-001	Water	12/19/07 0800	245.1, 1613, 6020

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Weck within the temperature limits of 4°C ±2°C. The sample was received below the temperature limits at Vista; however, the sample was not noted to have been frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Vista and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: IQL2128

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: January 15, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.

 Blanks: Total TCDF was reported in the method blank at a concentration of 0.00000139µg/l; however, total TCDF was not reported in site sample Outfall 009. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. An EMPC value for total HpCDF was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 245.1, 6020—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 15, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 245.1 and 6020, and the National Functional Guidelines for Inorganic Data Review (2/94).

 Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.

DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: IQL2128

 Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the
 dissolved metals analyses only. Recoveries were within the method-established control
 limits. All analytes were reported in the 6020 ICSA solution; however, the reviewer was
 not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The CCV analyzed prior to the sample and the CCB analyzed after the sample both had all internal standard recoveries below the control limit; however, as the sample internal standard recoveries were acceptable, no qualifications were applied. The remaining bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. Detects reported below the reporting limit were qualified as
 estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit.
 Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

o Field Duplicates: There were no field duplicate samples identified for this SDG.

Name: T Project: IC	Test America-Irvine, CA IQL2128	A 2 0	Sample Data Matrix:	Aqueous	Laboratory Data Lab Sample:	30104-001	Date Received:	21-Dec-07
llected: llected:	19-Dec-07 0800	<i>x</i>	Sample Size:	1.00 L	QC Batch No.: Date Analyzed DB-5:	9806 27-Dec-07	Date Extracted: Date Analyzed DB-225:	23-Dec-07 NA
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers	Labeled Standard	dard	%R LCL-UCL ^d	Oualifiers
2,3,7,8-TCDD	NO	0.00000130			IS 13C-2,3,7,8-TCDD	CDD	75.7 25 - 164	
1,2,3,7,8-PeCDD	ND	0.00000165			13C-1,2,3,7,8-PeCDD	PeCDD	58.8 25 - 181	
1,2,3,4,7,8-HxCDD	ND I	0.00000344		の 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	13C-1,2,3,4,7,8-HxCDD	8-HxCDD	72.2 32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000364			13C-1,2,3,6,7,8-HxCDD	8-HxCDD	68.0 28 - 130	
1,2,3,7,8,9-HxCDD	NO .	0.00000345			13C-1,2,3,4,6,7,8-HpCDD	7,8-НрСDD	44.7 23 - 140	
4 1,2,3,4,6,7,8-HpCDD				ſ	13C-OCDD		30.1 17-157	
ОСОО	0.000187				13C-2,3,7,8-TCDF	CDF.	75.1 24-169	
2,3,7,8-TCDF	N N	0.00000148	The second second	ı	13C-1,2,3,7,8-PeCDF	PeCDF	59.9 24 - 185	
1,2,3,7,8-PeCDF	NO	0.00000192		All a Control	13C-2,3,4,7,8-PeCDF	PeCDF	59.0 21 - 178	
2,3,4,7,8-PeCDF	N	0.00000197	and the contract of	The state of the state of	13C-1,2,3,4,7,8-HxCDF	8-HxCDF	61.6 26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000074	4		13C-1,2,3,6,7,8-HxCDF	8-HxCDF	67.3 26-123	
1,2,3,6,7,8-HxCDF	-	0.000000877	7	Control of Control of Control	13C-2,3,4,6,7,8-HxCDF	8-HxCDF	65.9 28-136	The second second second
2,3,4,6,7,8-HxCDF	2	0.00000105			13C-1,2,3,7,8,9-HxCDF	9-HxCDF	58.2 29 - 147	
1,2,3,7,8,9-HxCDF	Q	0.00000151			13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	45.6 28 - 143	
1,2,3,4,6,7,8-HpCDF		0,000000380			13C-1,2,3,4,7,8,9-HpCDF	8,9-нрСDF	27.3 26-138	
1,2,3,4,7,8,9-HpCDF	F ND	0.00000685	The second second second	The state of the s	13C-0CDF		19.7 17-157	
OCDF	N)	0.0000107			CRS 37CI-2,3,7,8-TCDD	CDD	84.0 35-197	
Totals					Footnotes			
Total TCDD	ND	0.00000130			a. Sample specific estimated detection limit	ted detection limit.		
Total PeCDD	2	0.000000165			b. Estimated maximum possible concentration.	ossible concentration.		
Total HxCDD	NO ON	0.000000352			c. Method detection limit.			
Total HpCDD	0.0000416				d. Lower control limit - upper control limit.	pper control limit.		
Total TCDF	N Q	0.00000148			The state of the s			
Total PeCDF	ND	0.00000194						
Total HxCDF	NO NO	0.00000107			7	COUNTY TO STATE OF THE PARTY OF		
Total HpCDF	2	2-Ha	0.00000168	. 89				
Analyst: DMS	Lewer I				Approved By:	William J. Luksemburg	semburg 27-Dec-2007 13:18	7 13:18

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Report Number: IQL2128

Sampled: 12/19/07

Received: 12/19/07

METALS

Project ID: Routine Outfall 009

Analyte			Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID:	: IQL2128-01 (Out	fall 009 - V	Vater)		•						
Repor	ting Units: ug/l										
Antimony	J/DNQ		EPA 200.8	7L20116	0.20	2.0	0.40	1	12/20/07	12/20/07	J
Cadmium	U		· EPA 200.8	7L20116	0.11	1.0	· ND	1	12/20/07	12/20/07	
Copper	/-		EPA 200.8	7L20116	0.75	2.0	2.4	1	12/20/07	12/20/07	
Lead	DI DING		EPA 200.8	7L20116	0.10	1.0	0.47	1	12/20/07	12/20/07	J
Thallium	U		EPA 200.8	7L20116	0.15	1.0	ND	. 1	12/20/07	12/20/07	

