APPENDIX G

Section 10

Outfall 010, December 07, 2007

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IQL0954

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES SDG: IQL0954

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IQL0954

Project Manager: B. Kelly Matrix: Soil

QC Level: IV
No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine, Weck, Vista

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 010	IQL0954-01	7121003-01, 30064-001	Water	12/7/07 0817	245.1, 1613, 6020

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine, Vista, and Weck within the temperature limits of $4^{\circ}C$ $\pm 2^{\circ}C$. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Weck and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT SSFL NPDES
SDG: IQL0954

Data Qualifier Reference Table

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IQL0954

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
T	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IQL0954

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT Project: SSFL NPDES
SDG: IQL0954

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: January 14, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: Total HpCDD was reported in the method blank at a concentration of 0.00000171µg/l. As the detect in the sample also included the concentration of

DATA VALIDATION REPORT Project: SSFL NPDES
SDG: IQL0954

1,2,3,4,6,7,8-HpCDD the result for total HpCDD was qualified as estimated, "J," in site sample Outfall 010. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 245.1, 6020—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 11, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 245.1 and 6020, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

DATA VALIDATION REPORT Project: SSFL NPDES
SDG: IQL0954

• Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: Recoveries were within the method-established control limits. Cadmium, copper, and thallium were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Name: Test America-Irvine, CA Project: 1QL0954 Date Collected: 7-Dec-07 Time Collected: 0817 Analyte Conc. (ug/L) 2,3,7,8-TCDD ND 1,2,3,7,8-PeCDD ND 1,2,3,4,7,8-HxCDD ND 1,2,3,4,6,7,8-HyCDD ND 1,2,3,4,6,7,8-HyCDD 0.0000332 OCDD 0.0000199 2,3,4,6,7,8-PeCDF ND 1,2,3,4,6,7,8-PeCDF ND 1,2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-PeCDF ND 1,2,3,4,7,8-HxCDF ND 1,2,3,4,6,7,8-HyCDF ND COCDF ND Total TCDD ND Total PeCDD ND	DL a EMPC ^b 0.000000777 0.00000169 0.00000187 0.00000178 0.000000981 0.000000969 0.000000969 0.000000969 0.000000975	Aqueous 1.00 L Qualifiers J J j	Lab Sample: 30064-001 QC Batch No.: 9773 Date Analyzed DB-5: 15-Dec-07 Labeled Standard 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-FCDD 13C-1,2,3,4,7,8-FCDD 13C-1,2,3,4,7,8-FCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-2,3,7,8-FCDF 13C-2,3,7,8-FCDF 13C-1,2,3,7,8-FCDF 13C-1,2,3,7,8-FCDF 13C-1,2,3,7,8-FCDF	tracted: alyzed DB-225: LCL-UCL ^d 25 - 164 25 - 181 32 - 141 28 - 130 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178	11-Dec-07 13-Dec-07 NA Oualifiers
Conc. SHacdd ND SHacdd ND SHacdd ND SPecdf ND SPe	17 7 18 15 16 16 16 16 16 16 16 16 16 16 16 16 16	700 203 SES 2750 FRZ	ate Analyzed DB-3: Labeled Standard 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-Hx(13C-1,2,3,6,7,8-Hx(13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI		Oualifiers
1000 ND (8-HxCDD ND (8-HxCDD ND (9-HxCDD ND (9-HxCDD ND (9-HxCDD ND (9-HxCDF ND (8-HxCDF N	70 70 70 70 70 70 70 70 70 70 70 70 70 7				
PeCDD ', 8-HxCDD ', 9-HxCDD ', 7, 8-HpCDD ', 7, 8-HpCDF ', 8-HxCDF ', 8-HxCDF ', 8-HxCDF ', 8-HxCDF ', 8-HxCDF ', 8-HpCDF ', 8-HpCDF ', 8-HpCDF ', 8-HpCDF ', 8-HpCDF	0.000000769 0.00000169 0.00000187 0.00000178 0.000000981 0.000000981 0.000000944 0.000000811 0.000000815	r	13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,7,8-HxCDF		
,8-HxCDD ,9-HxCDD ,9-HxCDD ,7,8-HpCDD CCDF -PeCDF -PeCDF ,8-HxCDF ,8-HxCDF ,8-HxCDF ,8-HxCDF ,8-HxCDF ,8-HxCDF ,8-HxCDF ,7,8-HpCDF ,7,8-HpCDF	0.00000169 0.00000187 0.00000178 0.000000981 0.000000969 0.000000944 0.000000811 0.000000875	r r	13C-1,2,3,4,7,8-H×CDD 13C-1,2,3,4,6,7,8-H×CDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-H×CDF		
,8-HxCDD ,9-HxCDD ,7,8-HpCDD CCDF -PeCDF -PeCDF ,8-HxCDF ,8-HxCDF ,8-HxCDF ,8-HyCDF ,7,8-HpCDF ,7,8-HpCDF	0.00000187 0.00000178 0.000000900 0.000000981 0.00000094 0.000000011 0.0000000815	J.	13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF		
,9-HxCDD ,7,8-HpCDD -PeCDF -PeCDF ,8-HxCDF ,8-HxCDF ,9-HxCDF ,9-HxCDF ,9-HpCDF ,7,8-HpCDF	0.00000178 0.000000900 0.000000981 0.000000969 0.000000744 0.000000811		13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF		
7,7,8-HpCDD CCDF -PeCDF -,8-HxCDF 7,8-HxCDF 7,8-HxCDF 5,7,8-HpCDF 7,8,9-HpCDF 7,8,9-HpCDF	0.000000901 0.000000981 0.000000969 0.000000744 0.000000811		13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF		
CDF -PeCDF -PeCDF 	0.000000900 0.000000981 0.000000969 0.000000744 0.000000811		13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF		
FCDF PeCDF PeCDF 	0.00000981 0.00000981 0.00000969 0.000000744 0.000000811		13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	THE RESERVE	
0.05 0.05 0.05 0.05	0.000000981 0.000000969 0.000000744 0.000000811		13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF		
0.00 PF CODE	0.000000969 0.000000744 0.000000811 0.000000875		13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF		
0.00 PF	0.000000744 0.000000811 0.000000875		13C-1,2,3,6,7,8-HxCDF	84.2 20-132	To State of the St
E F	0.000000811		The state of the s	70.5 26 - 123	
E E	0.000000875	of the state of th	13C-2,3,4,6,7,8-HxCDF	17.1	4 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x
F F			13C-1,2,3,7,8,9-HxCDF	76.0 29 - 147	
HPCDF HPCDF	0.00000120	Control of the Contro	13C-1,2,3,4,6,7,8-HpCDF		ALCOHOLD SECTION OF SECTION SE
HpCDF	0.00000155		13C-1,2,3,4,7,8,9-HpCDF	73.7 26-138	
	0.000000737		13C-OCDF	58.7 17-157	Second Talk Consists and Society Second
	0.00000360		CRS 37CI-2,3,7,8-TCDD	142 35 - 197	
			Footnotes		
	0.00000147	The state of the s	a. Sample specific estimated detection limit.	No. of the control of	Take in the control of the control o
THE PROPERTY OF THE PARTY OF TH	0,00000190		b. Estimated maximum possible concentration.		
Total HxCDD ND	0.00000255		c. Method detection limit.	Allowand T. Turnet and student and other sections and court	WATER TRANSPORTER
Total HpCDD 0.00000679			d. Lower control limit - upper control limit		
TENT BY	0.000000000	2万分のは2番の日は20円は第十六			
	0.000000975				
Total HxCDF ND	0.000000890				

NPDES - 249

17461 Derian Avenue. Suite 100, Trvine. CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Project ID: Routine Outfall 010

618 Michillinda Avenue Arcadia, CA 91007

Report Number: 1QL0954

Sampled: 12/07/07

Attention: Bronwyn Kelly

Received: 12/07/07

METALS

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL	0954-01 (Outfall 010 - V	Vater)								
Reporting U	nits: ug/l									
Antimony	JONG	EPA 200.8	7L10143	0.20	2.0	1.1	1	12/10/07	12/11/07	J
Cadmium	U	EPA 200.8	7L10143	0.11	1.0	ND	1	12/10/07	12/11/07	
Copper		EPA 200.8	7L10143	0.75	2.0	6.9	1	12/10/07	12/11/07	
Lead	ILDNO	EPA 200.8	7L10143	0.10	1.0	0.30	1	12/10/07	12/11/07	J
Thallium	U	EPA 200.8	7L10143	0.15	1.0	ND	1	12/10/07	12/11/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

Sampled: 12/07/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: 1QL0954

Received: 12/07/07

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: J	QL0954-01 (Outfall	010 - Water) - cont.									
Reporti	ng Units: ug/l										
Antimony	J/DNQ	EPA 200.8-Diss	7L07145	0.20	2.0	1.1	1	12/07/07	12/07/07	J	
Cadmium	U	EPA 200.8-Diss	7L07145	0.11	1.0	ND	I	12/07/07	12/07/07		
Copper		EPA 200.8-Diss	7L07145	0.75	2.0	4.3	1	12/07/07	12/07/07		
Lead	U	EPA 200.8-Diss	7L07145	0.10	1.0	ND	1	12/07/07	12/07/07		
Thallium	15	EPA 200.8-Diss	71.07145	0.15	1.0	ND	1	12/07/07	12/07/07		

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvinc, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

Sampled: 12/07/07

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IQL0954

Received: 12/07/07

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL0954-01 (Outfall 010 -	Water) - cont.								
Reporting Units: ug/l										
Mercury, Dissolved	0	EPA 245.1	W7L0421	0.050	0.20	ND	1	12/12/07	12/13/07	
Mercury, Total	U	EPA 245.1	W7L0421	0.050	0.20	ND	1	12/12/07	12/13/07	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from TestAmerica.

1QL0954 <Page 5 of 19>

APPENDIX G

Section 11

Outfall 010, December 07, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly
Sampled: 12/07/07
Received: 12/07/07

Issued: 12/18/07 13:00

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX
IQL0954-01 Outfall 010 Water

Reviewed By:

TestAmerica Irvine

Joseph Doal

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IQL0954

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/07/07

Received: 12/07/07

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL0954-01 (Outfall 010 Reporting Units: ug/l) - Water)								
Antimony	EPA 200.8	7L10143	0.20	2.0	1.1	1	12/10/07	12/11/07	J
Cadmium	EPA 200.8	7L10143	0.11	1.0	ND	1	12/10/07	12/11/07	
Copper	EPA 200.8	7L10143	0.75	2.0	6.9	1	12/10/07	12/11/07	
Lead	EPA 200.8	7L10143	0.10	1.0	0.30	1	12/10/07	12/11/07	J
Thallium	EPA 200.8	7L10143	0.15	1.0	ND	1	12/10/07	12/11/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Sampled: 12/07/07

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IQL0954

Received: 12/07/07

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL0954-01 (Outfall 010 - V Reporting Units: ug/l	Vater) - cont.								
Antimony	EPA 200.8-Diss	7L07145	0.20	2.0	1.1	1	12/07/07	12/07/07	J
Cadmium	EPA 200.8-Diss	7L07145	0.11	1.0	ND	1	12/07/07	12/07/07	
Copper	EPA 200.8-Diss	7L07145	0.75	2.0	4.3	1	12/07/07	12/07/07	
Lead	EPA 200.8-Diss	7L07145	0.10	1.0	ND	1	12/07/07	12/07/07	
Thallium	EPA 200.8-Diss	7L07145	0.15	1.0	ND	1	12/07/07	12/07/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/07/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL0954

Received: 12/07/07

INODOANI

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL0954-01 (Outfall 010 - Wa	ter) – cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	7L07051	0.25	0.50	29	1	12/07/07	12/07/07	
Nitrate/Nitrite-N	EPA 300.0	7L07051	0.15	0.26	2.3	1	12/07/07	12/07/07	
Oil & Grease	EPA 413.1	7L16026	1.1	4.7	ND	1	12/16/07	12/17/07	
Sulfate	EPA 300.0	7L07051	0.20	0.50	22	1	12/07/07	12/07/07	
Total Dissolved Solids	SM2540C	7L13066	10	10	230	1	12/12/07	12/12/07	
Total Suspended Solids	EPA 160.2	7L13160	10	10	ND	1	12/13/07	12/13/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: Routine Outfall 010

C

Sampled: 12/07/07

Arcadia, CA 91007

Report Number: IQL0954

Received: 12/07/07

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL0954-01 (Outfall 010 - W Reporting Units: ug/l	ater) - cont.								
Mercury, Dissolved	EPA 245.1	W7L0421	0.050	0.20	ND	1	12/12/07	12/13/07	
Mercury, Total	EPA 245.1	W7L0421	0.050	0.20	ND	1	12/12/07	12/13/07	

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

Sampled: 12/07/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IQL0954

Received: 12/07/07

DIOXIN (EPA 1613)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQL0954-01 (Outfall 01	0 - Water) - cont.								
Reporting Units: ug/L									
2,3,7,8-TCDD	1613-Dioxin-HR Alta	9773	N/A	4.99	ND	1	12/13/07	12/15/07	
1,2,3,7,8-PeCDD	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,4,7,8-HxCDD	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,6,7,8-HxCDD	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,7,8,9-HxCDD	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,4,6,7,8-HpCDD	1613-Dioxin-HR Alta	9773	N/A	25.0	0.00000332	1	12/13/07	12/15/07	Ja
OCDD	1613-Dioxin-HR Alta	9773	N/A	49.9	0.0000199	1	12/13/07	12/15/07	Ja
2,3,7,8-TCDF	1613-Dioxin-HR Alta	9773	N/A	4.99	ND	1	12/13/07	12/15/07	
1,2,3,7,8-PeCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
2,3,4,7,8-PeCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,4,7,8-HxCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,6,7,8-HxCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
2,3,4,6,7,8-HxCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,7,8,9-HxCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,4,6,7,8-HpCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
1,2,3,4,7,8,9-HpCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
OCDF	1613-Dioxin-HR Alta	9773	N/A	49.9	ND	1	12/13/07	12/15/07	
Total TCDD	1613-Dioxin-HR Alta	9773	N/A	4.99	ND	1	12/13/07	12/15/07	
Total PeCDD	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
Total HxCDD	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
Total HpCDD	1613-Dioxin-HR Alta	9773	N/A	25.0	0.00000679	1	12/13/07	12/15/07	В
Total TCDF	1613-Dioxin-HR Alta	9773	N/A	4.99	ND	1	12/13/07	12/15/07	
Total PeCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
Total HxCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
Total HpCDF	1613-Dioxin-HR Alta	9773	N/A	25.0	ND	1	12/13/07	12/15/07	
Surrogate: 13C-2,3,7,8-TCDD (25-1	64%)				95.7 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (2.					95.6 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD					85.9 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD					72 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDI					79.2 %				
Surrogate: 13C-OCDD (17-157%)					64.7 %				
Surrogate: 13C-2,3,7,8-TCDF (24-1)	69%)				91.4 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (2-					98.1 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (2)					98.1 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF					84.2 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF	(26-123%)				70.5 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF	` · · · · · · · · · · · · · · · · · · ·				74.3 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF					76 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDI					70.2 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDI					73.7 %				
Surrogate: 13C-OCDF (17-157%)	,				58.7 %				
Total American Indian									

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954

Received: 12/07/07

DIOXIN (EPA 1613)

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IQL0954-01 (Outfall 010 - Water) - cont.

