APPENDIX G

Section 10

Outfall 009 – April 11 & 12, 2012

Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-8315-1

Client Project/Site: Routine Outfall 009

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 5/23/2012 3:48:55 PM

Debby Wilson Project Manager I

debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Debby Wilson Project Manager I 5/23/2012 3:48:55 PM

attached have been evaluated for completeness and quality control acceptability.

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are

Page 2 of 74

5/23/2012

TestAmerica Job ID: 440-8315-1

Table of Contents

Table of Contents 3 Sample Summary 4
Sample Summary
Case Narrative
Client Sample Results 6
Chronicle
QC Sample Results
QC Association
Definitions
Certification Summary
Subcontract Data
Chain of Custody
Receipt Checklists

10

12

Sample Summary

Client: MWH Americas Inc Project/Site: Routine Outfall 009 TestAmerica Job ID: 440-8315-1

3

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-8315-1	Outfall 009 Grab	Water	04/11/12 08:45	04/11/12 18:30
440-8443-1	Outfall 009 Composite	Water	04/11/12 20:31	04/12/12 18:35
440-8443-2	Trip Blank	Water	04/13/12 14:18	04/12/12 18:35

1

10

11

12

Case Narrative

Client: MWH Americas Inc Project/Site: Routine Outfall 009 TestAmerica Job ID: 440-8315-1

Job ID: 440-8315-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-8315-1

Comments

No additional comments.

Receipt

The samples were received on 4/11/2012 6:30 PM and 4/12/2012 6:35 PM; the samples arrived in good conditions, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 3.5 C and 5.9 C.

HPLC

Method(s) 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for nitrite in batch 19241 were outside control limits due to matrix effects. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for phoshpate in batch 19241 were outside control limits due to matrix effects. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

Metals

Method(s) 245.1: Matrix spikes for batch 20257 could not be recovered for mercury due to sample matrix interferences which required sample dilution. The associated laboratory control sample (LCS) met acceptance criteria.

No other analytical or quality issues were noted.

General Chemistry

Method(s) 1664A: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 21480. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

No other analytical or quality issues were noted.

WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank (MB) have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

1

4

0

0

9

- -

12

1,

Client Sample Results

Client: MWH Americas Inc Project/Site: Routine Outfall 009 TestAmerica Job ID: 440-8315-1

Client Sample ID: Outfall 009 Grab

Date Collected: 04/11/12 08:45 Date Received: 04/11/12 18:30 Lab Sample ID: 440-8315-1

Matrix: Water

 General Chemistry
 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 HEM
 ND
 4.8
 1.3
 mg/L
 04/24/12 06:01
 04/24/12 06:38
 1

Client Sample ID: Outfall 009 Composite

Lab Sample ID: 440-8443-1

Date Collected: 04/11/12 20:31 Matrix: Water

Date Received: 04/12/12 18:35

13C-1,2,3,4,6,7,8-HpCDD

Method: 300.0 - Anions, Ion Chro	matography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.6		0.50	0.40	mg/L			04/13/12 06:17	1
Nitrate Nitrite as N	0.31		0.26	0.19	mg/L			04/13/12 06:17	1
Sulfate	3.3		0.50	0.40	mg/L			04/13/12 06:17	1

Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.00000080	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
Total TCDD	ND		0.000010	0.00000080	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,7,8-PeCDD	0.0000024	JQ	0.000050	0.00000062	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
Total PeCDD	0.0000024	JQ	0.000050	0.00000062	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,4,7,8-HxCDD	0.0000031	JQB	0.000050	0.00000047	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,6,7,8-HxCDD	0.0000044	JQ	0.000050	0.00000046	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,7,8,9-HxCDD	0.0000048	JB	0.000050	0.00000040	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
Total HxCDD	0.000024	JQB	0.000050	0.00000044	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,4,6,7,8-HpCDD	0.000073		0.000050	0.00000059	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
Total HpCDD	0.00017	В	0.000050	0.00000059	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
OCDD	0.00073	В	0.00010	0.0000018	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
2,3,7,8-TCDF	0.0000049	JB	0.000010	0.00000061	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
2,3,7,8-TCDF	0.0000025	JQ	0.000010	0.0000019	ug/L		04/19/12 09:00	04/24/12 20:10	0.97
Total TCDF	0.000019	JQB	0.000010	0.00000061	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,7,8-PeCDF	0.0000060	JB	0.000050	0.00000066	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
2,3,4,7,8-PeCDF	0.0000030	JQ	0.000050	0.00000066	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
Total PeCDF	0.000023	JQB	0.000050	0.00000066	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,4,7,8-HxCDF	0.000068	JQB	0.000050	0.000000070	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,6,7,8-HxCDF	0.0000049	J	0.000050	0.000000070	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
2,3,4,6,7,8-HxCDF	ND		0.000050	0.0000030	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,7,8,9-HxCDF	0.0000028	JB	0.000050	0.000000070	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
Total HxCDF	0.000039	JQB	0.000050	0.000000070	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,4,6,7,8-HpCDF	0.000029	JB	0.000050	0.00000046	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
1,2,3,4,7,8,9-HpCDF	0.0000056	JB	0.000050	0.00000056	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
Total HpCDF	0.000058	JQB	0.000050	0.00000050	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
OCDF	0.000053	JB	0.00010	0.00000039	ug/L		04/19/12 09:00	04/22/12 19:38	0.97
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	84		35 - 197				04/19/12 09:00	04/22/12 19:38	0.97
37Cl4-2,3,7,8-TCDD	118		35 - 197				04/19/12 09:00	04/24/12 20:10	0.97
Internal Standard	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	53		25 - 164				04/19/12 09:00	04/22/12 19:38	0.97
13C-1,2,3,7,8-PeCDD	58		25 - 181				04/19/12 09:00	04/22/12 19:38	0.97
13C-1,2,3,4,7,8-HxCDD	58		32 - 141				04/19/12 09:00	04/22/12 19:38	0.97
13C-1,2,3,6,7,8-HxCDD	55		28 - 130				04/19/12 09:00	04/22/12 19:38	0.97

0.97

04/22/12 19:38

04/19/12 09:00

23 - 140

2

Client: MWH Americas Inc Project/Site: Routine Outfall 009

Date Received: 04/12/12 18:35

TestAmerica Job ID: 440-8315-1

Client Sample ID: Outfall 009 Composite

Date Collected: 04/11/12 20:31

Lab Sample ID: 440-8443-1

Matrix: Water

Internal Standard	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-OCDD	61		17 - 157				04/19/12 09:00	04/22/12 19:38	0.9
13C-2,3,7,8-TCDF	47		24 - 169				04/19/12 09:00	04/22/12 19:38	0.9
13C-2,3,7,8-TCDF	67		24 - 169				04/19/12 09:00	04/24/12 20:10	0.9
13C-1,2,3,7,8-PeCDF	49		24 - 185				04/19/12 09:00	04/22/12 19:38	0.9
13C-2,3,4,7,8-PeCDF	52		21 - 178				04/19/12 09:00	04/22/12 19:38	0.9
13C-1,2,3,6,7,8-HxCDF	60		26 - 123				04/19/12 09:00	04/22/12 19:38	0.9
13C-2,3,4,6,7,8-HxCDF	51		28 - 136				04/19/12 09:00	04/22/12 19:38	0.9
13C-1,2,3,7,8,9-HxCDF	53		29 - 147				04/19/12 09:00	04/22/12 19:38	0.9
13C-1,2,3,4,6,7,8-HpCDF	59		28 - 143				04/19/12 09:00	04/22/12 19:38	0.9
13C-1,2,3,4,7,8,9-HpCDF	63		26 - 138				04/19/12 09:00	04/22/12 19:38	0.9
13C-1,2,3,4,7,8-HxCDF	49		26 - 152				04/19/12 09:00	04/22/12 19:38	0.9
Method: 200.8 - Metals (ICP/MS) - 1	Гotal Recove	rable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND		1.0	0.10	ug/L		04/21/12 06:17	04/27/12 18:38	
Copper	4.5		2.0	0.50	ug/L		04/21/12 06:17	04/27/12 18:38	
Lead	3.2		1.0	0.20	ug/L		04/21/12 06:17	04/28/12 18:14	
Antimony	0.51	J,DX	2.0	0.30	ug/L		04/21/12 06:17	04/27/12 18:38	
Thallium	ND		1.0	0.20	ug/L		04/21/12 06:17	04/28/12 18:14	
Method: 200.8 - Metals (ICP/MS) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cadmium	ND		1.0	0.10	ug/L		04/21/12 07:51	04/25/12 15:39	
Copper	3.6		2.0	0.50	ug/L		04/21/12 07:51	04/25/12 15:39	
Lead	0.63	J,DX	1.0	0.20	ug/L		04/21/12 07:51	04/25/12 15:39	
Antimony	0.60	J,DX	2.0	0.30	ug/L		04/21/12 07:51	04/25/12 15:39	
Thallium	ND		1.0	0.20	ug/L		04/21/12 07:51	04/25/12 15:39	
Method: 245.1 - Mercury (CVAA)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.20	0.10	ug/L		04/16/12 14:58	04/17/12 13:55	
Method: 245.1 - Mercury (CVAA) -		Ovalifian	DI	MDI	l lmiá	D	Duamanad	Amalumad	Dil Fa
Analyte	ND	Qualifier	RL 0.20		Unit		Prepared 04/16/12 15:30	Analyzed 04/18/12 12:23	Dil Fa
Mercury	ND		0.20	0.10	ug/L		04/16/12 15.30	04/10/12 12.23	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids	35		10	10	mg/L			04/13/12 10:06	
Total Suspended Solids	16		10	10	mg/L			04/18/12 15:13	
Cyanide, Total	ND		5.0	3.0	ug/L		04/25/12 15:36	04/25/12 19:45	
Method: Gamma Spec K-40 CS-13	7 - General S	ub Contrac	t Method						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cesium-137	0.386	U	20		pCi/L		04/19/12 00:00	04/23/12 00:00	
Potassium-40	1.85	U	25		pCi/L		04/19/12 00:00	04/23/12 00:00	
Method: Gross Alpha and Beta - G	ross Alpha/E	Beta							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gross Alpha	1.23	J	3		pCi/L		04/24/12 00:00	04/26/12 07:51	
Gross Beta	2.29		4		pCi/L		04/24/12 00:00	04/26/12 07:51	