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQL2128 <Page 2 of 19>

17461 Derian Avenue. Suite 100, 1rvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IQL2128

Sampled: 12/19/07

Received: 12/19/07

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2128-01 (Outfall 009	- Water) - cont.								
Reporting Units: ug/l									
Antimony J/DNG	EPA 200.8-Diss	7L20140	0.20	2.0	0.39	1	12/20/07	12/20/07	J
Cadmium U	EPA 200.8-Diss	7L20140	0.11	1.0	ND	1	12/20/07	12/20/07	
Copper	EPA 200.8-Diss	7L20140	0.75	2.0	2.0	1	12/20/07	12/20/07	
Lead TIDNQ	EPA 200.8-Diss	7L20140	0.10	1.0	0.20 -	1	12/20/07	12/20/07	J
Thallium U	EPA 200.8-Diss	7L20140	0.15	1.0	ND	1	12/20/07	12/20/07	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced except in full, without written permission from TestAmerica.

IQL2128 <Page 3 of 19>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IQL2128

· Sampled: 12/19/07

Received: 12/19/07

Metals by EPA 200 Series Methods

Analyte			Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2128-0	1 (Outfall	009 -	Water) - cont.								
Reporting Units: t	1g/l										
Mercury, Dissolved	U.	•	EPA 245.1	W7L0889	0.050	0.20	ND	1	12/26/07	12/27/07	
Mercury, Total	U		EPA 245.1	W7L0889	0.050	0.20	ND	1 .	12/26/07	12/27/07	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced except in full, without written permission from TestAmerica.

IQL2128 <Page 5 of 19>

APPENDIX G

Section 9

Outfall 009, December 19, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly
Sampled: 12/19/07
Received: 12/19/07

Issued: 12/31/07 09:28

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX
IQL2128-01 Outfall 009 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2128

Received: 12/19/07

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2128-01 (Outfall 009 - V	Vater)								
Reporting Units: ug/l									
Antimony	EPA 200.8	7L20116	0.20	2.0	0.40	1	12/20/07	12/20/07	J
Cadmium	EPA 200.8	7L20116	0.11	1.0	ND	1	12/20/07	12/20/07	
Copper	EPA 200.8	7L20116	0.75	2.0	2.4	1	12/20/07	12/20/07	
Lead	EPA 200.8	7L20116	0.10	1.0	0.47	1	12/20/07	12/20/07	J
Thallium	EPA 200.8	7L20116	0.15	1.0	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2128

Received: 12/19/07

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2128-01 (Outfall 009 - V	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	7L20140	0.20	2.0	0.39	1	12/20/07	12/20/07	J
Cadmium	EPA 200.8-Diss	7L20140	0.11	1.0	ND	1	12/20/07	12/20/07	
Copper	EPA 200.8-Diss	7L20140	0.75	2.0	2.0	1	12/20/07	12/20/07	
Lead	EPA 200.8-Diss	7L20140	0.10	1.0	0.20	1	12/20/07	12/20/07	J
Thallium	EPA 200.8-Diss	7L20140	0.15	1.0	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2128

Received: 12/19/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2128-01 (Outfall 009 - Wa	nter) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	7L19047	0.25	0.50	5.9	1	12/19/07	12/20/07	
Nitrate/Nitrite-N	EPA 300.0	7L19047	0.15	0.26	0.81	1	12/19/07	12/20/07	
Oil & Grease	EPA 413.1	7L21125	1.1	4.7	ND	1	12/22/07	12/26/07	
Sulfate	EPA 300.0	7L19047	0.20	0.50	16	1	12/19/07	12/20/07	
Total Dissolved Solids	SM2540C	7L21099	10	10	120	1	12/21/07	12/21/07	
Total Suspended Solids	EPA 160.2	7L20129	10	10	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: Routine Outfall 009

Sampled: 12/19/07

Arcadia, CA 91007

Report Number: IQL2128

Received: 12/19/07

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2128-01 (Outfall 009 - Wat Reporting Units: ug/l	ter) - cont.								
Mercury, Dissolved	EPA 245.1	W7L0889	0.050	0.20	ND	1	12/26/07	12/27/07	
Mercury, Total	EPA 245.1	W7L0889	0.050	0.20	ND	1	12/26/07	12/27/07	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128 Received: 12/19/07