Reporting Units: ug/L

Surrogate: 37Cl-2,3,7,8-TCDD (35-197%) 142 %

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954

Received: 12/07/07

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 010 (IQL0954-01) - Wat	er				
EPA 300.0	2	12/07/2007 08:17	12/07/2007 16:30	12/07/2007 18:00	12/07/2007 19:50

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954 Received: 12/07/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7L10143 Extracted: 12/10/07	=										
Blank Analyzed: 12/11/2007 (7L10143-B)	· · · · · · · · · · · · · · · · · · ·										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	0.288	1.0	0.15	ug/l							J
LCS Analyzed: 12/11/2007 (7L10143-BS)	1)										
Antimony	90.1	2.0	0.20	ug/l	80.0		113	85-115			
Cadmium	87.6	1.0	0.11	ug/l	80.0		109	85-115			
Copper	83.6	2.0	0.75	ug/l	80.0		104	85-115			
Lead	87.6	1.0	0.10	ug/l	80.0		109	85-115			
Thallium	88.5	1.0	0.15	ug/l	80.0		111	85-115			
Matrix Spike Analyzed: 12/11/2007 (7L1)	0143-MS1)				Sou	rce: IQL	0980-01				
Antimony	85.0	2.0	0.20	ug/l	80.0	0.272	106	70-130			
Cadmium	80.6	1.0	0.11	ug/l	80.0	ND	101	70-130			
Copper	78.2	2.0	0.75	ug/l	80.0	ND	98	70-130			
Lead	85.3	1.0	0.10	ug/l	80.0	ND	107	70-130			
Thallium	85.1	1.0	0.15	ug/l	80.0	0.190	106	70-130			
Matrix Spike Dup Analyzed: 12/11/2007	(7L10143-M	(SD1)			Sou	rce: IQL	0980-01				
Antimony	83.3	2.0	0.20	ug/l	80.0	0.272	104	70-130	2	20	
Cadmium	79.4	1.0	0.11	ug/l	80.0	ND	99	70-130	2	20	
Copper	75.4	2.0	0.75	ug/l	80.0	ND	94	70-130	4	20	
Lead	85.0	1.0	0.10	ug/l	80.0	ND	106	70-130	0	20	
Thallium	84.9	1.0	0.15	ug/l	80.0	0.190	106	70-130	0	20	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954 Received: 12/07/07

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7L07145 Extracted: 12/07/07											C
Daten. /Lu/143 Extracted. 12/0//0/	•										
Blank Analyzed: 12/07/2007 (7L07145-Bl	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 12/07/2007 (7L07145-BS1)										
Antimony	81.6	2.0	0.20	ug/l	80.0		102	85-115			
Cadmium	85.3	1.0	0.11	ug/l	80.0		107	85-115			
Copper	82.6	2.0	0.75	ug/l	80.0		103	85-115			
Lead	82.7	1.0	0.10	ug/l	80.0		103	85-115			
Thallium	82.0	1.0	0.15	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 12/07/2007 (7L0	7145-MS1)				Sou	rce: IQL(0947-01				
Antimony	86.6	2.0	0.20	ug/l	80.0	0.448	108	70-130			
Cadmium	79.9	1.0	0.11	ug/l	80.0	ND	100	70-130			
Copper	79.5	2.0	0.75	ug/l	80.0	ND	99	70-130			
Lead	79.9	1.0	0.10	ug/l	80.0	ND	100	70-130			
Thallium	80.8	1.0	0.15	ug/l	80.0	0.352	101	70-130			
Matrix Spike Dup Analyzed: 12/07/2007	7L07145-M	SD1)			Sou	rce: IQL(0947-01				
Antimony	86.6	2.0	0.20	ug/l	80.0	0.448	108	70-130	0	20	
Cadmium	80.2	1.0	0.11	ug/l	80.0	ND	100	70-130	0	20	
Copper	79.9	2.0	0.75	ug/l	80.0	ND	100	70-130	0	20	
Lead	80.1	1.0	0.10	ug/l	80.0	ND	100	70-130	0	20	
Thallium	80.8	1.0	0.15	ug/l	80.0	0.352	101	70-130	0	20	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954

Received: 12/07/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L07051 Extracted: 12/07/07	_										
Blank Analyzed: 12/07/2007 (7L07051-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 12/07/2007 (7L07051-BS	1)										
Chloride	4.82	0.50	0.25	mg/l	5.00		96	90-110			
Sulfate	10.0	0.50	0.20	mg/l	10.0		100	90-110			M-3
Matrix Spike Analyzed: 12/07/2007 (7L0	7051-MS1)				Sou	rce: IQL	0841-02				
Chloride	22.3	0.50	0.25	mg/l	5.00	17.4	98	80-120			
Matrix Spike Dup Analyzed: 12/07/2007	(7L07051-M	(SD1)			Sou	rce: IQL	0841-02				
Chloride	22.1	0.50	0.25	mg/l	5.00	17.4	95	80-120	1	20	
Batch: 7L13066 Extracted: 12/12/07											
	_										
Blank Analyzed: 12/12/2007 (7L13066-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 12/12/2007 (7L13066-BS	1)										
Total Dissolved Solids	996	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 12/12/2007 (7L1306	6-DUP1)				Sou	rce: IQL	0758-01				
Total Dissolved Solids	1350	10	10	mg/l		1350			0	10	
Batch: 7L13160 Extracted: 12/13/07	-										
Dlawk Analyzada 12/12/2007 (71 121/0 D	I IZ1)										
Blank Analyzed: 12/13/2007 (7L13160-B) Total Suspended Solids	ND	10	10	mg/l							
i otai ouspellucu oolius	ND	10	10	1118/1							

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954

Received: 12/07/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L13160 Extracted: 12/13/07	=										
LCS Analyzed: 12/13/2007 (7L13160-BS)	1)										
Total Suspended Solids	994	10	10	mg/l	1000		99	85-115			
Duplicate Analyzed: 12/13/2007 (7L1316	0-DUP1)				Sou	rce: IQL(962-01				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 7L16026 Extracted: 12/16/07	=										
Blank Analyzed: 12/17/2007 (7L16026-B	LK1)										
Oil & Grease	ND	5.0	1.2	mg/l							
LCS Analyzed: 12/17/2007 (7L16026-BS)	1)										MNR1
Oil & Grease	19.7	5.0	1.2	mg/l	20.0		98	65-120			
LCS Dup Analyzed: 12/17/2007 (7L16020	6-BSD1)										
Oil & Grease	19.5	5.0	1.2	mg/l	20.0		98	65-120	1	20	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954

Received: 12/07/07

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W7L0421 Extracted: 12/12/0	<u>7_</u>										
Blank Analyzed: 12/13/2007 (W7L0421-1	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 12/13/2007 (W7L0421-B	S1)										
Mercury, Dissolved	0.905	0.20	0.050	ug/l	1.00		90	85-115			
Mercury, Total	0.905	0.20	0.050	ug/l	1.00		90	85-115			
Matrix Spike Analyzed: 12/13/2007 (W7	L0421-MS1)				Sou	rce: 7120	467-04				
Mercury, Dissolved	0.950	0.20	0.050	ug/l	1.00	ND	95	70-130			
Mercury, Total	0.950	0.20	0.050	ug/l	1.00	ND	95	70-130			
Matrix Spike Analyzed: 12/13/2007 (W7	L0421-MS2)				Sou	rce: 7120	467-07				
Mercury, Dissolved	0.970	0.20	0.050	ug/l	1.00	ND	97	70-130			
Mercury, Total	0.970	0.20	0.050	ug/l	1.00	ND	97	70-130			
Matrix Spike Dup Analyzed: 12/13/2007	(W7L0421-M	SD1)			Sou	rce: 7120	467-04				
Mercury, Dissolved	0.953	0.20	0.050	ug/l	1.00	ND	95	70-130	0	20	
Mercury, Total	0.953	0.20	0.050	ug/l	1.00	ND	95	70-130	0	20	
Matrix Spike Dup Analyzed: 12/13/2007	(W7L0421-M	SD2)			Sou	rce: 7120	467-07				
Mercury, Dissolved	0.977	0.20	0.050	ug/l	1.00	ND	98	70-130	1	20	
Mercury, Total	0.977	0.20	0.050	ug/l	1.00	ND	98	70-130	1	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954 Received: 12/07/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 9773 Extracted: 12/13/07											
Batta. 7776 Extracted. 12/10/07											
Blank Analyzed: 12/15/2007 (MB001)					Sou	rce:					
2,3,7,8-TCDD	ND	5.00	N/A	ug/L				50-150		25	
1,2,3,7,8-PeCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,6,7,8-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,7,8,9-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDD	ND	25.0	N/A	ug/L				50-150		25	
OCDD	ND	50.0	N/A	ug/L				50-150		25	
2,3,7,8-TCDF	ND	5.00	N/A	ug/L				50-150		25	
1,2,3,7,8-PeCDF	ND	25.0	N/A	ug/L				50-150		25	
2,3,4,7,8-PeCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,6,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
2,3,4,6,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,7,8,9-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8,9-HpCDF	ND	25.0	N/A	ug/L				50-150		25	
OCDF	ND	50.0	N/A	ug/L				50-150		25	
Total TCDD	ND	5.00	N/A	ug/L				50-150		25	
Total PeCDD	ND	25.0	N/A	ug/L				50-150		25	
Total HxCDD	ND	25.0	N/A	ug/L				50-150		25	
Total HpCDD	0.00000171	25.0	N/A	ug/L				50-150		25	
Total TCDF	ND	5.00	N/A	ug/L				50-150		25	
Total PeCDF	ND	25.0	N/A	ug/L				50-150		25	
Total HxCDF	ND	25.0	N/A	ug/L				50-150		25	
Total HpCDF	ND	25.0	N/A	ug/L				50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	0.00185			ug/L	2000		93	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00188			ug/L	2000		94	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00179			ug/L	2000		89	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00147			ug/L	2000		73	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00169			ug/L	2000		84	50-150			
Surrogate: 13C-OCDD	0.00298			ug/L	4000		75	50-150			
Surrogate: 13C-2,3,7,8-TCDF	0.00187			ug/L	2000		93	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00198			ug/L	2000		99	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00203			ug/L	2000		101	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00173			ug/L	2000		86	50-150			
				-							

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/07/07 Received: 12/07/07

Report Number: IQL0954

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	Kesuit	Limit	MIDL	Units	Levei	Result	/OKEC	Lillits	KI D	Lillit	Quanners
Batch: 9773 Extracted: 12/13/07											
Blank Analyzed: 12/15/2007 (MB001)					Sou	rce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00139			ug/L	2000		70	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00157			ug/L	2000		79	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00161			ug/L	2000		81	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00146			ug/L	2000		73	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00162			ug/L	2000		81	50-150			
Surrogate: 13C-OCDF	0.00270			ug/L	4000		68	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	0.00106			ug/L	800		133	50-150			
LCS Analyzed: 12/14/2007 (OPR001)					Sou	rce:					
2,3,7,8-TCDD	9.56	5.00	N/A	ug/L	10		96	50-150		25	
1,2,3,7,8-PeCDD	46.7	25.0	N/A	ug/L	50		93	50-150		25	
1,2,3,4,7,8-HxCDD	46.8	25.0	N/A	ug/L	50		94	50-150		25	
1,2,3,6,7,8-HxCDD	47.4	25.0	N/A	ug/L	50		95	50-150		25	
1,2,3,7,8,9-HxCDD	48.9	25.0	N/A	ug/L	50		98	50-150		25	
1,2,3,4,6,7,8-HpCDD	48.1	25.0	N/A	ug/L	50		96	50-150		25	
OCDD	91.6	50.0	N/A	ug/L	100		92	50-150		25	
2,3,7,8-TCDF	9.44	5.00	N/A	ug/L	10		94	50-150		25	
1,2,3,7,8-PeCDF	46.3	25.0	N/A	ug/L	50		93	50-150		25	
2,3,4,7,8-PeCDF	47.2	25.0	N/A	ug/L	50		94	50-150		25	
1,2,3,4,7,8-HxCDF	46.1	25.0	N/A	ug/L	50		92	50-150		25	
1,2,3,6,7,8-HxCDF	47.5	25.0	N/A	ug/L	50		95	50-150		25	
2,3,4,6,7,8-HxCDF	48.6	25.0	N/A	ug/L	50		97	50-150		25	
1,2,3,7,8,9-HxCDF	48.2	25.0	N/A	ug/L	50		96	50-150		25	
1,2,3,4,6,7,8-HpCDF	46.0	25.0	N/A	ug/L	50		92	50-150		25	
1,2,3,4,7,8,9-HpCDF	46.3	25.0	N/A	ug/L	50		93	50-150		25	
OCDF	95.3	50.0	N/A	ug/L	100		95	50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	91.4			ug/L	100		91	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	94.3			ug/L	100		94	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	84.5			ug/L	100		85	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	69.0			ug/L	100		69	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	83.7			ug/L	100		84	50-150			
Surrogate: 13C-OCDD	160			ug/L	200		80	50-150			
Surrogate: 13C-2,3,7,8-TCDF	89.8			ug/L	100		90	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	99.4			ug/L	100		99	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	102			ug/L	100		102	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	80.5			ug/L	100		81	50-150			
TestAmerica Irvine											

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/07/07

Report Number: IQL0954

Received: 12/07/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9773 Extracted: 12/13/07											
LCS Analyzed: 12/14/2007 (OPR001)					Sou	raat					
LCS Allalyzeu. 12/14/2007 (O1 K001)					Sou	ice.					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	65.1			ug/L	100		65	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	73.5			ug/L	100		74	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	77.7			ug/L	100		78	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	73.0			ug/L	100		73	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	83.7			ug/L	100		84	50-150			
Surrogate: 13C-OCDF	148			ug/L	200		74	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	45.4			ug/L	40		113	50-150			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 12/07/07 Arcadia, CA 91007 Report Number: IQL0954 Received: 12/07/07

Attention: Bronwyn Kelly

Compliance Check

Project ID: Routine Outfall 010

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IQL0954-01	413.1 Oil and Grease	Oil & Grease	mg/l	0.28	4.7	15
IQL0954-01	Antimony-200.8	Antimony	ug/l	1.10	2.0	6.00
IQL0954-01	Antimony-200.8, Diss	Antimony	ug/l	1.06	2.0	6.00
IQL0954-01	Cadmium-200.8	Cadmium	ug/l	0.086	1.0	4.00
IQL0954-01	Cadmium-200.8, Diss	Cadmium	ug/l	0.044	1.0	4.00
IQL0954-01	Chloride - 300.0	Chloride	mg/l	29	0.50	150
IQL0954-01	Copper-200.8	Copper	ug/l	6.94	2.0	14
IQL0954-01	Copper-200.8, Diss	Copper	ug/l	4.33	2.0	14
IQL0954-01	Lead-200.8	Lead	ug/l	0.30	1.0	5.20
IQL0954-01	Lead-200.8, Diss	Lead	ug/l	0.061	1.0	5.20
IQL0954-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	2.30	0.26	10.00
IQL0954-01	Sulfate-300.0	Sulfate	mg/l	22	0.50	250
IQL0954-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	226	10	850
IQL0954-01	Thallium-200.8	Thallium	ug/l	0.031	1.0	2.00
IQL0954-01	Thallium-200.8, Diss	Thallium	ug/l	0.036	1.0	2.00