Client: MWH Americas Inc

TestAmerica Job ID: 440-8315-1

Project/Site: Routine Outfall 009

Client Sample ID: Outfall 009 Composite

Date Collected: 04/11/12 20:31 Date Received: 04/12/12 18:35 Lab Sample ID: 440-8443-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-226	0.126	U	1		pCi/L		04/30/12 00:00	04/30/12 13:18	1
- Method: Radium 228 - RAI	0-226-228 combined								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-228	0.118	U	1		pCi/L		04/25/12 00:00	04/25/12 14:21	1
Method: Strontium 90 - Ge	neral Sub Contract N	lethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium-90	-0.156	U	2		pCi/L		04/24/12 00:00	04/24/12 08:20	1
Method: Tritium - General	Sub Contract Method	d							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tritium	-72.3	U	500		pCi/L		04/19/12 00:00	04/20/12 11:36	1
- Method: Uranium, Combin	ed - General Sub Coi	ntract Method							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Uranium, Total	0.074		1		pCi/L		04/25/12 00:00	04/25/12 01:58	

Client Sample ID: Trip Blank Lab Sample ID: 440-8443-2 **Matrix: Water**

Date Collected: 04/13/12 14:18

Method: Gamma Spec K-4 Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	-1.89		20		pCi/L		04/19/12 00:00	04/20/12 00:00	
Potassium-40	-13.1	U	25		pCi/L		04/19/12 00:00	04/20/12 00:00	•
Method: Gross Alpha and	Beta - Gross Alpha/E	Beta							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gross Alpha	0.009	U –	3		pCi/L		04/24/12 00:00	04/26/12 16:42	1
Gross Beta	-0.428	U	4		pCi/L		04/24/12 00:00	04/26/12 16:42	1
Analyte Radium-226 Method: Radium 228 - RA Analyte	0.022 D-226-228 combined	Qualifier U	RL		pCi/L Unit	<u>D</u>	Prepared 04/30/12 00:00 Prepared	Analyzed 04/30/12 13:18 Analyzed	Dil Fa
Radium-228	-0.131	<u>U</u>	1		pCi/L		04/25/12 00:00	04/25/12 14:02	
- Method: Strontium 90 - Go	eneral Sub Contract N	lethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium-90	0.352	U	2		pCi/L		04/24/12 00:00	04/24/12 08:20	1
Method: Uranium, Combi	ned - General Sub Co	ntract Method							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Uranium, Total	0	U	1		pCi/L		04/25/12 00:00	04/25/12 02:17	•

Lab Chronicle

Client: MWH Americas Inc Project/Site: Routine Outfall 009 TestAmerica Job ID: 440-8315-1

Lab Sample ID: 440-8315-1

Matrix: Water

Client Sample ID: Outfall 009 Grab

Date Collected: 04/11/12 08:45 Date Received: 04/11/12 18:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1664A			1045 mL	1000 mL	21464	04/24/12 06:01	DA	TAL IRV
Total/NA	Analysis	1664A		1			21480	04/24/12 06:38	DA	TAL IRV

Client Sample ID: Outfall 009 Composite

Lab Sample ID: 440-8443-1

Date Collected: 04/11/12 20:31 Matrix: Water

Date Received: 04/12/12 18:35

	Batch	Batch		Dil	Init	ial	Fin	al	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amo	unt	Amo	unt	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	1	mL	1.0	mL	19241	04/13/12 06:17	NN	TAL IR\
Total/NA	Analysis	300.0		1	1	mL	1.0	mL	19242	04/13/12 06:17	NN	TAL IR\
Total	Prep	3542			1028.79	mL	20	uL	2110042_P	04/19/12 09:00	TL	TAL WS
Total	Analysis	1613B		0.97					2110042	04/22/12 19:38	SO	TAL WS
Total	Analysis	1613B		0.97					2110042	04/24/12 20:10	SO	TAL WS
Total/NA	Prep	245.1			20	mL	20	mL	20030	04/16/12 14:58	SN	TAL IR\
Total/NA	Analysis	245.1		1					20257	04/17/12 13:55	MP	TAL IR\
Dissolved	Prep	245.1			20	mL	20	mL	20049	04/16/12 15:30	SN	TAL IR\
Dissolved	Analysis	245.1		1					20502	04/18/12 12:23	MP	TAL IR
Dissolved	Prep	200.2			50	mL	50	mL	21118	04/21/12 07:51	EN	TAL IR
Dissolved	Analysis	200.8		1					22049	04/25/12 15:39	RC	TAL IR
Total Recoverable	Prep	200.2			50	mL	50	mL	21114	04/21/12 06:17	EN	TAL IR
Total Recoverable	Analysis	200.8		1					22549	04/27/12 18:38	NH	TAL IR
Total Recoverable	Analysis	200.8		1					22627	04/28/12 18:14	RC	TAL IR
Total/NA	Analysis	SM 2540C		1	100	mL	100	mL	19574	04/13/12 10:06	XL	TAL IR
Total/NA	Analysis	SM 2540D		1	100	mL	100	mL	20537	04/18/12 15:13	DK	TAL IR
Total/NA	Prep	Distill/CN			50	mL	50	mL	21913	04/25/12 15:36	PQI	TAL IR
Total/NA	Analysis	SM 4500 CN E		1					21973	04/25/12 19:45	PQI	TAL IR
Total/NA	Prep	General Prep		1					8608_P	04/19/12 00:00		Eber-Ri
Total/NA	Analysis	Gamma Spec K-40 CS-137		1					8608	04/23/12 00:00	LS	Eber-Ri
Total/NA	Prep	General Prep		1					8608_P	04/24/12 00:00		Eber-R
Total/NA	Analysis	Gross Alpha and Beta		1					8608	04/26/12 07:51	DVP	Eber-Ri
Total/NA	Prep	General Prep		1					8608_P	04/30/12 00:00		Eber-Ri
Total/NA	Analysis	Radium 226		1					8608	04/30/12 13:18	TM	Eber-R
Total/NA	Prep	General Prep		1					8608_P	04/25/12 00:00		Eber-R
Total/NA	Analysis	Radium 228		1					8608	04/25/12 14:21	ASM	Eber-R
Total/NA	Analysis	Strontium 90		1					8608	04/24/12 08:20	ASM	Eber-R
Total/NA	Analysis	Tritium		1					8608	04/20/12 11:36	WL	Eber-R
Total/NA	Analysis	Uranium, Combined		1					8608	04/25/12 01:58	LS	Eber-R