DIOXIN (EPA 1613)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2128-01 (Outfall 00	0 - Water) - cont								
Reporting Units: ug/L	y - water y - cont.								
2,3,7,8-TCDD	1613-Dioxin-HR Alta	9806	N/A	4.98	ND	1	12/23/07	12/27/07	
1,2,3,7,8-PeCDD	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,4,7,8-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,6,7,8-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,7,8,9-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,4,6,7,8-НрСDD	1613-Dioxin-HR Alta	9806	N/A	24.9	0.0000163		12/23/07	12/27/07	J
OCDD	1613-Dioxin-HR Alta	9806	N/A	49.8	0.000187	1	12/23/07	12/27/07	
2,3,7,8-TCDF	1613-Dioxin-HR Alta	9806	N/A	4.98	ND	1	12/23/07	12/27/07	
1,2,3,7,8-PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
2,3,4,7,8-PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,4,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,6,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
2,3,4,6,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,7,8,9-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,4,6,7,8-HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
1,2,3,4,7,8,9-HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
OCDF	1613-Dioxin-HR Alta	9806	N/A	49.8	ND	1	12/23/07	12/27/07	
Total TCDD	1613-Dioxin-HR Alta	9806	N/A	4.98	ND	1	12/23/07	12/27/07	
Total PeCDD	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
Total HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
Total HpCDD	1613-Dioxin-HR Alta	9806	N/A	24.9	0.0000416	1	12/23/07	12/27/07	
Total TCDF	1613-Dioxin-HR Alta	9806	N/A	4.98	ND	1	12/23/07	12/27/07	
Total PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
Total HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
Total HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.9	ND	1	12/23/07	12/27/07	
Surrogate: 13C-2,3,7,8-TCDD (25-16	64%)				75.7 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25	5-181%)				58.8 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD ((32-141%)				72.2 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD ((28-130%)				68 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDL	D (23-140%)				44.7 %				
Surrogate: 13C-OCDD (17-157%)					30.1 %				
Surrogate: 13C-2,3,7,8-TCDF (24-16	59%)				75.1 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24	1-185%)				59.9 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21	'-178%)				59 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF ((26-152%)				61.6 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (67.3 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (· · · · · · · · · · · · · · · · · · ·				65.9 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (,				58.2 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF					45.6 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	F (26-138%)				27.3 %				
Surrogate: 13C-OCDF (17-157%)					19.7 %				
TestAmerica Irvine									

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

DIOXIN (EPA 1613)

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IQL2128-01 (Outfall 009 - Water) - cont.

Reporting Units: ug/L

Surrogate: 37Cl-2,3,7,8-TCDD (35-197%) 84 %

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (IQL2128-01) - Wate	r				
EPA 300.0	2	12/19/2007 08:00	12/19/2007 19:05	12/19/2007 20:00	12/20/2007 04:14

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Lillit	MIDL	Ullits	Levei	Result	/OKEC	Lillits	KI D	Lillit	Quanners
Batch: 7L20116 Extracted: 12/20/07	<u>'</u>										
Blank Analyzed: 12/20/2007 (7L20116-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 12/20/2007 (7L20116-BS	1)										
Antimony	84.5	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	84.5	1.0	0.11	ug/l	80.0		106	85-115			
Copper	85.1	2.0	0.75	ug/l	80.0		106	85-115			
Lead	84.6	1.0	0.10	ug/l	80.0		106	85-115			
Thallium	86.6	1.0	0.15	ug/l	80.0		108	85-115			
Matrix Spike Analyzed: 12/20/2007 (7L2	20116-MS1)				Sou	rce: IQL	2190-01				
Antimony	80.0	2.0	0.20	ug/l	80.0	0.268	100	70-130			
Cadmium	78.8	1.0	0.11	ug/l	80.0	0.576	98	70-130			
Copper	102	2.0	0.75	ug/l	80.0	21.3	101	70-130			
Lead	103	1.0	0.10	ug/l	80.0	23.3	100	70-130			
Thallium	82.8	1.0	0.15	ug/l	80.0	ND	103	70-130			
Matrix Spike Analyzed: 12/20/2007 (7L2	20116-MS2)				Sou	rce: IQL	2059-01				
Antimony	82.3	2.0	0.20	ug/l	80.0	1.68	101	70-130			
Cadmium	78.8	1.0	0.11	ug/l	80.0	0.396	98	70-130			
Copper	101	2.0	0.75	ug/l	80.0	19.1	102	70-130			
Lead	85.1	1.0	0.10	ug/l	80.0	3.19	102	70-130			
Thallium	82.3	1.0	0.15	ug/l	80.0	ND	103	70-130			
Matrix Spike Dup Analyzed: 12/20/2007	(7L20116-M	ISD1)			Sou	rce: IQL	2190-01				
Antimony	79.3	2.0	0.20	ug/l	80.0	0.268	99	70-130	1	20	
Cadmium	78.6	1.0	0.11	ug/l	80.0	0.576	98	70-130	0	20	
Copper	101	2.0	0.75	ug/l	80.0	21.3	100	70-130	1	20	
Lead	104	1.0	0.10	ug/l	80.0	23.3	101	70-130	1	20	
Thallium	83.5	1.0	0.15	ug/l	80.0	ND	104	70-130	1	20	