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Sampled: 12/07/07
Report Number: IQL0954

Received: 12/07/07

Attention: Bronwyn Kelly

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

B Compaund was also detected in the method blank

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Ja The amount detected is below the Lower CalibrationLimit of the instrument

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Sampled: 12/07/07 Report Number: IQL0954 Received: 12/07/07

Attention: Bronwyn Kelly

Arcadia, CA 91007

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical Perspectives

 $2714\ Exchange\ Drive$ - Wilmington, NC 28405

Method Performed: 1613-Dioxin-HR Alta

Samples: IQL0954-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IQL0954-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1

Samples: IQL0954-01

TestAmerica Irvine

Page 1 of 1	Spui		Υ ,	<u></u>	collection	+1.0	Comments							Filter w/in 24hr of receipt	ממן			-			SA	ays sys		18: 2 · (C) · (S)
Pa	Field readings	T amot	ו כבו ביים ביים ביים ביים ביים ביים ביים בי	% L:9 =Hd	Sample Collection		E00							Filter w/in					:		Turn around Time: (check)	· -	72 Hours No	Sample Integray: (Check) Intact On loe:
OCCT				IT ,g⊢	ł ,dq	Cu,	Cq'							×							1000	,		(6.38)
1070701				ON+8	S:	ST ,8	SQT					×	×								Date/Time:	Date/Fime	Date/Time:	izmon
		(r.£	141	M cor	əsee	15 <i>8</i>	liO			×	×											A CONTRACTOR OF THE PARTY OF TH		
CUSTODY FORM				rable Pb, H				X X	8t ×	2A, 2B	3A, 3B	4A, 4B	5A, 5B	9						47	Received By	Received By	Received By	0)
CHAIN OF C	APDES II 010	Building 203				10	Preservative B	HNO ₃	HNO ₃	None 2	HCl	None 4	None	None							L.	1/23		
Droiort	Project Boeing-SSFL NPDES Routine Outfall 010	Stormwater at Building 203		Phone Number	Fax Number:	(626) 568-6515	Sampling Date/Time	12/7/07 - 8:17					->		1 10 A Marina		2				Date/Time:	Date/Time:	Date/Time:	-
04/28/06				elly			# of Cont.	-	-	2	2	2	2	-							ă	2		
version	SS Suite 20		t Joseph D	3ronwyn K	Proposition of the second		Container Type	1L Poly	1L Poly	1L Amber	1L Amber	500 ml Polv	500 ml Polv	1L Polv									\setminus	
meric	e/Addre ;adia da ∆veni	91007	a Contac	nager: I	6.50		Sample	>	3	3	3	3	3	3							By By	S P		•
Test America version 04/28/06	MWH-Arcadia	Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	Sampler: D. C. Sam		Sample	Outfall 010	Outfall 010 Dup	Outfall 010	Outfall 010	Outfall 010	Outfall 010	Outfall 010							Relinquished By	Relinquished By		-

December 17, 2007

Vista Project I.D.: 30064

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on December 11, 2007 under your Project Name "IQL0954". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier

Laboratory Director

Maryle Mare

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 12/11/2007

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30064-001 IQL0954-01

SECTION II

NPDES 3 276 Page 3 of 285

Method Blank			_			EPA Method 1613
Matrix: Aqueous		QC Batch No.: 9773	Lab Sample:	nple: 0-MB001		
Sample Size: 1.00 L		Date Extracted: 13-Dec-07	Date A	Date Analyzed DB-5: 15-Dec-07	Date Analy	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	ug/L)	DL ^a EMPC ^b Qualifiers		Labeled Standard	%R I	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000598	IS	13C-2,3,7,8-TCDD	92.5	25 - 164
QC	ND	0.000000678		13C-1,2,3,7,8-PeCDD	93.8	25 - 181
QC	ND	0.00000160		13C-1,2,3,4,7,8-HxCDD	89.4	32 - 141
	ND	0.00000165		13C-1,2,3,6,7,8-HxCDD	73.4	28 - 130
1,2,3,7,8,9-HxCDD	ND	0.00000162		13C-1,2,3,4,6,7,8-HpCDD	84.3	23 - 140
D	ND	0.00000123		13C-0CDD	74.5	17 - 157
OCDD	ND	0.00000720		13C-2,3,7,8-TCDF	93.3	24 - 169
2,3,7,8-TCDF	ND	0.00000107		13C-1,2,3,7,8-PeCDF	99.2	24 - 185
1,2,3,7,8-PeCDF	ND	0.000000710		13C-2,3,4,7,8-PeCDF	101	21 - 178
	ND	0.000000728		13C-1,2,3,4,7,8-HxCDF	86.3	26 - 152
)F	ND	0.000000663		13C-1,2,3,6,7,8-HxCDF	69.5	26 - 123
	ND	0.000000536		13C-2,3,4,6,7,8-HxCDF	78.5	28 - 136
	ND	0.000000574		13C-1,2,3,7,8,9-HxCDF	80.5	29 - 147
1,2,3,7,8,9-HxCDF	ND	0.000000750		13C-1,2,3,4,6,7,8-HpCDF	73.2	28 - 143
F.	ND	0.000000630		13C-1,2,3,4,7,8,9-HpCDF	81.0	26 - 138
1,2,3,4,7,8,9-HpCDF	ND	0.000000754		13C-0CDF	67.5	17 - 157
OCDF	ND	0.00000263	CRS 3	37CI-2,3,7,8-TCDD	133	35 - 197
Totals			Footnotes	tes		
Total TCDD	ND	0.00000120	a. Sample	a. Sample specific estimated detection limit.		
Total PeCDD	ND	0.00000138	b. Estima	b. Estimated maximum possible concentration.		
Total HxCDD	ND	0.00000163	c. Metho	c. Method detection limit.		
Total HpCDD	0.00000171	1	d. Lower	d. Lower control limit - upper control limit.		
Total TCDF	ND	0.00000107				
Total PeCDF	ND	0.000000719				
Total HxCDF	ND	0.000000772				
Total HpCDF	ND	0.000000686				
					!	

Analyst:

Approved By: Martha M. Maier 17-Dec-2007 13:56

OPR Results							EPA Method 1613	[613
		QC Batch No.:	9773	Lab	Lab Sample: 0-OPR001			
Sample Size: 1.00 L		Date Extracted:	13-Dec-07	Dal	Date Analyzed DB-5: 14-Dec-07	Date Ar	Date Analyzed DB-225:	NA
Analyte	Spike Conc.	Spike Conc. Conc. (ng/mL)	OPR Limits		Labeled Standard	%R	LCL-UCL Qualifier	Qualifier
2,3,7,8-TCDD	10.0	9.56	6.7 - 15.8	IS	13C-2,3,7,8-TCDD	91.4	. 25 - 164	
1,2,3,7,8-PeCDD	50.0	46.7	35 - 71		13C-1,2,3,7,8-PeCDD	94.3	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	46.8	35 - 82		13C-1,2,3,4,7,8-HxCDD	84.5	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	47.4	38 - 67		13C-1,2,3,6,7,8-HxCDD	0.69	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	48.9	32 - 81		13C-1,2,3,4,6,7,8-HpCDD	83.7	7 23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	48.1	35 - 70		13C-OCDD	79.9	17 - 157	
ОСДД	100	91.6	78 - 144		13C-2,3,7,8-TCDF	8.68	24 - 169	
2,3,7,8-TCDF	10.0	9.44	7.5 - 15.8		13C-1,2,3,7,8-PeCDF	99.4	. 24 - 185	
1,2,3,7,8-PeCDF	50.0	46.3	40 - 67		13C-2,3,4,7,8-PeCDF	102	21 - 178	
2,3,4,7,8-PeCDF	50.0	47.2	34 - 80		13C-1,2,3,4,7,8-HxCDF	80.5	56 - 152	
1,2,3,4,7,8-HxCDF	50.0	46.1	36 - 67		13C-1,2,3,6,7,8-HxCDF	65.1	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	47.5	42 - 65		13C-2,3,4,6,7,8-HxCDF	73.5	58 - 136	
2,3,4,6,7,8-HxCDF	50.0	48.6	35 - 78		13C-1,2,3,7,8,9-HxCDF	7.77	79 - 147	
1,2,3,7,8,9-HxCDF	50.0	48.2	39 - 65		13C-1,2,3,4,6,7,8-HpCDF	73.0	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	46.0	41 - 61		13C-1,2,3,4,7,8,9-HpCDF	83.7	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	46.3	39 - 69		13C-OCDF	74.0	17 - 157	
OCDF	100	95.3	63 - 170	CRS	CRS 37CI-2,3,7,8-TCDD	113	35 - 197	

Approved By: Martha M. Maier 17-Dec-2007 13:56

Analyst: MAS

Martha M. Maier 17-Dec-2007 13:56

Approved By:

Sample ID: IQL(IQL0954-01							EPA N	EPA Method 1613
Client Data Name: Test Ame Project: IQL0954 Date Collected: 7-Dec-07 Time Collected: 0817	Test America-Irvine, CA IQL0954 7-Dec-07 0817		Sample Data Matrix: Sample Size:	Aqueous 1.00 L	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	30064-001 9773 15-Dec-07	Date Received: Date Extracted: Date Analyzed I	Date Received: Date Extracted: Date Analyzed DB-225:	11-Dec-07 13-Dec-07 NA
Analyte	Conc. (ug/L)	DF a	EMPC ^b	Qualifiers	Labeled Standard	ard	%R	rcr-ncr _q	Oualifiers
2,3,7,8-TCDD	ND	0.00000077	77		<u>IS</u> 13C-2,3,7,8-TCDD	QC	95.7	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000769	69,		13C-1,2,3,7,8-PeCDD	CDD	92.6	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.00000169	6		13C-1,2,3,4,7,8-HxCDD	HxCDD	85.9	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000187	<i>L</i> :		13C-1,2,3,6,7,8-HxCDD	HxCDD	72.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.00000178	8		13C-1,2,3,4,6,7,8-HpCDD	8-НрСDD	79.2	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.00000332			ſ	13C-OCDD		64.7	17 - 157	
OCDD	0.0000199			J	13C-2,3,7,8-TCDF	OF	91.4	24 - 169	
2,3,7,8-TCDF	ND	0.000000000	00		13C-1,2,3,7,8-PeCDF	CDF	98.1	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000981	181		13C-2,3,4,7,8-PeCDF	CDF	98.1	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000969	69		13C-1,2,3,4,7,8-HxCDF	HxCDF	84.2	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000744	44		13C-1,2,3,6,7,8-HxCDF	HxCDF	70.5	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000811	111		13C-2,3,4,6,7,8-HxCDF	HxCDF	74.3	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.0000000875	175		13C-1,2,3,7,8,9-HxCDF	HxCDF	76.0	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.0000012	0.		13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	70.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.00000155	5		13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	73.7	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000000737	37		13C-OCDF		58.7	17 - 157	
OCDF	ND	0.00000360	0.		CRS 37CI-2,3,7,8-TCDD	DD	142	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.00000147	7.		a. Sample specific estimated detection limit.	d detection limit.			
Total PeCDD	ND	0.00000190	0		b. Estimated maximum possible concentration.	sible concentration.			
Total HxCDD	ND	0.00000255	5		c. Method detection limit.				
Total HpCDD	0.00000679			В	d. Lower control limit - upper control limit.	er control limit.			
Total TCDF	ND	0.000000000	00						
Total PeCDF	ND	0.000000975	75						
Total HxCDF	ND	0.000000890	069						
Total HpCDF	ND	0.00000173	.3						
						,) () () ()	

Analyst:

Project 30064

APPENDIX

Project 30064 NPDES - 280
Page 7 of 285

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica - Irvine, CA

IQL0954

30064 2.40

°C

SENDING LABORATORY:

TestAmerica - Irvine, CA

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone :(916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IQL0954-01	Water		Sampled: 12/07/07 08:17	
1613-Dioxin-HR-Alta	ug/l	12/18/07	12/14/07 08:17	J flags,17 congeners,no
EDD + Level 4	N/A	12/18/07	01/04/08 08:17	TEQ,ug/L,sub=Vista Boeing EDD, email to pm w/ PDF report
Containers Supplied:				
1 L Amber (C)	1 L Amber (D)	***		

Released By

12/10/07 1700 Date/Time

Received By

Received By

Remoderat

Date/Time

10/01/01

Date/Tim

IPDES_{GE} 2831 Page 10 of 285

Project 30064 Date/Time

SAMPLE LOG-IN CHECKLIST

		1						Analytical	Laborato
Vista Project #:	3006	,4			1	AT			
	Date/Time		Initials:		Loc	ation	WR	-2.	
Samples Arrival:	12/11/07	0913	1 Ma	13	She	elf/Rac	:k:^	JA	
	Date/Time	12/12/07	Initials:		Loc	ation	W	2	
Logged In:	12/11/07	407 0708	B	B	She	elf/Rac	:k:	34	
Delivered By:	(FedEx)	UPS	Cal	DHL	- 1	Ha Deliv	nd	Oth	ner
Preservation:	lce	<i>)</i> E	Blue Ice	Dr	y Ice			None	
Temp °C 2.4		Time:	3930		The	rmon	ieter II): IR-:	2
F							YES	NO	NA
Adequate Sample	Volume Rece	ived?					120	140	INA
Holding Time Acce									
Shipping Containe							1		
Shipping Custody							V		
Shipping Documen		t?					V		
Airbill	Trk # 7	992	36275	5910)		V	-	
Sample Container							V		
Sample Custody S	eals Intact?								V
Chain of Custody /	Sample Docu	ımentation P	resent?				V		
COC Anomaly/Sar	nple Acceptar	nce Form cor	mpleted?						
If Chlorinated or Di	inking Water	Samples, Ac	ceptable Pre	eservatio	n?				V
Na₂S₂O₃ Preservat	ion Documen	ted?	coc			nple ainer_		None	
Shipping Containe	Υ	Vista	Client	Reta		Ret) ج	turn)	Disp	ose
Comments:									

IQL0954-01 C

SUBCONTRACT ORDER

TestAmerica - Irvine, CA

IQL0954

7121004

SENDING LABORATORY:

TestAmerica - Irvine, CA

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone: (626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature: 3. °C

Ice:

Analysis	Units	Due	Expires	Comments
Sample ID: IQL0954-01	Water		Sampled: 12/07/07 0	8.17
Level 4 + EDD-OUT	N/A	12/18/07	01/04/08 08:17	Sub to Weck, transfer file EDD
Mercury - 245.1, Diss -OUT	mg/l	12/18/07	01/04/08 08:17	Weck, Boeing, J flags
Mercury - 245.1-OUT	mg/l	12/18/07	01/04/08 08:17	Weck,Boeing, permit, J flags, if result>ND.call TA
Containers Supplied:				rodule (VD)Julii 177
125 mL Poly w/HNO3 (L)	125 mL Poly	(M)		

eived By

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

12/17/07 13:27

17461 Derian Ave, Suite 100

Received Date:

12/10/07 09:40

Irvine, CA 92614

Turn Around:

6 days

Attention: Joseph Doak

Fax: (949) 260-3297

Work Order #:

7121004

Phone: (949) 261-1022

Client Project:

IQL0954

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 12/10/07 09:40 with the Chain of Custody document. The samples were received in good condition. The samples were received at 3.1 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7121004 Project ID: IQL0954 Date Received: 12/10/07 09:40 Date Reported: 12/17/07 13:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IQL0954-01	Client		7121004-01	Water	12/07/07 08:17

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7121004 Project ID: IQL0954 Date Received: 12/10/07 09:40 Date Reported: 12/17/07 13:27

IQL0954-01 7121004-01 (Water)

Date Sampled: 12/07/07 08:17

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W7L0421	12/12/07	12/13/07	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W7L0421	12/12/07	12/13/07	jlp	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7121004 Project ID: IQL0954 Date Received: 12/10/07 09:40 Date Reported: 12/17/07 13:27

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7121004 Project ID: IQL0954 Date Received: 12/10/07 09:40 Date Reported: 12/17/07 13:27

Metals by EPA 200 Series Methods - Quality Control

%REC

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W7L0421 - EPA 245.1										
Blank (W7L0421-BLK1)				Analyzed:	12/13/07					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W7L0421-BS1)				Analyzed:	12/13/07					
Mercury, Dissolved	0.905	0.20	ug/l	1.00		90	85-115			
Mercury, Total	0.905	0.20	ug/l	1.00		90	85-115			
Matrix Spike (W7L0421-MS1)	So	ource: 7120467	-04	Analyzed:	12/13/07					
Mercury, Dissolved	0.950	0.20	ug/l	1.00	ND	95	70-130			
Mercury, Total	0.950	0.20	ug/l	1.00	ND	95	70-130			
Matrix Spike (W7L0421-MS2)	Source: 7120467-07		Analyzed:	12/13/07						
Mercury, Dissolved	0.970	0.20	ug/l	1.00	ND	97	70-130			
Mercury, Total	0.970	0.20	ug/l	1.00	ND	97	70-130			
Matrix Spike Dup (W7L0421-MSD1)	So	ource: 7120467	-04	Analyzed: 12/13/07						
Mercury, Dissolved	0.953	0.20	ug/l	1.00	ND	95	70-130	0.3	20	
Mercury, Total	0.953	0.20	ug/l	1.00	ND	95	70-130	0.3	20	
Matrix Spike Dup (W7L0421-MSD2)	So	ource: 7120467	-07	Analyzed:	12/13/07					
Mercury, Dissolved	0.977	0.20	ug/l	1.00	ND	98	70-130	0.7	20	
Mercury, Total	0.977	0.20	ug/l	1.00	ND	98	70-130	0.7	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7121004 Project ID: IQL0954

Date Received: 12/10/07 09:40 Date Reported: 12/17/07 13:27

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 12

Outfall 010, December 19, 2007

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IQL2129

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IQL2129

Project Manager: B. Kelly Matrix: Soil

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine, Weck, Vista

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 010	IQL2129-01	7122007-01, 30102-001	Water	12/19/07 0915	245.1, 1613, 6020

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Weck within the temperature limits of $4^{\circ}C$ $\pm 2^{\circ}C$. The sample was received below the temperature limits at Vista; however, the sample was not noted to have been frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Vista and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: IQL2129

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: January 16, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.

 Blanks: Total TCDF was reported in the method blank at a concentration of 0.00000139µg/l; however, total TCDF was not reported in site sample Outfall 010. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Internal standard C13-OCDF was recovered just below the lower control limits in the site sample; therefore, the result for OCDF was qualified as estimated, "UJ," in site sample Outfall 010. The remaining labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 245.1, 6020—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 15, 2008

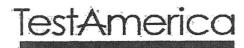
The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 245. and 6020, and the National Functional Guidelines for Inorganic Data Review (2/94).

• Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.

 Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the
 dissolved metals analyses only. Recoveries were within the method-established control
 limits. All analytes were reported in the 6020 ICSA solution; however, the reviewer was
 not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The CCV analyzed prior to the sample and the CCB analyzed after the sample both had all internal standard recoveries below the control limit; however, as the sample internal standard recoveries were acceptable, no qualifications were applied. The remaining bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that antimony was detected at a slightly higher concentration in the dissolved metals sample fraction. The difference between the antimony results, 0.03 μ g/L, is within the sensitivity limits of the analytical instrument and, therefore, the reviewer considered the two results to be equivalent.


 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

o Field Duplicates: There were no field duplicate samples identified for this SDG.

Sample ID: IQL2	1QL2129-01 Out-fall	411 010						EPA M	EPA Method 1613
Client Data Name: Test Amer Project: IQL2129 Date Collected: 19-Dec-07 Time Collected: 0915	Test America-Irvine, CA IQL2129 19-Dec-07 0915		Sample Data Matrix: Sample Size:	Aqueous 1.01 L	Laboratory Data Lab Sample: QC Batch No.: Date Analyzed DB-5:	30102-001 9806 27-Dec-07	Date Received: Date Extracted: Date Analyzed DB-225:	red: ted: sed DB-225:	21-Dec-07 23-Dec-07 NA
Analyte C	Conc. (ug/L)	DF a	EMPC	Qualifiers	Labeled Standard	ard	%R L	rcr-ncr _q	Qualifiers
2,3,7,8-TCDD	QN QN	0.00000112	2		IS 13C-2,3,7,8-TCDD	ΩC	76.1	25 - 164	
1,2,3,7,8-PeCDD	NO ON	0.00000181	1		13C-1,2,3,7,8-PeCDD	CDD	59.0	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.00000273	3		13C-1,2,3,4,7,8-HxCDD	HxCDD	72.4	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000289	6		13C-1,2,3,6,7,8-HxCDD	HxCDD	68.2	28 - 130	
1,2,3,7,8,9-HxCDD	NO ON	0.00000274	4		13C-1,2,3,4,6,7,8-HpCDD	3-HpCDD	47.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	NO ON	0.00000785	5		13C-0CDD		27.6	17 - 157	
OCDD	0.0000375			J	13C-2,3,7,8-TCDF)F	77.3	24 - 169	
2,3,7,8-TCDF	QN	0.00000136	9		13C-1,2,3,7,8-PeCDF	CDF	62.3	24 - 185	
1,2,3,7,8-PeCDF	QN CN	0.00000295	5		13C-2,3,4,7,8-PeCDF	CDF	65.2	21 - 178	,
2,3,4,7,8-PeCDF	NO Qu	0.00000276	9		13C-1,2,3,4,7,8-HxCDF	HxCDF	70.4	26 - 152	
1,2,3,4,7,8-HxCDF	Q.	0.00000123	3		13C-1,2,3,6,7,8-HxCDF	HxCDF	73.6	26 - 123	
1,2,3,6,7,8-HxCDF	QN QN	0.00000121	1		13C-2,3,4,6,7,8-HxCDF	HxCDF	73.2	28 - 136	-
2,3,4,6,7,8-HxCDF	N Q	0.00000127	7		13C-1,2,3,7,8,9-HxCDF	HxCDF	57.8	29 - 147	
1,2,3,7,8,9-HxCDF	Q.	0.00000230	0		13C-1,2,3,4,6,7,8-HpCDF	-HpCDF	54.8	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.00000148	00		13C-1,2,3,4,7,8,9-HpCDF	-HpCDF	26.4	26 - 138	
1,2,3,4,7,8,9-HpCDF	N Q	0.00000333	3		13C-OCDF		14.3	17 - 157	Н
OCDF	NO ON	0.0000159			CRS 37CI-2,3,7,8-TCDD	DD	84.3	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.00000112	2		a. Sample specific estimated detection limit.	detection limit.			
Total PeCDD	ND QN	0.00000181	1		b. Estimated maximum possible concentration.	sible concentration.			
Total HxCDD	Q.	0.00000279	6		c. Method detection limit.				
Total HpCDD	NO ON	0.00000785	2		d. Lower control limit - upper control limit.	er control limit.			
Total TCDF	ND	0.00000136	9						
Total PeCDF	NO QN	0.00000286	9						
Total HxCDF	ND Qu	0.00000143	3						•
Total HpCDF	ND ON	0.00000198	8						
Analyst: DMS	Level II				Approved By:	William J. Luksemburg		27-Dec-2007 13:18	13:18

.17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Sampled: 12/19/07

Arcadia, CA 91007

Report Number: IQL2129

Received: 12/19/07

METALS

		•							
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2129-01 (Outfall 010 -	Water)								
Reporting Units: ug/l									
Antimony JONG	EPA 200.8	7L20116	0.20	2.0	0.68	1	12/20/07	12/20/07	j
Cadmium	EPA 200.8	7L20116	0.11	1.0	ND	1	12/20/07	12/20/07	
Copper	EPA 200.8	7L20116	0.75	2.0	3.4	1	12/20/07	12/20/07	
Lead J/DNQ	EPA 200.8	7L20116	0.10	1.0	0.25	1	12/20/07	12/20/07	J
Thallium U	· EPA-200:8	- 7E20116	0.15	· 1.Ò	ND	. 1 -	12/20/07	12/20/07	

TestAmerica Irvine

Joseph Doak Project Manager

The results periain only to the samples tested in the laboratory. This report shall not be reproduced except in full, without written permission from TestAmerica.

IQL2129 <Page 2 of 19>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Report Number: IQL2129

Sampled: 12/19/07

Received: 12/19/07

DISSOLVED METALS

				MDL	Reporting	Sample	Dilution	Date	Date	Data	
Analyte		Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID:	IQL2129-01 (Outfall 010 -	Water) - cont.									
Report	ing Units: ug/l										
Antimony	J/DN9	EPA 200.8-Diss	7L20140	0.20	2.0	0.71 .	1	12/20/07	12/20/07	.J	
Cadmium	U	EPA 200.8-Diss	7L20140	0.11	1.0	ND	·I	12/20/07	12/20/07		
Copper	J/DN9	EPA 200.8-Diss	7L20140	0.75	2.0	1.9	1	12/20/07	12/20/07	J	
Lead	U	EPA 200.8-Diss	7L20140	0.10	1.0	ND.	1	12/20/07	12/20/07		
Thallium	0	EPA 200.8-Diss	7L20140	0:15	1.0	ND	1	12/20/07	12/20/07		

TestAmerica Irvine

.Joseph Doak Project Manager

except in full, without written permission from TestAmerica.

IQL2129 <Page 3 of 19>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Report Number: IQL2129

Sampled: 12/19/07

Received: 12/19/07

Metals by EPA 200 Series Methods

Analyte	*	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2129-01 (Ou Reporting Units: ug/I	tfall 010 -	Water) - cont.					*			
Mercury, Dissolved	U	EPA 245.1	W7L0889	0.050	0.20	ND	.1	12/26/07	12/27/07	
Mercury, Total	U	. EPA 245.1	W7L0889	0.050	0.20	ND	1	12/26/07	12/27/07	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQL2129 <Page 5 of 19>

APPENDIX G

Section 13

Outfall 010, December 19, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly
Sampled: 12/19/07
Received: 12/19/07

Issued: 12/31/07 09:30

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX
IQL2129-01 Outfall 010 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 12/19/07 Report Number: IQL2129 Arcadia, CA 91007 Received: 12/19/07

Attention: Bronwyn Kelly

METALS

Project ID: Routine Outfall 010

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2129-01 (Outfall 010 - W	ater)								
Reporting Units: ug/l									
Antimony	EPA 200.8	7L20116	0.20	2.0	0.68	1	12/20/07	12/20/07	J
Cadmium	EPA 200.8	7L20116	0.11	1.0	ND	1	12/20/07	12/20/07	
Copper	EPA 200.8	7L20116	0.75	2.0	3.4	1	12/20/07	12/20/07	
Lead	EPA 200.8	7L20116	0.10	1.0	0.25	1	12/20/07	12/20/07	J
Thallium	EPA 200.8	7L20116	0.15	1.0	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Project ID: Routine Outfall 010

Sampled: 12/19/07

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IQL2129 Received: 12/19/07

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2129-01 (Outfall 010 -	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	7L20140	0.20	2.0	0.71	1	12/20/07	12/20/07	J
Cadmium	EPA 200.8-Diss	7L20140	0.11	1.0	ND	1	12/20/07	12/20/07	
Copper	EPA 200.8-Diss	7L20140	0.75	2.0	1.9	1	12/20/07	12/20/07	J
Lead	EPA 200.8-Diss	7L20140	0.10	1.0	ND	1	12/20/07	12/20/07	
Thallium	EPA 200.8-Diss	7L20140	0.15	1.0	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Attention: Bronwyn Kelly

Report Number: IQL2129

Received: 12/19/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2129-01 (Outfall 010 - V	Vater) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	7L19051	5.0	10	62	20	12/19/07	12/19/07	
Nitrate/Nitrite-N	EPA 300.0	7L19051	0.15	0.26	2.6	1	12/19/07	12/19/07	
Oil & Grease	EPA 413.1	7L21125	1.1	4.7	ND	1	12/22/07	12/26/07	
Sulfate	EPA 300.0	7L19051	0.20	0.50	33	1	12/19/07	12/19/07	
Total Dissolved Solids	SM2540C	7L21099	10	10	340	1	12/21/07	12/21/07	
Total Suspended Solids	EPA 160.2	7L20129	10	10	ND	1	12/20/07	12/20/07	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2129

Received: 12/19/07

Attention: Bronwyn Kelly

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2129-01 (Outfall 010 - Wa Reporting Units: ug/l	ter) - cont.								
Mercury, Dissolved	EPA 245.1	W7L0889	0.050	0.20	ND	1	12/26/07	12/27/07	
Mercury, Total	EPA 245.1	W7L0889	0.050	0.20	ND	1	12/26/07	12/27/07	

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/19/07

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2129

Received: 12/19/07

DIOXIN (EPA 1613)

DIOXIN (EFA 1013)										
			MDL	Reporting	Sample	Dilution	Date	Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID: IQL2129-01 (Outfall 01	0 - Water) - cont.									
Reporting Units: ug/L										
2,3,7,8-TCDD	1613-Dioxin-HR Alta	9806	N/A	4.97	ND	1	12/23/07	12/27/07		
1,2,3,7,8-PeCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,4,7,8-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,6,7,8-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,7,8,9-HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,4,6,7,8-HpCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
OCDD	1613-Dioxin-HR Alta	9806	N/A	49.7	0.0000375	1	12/23/07	12/27/07	J	
2,3,7,8-TCDF	1613-Dioxin-HR Alta	9806	N/A	4.97	ND	1	12/23/07	12/27/07		
1,2,3,7,8-PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
2,3,4,7,8-PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,4,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,6,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
2,3,4,6,7,8-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,7,8,9-HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,4,6,7,8-HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
1,2,3,4,7,8,9-HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
OCDF	1613-Dioxin-HR Alta	9806	N/A	49.7	ND	1	12/23/07	12/27/07		
Total TCDD	1613-Dioxin-HR Alta	9806	N/A	4.97	ND	1	12/23/07	12/27/07		
Total PeCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
Total HxCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
Total HpCDD	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
Total TCDF	1613-Dioxin-HR Alta	9806	N/A	4.97	ND	1	12/23/07	12/27/07		
Total PeCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
Total HxCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
Total HpCDF	1613-Dioxin-HR Alta	9806	N/A	24.8	ND	1	12/23/07	12/27/07		
Surrogate: 13C-2,3,7,8-TCDD (25-16					76.1 %					
Surrogate: 13C-1,2,3,7,8-PeCDD (25					59 %					
Surrogate: 13C-1,2,3,4,7,8-HxCDD (72.4 %					
Surrogate: 13C-1,2,3,6,7,8-HxCDD (68.2 %					
Surrogate: 13C-1,2,3,4,6,7,8-HpCDL					47.6 %					
Surrogate: 13C-OCDD (17-157%)	(== = = = = = = = = = = = = = = = = = =				27.6 %					
Surrogate: 13C-2,3,7,8-TCDF (24-16	(9%)				77.3 %					
Surrogate: 13C-1,2,3,7,8-PeCDF (24					62.3 %					
Surrogate: 13C-2,3,4,7,8-PeCDF (21					65.2 %					
Surrogate: 13C-1,2,3,4,7,8-HxCDF (70.4 %					
Surrogate: 13C-1,2,3,6,7,8-HxCDF (<i>'</i>				73.6 %					
Surrogate: 13C-2,3,4,6,7,8-HxCDF (73.2 %					
Surrogate: 13C-1,2,3,7,8,9-HxCDF (57.8 %					
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	*				54.8 %					
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	'				26.4 %					
Surrogate: 13C-OCDF (17-157%)	(20-130/0)				14.3 %				Н	
Surroguie. 13C-OCDI (17-13/70)					17.3 /0				11	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129

Received: 12/19/07

DIOXIN (EPA 1613)

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IQL2129-01 (Outfall 010 - Water) - cont.