6

8

46

11

12

Lab Chronicle

Client: MWH Americas Inc Project/Site: Routine Outfall 009

Client Sample ID: Trip Blank

Date Collected: 04/13/12 14:18

Date Received: 04/12/12 18:35

TestAmerica Job ID: 440-8315-1

Lab Sample ID: 440-8443-2

Eber-Rich

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	General Prep	-	1		-	8608_P	04/19/12 00:00		Eber-Rich
Total/NA	Analysis	Gamma Spec K-40 CS-137		1			8608	04/20/12 00:00	LS	Eber-Rich
Total/NA	Prep	General Prep		1			8608_P	04/24/12 00:00		Eber-Rich
Total/NA	Analysis	Gross Alpha and Beta		1			8608	04/26/12 16:42	DVP	Eber-Rich
Total/NA	Prep	General Prep		1			8608_P	04/30/12 00:00		Eber-Rich
Total/NA	Analysis	Radium 226		1			8608	04/30/12 13:18	TM	Eber-Rich
Total/NA	Prep	General Prep		1			8608_P	04/25/12 00:00		Eber-Rich
Total/NA	Analysis	Radium 228		1			8608	04/25/12 14:02	ASM	Eber-Rich
Total/NA	Analysis	Strontium 90		1			8608	04/24/12 08:20	ASM	Fber-Rich

8608

04/25/12 02:17 LS

Laboratory References:

Total/NA

Eber-Rich = Eberline - Richmond, 2030 Wright Avenue, Richmond, CA 94804

Analysis Uranium, Combined

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL WSC = TestAmerica West Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TestAmerica Job ID: 440-8315-1

Client Sample ID: Method Blank

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 440-19241/41

Matrix: Water

Analysis Batch: 19241

мв мв

Result Qualifier RL MDL Unit Analyte D Analyzed Dil Fac Prepared 0.26 Nitrate Nitrite as N 0.19 mg/L 04/12/12 22:04 ND

Lab Sample ID: LCS 440-19241/42

Matrix: Water

Analysis Batch: 19241

LCS LCS %Rec. Spike Added Result Analyte Qualifier Unit %Rec Limits Nitrate Nitrite as N 2.65 2.74 mg/L 103 90 - 110

Lab Sample ID: 440-8441-I-4 MS

Matrix: Water

Analysis Batch: 19241

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 26.5 38.8 105 80 - 120 11 mg/L

Lab Sample ID: 440-8441-I-4 MSD

Matrix: Water

Analysis Batch: 19241

MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier Added Qualifier Result Unit %Rec Limits Limit Nitrate Nitrite as N 11 26.5 38.4 103 mg/L 80 _ 120 20

Lab Sample ID: MB 440-19242/41

Matrix: Water

Analysis Batch: 19242

MR MR

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed 0.50 Chloride ND 04/12/12 22:04 0.40 mg/L Sulfate ND 0.50 04/12/12 22:04 0.40 mg/L

Lab Sample ID: LCS 440-19242/42

Matrix: Water

Analysis Batch: 19242

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Chloride 5.00 4.94 mg/L 99 90 - 110 Sulfate 10.0 9.69 mg/L 97 90 - 110

Lab Sample ID: 440-8441-I-4 MS

Matrix: Water

Analysis Ratch: 19242

Alialysis Dalcii. 13242										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	79		50.0	122		mg/L		87	80 - 120	
Sulfate	160		100	250		mg/L		88	80 - 120	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client: MWH Americas Inc Project/Site: Routine Outfall 009

3

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 440-8441-I-4 MSD

Matrix: Water

Analysis Batch: 19242

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	79		50.0	123		mg/L		88	80 - 120	0	20
Sulfate	160		100	248		mg/L		86	80 - 120	1	20

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B)

Lab Sample ID: G2D190000042B

Matrix: Water

Analysis Batch: 2110042

Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 2110042_P

Analysis Batch: 2110042	МВ	МВ						Prep Batch: 211	
Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000011	ug/L		04/19/12 09:00	04/21/12 10:33	1
Total TCDD	ND		0.000010	0.0000011	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,7,8-PeCDD	ND		0.000050	0.0000023	ug/L		04/19/12 09:00	04/21/12 10:33	1
Total PeCDD	ND		0.000050	0.0000023	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,4,7,8-HxCDD	0.0000019	JQ	0.000050	0.0000013	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,6,7,8-HxCDD	ND		0.000050	0.0000024	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,7,8,9-HxCDD	0.0000031	JQ	0.000050	0.0000012	ug/L		04/19/12 09:00	04/21/12 10:33	1
Total HxCDD	0.0000050	JQ	0.000050	0.0000013	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,4,6,7,8-HpCDD	0.0000043	JQ	0.000050	0.0000012	ug/L		04/19/12 09:00	04/21/12 10:33	1
Total HpCDD	0.0000059	JQ	0.000050	0.0000012	ug/L		04/19/12 09:00	04/21/12 10:33	1
OCDD	0.000010	JQ	0.00010	0.0000028	ug/L		04/19/12 09:00	04/21/12 10:33	1
2,3,7,8-TCDF	0.0000019	JQ	0.000010	0.0000013	ug/L		04/19/12 09:00	04/21/12 10:33	1
Total TCDF	0.0000019	JQ	0.000010	0.0000013	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,7,8-PeCDF	0.0000045	JQ	0.000050	0.0000019	ug/L		04/19/12 09:00	04/21/12 10:33	1
2,3,4,7,8-PeCDF	ND		0.000050	0.0000044	ug/L		04/19/12 09:00	04/21/12 10:33	1
Total PeCDF	0.0000045	JQ	0.000050	0.0000019	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,4,7,8-HxCDF	0.0000037	J	0.000050	0.00000086	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,6,7,8-HxCDF	ND		0.000050	0.0000026	ug/L		04/19/12 09:00	04/21/12 10:33	1
2,3,4,6,7,8-HxCDF	0.0000029	JQ	0.000050	0.00000082	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,7,8,9-HxCDF	0.0000049	J	0.000050	0.00000096	ug/L		04/19/12 09:00	04/21/12 10:33	1
Total HxCDF	0.000013	JQ	0.000050	0.00000087	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,4,6,7,8-HpCDF	0.0000058	J	0.000050	0.0000016	ug/L		04/19/12 09:00	04/21/12 10:33	1
1,2,3,4,7,8,9-HpCDF	0.0000042	JQ	0.000050	0.0000020	ug/L		04/19/12 09:00	04/21/12 10:33	1
Total HpCDF	0.000010	JQ	0.000050	0.0000018	ug/L		04/19/12 09:00	04/21/12 10:33	1
OCDF	0.0000074	J	0.00010	0.0000027	ug/L		04/19/12 09:00	04/21/12 10:33	1
	MR	MR							

WB	MR	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	88	35 - 197	04/19/12 09:00	04/21/12 10:33	1
	MD MD				

l		MB	MB				
	Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	13C-2,3,7,8-TCDD	60		25 - 164	04/19/12 09:00	04/21/12 10:33	1
١	13C-1,2,3,7,8-PeCDD	61		25 - 181	04/19/12 09:00	04/21/12 10:33	1
İ	13C-1,2,3,4,7,8-HxCDD	66		32 - 141	04/19/12 09:00	04/21/12 10:33	1
١	13C-1,2,3,6,7,8-HxCDD	70		28 - 130	04/19/12 09:00	04/21/12 10:33	1
İ	13C-1,2,3,4,6,7,8-HpCDD	66		23 - 140	04/19/12 09:00	04/21/12 10:33	1
İ	13C-OCDD	70		17 - 157	04/19/12 09:00	04/21/12 10:33	1
	13C-2,3,7,8-TCDF	63		24 - 169	04/19/12 09:00	04/21/12 10:33	1
İ	13C-1,2,3,7,8-PeCDF	60		24 - 185	04/19/12 09:00	04/21/12 10:33	1

Client: MWH Americas Inc Project/Site: Routine Outfall 009

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2D190000042B

Matrix: Water

Analysis Batch: 2110042

Analysis Batch: 2110042

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 2110042 P

Prep Batch: 2110042_P

	МВ	МВ				
Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,4,7,8-PeCDF	66		21 - 178	04/19/12 09:00	04/21/12 10:33	1
13C-1,2,3,6,7,8-HxCDF	69		26 - 123	04/19/12 09:00	04/21/12 10:33	1
13C-2,3,4,6,7,8-HxCDF	69		28 - 136	04/19/12 09:00	04/21/12 10:33	1
13C-1,2,3,7,8,9-HxCDF	66		29 - 147	04/19/12 09:00	04/21/12 10:33	1
13C-1,2,3,4,6,7,8-HpCDF	65		28 - 143	04/19/12 09:00	04/21/12 10:33	1
13C-1,2,3,4,7,8,9-HpCDF	69		26 - 138	04/19/12 09:00	04/21/12 10:33	1
13C-1,2,3,4,7,8-HxCDF	67		26 - 152	04/19/12 09:00	04/21/12 10:33	1
<u> </u>						