TestAmerica Irvine

Joseph Doak Project Manager

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L20140 Extracted: 12/20/07	_										
Blank Analyzed: 12/20/2007 (7L20140-Bl	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 12/20/2007 (7L20140-BS1	1)										
Antimony	80.2	2.0	0.20	ug/l	80.0		100	85-115			
Cadmium	78.5	1.0	0.11	ug/l	80.0		98	85-115			
Copper	75.0	2.0	0.75	ug/l	80.0		94	85-115			
Lead	79.6	1.0	0.10	ug/l	80.0		100	85-115			
Thallium	81.8	1.0	0.15	ug/l	80.0		102	85-115			
Matrix Spike Analyzed: 12/20/2007 (7L20	0140-MS1)				Sou	rce: IQL	2118-01				
Antimony	81.3	2.0	0.20	ug/l	80.0	0.742	101	70-130			
Cadmium	75.0	1.0	0.11	ug/l	80.0	ND	94	70-130			
Copper	73.9	2.0	0.75	ug/l	80.0	2.16	90	70-130			
Lead	76.2	1.0	0.10	ug/l	80.0	0.118	95	70-130			
Thallium	78.3	1.0	0.15	ug/l	80.0	ND	98	70-130			
Matrix Spike Dup Analyzed: 12/20/2007	(7L20140-M	SD1)			Sou	rce: IQL	2118-01				
Antimony	81.5	2.0	0.20	ug/l	80.0	0.742	101	70-130	0	20	
Cadmium	75.2	1.0	0.11	ug/l	80.0	ND	94	70-130	0	20	
Copper	73.8	2.0	0.75	ug/l	80.0	2.16	90	70-130	0	20	
Lead	76.0	1.0	0.10	ug/l	80.0	0.118	95	70-130	0	20	
Thallium	78.3	1.0	0.15	ug/l	80.0	ND	98	70-130	0	20	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L19047 Extracted: 12/19/	<u> </u>										
Blank Analyzed: 12/19/2007 (7L19047-	·BLK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 12/19/2007 (7L19047-E	3S1)										
Chloride	5.10	0.50	0.25	mg/l	5.00		102	90-110			
Sulfate	9.75	0.50	0.20	mg/l	10.0		98	90-110			
Matrix Spike Analyzed: 12/19/2007 (7)	L19047-MS1)				Sou	ırce: IQL	2030-01				
Chloride	5.70	0.50	0.25	mg/l	5.00	0.848	97	80-120			
Sulfate	11.3	0.50	0.20	mg/l	10.0	1.85	94	80-120			
Matrix Spike Dup Analyzed: 12/19/200	7 (7L19047-M	ISD1)			Sou	ırce: IQL	2030-01				
Chloride	5.70	0.50	0.25	mg/l	5.00	0.848	97	80-120	0	20	
Sulfate	11.3	0.50	0.20	mg/l	10.0	1.85	94	80-120	0	20	
Batch: 7L20129 Extracted: 12/20/	<u>)7</u>										
Blank Analyzed: 12/20/2007 (7L20129-	·BLK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 12/20/2007 (7L20129-E	SS1)										
Total Suspended Solids	927	10	10	mg/l	1000		93	85-115			
Duplicate Analyzed: 12/20/2007 (7L20	129-DUP1)				Sou	ırce: IQL	2122-01				
Total Suspended Solids	71.0	10	10	mg/l		73.0			3	10	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7L21099 Extracted: 12/21/07	_										
Blank Analyzed: 12/21/2007 (7L21099-Bl	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 12/21/2007 (7L21099-BS)	1)										
Total Dissolved Solids	992	10	10	mg/l	1000		99	90-110			
Duplicate Analyzed: 12/21/2007 (7L2109	9-DUP1)				Sou	rce: IQL2	2115-04				
Total Dissolved Solids	492	10	10	mg/l		496			1	10	
Batch: 7L21125 Extracted: 12/22/07	<u>-</u>										
Blank Analyzed: 12/26/2007 (7L21125-Bl	LK1)										
Oil & Grease	ND	5.0	1.2	mg/l							
LCS Analyzed: 12/26/2007 (7L21125-BS)	1)										MNR1
Oil & Grease	18.8	5.0	1.2	mg/l	20.0		94	65-120			
LCS Dup Analyzed: 12/26/2007 (7L2112	5-BSD1)										
Oil & Grease	18.7	5.0	1.2	mg/l	20.0		94	65-120	1	20	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W7L0889 Extracted: 12/26/0	<u>7_</u>										
Blank Analyzed: 12/27/2007 (W7L0889-F	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 12/27/2007 (W7L0889-BS	51)										
Mercury, Dissolved	1.00	0.20	0.050	ug/l	1.00		100	85-115			
Mercury, Total	1.00	0.20	0.050	ug/l	1.00		100	85-115			
Matrix Spike Analyzed: 12/27/2007 (W7I	.0889-MS1)				Sou	rce: 7121	925-01				
Mercury, Dissolved	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Matrix Spike Analyzed: 12/27/2007 (W7I	.0889-MS2)				Sou	rce: 7121	925-03				
Mercury, Dissolved	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Matrix Spike Dup Analyzed: 12/27/2007	(W7L0889-MS	SD1)			Sou	rce: 7121	925-01				
Mercury, Dissolved	0.909	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.909	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Matrix Spike Dup Analyzed: 12/27/2007	(W7L0889-MS	SD2)			Sou	rce: 7121	925-03				
Mercury, Dissolved	0.907	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.907	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·											C
Batch: 9806 Extracted: 12/23/07											
Blank Analyzed: 12/25/2007 (MB001)					Sou	rce:					
2,3,7,8-TCDD	ND	5.00	N/A	ug/L				50-150		25	
1,2,3,7,8-PeCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,6,7,8-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,7,8,9-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDD	ND	25.0	N/A	ug/L				50-150		25	
OCDD	ND	50.0	N/A	ug/L				50-150		25	
2,3,7,8-TCDF	ND	5.00	N/A	ug/L				50-150		25	
1,2,3,7,8-PeCDF	ND	25.0	N/A	ug/L				50-150		25	
2,3,4,7,8-PeCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,6,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
2,3,4,6,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,7,8,9-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8,9-HpCDF	ND	25.0	N/A	ug/L				50-150		25	
OCDF	ND	50.0	N/A	ug/L				50-150		25	
Total TCDD	ND	5.00	N/A	ug/L				50-150		25	
Total PeCDD	ND	25.0	N/A	ug/L				50-150		25	
Total HxCDD	ND	25.0	N/A	ug/L				50-150		25	
Total HpCDD	ND	25.0	N/A	ug/L				50-150		25	
Total TCDF	0.00000139	5.00	N/A	ug/L				50-150		25	
Total PeCDF	ND	25.0	N/A	ug/L				50-150		25	
Total HxCDF	ND	25.0	N/A	ug/L				50-150		25	
Total HpCDF	ND	25.0	N/A	ug/L				50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	0.00156			ug/L	2000		78	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00193			ug/L	2000		96	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00139			ug/L	2000		70	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00124			ug/L	2000		62	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00128			ug/L	2000		64	50-150			
Surrogate: 13C-OCDD	0.00237			ug/L	4000		59	50-150			
Surrogate: 13C-2,3,7,8-TCDF	0.00158			ug/L	2000		79	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00197			ug/L	2000		99	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00208			ug/L	2000		104	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00139			ug/L	2000		70	50-150			