Reporting Units: ug/L

Surrogate: 37Cl-2,3,7,8-TCDD (35-197%) 84.3 %

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129

Received: 12/19/07

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 010 (IQL2129-01) - Water	er				
EPA 300.0	2	12/19/2007 09:15	12/19/2007 19:10	12/19/2007 20:00	12/19/2007 22:05

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129 Received: 12/19/07

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 7L20116 Extracted: 12/20/07											C
Batch. /L20110 Extracted. 12/20/07	-										
Blank Analyzed: 12/20/2007 (7L20116-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 12/20/2007 (7L20116-BS)	1)										
Antimony	84.5	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	84.5	1.0	0.11	ug/l	80.0		106	85-115			
Copper	85.1	2.0	0.75	ug/l	80.0		106	85-115			
Lead	84.6	1.0	0.10	ug/l	80.0		106	85-115			
Thallium	86.6	1.0	0.15	ug/l	80.0		108	85-115			
Matrix Spike Analyzed: 12/20/2007 (7L2	0116-MS1)				Sou	rce: IQL	2190-01				
Antimony	80.0	2.0	0.20	ug/l	80.0	0.268	100	70-130			
Cadmium	78.8	1.0	0.11	ug/l	80.0	0.576	98	70-130			
Copper	102	2.0	0.75	ug/l	80.0	21.3	101	70-130			
Lead	103	1.0	0.10	ug/l	80.0	23.3	100	70-130			
Thallium	82.8	1.0	0.15	ug/l	80.0	ND	103	70-130			
Matrix Spike Analyzed: 12/20/2007 (7L2	0116-MS2)				Sou	rce: IQL	2059-01				
Antimony	82.3	2.0	0.20	ug/l	80.0	1.68	101	70-130			
Cadmium	78.8	1.0	0.11	ug/l	80.0	0.396	98	70-130			
Copper	101	2.0	0.75	ug/l	80.0	19.1	102	70-130			
Lead	85.1	1.0	0.10	ug/l	80.0	3.19	102	70-130			
Thallium	82.3	1.0	0.15	ug/l	80.0	ND	103	70-130			
Matrix Spike Dup Analyzed: 12/20/2007	(7L20116-M	SD1)			Sou	rce: IQL	2190-01				
Antimony	79.3	2.0	0.20	ug/l	80.0	0.268	99	70-130	1	20	
Cadmium	78.6	1.0	0.11	ug/l	80.0	0.576	98	70-130	0	20	
Copper	101	2.0	0.75	ug/l	80.0	21.3	100	70-130	1	20	
Lead	104	1.0	0.10	ug/l	80.0	23.3	101	70-130	1	20	
Thallium	83.5	1.0	0.15	ug/l	80.0	ND	104	70-130	1	20	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129

Received: 12/19/07

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		23		CIIIUS	20,01	11001110	,,,,,,	2,,,,,,		2	Quuiii.
Batch: 7L20140 Extracted: 12/20/07	-										
Blank Analyzed: 12/20/2007 (7L20140-Bl	L K1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.10	ug/l							
Thallium	ND	1.0	0.15	ug/l							
LCS Analyzed: 12/20/2007 (7L20140-BS1	1)										
Antimony	80.2	2.0	0.20	ug/l	80.0		100	85-115			
Cadmium	78.5	1.0	0.20	ug/l	80.0		98	85-115			
Copper	75.0	2.0	0.75	ug/l	80.0		94	85-115			
Lead	79.6	1.0	0.10	ug/l	80.0		100	85-115			
Thallium	81.8	1.0	0.15	ug/l	80.0		102	85-115			
Thuritain	01.0	1.0	0.15	ug/1	00.0		102	05 115			
Matrix Spike Analyzed: 12/20/2007 (7L20	,					rce: IQL	2118-01				
Antimony	81.3	2.0	0.20	ug/l	80.0	0.742	101	70-130			
Cadmium	75.0	1.0	0.11	ug/l	80.0	ND	94	70-130			
Copper	73.9	2.0	0.75	ug/l	80.0	2.16	90	70-130			
Lead	76.2	1.0	0.10	ug/l	80.0	0.118	95	70-130			
Thallium	78.3	1.0	0.15	ug/l	80.0	ND	98	70-130			
Matrix Spike Dup Analyzed: 12/20/2007	(7L20140-M	SD1)			Sou	rce: IQL	2118-01				
Antimony	81.5	2.0	0.20	ug/l	80.0	0.742	101	70-130	0	20	
Cadmium	75.2	1.0	0.11	ug/l	80.0	ND	94	70-130	0	20	
Copper	73.8	2.0	0.75	ug/l	80.0	2.16	90	70-130	0	20	
Lead	76.0	1.0	0.10	ug/l	80.0	0.118	95	70-130	0	20	
Thallium	78.3	1.0	0.15	ug/l	80.0	ND	98	70-130	0	20	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129

Received: 12/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L19051 Extracted: 12/19/07	-										
Blank Analyzed: 12/19/2007 (7L19051-Bl	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 12/19/2007 (7L19051-BS1	1)										
Chloride	4.91	0.50	0.25	mg/l	5.00		98	90-110			
Sulfate	10.1	0.50	0.20	mg/l	10.0		101	90-110			
Matrix Spike Analyzed: 12/19/2007 (7L19	9051-MS1)				Sou	rce: IQL	1974-01				
Chloride	73.5	10	5.0	mg/l	50.0	28.9	89	80-120			
Sulfate	515	10	4.0	mg/l	100	448	66	80-120			MHA
Matrix Spike Dup Analyzed: 12/19/2007	(7L19051-MS	SD1)			Sou	rce: IQL	1974-01				
Chloride	73.6	10	5.0	mg/l	50.0	28.9	89	80-120	0	20	
Sulfate	515	10	4.0	mg/l	100	448	67	80-120	0	20	MHA
Batch: 7L20129 Extracted: 12/20/07	_										
Blank Analyzed: 12/20/2007 (7L20129-Bl	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 12/20/2007 (7L20129-BS1	1)										
Total Suspended Solids	927	10	10	mg/l	1000		93	85-115			
Duplicate Analyzed: 12/20/2007 (7L20129	9-DUP1)				Sou	rce: IQL	2122-01				
Total Suspended Solids	71.0	10	10	mg/l		73.0			3	10	

TestAmerica Irvine

0/ DEC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/19/07

DDD

Data

Report Number: IQL2129

Donouting

Received: 12/19/07

METHOD BLANK/QC DATA

INORGANICS

Spiles Source

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L21099 Extracted: 12/21/07	_										
Blank Analyzed: 12/21/2007 (7L21099-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 12/21/2007 (7L21099-BS	1)										
-											
Total Dissolved Solids	992	10	10	mg/l	1000		99	90-110			
Duplicate Analyzed: 12/21/2007 (7L2109	9-DUP1)				Sou	rce: IQL	2115-04				
Total Dissolved Solids	492	10	10	mg/l		496			1	10	
B-4-b-71 21125 F-4											
Batch: 7L21125 Extracted: 12/22/07	_										
Blank Analyzed: 12/26/2007 (7L21125-B	LK1)										
Oil & Grease	ND	5.0	1.2	mg/l							
				8							
LCS Analyzed: 12/26/2007 (7L21125-BS	1)										MNR1
Oil & Grease	18.8	5.0	1.2	mg/l	20.0		94	65-120			
LCS Dup Analyzed: 12/26/2007 (7L2112:	5-BSD1)										
Oil & Grease	18.7	5.0	1.2	mg/l	20.0		94	65-120	1	20	
		- / -		0 -					_		

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129

Received: 12/19/07

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W7L0889 Extracted: 12/26/9	<u>07</u>										
Blank Analyzed: 12/27/2007 (W7L0889-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 12/27/2007 (W7L0889-B	SS1)										
Mercury, Dissolved	1.00	0.20	0.050	ug/l	1.00		100	85-115			
Mercury, Total	1.00	0.20	0.050	ug/l	1.00		100	85-115			
Matrix Spike Analyzed: 12/27/2007 (W7	L0889-MS1)				Sou	rce: 7121	925-01				
Mercury, Dissolved	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Matrix Spike Analyzed: 12/27/2007 (W7	/L0889-MS2)				Sou	rce: 7121	925-03				
Mercury, Dissolved	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	0.050	ug/l	1.00	ND	88	70-130			
Matrix Spike Dup Analyzed: 12/27/2007	(W7L0889-M	ISD1)			Sou	rce: 7121	925-01				
Mercury, Dissolved	0.909	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.909	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Matrix Spike Dup Analyzed: 12/27/2007	(W7L0889-M	ISD2)			Sou	rce: 7121	925-03				
Mercury, Dissolved	0.907	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.907	0.20	0.050	ug/l	1.00	ND	91	70-130	3	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129

Received: 12/19/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 9806 Extracted: 12/23/07											
<u> </u>											
Blank Analyzed: 12/25/2007 (MB001)					Sou	rce:					
2,3,7,8-TCDD	ND	5.00	N/A	ug/L				50-150		25	
1,2,3,7,8-PeCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,6,7,8-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,7,8,9-HxCDD	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDD	ND	25.0	N/A	ug/L				50-150		25	
OCDD	ND	50.0	N/A	ug/L				50-150		25	
2,3,7,8-TCDF	ND	5.00	N/A	ug/L				50-150		25	
1,2,3,7,8-PeCDF	ND	25.0	N/A	ug/L				50-150		25	
2,3,4,7,8-PeCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,6,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
2,3,4,6,7,8-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,7,8,9-HxCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDF	ND	25.0	N/A	ug/L				50-150		25	
1,2,3,4,7,8,9-HpCDF	ND	25.0	N/A	ug/L				50-150		25	
OCDF	ND	50.0	N/A	ug/L				50-150		25	
Total TCDD	ND	5.00	N/A	ug/L				50-150		25	
Total PeCDD	ND	25.0	N/A	ug/L				50-150		25	
Total HxCDD	ND	25.0	N/A	ug/L				50-150		25	
Total HpCDD	ND	25.0	N/A	ug/L				50-150		25	
Total TCDF	0.00000139	5.00	N/A	ug/L				50-150		25	
Total PeCDF	ND	25.0	N/A	ug/L				50-150		25	
Total HxCDF	ND	25.0	N/A	ug/L				50-150		25	
Total HpCDF	ND	25.0	N/A	ug/L				50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	0.00156			ug/L	2000		78	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00193			ug/L	2000		96	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00139			ug/L	2000		70	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00124			ug/L	2000		62	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00128			ug/L	2000		64	50-150			
Surrogate: 13C-OCDD	0.00237			ug/L	4000		59	50-150			
Surrogate: 13C-2,3,7,8-TCDF	0.00158			ug/L	2000		79	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00197			ug/L	2000		99	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00208			ug/L	2000		104	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00139			ug/L	2000		70	50-150			

TestAmerica Irvine

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129

Reporting

Received: 12/19/07

RPD

Data

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

Spike

Source

		Reporting			Spike	Source		OILEC		IXI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9806 Extracted: 12/23/07											
Blank Analyzed: 12/25/2007 (MB001)					Sou	ırce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00113			ug/L	2000		57	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00129			ug/L	2000		64	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00128			ug/L	2000		64	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00112			ug/L	2000		56	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00112			ug/L	2000		56	50-150			
Surrogate: 13C-OCDF	0.00203			ug/L	4000		51	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	0.000755			ug/L	800		94	50-150			
LCS Analyzed: 12/24/2007 (OPR001)					Sou	ırce:					
2,3,7,8-TCDD	10.3	5.00	N/A	ug/L	10		103	50-150		25	
1,2,3,7,8-PeCDD	51.0	25.0	N/A	ug/L	50		102	50-150		25	
1,2,3,4,7,8-HxCDD	50.5	25.0	N/A	ug/L	50		101	50-150		25	
1,2,3,6,7,8-HxCDD	53.0	25.0	N/A	ug/L	50		106	50-150		25	
1,2,3,7,8,9-HxCDD	51.8	25.0	N/A	ug/L	50		104	50-150		25	
1,2,3,4,6,7,8-HpCDD	50.8	25.0	N/A	ug/L	50		102	50-150		25	
OCDD	100	50.0	N/A	ug/L	100		100	50-150		25	
2,3,7,8-TCDF	10.5	5.00	N/A	ug/L	10		105	50-150		25	
1,2,3,7,8-PeCDF	51.3	25.0	N/A	ug/L	50		103	50-150		25	
2,3,4,7,8-PeCDF	52.4	25.0	N/A	ug/L	50		105	50-150		25	
1,2,3,4,7,8-HxCDF	50.2	25.0	N/A	ug/L	50		100	50-150		25	
1,2,3,6,7,8-HxCDF	54.1	25.0	N/A	ug/L	50		108	50-150		25	
2,3,4,6,7,8-HxCDF	53.7	25.0	N/A	ug/L	50		107	50-150		25	
1,2,3,7,8,9-HxCDF	52.4	25.0	N/A	ug/L	50		105	50-150		25	
1,2,3,4,6,7,8-HpCDF	50.4	25.0	N/A	ug/L	50		101	50-150		25	
1,2,3,4,7,8,9-HpCDF	51.8	25.0	N/A	ug/L	50		104	50-150		25	
OCDF	104	50.0	N/A	ug/L	100		104	50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	84.4			ug/L	100		84	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	83.4			ug/L	100		83	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	81.1			ug/L	100		81	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	68.0			ug/L	100		68	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	75.4			ug/L	100		75	50-150			
Surrogate: 13C-OCDD	126			ug/L	200		63	50-150			
Surrogate: 13C-2,3,7,8-TCDF	79.7			ug/L	100		80	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	91.9			ug/L	100		92	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	88.6			ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	79.3			ug/L	100		79	50-150			
TestAmerica Irvine											