Lab Sample ID: G2D190000042B Client Sample ID: Method Blank **Matrix: Water Prep Type: Total**

Analyte Result Qualifier ML EDL Unit D Prepared Analyzed Dil Fac 2,3,7,8-TCDF 04/19/12 09:00 04/21/12 15:14 ND 0.000010 0.0000013 ug/L

MB MB Qualifier Limits Prepared Analyzed Dil Fac Surrogate %Recovery 37CI4-2,3,7,8-TCDD 35 _ 197 04/19/12 09:00 04/21/12 15:14 114

MB MB Internal Standard %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C-2,3,7,8-TCDF 24 - 169 04/19/12 09:00 04/21/12 15:14 75

Lab Sample ID: G2D190000042C Client Sample ID: Lab Control Sample

мв мв

Matrix: Water Prep Type: Total Analysis Batch: 2110042 Prep Batch: 2110042_P

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.000200 0.000205 2,3,7,8-TCDD ug/L 102 67 - 158 1,2,3,7,8-PeCDD 0.00100 0.00100 ug/L 100 70 - 142 1,2,3,4,7,8-HxCDD 0.00100 0.000926 B ug/L 93 70 - 164 1,2,3,6,7,8-HxCDD 0.00100 0.000931 ug/L 93 76 - 134 1,2,3,7,8,9-HxCDD 0.00100 0.000920 B ug/L 92 64 - 162 0.00100 0.000952 B 95 70 - 140 1,2,3,4,6,7,8-HpCDD ug/L OCDD 0.00200 0.00195 B 97 78 - 144 ug/L 2,3,7,8-TCDF 0.000200 0.000206 B 103 75 - 158ug/L 1,2,3,7,8-PeCDF 0.00100 0.00107 B ug/L 107 80 - 134 2,3,4,7,8-PeCDF 0.00100 0.000985 ug/L 98 68 - 160 1,2,3,4,7,8-HxCDF 0.00100 0.000936 B ug/L 94 72 - 134 1.2.3.6.7.8-HxCDF 0.00100 0.000984 ug/L 98 84 - 130 97 2,3,4,6,7,8-HxCDF 0.00100 0.000966 B ug/L 70 - 156 1,2,3,7,8,9-HxCDF 0.00100 0.000978 B ug/L 98 78 - 130 0.00104 B 1,2,3,4,6,7,8-HpCDF 0.00100 ug/L 104 82 - 122 1,2,3,4,7,8,9-HpCDF 0.00100 0.000947 B 95 78 - 138 ug/L

LCS LCS

OCDF

Surrogate %Recovery Qualifier Limits 37CI4-2,3,7,8-TCDD 92 31 - 191 0.00192 B

ug/L

96

63 - 170

0.00200

Client: MWH Americas Inc Project/Site: Routine Outfall 009

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2D190000042C

Matrix: Water Analysis Batch: 2110042 **Client Sample ID: Lab Control Sample**

Prep Batch: 2110042 P

LCS LCS

58

Internal Standard	%Recovery Qualifier	Limits
13C-2,3,7,8-TCDD	47	20 - 175
13C-1,2,3,7,8-PeCDD	54	21 - 227
13C-1,2,3,4,7,8-HxCDD	59	21 - 193
13C-1,2,3,6,7,8-HxCDD	58	25 - 163
13C-1,2,3,4,6,7,8-HpCDD	61	26 - 166
13C-OCDD	70	13 - 199
13C-2,3,7,8-TCDF	50	22 - 152
13C-1,2,3,7,8-PeCDF	51	21 - 192
13C-2,3,4,7,8-PeCDF	57	13 - 328
13C-1,2,3,6,7,8-HxCDF	55	21 - 159
13C-2,3,4,6,7,8-HxCDF	60	22 - 176
13C-1,2,3,7,8,9-HxCDF	59	17 - 205
13C-1,2,3,4,6,7,8-HpCDF	59	21 - 158
13C-1,2,3,4,7,8,9-HpCDF	67	20 - 186

Prep Type: Total

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 440-21114/1-A

Matrix: Water

Analysis Batch: 22549

13C-1,2,3,4,7,8-HxCDF

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 21114

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		04/21/12 06:17	04/27/12 17:09	1
Copper	ND		2.0	0.50	ug/L		04/21/12 06:17	04/27/12 17:09	1
Lead	ND		1.0	0.20	ug/L		04/21/12 06:17	04/27/12 17:09	1
Antimony	ND		2.0	0.30	ug/L		04/21/12 06:17	04/27/12 17:09	1
Thallium	ND		1.0	0.20	ug/L		04/21/12 06:17	04/27/12 17:09	1

19 - 202

Lab Sample ID: LCS 440-21114/2-A

Matrix: Water

Analysis Batch: 22549

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 21114

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	80.0	84.5		ug/L		106	85 - 115	
Copper	80.0	85.0		ug/L		106	85 ₋ 115	
Lead	80.0	84.7		ug/L		106	85 - 115	
Antimony	80.0	85.5		ug/L		107	85 ₋ 115	
Thallium	80.0	85.1		ug/L		106	85 ₋ 115	

Lab Sample ID: 440-8443-1 MS

Matrix: Water

Analysis Batch: 22549

Client Sample ID: Outfall 009 Composite **Prep Type: Total Recoverable**

Prep Batch: 21114

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cadmium	ND		80.0	86.3		ug/L		108	70 - 130
Copper	4.5		80.0	92.9		ug/L		110	70 - 130
Antimony	0.51	J,DX	80.0	84.8		ug/L		105	70 - 130

Client: MWH Americas Inc Project/Site: Routine Outfall 009

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-8443-1 MS

Matrix: Water

Analysis Batch: 22627

Client Sample ID: Outfall 009 Composite **Prep Type: Total Recoverable**

Prep Batch: 21114

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	3.2		80.0	89.4		ug/L		108	70 - 130	
Thallium	ND		80.0	89.4		ug/L		112	70 - 130	

Lab Sample ID: 440-8443-1 MSD

Matrix: Water

Analysis Batch: 22549

Client S	Sample	ID:	Outfall	009	Composite
	_	_	_		

Prep Type: Total Recoverable

Prep Batch: 21114

7											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		80.0	86.9		ug/L		109	70 - 130	1	20
Copper	4.5		80.0	91.3		ug/L		108	70 - 130	2	20
Antimony	0.51	J,DX	80.0	85.8		ug/L		107	70 - 130	1	20

Lab Sample ID: 440-8443-1 MSD

Matrix: Water

Analyte

Thallium

Lead

Analysis Batch: 22627

Client Sample ID: Outfall 009 Composite

70 - 130

114

Prep Type: Total Recoverable

Prep Batch: 21114

MSD MSD Sample Sample Spike %Rec. **RPD** Limit Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 3.2 80.0 90.8 70 - 130 20 ug/L 109 2

91.0

ug/L

Lab Sample ID: MB 440-19679/1-D

ND

Matrix: Water

Analysis Batch: 22049

Client Sample ID: Method Blank **Prep Type: Dissolved**

Prep Batch: 21118

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		04/21/12 07:51	04/25/12 15:35	1
Copper	ND		2.0	0.50	ug/L		04/21/12 07:51	04/25/12 15:35	1
Lead	ND		1.0	0.20	ug/L		04/21/12 07:51	04/25/12 15:35	1

80.0

Antimony NΠ 20 0.30 ug/L 04/21/12 07:51 04/25/12 15:35 Thallium 04/25/12 15:35 ND 1.0 0.20 ug/L 04/21/12 07:51

Lab Sample ID: LCS 440-19679/2-D

Matrix: Water

Analysis Batch: 22049

Client Sample ID: Lab Control Sample Prep Type: Dissolved

Prep Batch: 21118

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Cadmium	80.0	84.9	ug/L		106	85 - 115	
Copper	80.0	91.4	ug/L		114	85 - 115	
Lead	80.0	78.6	ug/L		98	85 - 115	
Antimony	80.0	84.0	ug/L		105	85 - 115	
Thallium	80.0	78.9	ug/L		99	85 ₋ 115	

Lab Sample ID: 440-8443-1 MS

Matrix: Water

Analysis Batch: 22049

Client Sample ID: Outfall 009 Composite **Prep Type: Dissolved**

Prep Batch: 21118

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND		80.0	84.7		ug/L		106	70 - 130	
Copper	3.6		80.0	93.4		ug/L		112	70 - 130	
Lead	0.63	J,DX	80.0	79.0		ug/L		98	70 - 130	
Antimony	0.60	J,DX	80.0	85.2		ug/L		106	70 - 130	