TestAmerica Irvine

Joseph Doak Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	resure	Limit	NIDE	Circs	Level	resure	/UILE	Limits	III D	Limit	Quanners
Batch: 9806 Extracted: 12/23/07											
Blank Analyzed: 12/25/2007 (MB001)					Sou	ırce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00113			ug/L	2000		57	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00129			ug/L	2000		64	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00128			ug/L	2000		64	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00112			ug/L	2000		56	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00112			ug/L	2000		56	50-150			
Surrogate: 13C-OCDF	0.00203			ug/L	4000		51	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	0.000755			ug/L	800		94	50-150			
LCS Analyzed: 12/24/2007 (OPR001)					Sou	ırce:					
2,3,7,8-TCDD	10.3	5.00	N/A	ug/L	10		103	50-150		25	
1,2,3,7,8-PeCDD	51.0	25.0	N/A	ug/L	50		102	50-150		25	
1,2,3,4,7,8-HxCDD	50.5	25.0	N/A	ug/L	50		101	50-150		25	
1,2,3,6,7,8-HxCDD	53.0	25.0	N/A	ug/L	50		106	50-150		25	
1,2,3,7,8,9-HxCDD	51.8	25.0	N/A	ug/L	50		104	50-150		25	
1,2,3,4,6,7,8-HpCDD	50.8	25.0	N/A	ug/L	50		102	50-150		25	
OCDD	100	50.0	N/A	ug/L	100		100	50-150		25	
2,3,7,8-TCDF	10.5	5.00	N/A	ug/L	10		105	50-150		25	
1,2,3,7,8-PeCDF	51.3	25.0	N/A	ug/L	50		103	50-150		25	
2,3,4,7,8-PeCDF	52.4	25.0	N/A	ug/L	50		105	50-150		25	
1,2,3,4,7,8-HxCDF	50.2	25.0	N/A	ug/L	50		100	50-150		25	
1,2,3,6,7,8-HxCDF	54.1	25.0	N/A	ug/L	50		108	50-150		25	
2,3,4,6,7,8-HxCDF	53.7	25.0	N/A	ug/L	50		107	50-150		25	
1,2,3,7,8,9-HxCDF	52.4	25.0	N/A	ug/L	50		105	50-150		25	
1,2,3,4,6,7,8-HpCDF	50.4	25.0	N/A	ug/L	50		101	50-150		25	
1,2,3,4,7,8,9-HpCDF	51.8	25.0	N/A	ug/L	50		104	50-150		25	
OCDF	104	50.0	N/A	ug/L	100		104	50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	84.4			ug/L	100		84	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	83.4			ug/L	100		83	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	81.1			ug/L	100		81	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	68.0			ug/L	100		68	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	75.4			ug/L	100		75	50-150			
Surrogate: 13C-OCDD	126			ug/L	200		63	50-150			
Surrogate: 13C-2,3,7,8-TCDF	79.7			ug/L	100		80	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	91.9			ug/L	100		92	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	88.6			ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	79.3			ug/L	100		79	50-150			
Tost A marias Irvina											

TestAmerica Irvine

Joseph Doak Project Manager THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

Report Number: IQL2128

Received: 12/19/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9806 Extracted: 12/23/07											
LCS Analyzed: 12/24/2007 (OPR001)					Sou	rce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	65.5			ug/L	100		66	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	68.9			ug/L	100		69	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	68.6			ug/L	100		69	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	65.2			ug/L	100		65	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	62.5			ug/L	100		63	50-150			
Surrogate: 13C-OCDF	108			ug/L	200		54	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	39.6			ug/L	40		99	50-150			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2128

Received: 12/19/07

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IQL2128-01	413.1 Oil and Grease	Oil & Grease	mg/l	0.38	4.7	15
IQL2128-01	Antimony-200.8	Antimony	ug/l	0.40	2.0	6.00
IQL2128-01	Antimony-200.8, Diss	Antimony	ug/l	0.39	2.0	6.00
IQL2128-01	Cadmium-200.8	Cadmium	ug/l	0.023	1.0	4.00
IQL2128-01	Cadmium-200.8, Diss	Cadmium	ug/l	0.017	1.0	4.00
IQL2128-01	Chloride - 300.0	Chloride	mg/l	5.89	0.50	150
IQL2128-01	Copper-200.8	Copper	ug/l	2.43	2.0	14
IQL2128-01	Copper-200.8, Diss	Copper	ug/l	2.03	2.0	14
IQL2128-01	Lead-200.8	Lead	ug/l	0.47	1.0	5.20
IQL2128-01	Lead-200.8, Diss	Lead	ug/l	0.20	1.0	5.20
IQL2128-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.81	0.26	10.00
IQL2128-01	Sulfate-300.0	Sulfate	mg/l	16	0.50	250
IQL2128-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	124	10	850
IQL2128-01	Thallium-200.8	Thallium	ug/l	0.0064	1.0	2.00
IQL2128-01	Thallium-200.8, Diss	Thallium	ug/l	0	1.0	2.00

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: IQL2128 Sampled: 12/19/07
Received: 12/19/07

Attention: Bronwyn Kelly

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

J The amount detected is below the Lower CalibrationLimit of the instrument

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2128

Received: 12/19/07

Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical Perspectives

2714 Exchange Drive - Wilmington, NC 28405

Method Performed: 1613-Dioxin-HR Alta

Samples: IQL2128-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IQL2128-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IQL2128-01