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 12/19/07

Report Number: IQL2129

Received: 12/19/07

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9806 Extracted: 12/23/07											
LCS Analyzed: 12/24/2007 (OPR001)					Sou	rce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	65.5			ug/L	100		66	50-150			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	68.9			ug/L	100		69	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	68.6			ug/L	100		69	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	65.2			ug/L	100		65	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	62.5			ug/L	100		63	50-150			
Surrogate: 13C-OCDF	108			ug/L	200		54	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	39.6			ug/L	40		99	50-150			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Report Number: IQL2129

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Routine Outfall 010

Sampled: 12/19/07 Received: 12/19/07

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IQL2129-01	413.1 Oil and Grease	Oil & Grease	mg/l	0.19	4.7	15
IQL2129-01	Antimony-200.8	Antimony	ug/l	0.68	2.0	6.00
IQL2129-01	Antimony-200.8, Diss	Antimony	ug/l	0.71	2.0	6.00
IQL2129-01	Cadmium-200.8	Cadmium	ug/l	0.050	1.0	4.00
IQL2129-01	Cadmium-200.8, Diss	Cadmium	ug/l	0.029	1.0	4.00
IQL2129-01	Chloride - 300.0	Chloride	mg/l	62	10	150
IQL2129-01	Copper-200.8	Copper	ug/l	3.39	2.0	14
IQL2129-01	Copper-200.8, Diss	Copper	ug/l	1.89	2.0	14
IQL2129-01	Lead-200.8	Lead	ug/l	0.25	1.0	5.20
IQL2129-01	Lead-200.8, Diss	Lead	ug/l	0.031	1.0	5.20
IQL2129-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	2.63	0.26	10.00
IQL2129-01	Sulfate-300.0	Sulfate	mg/l	33	0.50	250
IQL2129-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	345	10	850
IQL2129-01	Thallium-200.8	Thallium	ug/l	0.0086	1.0	2.00
IQL2129-01	Thallium-200.8, Diss	Thallium	ug/l	0	1.0	2.00

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Report Number: IQL2129 Sampled: 12/19/07
Received: 12/19/07

Attention: Bronwyn Kelly

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

H The signal-tonoise ratio is greater than 10:1

J The amount detected is below the Lower CalibrationLimit of the instrument

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Arcadia, CA 91007

Project ID: Routine Outfall 010 618 Michillinda Avenue, Suite 200

Sampled: 12/19/07 Report Number: IQL2129 Received: 12/19/07

Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical Perspectives

2714 Exchange Drive - Wilmington, NC 28405

Method Performed: 1613-Dioxin-HR Alta

Samples: IQL2129-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IQL2129-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1

Samples: IQL2129-01

TestAmerica Irvine

	Т						Ţ	1	Т	—— _T	ĘΠ	$\overline{}$	T-	ŢŢŢ	1	T	/ j	
Page 1 of	Field readings.	pH= 7.53	Sample Collection Time = ****	Comments							Filter win 24hr of receipt at lab					C C	VALUE OF THE PROPERTY OF THE P	Turn around Titne: (check) 24 Hours 48 Hours 72 Hours Sample Integrity. (Check) Infact On Ice:
ANALYSIS REQUIRED	dS :sl	efaM b T ,ç	al Dissolve Cu, Pb, H <u>(</u>	Tota Cd,							×							1910
ANA			8.3T ,8	SQT						×								Date/Time: Date/Time: \(\lambda \alpha \column
		N- ^z ON-	+ ^E ON [†] OS	CL.					×									Dati Dati
R N			lls bris) (I) 9ssen2 &				×	×										
CUSTODY FORM			il Recovera Cd, 'Cu, PŁ		×	×												ed By Curant Ma
UST				Bottle #	1A	18	2A, 2B	3A, 3B	4A, 4B	5A, 5B	ŷ							Received By Received By Received By
i	IPDES II 010 Building 203			Preservative	HNO ₃	HNO3	None	HCI	None	None	None							25.
04/28/06 CHAIN OF	Project. Boeing-SSFL NPDES Routine Outfall 010 Stormwater at Building 203	Phone Number:	(626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time	-M-67 8415					->	72-19-67 - 0915							
28/06 28/06 28/06	<u> </u>			# of Cont.		-	2	2	2	2	7							Date/Time: Date/Time: Date/Time: Date/Time:
ersion 04/	uite 200	seph Doa wyn Kell	3 R	Container #	1	1L Poly	1L Amber	1L Amber	500 ml Poly	500 ml Polv	1L Poly							
erica v	dia dia Avenue, S 007	Contact: Jos ger: Bron	1. museisce	Sample Cor Matrix	17	W 1LF			W 500 m	W 500 r	W 1L1							
Test America Version 04/28/06	Cilent Name/Address: MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak Project Manager: Bronwyn Kelly	Sampler: J. wwe. scar	Sample S Description	-	Outfall 010 M	Outfall 010 W	Outfall 010 W	Outfall 010 M	Outfall 010 W	Outfall 010 M							Relinquished By Relinquished By

December 27, 2007

Vista Project I.D.: 30102

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on December 21, 2007 under your Project Name "IQL2129". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier

Laboratory Director

Malle Mares

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 12/21/2007

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30102-001 IQL2129-01

SECTION II

NPDES **3 329** Page **3** of 421

Method Blank					EPA Method 1613
Matrix: Aqueous		QC Batch No.:	9086	Lab Sample: 0-MB001	
Sample Size: 1.00 L		Date Extracted:	23-Dec-07	Date Analyzed DB-5: 25-Dec-07	Date Analyzed DB-225: NA
Analyte Conc. (ug/L)	(ug/L)	DL ^a EMPC ^b	b Qualifiers	Labeled Standard	%R LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000817		<u>IS</u> 13C-2,3,7,8-TCDD	78.1 25 - 164
1,2,3,7,8-PeCDD	ND	0.000000065			96.3 25 - 181
1,2,3,4,7,8-HxCDD	ND	0.00000174		13C-1,2,3,4,7,8-HxCDD	69.7 32 - 141
1,2,3,6,7,8-HxCDD	ND	0.00000175		13C-1,2,3,6,7,8-HxCDD	62.0 28 - 130
1,2,3,7,8,9-HxCDD	ND	0.00000174		13C-1,2,3,4,6,7,8-HpCDD	63.9 23 - 140
1,2,3,4,6,7,8-HpCDD	ND	0.00000246		13C-OCDD	59.3 17 - 157
OCDD	ND	0.00000423		13C-2,3,7,8-TCDF	79.1 24 - 169
2,3,7,8-TCDF	ND	0.00000140		13C-1,2,3,7,8-PeCDF	98.6 24 - 185
1,2,3,7,8-PeCDF	ND	0.00000129		13C-2,3,4,7,8-PeCDF	104 21 - 178
2,3,4,7,8-PeCDF	ND	0.00000126		13C-1,2,3,4,7,8-HxCDF	69.6 26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000846		13C-1,2,3,6,7,8-HxCDF	56.7 26 - 123
1,2,3,6,7,8-HxCDF	ND	0.000000004		13C-2,3,4,6,7,8-HxCDF	64.3 28 - 136
2,3,4,6,7,8-HxCDF	ND	0.000000973		13C-1,2,3,7,8,9-HxCDF	63.8 29 - 147
1,2,3,7,8,9-HxCDF	N	0.00000140		13C-1,2,3,4,6,7,8-HpCDF	55.9 28 - 143
1,2,3,4,6,7,8-HpCDF	ND	0.00000100		13C-1,2,3,4,7,8,9-HpCDF	55.8 26-138
1,2,3,4,7,8,9-HpCDF	N Q	0.00000138		13C-OCDF	50.8 17 - 157
OCDF	ND	0.00000156		<u>CRS</u> 37Cl-2,3,7,8-TCDD	94.4 35 - 197
Totals				Footnotes	
Total TCDD	ND	0.000000817		a. Sample specific estimated detection limit.	
Total PeCDD	ND	0.000000065		b. Estimated maximum possible concentration.	
Total HxCDD	N	0.00000175		c. Method detection limit.	
Total HpCDD	ND	0.00000246		d. Lower control limit - upper control limit.	
Total TCDF	0.00000139	6			
Total PeCDF	ND	0.00000128			
Total HxCDF	N	0.00000101			
Total HpCDF	ND	0.00000117			
Analyst: JMH				Approved By: William J. Luksemburg	uksemburg 27-Dec-2007 13:18

OPR Results						EP	EPA Method 1613	613
Matrix: Aqueous		QC Batch No.: Date Extracted:	9806	Lab Sample: 0-OP	0-OPR001	Date Analyz	Date Analyzed DR-225.	Z
	Spike Conc.	Spike Conc. Conc. (ng/mL)	OPR Limits	Labeled Standard		%R	LCL-UCL Qualifier	Qualifier
2,3,7,8-TCDD	10.0	10.3	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD		84.4	25 - 164	
1,2,3,7,8-PeCDD	50.0	51.0	35 - 71	13C-1,2,3,7,8-PeCDD		83.4	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	50.5	35 - 82	13C-1,2,3,4,7,8-HxCDD		81.1	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	53.0	38 - 67	13C-1,2,3,6,7,8-HxCDD		0.89	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	51.8	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	Q	75.4	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	50.8	35 - 70	13C-OCDD		63.2	17 - 157	
OCDD	100	100	78 - 144	13C-2,3,7,8-TCDF		7.67	24 - 169	
2,3,7,8-TCDF	10.0	10.5	7.5 - 15.8	13C-1,2,3,7,8-PeCDF		91.9	24 - 185	
1,2,3,7,8-PeCDF	50.0	51.3	40 - 67	13C-2,3,4,7,8-PeCDF		88.6	21 - 178	
2,3,4,7,8-PeCDF	50.0	52.4	34 - 80	13C-1,2,3,4,7,8-HxCDF		79.3	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	50.2	36 - 67	13C-1,2,3,6,7,8-HxCDF		65.5	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	54.1	42 - 65	13C-2,3,4,6,7,8-HxCDF		68.9	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	53.7	35 - 78	13C-1,2,3,7,8,9-HxCDF		9.89	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	52.4	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	Ā	65.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	50.4	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	Ā	62.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	51.8	39 - 69	13C-OCDF		54.0	17 - 157	
OCDF	100	104	63 - 170	CRS 37CI-2,3,7,8-TCDD		99.1	35 - 197	

William J. Luksemburg 27-Dec-2007 13:12 Approved By:

Analyst: MAS

Client Data				Sample Data		Laboratory Data				
Name:	Test Ame	Test America-Irvine, CA		Matrix:	Aqueous	Lab Sample:	30102-001	Date Received:	ived:	21-Dec-07
Date Collected: Time Collected:	19-D 0915	19-Dec-07 0915		Sample Size:	1.01 L	QC Batch No.: Date Analyzed DB-5:	9806 27-Dec-07	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225:	23-Dec-07 NA
Analyte		Conc. (ug/L)	DF a	$\mathbf{EMPC}^{\mathrm{b}}$	Qualifiers	Labeled Standard	dard	%R	TCT-nCT _q	Oualifiers
2,3,7,8-TCDD	D	ND	0.00000112	12		<u>IS</u> 13C-2,3,7,8-TCDD	DD	76.1	25 - 164	
1,2,3,7,8-PeCDD	CDD	ND	0.0000018	81		13C-1,2,3,7,8-PeCDD	eCDD	59.0	25 - 181	
1,2,3,4,7,8-HxCDD	xCDD	ND	0.00000273	73		13C-1,2,3,4,7,8-HxCDD	-HxCDD	72.4	32 - 141	
1,2,3,6,7,8-HxCDD	xCDD	ND	0.00000289	68		13C-1,2,3,6,7,8-HxCDD	-HxCDD	68.2	28 - 130	
1,2,3,7,8,9-HxCDD	xCDD	ND	0.00000274	74		13C-1,2,3,4,6,7,8-HpCDD	,8-НрСDD	47.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	HpCDD	ND	0.00000785	85		13C-OCDD		27.6	17 - 157	
OCDD		0.0000375			ſ	13C-2,3,7,8-TCDF	DF	77.3	24 - 169	
2,3,7,8-TCDF	Ē	ND	0.00000136	36		13C-1,2,3,7,8-PeCDF	eCDF	62.3	24 - 185	
1,2,3,7,8-PeCDF	DF	ND	0.00000295	95		13C-2,3,4,7,8-PeCDF	eCDF	65.2	21 - 178	
2,3,4,7,8-PeCDF	DF	ND	0.00000276	92		13C-1,2,3,4,7,8-HxCDF	-HxCDF	70.4	26 - 152	
1,2,3,4,7,8-HxCDF	xCDF	ND	0.00000123	23		13C-1,2,3,6,7,8-HxCDF	-HxCDF	73.6	26 - 123	
1,2,3,6,7,8-HxCDF	xCDF	ND	0.00000121	21		13C-2,3,4,6,7,8-HxCDF	-HxCDF	73.2	28 - 136	
2,3,4,6,7,8-HxCDF	xCDF	ND	0.00000127	27		13C-1,2,3,7,8,9-HxCDF	-HxCDF	57.8	29 - 147	
1,2,3,7,8,9-HxCDF	xCDF	ND	0.00000230	30		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	54.8	28 - 143	
1,2,3,4,6,7,8-HpCDF	HpCDF	ND	0.00000148	48		13C-1,2,3,4,7,8,9-HpCDF	,9-HpCDF	26.4	26 - 138	
1,2,3,4,7,8,9-HpCDF	·HpCDF	ND	0.00000333	33		13C-OCDF		14.3	17 - 157	Н
OCDF		ND	0.0000159	6		<u>CRS</u> 37CI-2,3,7,8-TCDD	CDD	84.3	35 - 197	
Totals						Footnotes				
Total TCDD		ND	0.00000112	12		a. Sample specific estimated detection limit.	ed detection limit.			
Total PeCDD	•	ND	0.0000018	81		b. Estimated maximum possible concentration.	ssible concentration.			
Total HxCDD	0	ND	0.00000279	62		c. Method detection limit.				
Total HpCDD	0	ND	0.00000785	85		d. Lower control limit - upper control limit.	oper control limit.			
Total TCDF		ND	0.00000136	36						
Total PeCDF	r-	ND	0.00000286	98						
Total HxCDF	[т.	ND	0.00000143	43						
Total HpCDF	[Ŧ.	ND	0.00000198	86						
Analyst: DMS	SI					Approved By:	William J. Luksemburg	sempang	27-Dec-2007 13:18	7 13:18