TestAmerica Irvine 5/23/2012

TestAmerica Job ID: 440-8315-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-8443-1 MS **Matrix: Water**

Analysis Batch: 22049

Client Sample ID: Outfall 009 Composite **Prep Type: Dissolved**

Prep Batch: 21118

MS MS Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Thallium ND 80.0 79.0 99 70 - 130 ug/L

Client Sample ID: Outfall 009 Composite

Lab Sample ID: 440-8443-1 MSD **Matrix: Water**

Analysis Batch: 22049

Prep Type: Dissolved Prep Batch: 21118

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		80.0	85.6		ug/L		107	70 - 130	1	20
Copper	3.6		80.0	93.5		ug/L		112	70 - 130	0	20
Lead	0.63	J,DX	80.0	81.1		ug/L		101	70 - 130	3	20
Antimony	0.60	J,DX	80.0	86.8		ug/L		108	70 - 130	2	20
Thallium	ND		80.0	80.3		ug/L		100	70 - 130	2	20

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 440-20030/1-A

Matrix: Water

Analysis Batch: 20257

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20030

MB MB

Result Qualifier RLMDL Unit Analyte D Prepared Analyzed Dil Fac 0 20 Mercury ND 0.10 ug/L 04/16/12 14:58 04/17/12 13:37

Lab Sample ID: LCS 440-20030/2-A

Matrix: Water

Analysis Batch: 20257

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 20030

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Mercury 8.00 8.12 ug/L 102 85 - 115

Lab Sample ID: 440-8257-F-1-C MS

Matrix: Water

Analysis Batch: 20257

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 20030

Sample Sample Spike MS MS %Rec Qualifier Added Result Qualifier Analyte Result Unit %Rec Limits ND 8.00 1.95 LN ug/L 70 - 130 Mercury

Lab Sample ID: 440-8257-F-1-D MSD

Matrix: Water

Analysis Batch: 20257

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 20030

MSD MSD Sample Sample Spike %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit ND 8.00 2.03 AY Mercury 25 70 _ 130 3 97 20 ug/L

Lab Sample ID: MB 440-19679/1-C

Matrix: Water

Analysis Batch: 20502

Client Sample ID: Method Blank

Prep Type: Dissolved Prep Batch: 20049

мв мв

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.20 04/16/12 15:30 04/18/12 12:13 Mercury ND 0.10 ug/L

TestAmerica Job ID: 440-8315-1

3

Method: 245.1 - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 440-19679/2-C

Matrix: Water

Analysis Batch: 20502

Spike

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Prep Batch: 20049

%Rec.

 Analyte
 Added Mercury
 Result 8.00
 Qualifier 8.17
 Unit ug/L
 D %Rec Limits

Lab Sample ID: 440-8443-1 MS

Matrix: Water

Analysis Batch: 20502

Sample Sample Sample Spike MS MS

Client Sample ID: Outfall 009 Composite
Prep Type: Dissolved
Prep Batch: 20049

Rec.

Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Mercury ND 8.00 8.10 ug/L 101 70 - 130 Lab Sample ID: 440-8443-1 MSD Client Sample ID: Outfall 009 Composite

Matrix: Water Prep Type: Dissolved Prep Batch: 20049 **Analysis Batch: 20502** Spike MSD MSD %Rec. RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit

 Mercury
 ND
 8.00
 8.18
 ug/L
 102
 70 - 130
 1.00
 20

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-21464/1-A

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 21480 Prep Batch: 21464

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac HEM ND 5.0 04/24/12 06:01 04/24/12 06:38 14 ma/L

Lab Sample ID: LCS 440-21464/2-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 21480

Prep Batch: 21464

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits HEM 20.0 19.1 mg/L 95 78 - 114

Lab Sample ID: LCSD 440-21464/3-A

Matrix: Water

Analysis Batch: 21480

Spike

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Prep Batch: 21464
Spike

LCSD LCSD

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Prep Batch: 21464
RPD

babbA RPD Analyte Result Qualifier Unit D %Rec Limits Limit HEM 20.0 18.2 mg/L 91 78 - 114 11

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 440-19574/1 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 19574

 MB
 MB

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total Dissolved Solids
 ND
 10
 10
 mg/L
 04/13/12 10:06
 1

TestAmerica Job ID: 440-8315-1

Client Sample ID: Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Duplicate

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 440-19574/2

Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 19574**

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Analyte Unit D 1000 90 - 110 **Total Dissolved Solids** 1000 mg/L 100

Lab Sample ID: 440-8336-A-1 DU

Matrix: Water

Analysis Batch: 19574

DU DU RPD Sample Sample Result Qualifier Analyte Result Qualifier Unit RPD Limit **Total Dissolved Solids** 890 858 mg/L 10

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-20537/1

Matrix: Water

Analysis Batch: 20537

MR MR

Qualifier Analyte Result RL MDL Unit Prepared Analyzed Dil Fac Total Suspended Solids 10 ND 10 mg/L 04/18/12 15:13

Lab Sample ID: LCS 440-20537/2

Matrix: Water

Analysis Batch: 20537

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 1000 988 Total Suspended Solids 85 - 115 mg/L

Lab Sample ID: 440-8248-G-1 DU

Matrix: Water

Analysis Batch: 20537

Sample Sample DU DU RPD Result Qualifier RPD Result Qualifier Limit Analyte Unit D Total Suspended Solids 150 145 mg/L 0.000 10

Method: SM 4500 CN E - Cyanide, Total (Low Level)

Lab Sample ID: MB 440-21913/1-A

Matrix: Water

Analysis Batch: 21973

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 21913

мв мв

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Cyanide, Total ND 5.0 3.0 ug/L 04/25/12 15:36 04/25/12 19:45

Lab Sample ID: LCS 440-21913/2-A

Matrix: Water Analysis Batch: 21973

Prep Type: Total/NA Prep Batch: 21913 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 100 106 ug/L 106 90 - 110

> TestAmerica Irvine 5/23/2012

Client: MWH Americas Inc Project/Site: Routine Outfall 009

Method: SM 4500 CN E - Cyanide, Total (Low Level) (Continued)

Lab Sample ID: 440-8515-A-3-B MS			Client Sample ID: Matrix Spike
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 21973			Prep Batch: 21913
Sample Sample	Spike	MS MS	%Rec.

Analyte Result Qualifier Added Result Qualifier Unit D WRec Limits
Cyanide, Total 7.7 100 112 ug/L 112 70 - 115

Lab Sample ID: 440-8515-A-3-D MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA Prep Batch: 21913 **Analysis Batch: 21973** MSD Sample Sample Spike MSD Result Qualifier Added Limit Analyte Result Qualifier Unit %Rec Limits RPD Cyanide, Total 7 7 100 112 ug/L 112 70 - 115 15

Method: Gross Alpha and Beta - Gross Alpha/Beta

Lab Sample ID: S204064-04

Matrix: WATER

Analysis Batch: 8608

Blank Blank

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 8608_P

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Tritium
 5.24
 U
 500
 pCi/L
 04/19/12 00:00
 04/20/12 11:36
 1

Lab Sample ID: S204064-04

Matrix: WATER

Prep Type: Total/NA

Analysis Batch: 8608

Prep Batch: 8608_P

 Blank
 Blank
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Cesium-137
 -0.038
 U
 20
 pCi/L
 04/19/12 00:00
 04/23/12 00:00
 1

Cesium-137 -0.038 U 20 pCi/L 04/19/12 00:00 04/23/12 00:00

Potassium-40 9.54 U 25 pCi/L 04/19/12 00:00 04/23/12 00:00

Lab Sample ID: S204064-04

Client Sample ID: Method Blank
Matrix: WATER

Prep Type: Total/NA

Analysis Batch: 8608

Blank Blank

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Analyte
 Result
 Qualifier
 RL
 MIDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Strontium-90
 0.035
 U
 2
 pCi/L
 04/24/12 00:00
 04/24/12 08:20
 1

Lab Sample ID: S204064-04

Matrix: WATER

Analysis Batch: 8608

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 8608_P

Analyte Blank

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Uranium, Total 0 U 1 pCi/L 04/25/12 00:00 04/25/12 02:32 1

Lab Sample ID: S204064-04

Matrix: WATER

Analysis Batch: 8608

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 8608_P

 Blank
 Blank

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Radium-228
 -0.071
 U
 1
 pCi/L
 04/25/12 00:00
 04/25/12 14:02
 1