TestAmerica Irvine

Joseph Doak Project Manager

																					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	Page 1 of 1		Field readings	,	Temp = 7	7 6 / =Ha	.	Sample Collection		Comments							Filter w/in 24hr of receipt at lab			シオ人	*O'	7	nd Time: (कार्		ntegrity: (Che	
87.778E	7	UIRED												ļ.						_				48 Hours		
		ANALYSIS REQUIRED	tal Dissolved Metals: Sb, , Cu, Pb, Hg, Tl													×						7 1620	508) 20			
		ANA	N-2ON+8ON, 4OS SST ,8												×	×							Date/Time: -/3/19/6	Date/Time:	Date/Time:	
			Oil & Grease (EPA 413.1)											×							_		3) V	3	
	ORN		CDD (and all congeners)							TCI			×							-	-	\Rightarrow	0	1		
	DDY F		al Recoverable Metals: Cd, (Cu, Pb, Hg, Tl							Tota dS,	×	×											ad By	ed By	Huny ed By	
	UST(Bottle #	₹	18	2A, 2B	3A, 3B	4A,4B	5A, 5B	9						Received By	Receive	Received By	
	CHAIN OF CUSTODY FORM		NPDES Fall 009	all 009	t WS-13		er.	91	22	Preservative	HNO3	HNO3	None	무 도	None	None	None						3	1	1705	i.
		Project:	Boeing-SSFL NPDES	Routine Outfall 009	Stormwater at WS-13		Phone Number	(626) 568-6691	rax Number. (626) 568-6515	Sampling Date/Time	010 L 1. bi-2/					->	15-4-07 0305						Date/Time:	Date/Time:	13/15/07 Date/Time:	
	28/06					Aicadia, CA 31007 Test America Contact: Joseph Doak				# of	.1	-	2	2	2	2	-						Date Date	Da	Pag	
	est America Version 04/28/06			618 Michillinda Avenue, Suite 200 Arcadia, CA 91007			Bronwyn Ke	/	786	Sample Sample Container	=	1L Poly	1L Amber	1L Amber	500 ml Poly	500 ml Polv	1L Poly								ber	
	nerica		sadia		91007		Project Manager: Bronwyn Kelly	3	C. Dero		Wallix	3	3	8	3	3	3						3 X	B	2	
	Test An	Client Name/Address:	MWH-Arcadia	618 Michillin	618 Michillinda Ave Arcadia, CA 91007			Sampler: J. Mansel	- iaidwec		Outfall 009	Outfall 009	Outfall 009	Outfall 009	Ontfall 009	Outfall 009	Outfall 009						Relinquished By	Retinquished B	Relinquished By	

December 27, 2007

Vista Project I.D.: 30104

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on December 21, 2007 under your Project Name "IQL2128". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 12/21/2007

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30104-001 IQL2128-01

SECTION II

NPDES - 224 Page 3 of 424

Method Blank			-			EPA Method 1613
Matrix: Aqueous		QC Batch No.: 9806	Lab Sample:	0-MB001		
Sample Size: 1.00 L		Date Extracted: 23-Dec-07	Date Analyzed DB-5:	DB-5: 25-Dec-07	Date Anal	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	(ug/L)	DL ^a EMPC ^b Qualifiers		Labeled Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000817	<u>IS</u> 13C-2,3,	13C-2,3,7,8-TCDD	78.1	25 - 164
1,2,3,7,8-PeCDD	ND	0.000000965	13C-1,2,	13C-1,2,3,7,8-PeCDD	96.3	25 - 181
1,2,3,4,7,8-HxCDD	ND	0.00000174	13C-1,2,	13C-1,2,3,4,7,8-HxCDD	69.7	32 - 141
1,2,3,6,7,8-HxCDD	ND	0.00000175	13C-1,2,	13C-1,2,3,6,7,8-HxCDD	62.0	28 - 130
1,2,3,7,8,9-HxCDD	ND ND	0.00000174	13C-1,2,	13C-1,2,3,4,6,7,8-HpCDD	63.9	23 - 140
1,2,3,4,6,7,8-HpCDD	ND	0.00000246	13C-OCDD	DD	59.3	17 - 157
ОСДД	ND	0.00000423	13C-2,3,	13C-2,3,7,8-TCDF	79.1	24 - 169
2,3,7,8-TCDF	ND	0.00000140	13C-1,2,	13C-1,2,3,7,8-PeCDF	9.86	24 - 185
1,2,3,7,8-PeCDF	ND	0.00000129	13C-2,3,	13C-2,3,4,7,8-PeCDF	104	21 - 178
2,3,4,7,8-PeCDF	ND	0.00000126	13C-1,2,	13C-1,2,3,4,7,8-HxCDF	9.69	26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000846	13C-1,2,	13C-1,2,3,6,7,8-HxCDF	26.7	26 - 123
1,2,3,6,7,8-HxCDF	ND	0.000000004	13C-2,3,	13C-2,3,4,6,7,8-HxCDF	64.3	28 - 136
2,3,4,6,7,8-HxCDF	ND	0.000000973	13C-1,2,	13C-1,2,3,7,8,9-HxCDF	63.8	29 - 147
1,2,3,7,8,9-HxCDF	ND	0.00000140	13C-1,2,	13C-1,2,3,4,6,7,8-HpCDF	55.9	28 - 143
1,2,3,4,6,7,8-HpCDF	ND	0.00000100	13C-1,2,	13C-1,2,3,4,7,8,9-HpCDF	55.8	26 - 138
1,2,3,4,7,8,9-HpCDF	ND ND	0.00000138	13C-OCDF	DF	8.05	17 - 157
OCDF	ND	0.00000156	<u>CRS</u> 37Cl-2,3	37CI-2,3,7,8-TCDD	94.4	35 - 197
Totals			Footnotes			
Total TCDD	ND	0.000000817	a. Sample specific	a. Sample specific estimated detection limit.		
Total PeCDD	ND	0.000000965	b. Estimated maxin	b. Estimated maximum possible concentration.		
Total HxCDD	ND	0.00000175	c. Method detection limit.	ı limit.		
Total HpCDD	ND	0.00000246	d. Lower control lin	d. Lower control limit - upper control limit.		
Total TCDF	0.00000139	39				
Total PeCDF	ND	0.00000128				
Total HxCDF	ND	0.00000101				
Total HpCDF	ND	0.00000117				