APPENDIX

Project 30102 NPDES - 333 Page 7 of 421

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine IQL2129

30102 0.3°C

°C

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory-SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone: (916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

Ice:

Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IQL2129-01	Water		Sampled: 12/19/07 09:15	
1613-Dioxin-HR-Alta	ug/l	12/28/07	12/26/07 09:15	J flags,17 congeners,no
EDD + Level 4	N/A	12/28/07	01/16/08 09:15	TEQ,ug/L,sub=Vista Excel EDD email to pm,Include Std logs for Lvl IV
Containers Supplied:				10. 24.14
1 L Amber (C)	1 L Amber (D)			

Released By

12/21/07 Date/Time

Released By Date/Time Received By

Project 30102

SAMPLE LOG-IN CHECKLIST

Vista Project #:	30102					1	TAT	7	
	Date/Time			Initials:		Loc	cation	: W	R-2
Samples Arrival:	12/21/07	0	947	Mad	5	She	elf/Rac	ck:	N/A
	Date/Time			Initials:		Loc	ation	: W	RZ
Logged In:	12/21/07	11	00	Bo	B	She	elf/Rac	ck:	<u>C3</u>
Delivered By:	FedEx	UF	PS	Cal	DHL	-	Hand Delivered		Other
Preservation:	(lce)	В	lue Ice	Dr	у Ісе)		None
Temp °C ().3	3	Time	: 0	952		The	ermon	neter l	D: IR-1

				YES	NO	NA
Adequate Sample Volume Recei	ved?			V		
Holding Time Acceptable?				V		
Shipping Container(s) Intact?)		
Shipping Custody Seals Intact?				7		
Shipping Documentation Presen	t?					
Airbill Trk#	1909 (2204 78	014			
Sample Container Intact?				V		
Sample Custody Seals Intact?						V
Chain of Custody / Sample Docu	~		·			
COC Anomaly/Sample Acceptar	ice Form con	npleted?			V	
If Chlorinated or Drinking Water	Samples, Ac	ceptable Preser	vation?			
Na₂S₂O₃ Preservation Document	ted?	coc	Sample Container		None	
Shipping Container	Vista	(Client)	Retain Re	eturn)	Disp	ose
Comments:						

Sample Login 3/2007 rmh PPES 1 337 Page 11 of 421

SUBCONTRACT ORDER

TestAmerica Irvine

7122007

IQL2129

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone:(626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments	
Sample ID: IQL2129-01	Water		Sampled: 12/1 :	9/07 09:15	
Mercury - 245.1, Diss -OUT	mg/l	12/28/07	01/16/08 09:15		
Mercury - 245.1-OUT	mg/l	12/28/07	01/16/08 09:15		
Containers Supplied: 125 mL Poly w/HNO3 (L)	125 mL Poly	/ (M)			A.

Released By

Received By

Received By

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

12/28/07 15:27

17461 Derian Ave, Suite 100

Received Date:

12/20/07 10:00

Irvine, CA 92614

Turn Around:

Attention: Joseph Doak

Work Order #:

5 days

Phone: (949) 261-1022

7122007

Fax: (949) 260-3297

Client Project:

IQL2129

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 12/20/07 10:00 with the Chain of Custody document. The samples were received in good condition. The samples were received at 4.5 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122007 Project ID: IQL2129 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IQL2129-01	Client		7122007-01	Water	12/19/07 09:15

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122007 Project ID: IQL2129 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

IQL2129-01 7122007-01 (Water)

Date Sampled: 12/19/07 09:15

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W7L0889	12/26/07	12/27/07	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W7L0889	12/26/07	12/27/07	jlp	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626 336 2139 Fay 6

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122007 Project ID: IQL2129 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122007 Project ID: IQL2129 Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

Metals by EPA 200 Series Methods - Quality Control

%REC

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W7L0889 - EPA 245.1										
Blank (W7L0889-BLK1)				Analyzed:	12/27/07					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W7L0889-BS1)				Analyzed:	12/27/07					
Mercury, Dissolved	1.00	0.20	ug/l	1.00		100	85-115			
Mercury, Total	1.00	0.20	ug/l	1.00		100	85-115			
Matrix Spike (W7L0889-MS1)	So	ource: 7121925	5-01	Analyzed:	12/27/07					
Mercury, Dissolved	0.882	0.20	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	ug/l	1.00	ND	88	70-130			
Matrix Spike (W7L0889-MS2)	So	ource: 7121925	5-03	Analyzed:	12/27/07					
Mercury, Dissolved	0.882	0.20	ug/l	1.00	ND	88	70-130			
Mercury, Total	0.882	0.20	ug/l	1.00	ND	88	70-130			
Matrix Spike Dup (W7L0889-MSD1)	So	ource: 7121925	5-01	Analyzed:	12/27/07					
Mercury, Dissolved	0.909	0.20	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.909	0.20	ug/l	1.00	ND	91	70-130	3	20	
Matrix Spike Dup (W7L0889-MSD2)	So	ource: 7121925	5-03	Analyzed:	12/27/07					
Mercury, Dissolved	0.907	0.20	ug/l	1.00	ND	91	70-130	3	20	
Mercury, Total	0.907	0.20	ug/l	1.00	ND	91	70-130	3	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7122007 Project ID: IQL2129

Date Received: 12/20/07 10:00 Date Reported: 12/28/07 15:27

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 14

Outfall 010 - BMP Effectiveness, December 18-19, 2007 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 12/18/07-12/19/07

Received: 12/19/07 Revised: 01/31/08 15:22

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IQL2159-01	010 EFF-1	Water
IQL2159-02	010 EFF-2	Water
IQL2159-03	010 EFF-3	Water
IQL2159-04	010 EFF-4	Water
IQL2159-05	010 EFF-5	Water
IQL2159-06	010 EFF-6	Water
IQL2159-07	010 EFF-7	Water
IQL2159-08	010 EFF-8	Water
IQL2159-09	010 EFF-9	Water
IQL2159-10	010 EFF-10	Water
IQL2159-11	010 EFF-11	Water
IQL2159-12	010 EFF-12	Water
IQL2159-13	010 EFF-13	Water
IQL2159-14	010 EFF-14	Water
IQL2159-15	010 EFF-15	Water
IQL2159-16	010 EFF-16	Water
IQL2159-17	010 EFF-17	Water
IQL2159-18	010 EFF-18	Water
IQL2159-19	010 EFF-19	Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: IQL2159

Sampled: 12/18/07-12/19/07

Received: 12/19/07

INORGANICS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2159-01 (010 EFF-1 - Water)	1			Sampled	: 12/18/07			
Reporting Units: g/cc Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-01 (010 EFF-1 - Water) Reporting Units: mg/l)			Sampled	: 12/18/07			
Sediment	ASTM D3977	7L28102	10	24	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-02 (010 EFF-2 - Water) Reporting Units: g/cc)			Sampled	: 12/18/07			
Density	Displacement	7L28071	NA	1.0	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-02 (010 EFF-2 - Water) Reporting Units: mg/l	1			Sampled	: 12/18/07			
Sediment	ASTM D3977	7L28102	10	36	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-03 (010 EFF-3 - Water) Reporting Units: g/cc	1			Sampled	: 12/18/07			
Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-03 (010 EFF-3 - Water) Reporting Units: mg/l)			Sampled	: 12/18/07			
Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-04 (010 EFF-4 - Water) Reporting Units: g/cc)			Sampled	: 12/18/07			
Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-04 (010 EFF-4 - Water) Reporting Units: mg/l)			Sampled	: 12/18/07			
Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-05 (010 EFF-5 - Water) Reporting Units: g/cc)			Sampled	: 12/18/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-05 (010 EFF-5 - Water) Reporting Units: mg/l)			Sampled	: 12/18/07			
Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: IQL2159

Sampled: 12/18/07-12/19/07

Received: 12/19/07

INORGANICS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2159-06 (010 EFF-6 - Water))			Sampled	: 12/18/07			
Reporting Units: g/cc Density	Displacement	7L28071	NA	0.98	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-06 (010 EFF-6 - Water))			Sampled	: 12/18/07			
Reporting Units: mg/l Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-07 (010 EFF-7 - Water))			Sampled	: 12/19/07			
Reporting Units: g/cc Density	Displacement	7L28071	NA	1.0	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-07 (010 EFF-7 - Water))			Sampled	: 12/19/07			
Reporting Units: mg/l Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-08 (010 EFF-8 - Water))			Sampled	: 12/19/07			
Reporting Units: g/cc Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-08 (010 EFF-8 - Water))			Sampled	: 12/19/07			
Reporting Units: mg/l Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-09 (010 EFF-9 - Water)	1			Sampled	: 12/19/07			
Reporting Units: g/cc Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-09 (010 EFF-9 - Water)	1			Sampled	: 12/19/07			
Reporting Units: mg/l Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-10 (010 EFF-10 - Water	r)			Sampled	: 12/19/07			
Reporting Units: g/cc Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-10 (010 EFF-10 - Water	r)			Sampled	: 12/19/07			
Reporting Units: mg/l Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IQL2159

Sampled: 12/18/07-12/19/07

Received: 12/19/07

INORGANICS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2159-11 (010 EFF-11 - Water	r)			Sampled:	12/19/07			
Reporting Units: g/cc Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-11 (010 EFF-11 - Water Reporting Units: mg/l	r)			Sampled:	12/19/07			
Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-12 (010 EFF-12 - Water Reporting Units: g/cc	r)			Sampled:	12/19/07			
Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-12 (010 EFF-12 - Water Reporting Units: mg/l	r)			Sampled:	12/19/07			
Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-13 (010 EFF-13 - Water Reporting Units: g/cc	r)			Sampled:	12/19/07			
Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-13 (010 EFF-13 - Water Reporting Units: mg/l	r)			Sampled:	12/19/07			
Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-14 (010 EFF-14 - Water Reporting Units: g/cc	r)			Sampled:	12/19/07			
Density	Displacement	7L28071	NA	1.0	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-14 (010 EFF-14 - Water Reporting Units: mg/l	r)			Sampled:	12/19/07			
Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-15 (010 EFF-15 - Water Reporting Units: g/cc	r)			Sampled:	12/19/07			
Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-15 (010 EFF-15 - Wate	r)			Sampled:	12/19/07			
Reporting Units: mg/l Sediment	ASTM D3977	7L28102	10	ND	1	12/28/2007	12/28/2007	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 12/18/07-12/19/07

Arcadia, CA 91007 Report Number: IQL2159 Received: 12/19/07

Attention: Bronwyn Kelly

INORGANICS

		11.01.						
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2159-16 (010 EFF-16 - Wate	r)			Sampled:	12/19/07			
Reporting Units: g/cc								
Density	Displacement	7L28071	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-16 (010 EFF-16 - Wate	r)			Sampled:	12/19/07			
Reporting Units: mg/l	A CITAL DOOR	71.20102	10	NID	1	12/29/2007	12/20/2007	
Sediment	ASTM D3977	7L28103	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-17 (010 EFF-17 - Wate	r)			Sampled:	12/19/07			
Reporting Units: g/cc Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
·	•	/L200/3	IVA			12/20/2007	12/20/2007	
Sample ID: IQL2159-17 (010 EFF-17 - Wate	r)			Sampled:	12/19/07			
Reporting Units: mg/l Sediment	ASTM D3977	7L28103	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-18 (010 EFF-18 - Wate	r)			Sampled:	12/19/07			
Reporting Units: g/cc								
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-18 (010 EFF-18 - Wate Reporting Units: mg/l	r)			Sampled:	12/19/07			
Sediment Sediment	ASTM D3977	7L28103	10	ND	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-19 (010 EFF-19 - Wate Reporting Units: g/cc	r)			Sampled:	12/19/07			
Density	Displacement	7L28073	NA	0.99	1	12/28/2007	12/28/2007	
Sample ID: IQL2159-19 (010 EFF-19 - Wate Reporting Units: mg/l	r)			Sampled:	12/19/07			
Sediment	ASTM D3977	7L28103	10	ND	1	12/28/2007	12/28/2007	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IQL2159

Sampled: 12/18/07-12/19/07 Received: 12/19/07

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 7L28071 Extracted: 12/28/07										
Duplicate Analyzed: 12/28/2007 (7L280	071-DUP1)				Source: I	QL2158-1	2			
Density	0.987	NA	g/cc		0.985			0	20	
Batch: 7L28073 Extracted: 12/28/07										
Duplicate Analyzed: 12/28/2007 (7L280	073-DUP1)				Source: I	QL2159-0	5			
Density	0.991	NA	g/cc		0.988			0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 12/18/07-12/19/07

Report Number: IQL2159 Received: 12/19/07

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program Sampled: 12/18/07-12/19/07

Report Number: IQL2159 Received: 12/19/07

Certification Summary

TestAmerica Irvine

Method Matrix Nelac California

ASTM D3977 Water Displacement Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

27.10

Test Am	erica .	est America version 04/28/06		CHAIN OF		CUSTODY	Y FORM	JC17.77	Page 1 of 1
Client Name/Address:	Address			Project: Boeing BMP	ig BMP			ANALYSIS REQU	EQUIRED
MWH-Arcadia 618 Michillinda Avenue, Suite 200	ıdia ı Avenue,	Suite 200		Effectiveness Monitoring Program	Monitoring Monitoring	D)	-(Field readings.
Arcadia, CA 91007	1007						NTSA		Temp = 1/1
Test America Contact: Joseph Doak	Contact: J	oseph Doak					ient C,		7.C3
Project Manager: Bronwyn Kelly	iger: Bro	onwyn Kelly		Phone Number: (626) 568-6691	er: -1		SS) u		Sample Collection Time = 200
Sampler: R. Kar	Dan			Fax Number: (626) 568-6515	3		S bəhdə loitishtə (7991-77		is comments
Sample Description	Sample	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	onoO		0180 (5.58.6)
010 EFF-1	^	500 mL Poly	1	12-18-07 18:00	None	-	×		
010 EFF-2	X	500 mL Poly	-		None	2	×		
010 EFF-3	× :	500 mL Poly	-		None	η,	× >		
010 EFF-4	3 3	500 mL Poly	-	12-18-07 22:00	None	4 ιν	< ×		
010 EFF-6	>	500 mL Poly	F	Т	None	9	×		
010 EFF-7	8	500 mL Poly	-	12-19-07 00:00	None	7	×		
010 EFF-8	>	500 mL Poly	-		None	8	×		
010 EFF-9	>	500 mL Poly	-		None	6	×		
010 EFF-10	8	500 mL Poly	-		None	10	×		
010 EFF-11	8	500 mL Poly	-		None	11	×		
010 EFF-12	>	500 mL Poly	-		None	12	×		
010 EFF-13	>	500 mL Poly	-	T	None	13	×		
010 EFF-14	>	500 mL Poly	-		None	4	×		
010 EFF-15	>	500 mL Poly	-		None	15	×		
010 EFF-16	3	500 mL Poly	-	12-19-07 09:00	None	16	×		
010 EFF-17	>	500 mL Poly	-	12-19-07 10:00	None	17	×		
010 EFF-18	3	500 mL Poly	- -	12-19-07 11:00	None	4 48	× >		À
010 577-19	۸۸ ۱۷۱	500 IIIL Poly	-	Г	None	2 8	< 1		
010 EEE_21	· /	500 ml Poly	-		and N	27	/ / *		
010 FFF-22	: ≥	500 ml. Poly	-		None	22	/ 		
010 EFF-23	8	500 mL Poly	-		None	23	×		
010 EFF-24	8	1 1	1		None	24 /			the second secon
Relinquished By	>	Date/	Date/Time:	ле:	Received By	T	Date/Time		Turn around Time: (check)
14.17		•		300		3	E C La	115/07 160	700000
Kellinguished By	\ \ \	_	Date/ Hime.	ë	Received by		רמומ/ ווווופ		46 Hours 10 Days
A	g g	al Line	19/16	77 1905	The same	and	121 Menel	12/19/07 (905	72 Hours Normal
Relinquished By	>		Date/Time	ne:	Received By	>	U Date/Time:		Sample Integrity: (Check) Intact On Ice:
								American () () () () () () () () () (

APPENDIX G

Section 15

Outfall 014, December 21, 2007

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IQL2416

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES

SDG: IQL2118

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IQL2416

Project Manager: B. Kelly Matrix: Soil

QC Level: IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine, Weck, Vista

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 014	IQL2416-01	97220-1, 7122636- 01, 30107-01	Water	12/21/07 0830	180.1, 300.0, 405.1, 1613, 1664, 6020, 8315M, SM2540C

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine, Vista, and Weck within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Vista and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IQL2118

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IQL2118

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
T	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IQL2118

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: IQL2118

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: January 25, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance

DATA VALIDATION REPORT Project: SSFL NPDES
SDG: IQL2118

criteria listed in Table 6 of Method 1613.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 245.1, 6020—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 25, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 245.1 and 6010B, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: As the sample was not analyzed by ICP-MS, the tuning criteria are not applicable.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP metals and 85-115% for mercury. Selenium was recovered at 150% in the 10 ppb check standard associated with the dissolved selenium analysis; therefore, selenium detected in the dissolved fraction was qualified as an estimated detect, "J."