Client: MWH Americas Inc

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

TestAmerica Job ID: 440-8315-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 8608_P

Prep Type: Total/NA

Prep Batch: 8608_P

Limits 60 - 140

Prep Batch: 8608 P

%Rec 98

Lab Sample ID: S204064-04 **Matrix: WATER**

Project/Site: Routine Outfall 009

Analysis Batch: 8608

Blank Blank

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 3 Gross Alpha -0.06 U pCi/L 04/24/12 00:00 04/26/12 16:42 04/24/12 00:00 Gross Beta -0.339 U 4 pCi/L 04/26/12 16:42

Lab Sample ID: S204064-04

Matrix: WATER Analysis Batch: 8608

Analyte

Tritium

Radium-226

Blank Blank

Result Qualifier -0.004 U

RΙ

LCS LCS

LCS LCS

LCS LCS

LCS LCS

5.21

Result Qualifier

66

Result Qualifier

Qualifier

Unit

pCi/L

Unit

pCi/L

Unit

pCi/L

Result

9.29

MDL Unit pCi/L

Prepared 04/30/12 00:00

Analyzed 04/30/12 13:18

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Dil Fac

Prep Type: Total/NA

Prep Batch: 8608_P

Prep Type: Total/NA

Prep Batch: 8608_P

Lab Sample ID: S204064-03

Matrix: WATER Analysis Batch: 8608

Analyte

Matrix: WATER

Lab Sample ID: S204064-03

Added 2210

Spike

Result Qualifier 1990

Unit

D pCi/L

%Rec 90

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 8608 P **Analysis Batch: 8608** Spike LCS LCS %Rec. Analyte hahhA Result Qualifier Unit %Rec I imits D 147 Cesium-137 141 pCi/L 96 80 - 120 pCi/L Cobalt-60 130 106 82 80 - 120

Spike

Added

9.34

Spike

Added

Spike

Added

5.3

62

Lab Sample ID: S204064-03 **Matrix: WATER**

Analysis Batch: 8608

Analyte

Strontium-90

Analyte

Uranium, Total

Lab Sample ID: S204064-03 **Matrix: WATER**

Analysis Batch: 8608

Lab Sample ID: S204064-03 **Matrix: WATER**

Analysis Batch: 8608

Analyte Radium-228

D

%Rec

%Rec

106

Client Sample ID: Lab Control Sample

Limits

80 - 120

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Prep Type: Total/NA Prep Batch: 8608 P %Rec.

Client Sample ID: Lab Control Sample Prep Type: Total/NA

TestAmerica Irvine 5/23/2012

TestAmerica Job ID: 440-8315-1

3

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Lab Sample ID: S204064-03 Matrix: WATER							Cileiii	. Sample	ID: Lab Control Prep Type: T	
Analysis Batch: 8608									Prep Batch:	
-			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gross Alpha			33.7	39.4		pCi/L		117	70 - 130	
Gross Beta			28.3	27.9		pCi/L		99	70 ₋ 130	
Lab Sample ID: S204064-03							Client	Sample	ID: Lab Control	
Matrix: WATER									Prep Type: T	
Analysis Batch: 8608									Prep Batch:	8608_P
Analyta			Spike Added		LCS	Unit	ь.	9/ Boo	%Rec.	
Analyte Radium-226				50.6	Qualifier	Unit pCi/L	D	%Rec 91	Limits 80 - 120	
						•				
Lab Sample ID: S204064-05						Client Sa	mple IE	: OUTF	ALL 009 (440-844	
Matrix: WATER									Prep Type: T	
Analysis Batch: 8608	Cample	Comple		Dunlingto	Duplicate				Prep Batch:	8608_P RPD
Analyte	Sample	Qualifier		=	Qualifier	Unit	D		RPD	
Analyte Tritium	-72.3			-22.4		pCi/L				
muum	-12.5	U		-22.4	O	pC//L			O	
Lab Sample ID: S204064-05						Client Sa	mple IC	: OUTF	ALL 009 (440-844	3-1) DU
Matrix: WATER									Prep Type: T	otal/NA
Analysis Batch: 8608									Prep Batch:	8608_P
	Sample	Sample		Duplicate	Duplicate					RPD
Analyte		Qualifier			Qualifier	Unit	D		RPD	Limit
Cesium-137	0.386			1.06		pCi/L			0	
Potassium-40	1.85	U		2.44	U	pCi/L			0	
Lab Sample ID: S204064-05						Client Sa	mple IE	: OUTF	ALL 009 (440-844	3-1) DU
Matrix: WATER									Prep Type: T	otal/NA
Analysis Batch: 8608									Prep Batch:	8608_P
	Sample	-		•	Duplicate					RPD
Analyte		Qualifier			Qualifier	Unit	D		RPD	
Strontium-90	-0.156	U		0.361	U	pCi/L			0	
Lab Sample ID: S204064-05						Client Sa	mple IE	: OUTF	ALL 009 (440-844	3-1) DU
Matrix: WATER									Prep Type: T	otal/NA
Analysis Batch: 8608									Prep Batch:	8608_P
	Sample	Sample		Duplicate	Duplicate					RPD
Analyte		Qualifier			Qualifier	Unit	D		RPD	Limit
Uranium, Total	0.074	J		0.08	J	pCi/L			8	
Lab Sample ID: S204064-05						Client Sa	mple IE	: OUTF	ALL 009 (440-844	3-1) DU
Matrix: WATER							•		Prep Type: T	
Analysis Batch: 8608									Prep Batch:	
	Sample	Sample		Duplicate	Duplicate					RPD

RPD

0

Limit

Result Qualifier

-0.006 U

Unit

pCi/L

Result Qualifier

0.118 U

Analyte

Radium-228

QC Sample Results

Client: MWH Americas Inc

Project/Site: Routine Outfall 009

TestAmerica Job ID: 440-8315-1

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

0.126 U

Radium-226

Lab Sample ID: S204064-05	Client Sample ID: OUTFALL 009 (440-8443-1) DU
Matrix: WATER	Prep Type: Total/NA
Analysis Batch: 8608	Prep Batch: 8608_P

	Sample	Sample	Duplicate	Duplicate			•		RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Gross Alpha	1.23	J	1.68	J	pCi/L			31	
Gross Beta	2.29	J	1.43	J	pCi/L			46	

 Lab Sample ID: S204064-05					Client Sa	ample ID: OUTF	FALL 009 (440-8443	-1) DU
Matrix: WATER							Prep Type: To	tal/NA
Analysis Batch: 8608							Prep Batch: 8	608_P
:	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit

-0.044 U

pCi/L

3

4

5

7

8

9

0

10

15

QC Association Summary

Client: MWH Americas Inc Project/Site: Routine Outfall 009 TestAmerica Job ID: 440-8315-1

HPLC/IC

Analysis Batch: 19241

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
440-8441-I-4 MS	Matrix Spike	Total/NA	Water	300.0	
440-8441-I-4 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
440-8443-1	Outfall 009 Composite	Total/NA	Water	300.0	
LCS 440-19241/42	Lab Control Sample	Total/NA	Water	300.0	
MB 440-19241/41	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 19242

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-8441-I-4 MS	Matrix Spike	Total/NA	Water	300.0	
440-8441-I-4 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
440-8443-1	Outfall 009 Composite	Total/NA	Water	300.0	
LCS 440-19242/42	Lab Control Sample	Total/NA	Water	300.0	
MB 440-19242/41	Method Blank	Total/NA	Water	300.0	

Specialty Organics

Analysis Batch: 2110042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total	Water	1613B	_
G2D190000042B	Method Blank	Total	Water	1613B	
G2D190000042C	Lab Control Sample	Total	Water	1613B	

Prep Batch: 2110042_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total	Water	3542	
G2D190000042B	Method Blank	Total	Water	3542	
G2D190000042C	Lab Control Sample	Total	Water	3542	

Metals

Prep Batch: 20030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8257-F-1-C MS	Matrix Spike	Total/NA	Water	245.1	
440-8257-F-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	
440-8443-1	Outfall 009 Composite	Total/NA	Water	245.1	
LCS 440-20030/2-A	Lab Control Sample	Total/NA	Water	245.1	
MB 440-20030/1-A	Method Blank	Total/NA	Water	245.1	

Prep Batch: 20049

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Dissolved	Water	245.1	
440-8443-1 MS	Outfall 009 Composite	Dissolved	Water	245.1	
440-8443-1 MSD	Outfall 009 Composite	Dissolved	Water	245.1	
LCS 440-19679/2-C	Lab Control Sample	Dissolved	Water	245.1	
MB 440-19679/1-C	Method Blank	Dissolved	Water	245.1	

Analysis Batch: 20257

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8257-F-1-C MS	Matrix Spike	Total/NA	Water	245.1	20030
440-8257-F-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	20030
440-8443-1	Outfall 009 Composite	Total/NA	Water	245.1	20030
LCS 440-20030/2-A	Lab Control Sample	Total/NA	Water	245.1	20030

2

6

8

11

12

1.