Approved By: William J. Luksemburg 27-Dec-2007 13:18

Analyst: JMH

OPR Results					EP.	EPA Method 1613	613
Matrix: Aqueous		QC Batch No.: Date Extracted:	9806	Lab Sample: 0-OPR001	Data Analy	Date Anglyzed DR 275.	V Z
	Suit	Cuilto Cono Cone (na/m1.)	OPR Limits	Labeled Standard	Date Aliany		E STEEL
2,3,7,8-TCDD	Spine Conc.	10.3	6.7 - 15.8	IS 13C-2.3.7.8-TCDD	84.4		Çualılıcı
1,2,3,7,8-PeCDD	50.0	51.0	35 - 71		83.4	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	50.5	35 - 82	13C-1,2,3,4,7,8-HxCDD	81.1	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	53.0	38 - 67	13C-1,2,3,6,7,8-HxCDD	0.89	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	51.8	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	75.4	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	50.8	35 - 70	13C-OCDD	63.2	17 - 157	
OCDD	100	100	78 - 144	13C-2,3,7,8-TCDF	7.67	24 - 169	
2,3,7,8-TCDF	10.0	10.5	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	91.9	24 - 185	
1,2,3,7,8-PeCDF	50.0	51.3	40 - 67	13C-2,3,4,7,8-PeCDF	88.6	21 - 178	
2,3,4,7,8-PeCDF	50.0	52.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	79.3	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	50.2	36 - 67	13C-1,2,3,6,7,8-HxCDF	65.5	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	54.1	42 - 65	13C-2,3,4,6,7,8-HxCDF	6.89	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	53.7	35 - 78	13C-1,2,3,7,8,9-HxCDF	9.89	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	52.4	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	65.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	50.4	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	62.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	51.8	39 - 69	13C-OCDF	54.0	17 - 157	
OCDF	100	104	63 - 170	CRS 37CI-2,3,7,8-TCDD	99.1	35 - 197	

William J. Luksemburg 27-Dec-2007 13:12 Approved By:

Analyst: MAS

Sample ID: IQL	IQL2128-01							EPA M	EPA Method 1613
Client Data Test Name: Test Project: IQL2 Date Collected: 19-D Time Collected: 0800	Test America-Irvine, CA IQL2128 19-Dec-07 0800		Sample Data Matrix: Sample Size:	Aqueous 1.00 L	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	30104-001 9806 27-Dec-07	Date Received: Date Extracted: Date Analyzed I	Date Received: Date Extracted: Date Analyzed DB-225:	21-Dec-07 23-Dec-07 NA
Analyte	Conc. (ug/L)	DF a	EMPC ^b	Qualifiers	Labeled Standard		%R 1	rcr-ncr _q	Oualifiers
2,3,7,8-TCDD	ND	0.00000130	0		<u>IS</u> 13C-2,3,7,8-TCDD		75.7	25 - 164	
1,2,3,7,8-PeCDD	ND	0.00000165	5		13C-1,2,3,7,8-PeCDD	Q	58.8	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.00000344	4		13C-1,2,3,4,7,8-HxCDD	CDD	72.2	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000364	4		13C-1,2,3,6,7,8-HxCDD	CDD	0.89	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.00000345	5		13C-1,2,3,4,6,7,8-HpCDD	рСDD	44.7	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000163			J	13C-OCDD		30.1	17 - 157	
OCDD	0.000187				13C-2,3,7,8-TCDF		75.1	24 - 169	
2,3,7,8-TCDF	ND	0.00000148	~		13C-1,2,3,7,8-PeCDF)F	59.9	24 - 185	
1,2,3,7,8-PeCDF	ND	0.00000192	2		13C-2,3,4,7,8-PeCDF)F	59.0	21 - 178	
2,3,4,7,8-PeCDF	ND	0.00000197	7		13C-1,2,3,4,7,8-HxCDF	CDF	61.6	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000974	74		13C-1,2,3,6,7,8-HxCDF	CDF	67.3	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000877	77		13C-2,3,4,6,7,8-HxCDF	CDF	62.9	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.00000105	5		13C-1,2,3,7,8,9-HxCDF	CDF	58.2	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.00000151	1		13C-1,2,3,4,6,7,8-HpCDF	pCDF	45.6	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.00000380	0		13C-1,2,3,4,7,8,9-HpCDF	pCDF	27.3	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.00000685	5		13C-OCDF		19.7	17 - 157	
OCDF	ND	0.0000107			CRS 37CI-2,3,7,8-TCDD		84.0	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.00000130	0		a. Sample specific estimated detection limit.	tection limit.			
Total PeCDD	ND	0.00000165	5		b. Estimated maximum possible concentration.	concentration.			
Total HxCDD	ND	0.00000352	2		c. Method detection limit.				
Total HpCDD	0.0000416				d. Lower control limit - upper control limit.	ontrol limit.			
Total TCDF	ND	0.00000148	8						
Total PeCDF	ND	0.00000194	4						
Total HxCDF	ND	0.00000107	7						
Total HpCDF	ND		0.00000168	68					
Analyst: DMS					Approved By:	William J. Luksemburg	semburg	27-Dec-2007 13:18	13:18