DATA VALIDATION REPORT SSFL NPDES
SDG: IQL2118

 Blanks: Selenium was detected in the closing CCB (9.9 μg/L) associated with the total selenium analysis; therefore, selenium detected in the total selenium fraction was qualified as an estimated nondetect, "UJ." There were no other applicable detects in the method blanks or CCBs.

- Interference Check Samples: ICSA/B analyses were not analyzed on the same day as the site sample analyses. Recoveries were within the method-established control limits.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for all the dissolved analytes, except mercury. All recoveries and RPDs were within the laboratoryestablished control limits. Method accuracy for mercury was evaluated based on the LCS result.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: As the sample was not analyzed by ICP-MS, the internal standards criteria are not applicable.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

Selenium was detected in the dissolved fraction but was qualified as an estimated nondetect due to contamination noted in a bracketing CCB.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: January 24, 2008

DATA VALIDATION REPORT Project: SSFL NPDES

SDG: IQL2118

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), Standard Methods 180.1, 300.0, 405.1, 1664, 6020, 8315M, SM2540C and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The hydrazine aliquot was derivitized beyond the three day holding time; therefore, nondetected hydrazines in the samples were qualified as estimated nondetects, "UJ." The hydrazine aliquot was analyzed within three days of derivitization. All remaining holding times, 28 days for chloride and oil and grease, seven days for TDS, and 48 hours for BOD and turbidity, were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Blank Spikes and Laboratory Control Samples: All recoveries and RPDs were within the laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for the hydrazines. All recoveries were within the laboratory-established control limits. Method accuracy and/or precision for the remaining analytes were evaluated based on LCS results.
- Sample Result Verification: The sample results were verified against the raw data. No transcription or calculation errors were noted. In order to report chloride within the linear range of the calibration, chloride was analyzed at a 40x dilution. Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Client Data			Sample Data		Laboratory Data				
Name: Test	Test America-Irvine, CA		Matrix:	Aqueous	Lab Sample:	30107-001	Date Received:	eived:	27-Dec-07
flected: ollected:	21-Dec-07 0830		Sample Size:	0.962 L	QC Batch No.: Date Analyzed DB-5:	9823 30-Dec-07	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225;	28-Dec-07 NA
Analyte	Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard	ard	%R	rcr-ncr _q	Oualifiers
2,3,7,8-TCDD	QN ON	0.000000877	77	THE STREET	IS 13C-2,3,7,8-TCDD	DΩ	85.2	25-164	
1,2,3,7,8-PeCDD	ND	0.00000132	2		13C-1,2,3,7,8-PeCDD	eCDD	82.5	25 - 181	
1,2,3,4,7,8-HxCDD	R	0.00000220	0	では、	13C-1,2,3,4,7,8-HxCDD	НхСDD	74.3	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000218	8		13C-1,2,3,6,7,8-HxCDL	HxCDD	62.9	28 - 130	
1,2,3,7,8,9-HxCDD	R	0.00000218	8		13C-1,2,3,4,6,7,8-HpCDD	8-НрСDD	61.8	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000108	-	The second second	J	13C-0CDD		58.6	17 - 157	
ОСОО	0.000107				13C-2,3,7,8-TCDF	DF	89.2	24 - 169	
2,3,7,8-TCDF	ND	0.00000134	4		13C-1,2,3,7,8-PeCDF	eCDF	91.1	24 - 185	
1,2,3,7,8-PeCDF	NO	0.00000144	4		13C-2,3,4,7,8-PeCDF	eCDF	93.4	21 - 178	
2,3,4,7,8-PeCDF	ND	0.00000142	2		13C-1,2,3,4,7,8-HxCDF	HxCDF	72.6	26 - 152	
1,2,3,4,7,8-HxCDF	N	0.000000615	15		13C-1,2,3,6,7,8-HxCDF	HxCDF	61.1	26 - 123	
1,2,3,6,7,8-HxCDF	NO.	0.000000669	69	and the second and the second	13C-2,3,4,6,7,8-HxCDF	HxCDF	6.99	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000723	23		13C-1,2,3,7,8,9-HxCDF	HxCDF	63.5	29 - 147	
1,2,3,7,8,9-HxCDF	R	0.00000114	4		13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	54.5	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.00000208	8		13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	53.4	26-138	
1,2,3,4,7,8,9-HpCDF	ND	0.00000107	7		13C-0CDF		48.5	17-157	
OCDF	ND	0.00000492	2		CRS 37CI-2,3,7,8-TCDD	DD.	106	35 - 197	
Totals					Footnotes				
Total TCDD	ON	0.000000877	77		a. Sample specific estimated detection limit.	ed detection limit.			
Total PeCDD	ND	0.00000132	2		b. Estimated maximum possible concentration.	ssible concentration.			
Total HxCDD	ND	0.00000376	9		c. Method detection limit.	The second secon			
Total HpCDD	0.0000269				d. Lower control limit - upper control limit.	per control limit.			
Total TCDF	ND	0.00000134	4		7				
Total PeCDF	ND	0.00000143	3		制造が高さればい				
Total HxCDF	The Control of the Control	0.000000764	64	Date of Contract of the	Control of the second				The state of the s
Total HpCDF	Q	0.00000240	0	を 一方 一方 一方			25.00		

Analyst:
Analyst:
Project 30107

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 12/21/07

MWH-Pasadena/Boeing Project ID: Routine Outfall 014

APTF Test Stand

Arcadia, CA 91007 Report Number: IQL2416 Received: 12/21/07

Metals by EPA 200 Series Methods

	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers	
01 (Outfall 01	4 - Water) - cont.									
ug/l										
U	EPA 245.1	W8A0020	0.050	0.20	ND	1	01/02/08	01/03/08		
U	EPA 245.1	W8A0020	0.050	0.20	ND	1	01/02/08	01/03/08		
		01 (Outfall 014 - Water) - cont. ug/l EPA 245.1	01 (Outfall 014 - Water) - cont. ug/l EPA 245.1 W8A0020	Method Batch Limit 91 (Outfall 014 - Water) - cont. ug/l U EPA 245.1 W8A0020 0.050	Method Batch Limit Limit 91 (Outfall 014 - Water) - cont. ug/l EPA 245.1 W8A0020 0.050 0.20	Method Batch Limit Limit Result 91 (Outfall 014 - Water) - cont. ug/l EPA 245.1 W8A0020 0.050 0.20 ND	Method Batch Limit Limit Result Factor 01 (Outfall 014 - Water) - cont. ug/l EPA 245.1 W8A0020 0.050 0.20 ND 1	Method Batch Limit Limit Result Factor Extracted 01 (Outfall 014 - Water) - cont. ug/l EPA 245.1 W8A0020 0.050 0.20 ND 1 01/02/08	Method Batch Limit Result Factor Extracted Analyzed 01 (Outfall 014 - Water) - cont. ug/l EPA 245.1 W8A0020 0.050 0.20 ND 1 01/02/08 01/03/08	Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers 01 (Outfall 014 - Water) - cont. ug/l U EPA 245.1 W8A0020 0.050 0.20 ND 1 01/02/08 01/03/08

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

APTF Test Stand

Report Number: IQL2416

Sampled: 12/21/07

Received: 12/21/07

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1QL2416-01 (Outfall 014 -	Water) - cont.								
Reporting Units: mg/l									
Boron U	EPA 200.7	7L27139	0.020	0.050	ND	1	12/27/07	12/29/07	
Cadmium U	EPA 200.7	7L27139	0.0020	0.0050	ND	1	12/27/07	12/29/07	
Copper J/DNQ	EPA 200.7	7L27139	0.0030	0.010	0.0044	1	12/27/07	12/29/07	J
Lead U	EPA 200.7	7L27139	0.0030	0.0050	ND	1	12/27/07	12/29/07	
Selenium UT/B	EPA 200.7	7L27139	0.0080	0.010	0.017	1	12/27/07	01/01/08	
Zinc J/DNQ	EPA 200.7	7L27139	0.0060	0.020	0.0086	1	12/27/07	12/29/07	J

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results periam only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQL2416 <Page 8 of 44>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 014

618 Michillinda Avenue, Suite 200

APTF Test Stand

Sampled: 12/21/07

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: 1QL2416

Received: 12/21/07

DISSOLVED METALS

			DISSOI	JVED	TILIALIS					
Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID	: IQL2416-01 (Outfall 014	- Water) - cont.								
Repo	rting Units: mg/l									
Boron	U	EPA 200.7-Diss	7L21138	0.020	0.050	ND	1	12/21/07	12/28/07	
Cadmium	1	EPA 200.7-Diss	7L21138	0.0020	0.0050	ND	1	12/21/07	12/28/07	
Copper		EPA 200.7-Diss	7L21138	0.0030	0.010	ND	1	12/21/07	12/28/07	
Lead	Ψ.	EPA 200.7-Diss	7L21138	0.0030	0.0050	ND	1	12/21/07	12/28/07	
Selenium	工/400	EPA 200.7-Diss	7L21138	0.0080	0.010	0.018	1	12/21/07	12/28/07	
Zinc	U	EPA 200.7-Diss	7L21138	0.0060	0.020	ND	1	12/21/07	12/28/07	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results periain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQL2416 <Page 9 of 44>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

APTF Test Stand

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

101.2416

Sampled: 12/21/07

Report Number: IQL2416

Received: 12/21/07

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQL2416-01 (Outfall 014 - W	ater) - cont.								
Reporting Units: NTU									
Turbidity	EPA 180.1	7L22048	0.040	1.0	5.2	1	12/22/07	12/22/07	

LEVEL IV

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, 1rvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 014

APTF Test Stand

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IQL2416

Sampled: 12/21/07

Received: 12/21/07

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IQL2416-01 (Outfall 014 -	Water) - cont.									
Reporting Units: mg/l										
Hexane Extractable Material (Oil & U	EPA 1664	7L28075	1.3	4.8	ND	1	12/28/07	12/28/07		
Grease)										
Ammonia-N (Distilled)	EPA 350.2	7L27114	0.30	0.50	ND	1	12/27/07	12/27/07		
Biochemical Oxygen Demand	EPA 405.1	7L21126	0.59	2.0	11	1	12/21/07	12/26/07		
Chloride	EPA 300.0	7L21048	10	20	810	40	12/21/07	12/22/07		
Fluoride 🛶	EPA 340.2	7L28085	0.014	0.10	1.2	1	12/28/07	12/28/07		
Nitrate-N 🕌	EPA 300.0	7L21048	0.060	0.11	0.098	1 ·	12/21/07	12/22/07	J	
Nitrite-N 🔏	EPA 300.0	7L21048	0.090	0.15	ND	1	12/21/07	12/22/07		
Nitrate/Nitrite-N.	EPA 300.0	7L21048	0.15	0.26	ND	1	12/21/07	12/22/07		
Sulfate 🕌	EPA 300.0	7L21048	8.0	20	240	40	12/21/07	12/22/07		
Total Dissolved Solids	SM2540C	7L27069	10	10	2000	1	12/26/07	12/26/07		
Total Suspended Solids	EPA 160.2	7L26123	10	10	ND	1	12/26/07	12/26/07		
Nitrate-N X Nitrite-N X Nitrate/Nitrite-N X Sulfate X Total Dissolved Solids	EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 SM2540C	7L21048 7L21048 7L21048 7L21048 7L27069	0.060 0.090 0.15 8.0 10	0.11 0.15 0.26 20 10	0.098 ND ND 240 2000	1	12/21/07 12/21/07 12/21/07 12/21/07 12/26/07	12/22/07 12/22/07 12/22/07 12/22/07 12/26/07	J	

* Analysis not validated LEVEL LV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQL2416 <Page 10 of 44>

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FEANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 [714] 730-6239 - FAX (714] 730-6462 - www.turasdell.com

17461 Derian Avenue, Suite 100 restAmerica Analytical-Irvine Irvine, CA 92614-5817

Client:

Water / 1 Sample

QL2415 1012416

> P.O. Number: Method Number:

Project Name:

Joseph Doak

Attention: Sample: 8315 (Modified)

Hydrazines

Investigation:

December 21, 2007 January 7, 2008 972201 Laboratory No: Report Date:

Extraction Date: Analysis Date:

ng/L Units:

REPORT

Sampling Date:

December 26, 2007 December 26, 2007 December 27, 2007 Receiving Date:

Reported By:

Analytical Results

		Sample	Dilution	Monomethyl	u-Dimethyf	Hydrazine	Qualifier
Sample ID Sample Descri	pt	Amount (mL)	Factor	Hydrazine	Hydrazine		Codes
707140-MB Meth	nod Blank	100	-	₩ QN	* QN	字 QN	None
972201 IQL:	QL2416-01	100	1	サンロ ON	ND CT/H	手/とっ GN	None
MDL				0.56	0.32	0.15	
PQL				5.0	5.0	1.00	
Sample Reporting Limits			٠	5,0	5.0	1.00	

* Analysis not validated

EVEL 11

Analytical Services, Truesdail Laboratories, Inc. Xuan Dang, Project Manager

Note: Results based on detector #1 (UV=365nm) data.

This report applies only to the samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these faboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.