QC Association Summary

Client: MWH Americas Inc Project/Site: Routine Outfall 009 TestAmerica Job ID: 440-8315-1

Metals (Continued)

Analysis Batch: 20257 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 440-20030/1-A	Method Blank	Total/NA	Water	245.1	20030

Analysis Batch: 20502

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Dissolved	Water	245.1	20049
440-8443-1 MS	Outfall 009 Composite	Dissolved	Water	245.1	20049
440-8443-1 MSD	Outfall 009 Composite	Dissolved	Water	245.1	20049
LCS 440-19679/2-C	Lab Control Sample	Dissolved	Water	245.1	20049
MB 440-19679/1-C	Method Blank	Dissolved	Water	245.1	20049

Prep Batch: 21114

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total Recoverable	Water	200.2	
440-8443-1 MS	Outfall 009 Composite	Total Recoverable	Water	200.2	
440-8443-1 MSD	Outfall 009 Composite	Total Recoverable	Water	200.2	
LCS 440-21114/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-21114/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 21118

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Dissolved	Water	200.2	
440-8443-1 MS	Outfall 009 Composite	Dissolved	Water	200.2	
440-8443-1 MSD	Outfall 009 Composite	Dissolved	Water	200.2	
LCS 440-19679/2-D	Lab Control Sample	Dissolved	Water	200.2	
MB 440-19679/1-D	Method Blank	Dissolved	Water	200.2	

Analysis Batch: 22049

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Dissolved	Water	200.8	21118
440-8443-1 MS	Outfall 009 Composite	Dissolved	Water	200.8	21118
440-8443-1 MSD	Outfall 009 Composite	Dissolved	Water	200.8	21118
LCS 440-19679/2-D	Lab Control Sample	Dissolved	Water	200.8	21118
MB 440-19679/1-D	Method Blank	Dissolved	Water	200.8	21118

Analysis Batch: 22549

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total Recoverable	Water	200.8	21114
440-8443-1 MS	Outfall 009 Composite	Total Recoverable	Water	200.8	21114
440-8443-1 MSD	Outfall 009 Composite	Total Recoverable	Water	200.8	21114
LCS 440-21114/2-A	Lab Control Sample	Total Recoverable	Water	200.8	21114
MB 440-21114/1-A	Method Blank	Total Recoverable	Water	200.8	21114

Analysis Batch: 22627

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total Recoverable	Water	200.8	21114
440-8443-1 MS	Outfall 009 Composite	Total Recoverable	Water	200.8	21114
440-8443-1 MSD	Outfall 009 Composite	Total Recoverable	Water	200.8	21114

TestAmerica Irvine 5/23/2012

Client: MWH Americas Inc Project/Site: Routine Outfall 009

General Chemistry

Analysis Batch: 19574

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-8336-A-1 DU	Duplicate	Total/NA	Water	SM 2540C
440-8443-1	Outfall 009 Composite	Total/NA	Water	SM 2540C
LCS 440-19574/2	Lab Control Sample	Total/NA	Water	SM 2540C
MB 440-19574/1	Method Blank	Total/NA	Water	SM 2540C

Analysis Batch: 20537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-8248-G-1 DU	Duplicate	Total/NA	Water	SM 2540D
440-8443-1	Outfall 009 Composite	Total/NA	Water	SM 2540D
LCS 440-20537/2	Lab Control Sample	Total/NA	Water	SM 2540D
MB 440-20537/1	Method Blank	Total/NA	Water	SM 2540D

Prep Batch: 21464

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8315-1	Outfall 009 Grab	Total/NA	Water	1664A	
LCS 440-21464/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-21464/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	
MB 440-21464/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 21480

La	b Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
44	0-8315-1	Outfall 009 Grab	Total/NA	Water	1664A	21464
LC	CS 440-21464/2-A	Lab Control Sample	Total/NA	Water	1664A	21464
LC	CSD 440-21464/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	21464
M	B 440-21464/1-A	Method Blank	Total/NA	Water	1664A	21464

Prep Batch: 21913

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total/NA	Water	Distill/CN	
440-8515-A-3-B MS	Matrix Spike	Total/NA	Water	Distill/CN	
440-8515-A-3-D MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	
LCS 440-21913/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
MB 440-21913/1-A	Method Blank	Total/NA	Water	Distill/CN	

Analysis Batch: 21973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total/NA	Water	SM 4500 CN E	21913
440-8515-A-3-B MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	21913
440-8515-A-3-D MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	21913
LCS 440-21913/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	21913
MB 440-21913/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	21913

Subcontract

Analysis Batch: 8608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total/NA	Water	Gamma Spec	8608_P
				K-40 CS-137	
440-8443-1	Outfall 009 Composite	Total/NA	Water	Gross Alpha	8608_P
				and Beta	
440-8443-1	Outfall 009 Composite	Total/NA	Water	Radium 226	8608_P
440-8443-1	Outfall 009 Composite	Total/NA	Water	Radium 228	8608_P

6

8

4.6

1 1

12

QC Association Summary

Client: MWH Americas Inc
Project/Site: Routine Outfall 009

TestAmerica Job ID: 440-8315-1

Subcontract (Continued)

Analysis Batch: 8608 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total/NA	Water	Strontium 90	8608_P
440-8443-1	Outfall 009 Composite	Total/NA	Water	Tritium	8608_P
440-8443-1	Outfall 009 Composite	Total/NA	Water	Uranium, Combined	8608_P
440-8443-2	Trip Blank	Total/NA	Water	Gamma Spec K-40 CS-137	8608_P
440-8443-2	Trip Blank	Total/NA	Water	Gross Alpha and Beta	8608_P
440-8443-2	Trip Blank	Total/NA	Water	Radium 226	8608_P
440-8443-2	Trip Blank	Total/NA	Water	Radium 228	8608_P
440-8443-2	Trip Blank	Total/NA	Water	Strontium 90	8608_P
440-8443-2	Trip Blank	Total/NA	Water	Uranium, Combined	8608_P
S204064-03	Lab Control Sample	Total/NA	WATER	Gross Alpha and Beta	8608_P
S204064-04	Method Blank	Total/NA	WATER	Gross Alpha and Beta	8608_P
S204064-05	OUTFALL 009 (440-8443-1) DU	Total/NA	WATER	Gross Alpha and Beta	8608_P

Prep Batch: 8608_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8443-1	Outfall 009 Composite	Total/NA	Water	General Prep	
440-8443-2	Trip Blank	Total/NA	Water	General Prep	
S204064-03	Lab Control Sample	Total/NA	WATER	General Prep	
S204064-04	Method Blank	Total/NA	WATER	General Prep	
S204064-05	OUTFALL 009 (440-8443-1) DU	Total/NA	WATER	General Prep	

1

3

2

5

7

_

10

11

12

Definitions/Glossary

Client: MWH Americas Inc Project/Site: Routine Outfall 009 TestAmerica Job ID: 440-8315-1

Qualifiers

DIOXIN

Qualifier	Qualifier Description
J	Estimated result. Result is less than the reporting limit.
Q	Estimated maximum possible concentration (EMPC).
В	Method blank contamination. The associated method blank contains the target analyte at a reportable level.
Motolo	

Metals

Qualifier	Qualifier Description
LN	MS and/or MSD below acceptance limits. See Blank Spike (LCS)
AY	Matrix Interference suspected
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL

Subcontract

Qualifier	Qualifier Description
U	The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
J	The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.			
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis			
%R	Percent Recovery			
CNF	Contains no Free Liquid			
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample			
EDL	Estimated Detection Limit			
EPA	United States Environmental Protection Agency			
MDL	Method Detection Limit			
ML	Minimum Level (Dioxin)			
ND	Not detected at the reporting limit (or MDL or EDL if shown)			
PQL	Practical Quantitation Limit			