APPENDIX

Project 30104 NPDES - 228
Page 7 of 424

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IQL2128

30104

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

1.3°C

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone :(916) 673-1520

Fax: (916) 673-0106 Project Location: California

Receipt Temperature:

°C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IQL2128-01	Water		Sampled: 12/19/07 08:00	
1613-Dioxin-HR-Alta	ug/l	12/28/07	12/26/07 08:00	J flags,17 congeners,no TEQ,ug/L,sub=Vista
EDD + Level 4	N/A	12/28/07	01/16/08 08:00	Excel EDD email to pm,Include Std logs for LvI IV
Containers Supplied:				
1 L Amber (C)	1 L Amber (D)			•

Released By

Daté/Time

Date/Time

Received By

ed By

Date/Time

Date/Time

Page 1 of 1

Released By
Project 30104

NPDES - 231 Page 10 of 424

SAMPLE LOG-IN CHECKLIST

•	Date/Time			Initials:	-	Lo	cation:	WI	2-2
Samples Arrival:	12/21/07	0	947	Mad	5	Sh	elf/Rack	. <u> </u>	VIA
Logged In:	Date/Time	-	124	Initials:	B		cation: elf/Rack	(2-4
Delivered By:	FedEx	UF	PS	Cal	DHI	_	Hand Deliver		Other
Preservation:	(lce		Bli	ue Ice	Di	ry Ice	>	\ .	None
Temp °C 0.3	3	Time	: 00	152		The	ermome	ter IC): IR-1

				YES	NO	NA
Adequate Sample Volume Rece	ived?					
Holding Time Acceptable?				1		
Shipping Container(s) Intact?				V)		
Shipping Custody Seals Intact?						
Shipping Documentation Presen	t?					
Airbill Trk#	1909 0	220478	014	V		
Sample Container Intact?				1		
Sample Custody Seals Intact?						V
Chain of Custody / Sample Docu	ımentation P	resent?		V		-
COC Anomaly/Sample Acceptar	ice Form con	npleted?	:		V	**
If Chlorinated or Drinking Water	Samples, Ac	ceptable Preser	vation?			V
Na ₂ S ₂ O ₃ Preservation Document	ted?	·coc	Sample Container		None	
Shipping Container	Vista	(Client) I	Retain Re	eturn)	Disp	ose
Comments:			<u></u>			

Cample Login 3/2007 rmk Page 11 of 424

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client: TestAmerica, Inc. - Irvine

Report Date:

12/28/07 15:27

17461 Derian Ave, Suite 100

Received Date:

12/20/07 10:00

Irvine, CA 92614

Turn Around:

dores

Attention: Joseph Doak

Work Order #:

7122006

5 days

Phone: (949) 261-1022

7122000

Fax: (949) 260-3297

Client Project: IQL2128

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 12/20/07 10:00 with the Chain of Custody document. The samples were received in good condition. The samples were received at 4.5 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122006 Project ID: IQL2128 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IQL2128-01	Client		7122006-01	Water	12/19/07 08:00

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122006 Project ID: IQL2128 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

IQL2128-01 7122006-01 (Water)

Date Sampled: 12/19/07 08:00

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W7L0889	12/26/07	12/27/07	jlp
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W7L0889	12/26/07	12/27/07	jlp

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122006 Project ID: IQL2128 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122006 Project ID: IQL2128 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

Metals by EPA 200 Series Methods - Quality Control

%REC

					-		A/PEG		222	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W7L0889 - EPA 245.1										
Blank (W7L0889-BLK1)				Analyzed:	12/27/07					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W7L0889-BS1)				Analyzed:	12/27/07					
Mercury, Dissolved	1.00	0.20	ug/l	1.00		100	85-115			
Mercury, Total	1.00	0.20	ug/l	1.00		100	85-115			
Matrix Spike (W7L0889-MS1)	So	urce: 7121925	-01	Analyzed:	12/27/07					
Mercury, Dissolved	0.882	0.20	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	ug/l	1.00	ND	88	70-130			
Matrix Spike (W7L0889-MS2)	So	urce: 7121925	-03	Analyzed:	12/27/07					
Mercury, Dissolved	0.882	0.20	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	ug/l	1.00	ND	88	70-130			
Matrix Spike Dup (W7L0889-MSD1)	So	urce: 7121925	-01	Analyzed: 12/27/07						
Mercury, Dissolved	0.909	0.20	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.909	0.20	ug/l	1.00	ND	91	70-130	3	20	
Matrix Spike Dup (W7L0889-MSD2)	So	urce: 7121925	-03	Analyzed:	12/27/07					
Mercury, Dissolved	0.907	0.20	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.907	0.20	ug/l	1.00	ND	91	70-130	3	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122006 Project ID: IQL2128

Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

SUBCONTRACT ORDER

TestAmerica Irvine

7122006

IQL2128

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone: (626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis Units Due **Expires** Comments

Water

Sample ID: IQL2128-01

mg/l

12/28/07

Sampled: 12/19/07 08:00 01/16/08 08:00

Mercury - 245.1-OUT

Mercury - 245.1, Diss -OUT

mg/l

12/28/07

125 mL Poly w/HNO3

Containers Supplied:

01/16/08 08:00

125 mL Poly (M)

(L)

Received By

Received B