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin

TestAmerica Irvine 5/23/2012

Client: MWH Americas Inc Project/Site: Routine Outfall 009

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Irvine	Arizona	State Program	9	AZ0671
TestAmerica Irvine	California	LA Cty Sanitation Districts	9	10256
TestAmerica Irvine	California	NELAC	9	1108CA
TestAmerica Irvine	California	State Program	9	2706
TestAmerica Irvine	Guam	State Program	9	Cert. No. 12.002r
TestAmerica Irvine	Hawaii	State Program	9	N/A
TestAmerica Irvine	Nevada	State Program	9	CA015312007A
TestAmerica Irvine	New Mexico	State Program	6	N/A
TestAmerica Irvine	Northern Mariana Islands	State Program	9	MP0002
TestAmerica Irvine	Oregon	NELAC	10	4005
TestAmerica Irvine	USDA	Federal		P330-09-00080
TestAmerica West Sacramento	A2LA	DoD ELAP		2928-01
TestAmerica West Sacramento	Alaska (UST)	State Program	10	UST-055
TestAmerica West Sacramento	Arizona	State Program	9	AZ0708
TestAmerica West Sacramento	Arkansas DEQ	State Program	6	88-0691
TestAmerica West Sacramento	California	NELAC	9	1119CA
TestAmerica West Sacramento	Colorado	State Program	8	N/A
TestAmerica West Sacramento	Connecticut	State Program	1	PH-0691
TestAmerica West Sacramento	Florida	NELAC	4	E87570
TestAmerica West Sacramento	Georgia	State Program	4	960
TestAmerica West Sacramento	Guam	State Program	9	N/A
TestAmerica West Sacramento	Hawaii	State Program	9	N/A
TestAmerica West Sacramento	Illinois	NELAC	5	200060
TestAmerica West Sacramento	Kansas	NELAC	7	E-10375
TestAmerica West Sacramento	Louisiana	NELAC	6	30612
TestAmerica West Sacramento	Michigan	State Program	5	9947
TestAmerica West Sacramento	Nevada	State Program	9	CA44
TestAmerica West Sacramento	New Jersey	NELAC	2	CA005
TestAmerica West Sacramento	New Mexico	State Program	6	N/A
TestAmerica West Sacramento	New York	NELAC	2	11666
TestAmerica West Sacramento	Northern Mariana Islands	State Program	9	MP0007
TestAmerica West Sacramento	Oregon	NELAC	10	CA200005
TestAmerica West Sacramento	Pennsylvania	NELAC	3	68-01272
TestAmerica West Sacramento	South Carolina	State Program	4	87014
TestAmerica West Sacramento	Texas	NELAC	6	T104704399-08-TX
TestAmerica West Sacramento	US Fish & Wildlife	Federal		LE148388-0
TestAmerica West Sacramento	USDA	Federal		P330-09-00055
TestAmerica West Sacramento	Utah	NELAC	8	QUAN1
TestAmerica West Sacramento	Virginia	State Program	3	178
TestAmerica West Sacramento	Washington	State Program	10	C581
TestAmerica West Sacramento	West Virginia	State Program	3	9930C
TestAmerica West Sacramento	West Virginia DEP	State Program	3	334
TestAmerica West Sacramento	Wisconsin	State Program	5	998204680
TestAmerica West Sacramento	Wyoming	State Program	8	8TMS-Q

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

5

3

4

5

a

10

11

May 8, 2012

EBERL

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine 44002624

Eberline Analytical Report S204064-8608

Sample Delivery Group 8608

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Project No. 44002624. The samples were received on April 14, 2012.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

Joseph Verville

Client Services Manager

NJV/mw

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

May 8, 2012

1.0 General Comments

Sample delivery group 8608 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The samples were received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the samples as received i.e. the samples were not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, and duplicate analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2σ error (Total):

Page 30 of 74

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

5/23/2012

6

9

11

Eberline Analytical Report No. S204064-8608 Test America Project No. 44002624

Case Narrative, page 2

May 8, 2012

4.0 Analysis Notes

- **4.1 Gross Alpha/Gross Beta Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4** Radium-226 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- **4.6 Total Uranium Analysis -** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.7 Gamma Spectroscopy** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

Joseph Verville

Client Services Manager

5/8/12

Date

Page 31 of 74

5/23/2012

4

5

6

0

9

_

EBERLINE ANALYTICAL SDG 8608

SDG <u>8608</u>
Contact <u>Joseph Verville</u>

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

SUMMARY DATA SECTION

TABLE OF	C O	N T	E N	T S	
About this section	•	•	•	•	1
Sample Summaries	•		•	•	3
Prep Batch Summary	•	•		•	5
Work Summary	•	•	•	•	6
Method Blanks	•		•	•	8
Lab Control Samples	•	•	•	•	9
Duplicates	•	•	•	•	10
Data Sheets	•			•	11
Method Summaries	•			•	13
Report Guides	•			•	21
End of Section	•	•		•	35

Prepared by

Mull

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06
Report date 05/08/12

EBERLINE ANALYTICAL

SDG 8608

SDG 8608
Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc.</u> Contract 44002624

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 1

Lab id $\frac{EAS}{Protocol}$ TA

Version $\frac{Ver \ 1.0}{POVD-RG}$ Version $\frac{3.06}{POSOB}$ Report date $\frac{05/08/12}{POSOB}$

4

7

9

10

12

1.

EBERLINE ANALYTICAL

SDG 8608

SDG 8608
Contact Joseph Verville

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

5

7

9

10

12

SDG 8608

SDG 8608
Contact Joseph Verville

LAB SAMPLE SUMMARY

Client <u>Test America</u>, <u>Inc</u>.

Contract <u>44002624</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S204064-01	OUTFALL 009 (440-8443-1)	Boeing-SSFL	WATER			440-3894.1	04/11/12 20:31
S204064-02	TRIP-BLANK (440-8443-2)	Boeing-SSFL	WATER			440-3894.1	04/13/12 14:18
S204064-03	Lab Control Sample		WATER				
S204064-04	Method Blank		WATER				
S204064-05	Duplicate (S204064-01)	Boeing-SSFL	WATER				04/11/12 20:31

Version <u>3.06</u>
Report date <u>05/08/12</u>

Version Ver 1.0

Form DVD-LS

Lab id EAS
Protocol TA

SDG 8608

SDG <u>8608</u>
Contact <u>Joseph Verville</u>

QC SUMMARY

Client Test America, Inc.
Contract 44002624

QC BATCH	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8608	440-3894.1	OUTFALL 009 (440-8443-1) TRIP-BLANK (440-8443-2)	WATER WATER		10.0 L		04/14/12	3	S204064-01 S204064-02	8608-001 8608-002
		Method Blank Lab Control Sample Duplicate (S204064-01)	WATER WATER WATER		10.0 L		04/14/12	3	S204064-04 S204064-03 S204064-05	8608-004 8608-003 8608-005

11

12

1:

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-QS

 Version
 3.06

 Report date
 05/08/12

SDG 8608

SDG	8608
Contact	Joseph Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

			PREPARATION	ERROR			- PLA	NCHETS	ANALYZ	ED	QUALI-
TEST	MATRIX	METHOD	ВАТСН	2o %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting										
AC	WATER	Radium-228 in Water	7271-142	10.4	2			1	1	1/1	
SR	WATER	Strontium-90 in Water	7271-142	10.4	2			1	1	1/1	
Gas F	roportiona	l Counting									
80A	WATER	Gross Alpha in Water	7271-142	20.6	2			1	1	1/1	
80B	WATER	Gross Beta in Water	7271-142	11.0	2		•	1	1	1/1	
Gamma	Spectroso	сору									
GAM	WATER	Gamma Emitters in Water	7271-142	7.0	2			1	1	1/1	
Kinet	ic Phospho	primetry									
U_T	WATER	Uranium, Total	7271-142		2			1	1	1/1	
Liqui	d Scintill	ation Counting									
Н	WATER	Tritium in Water	7271-142	10.0	1			1	1	1/1	
Rador	Counting						_				
RA	WATER	Radium-226 in Water	7271-142	16.4	2			1	1	1/1	

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY

Page 1

SUMMARY DATA SECTION

Page 5

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-PBS</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

9

4

5

9

11

12

U

SDG 8608

SDG 8608

Contact Joseph Verville

LAB WORK SUMMARY

Client Test America, Inc.

Contract 44002624

LAB SAMPLE COLLECTED	CLIENT SAMPLE ID LOCATION CUSTODY SAS no	MATRIX	PLANCHET	TEST	SUF-	ANALYZED	REVIEWED	BY	METHOD
RECEIVED	COSTODI SAS NO		PLANCHET	1631	FIA	AKAHIZED	REVIEWED	- D1	PETROD
S204064-01	OUTFALL 009 (440-8443-1)		8608-001	80A/80		04/26/12	04/27/12	MWT	Gross Alpha in Water
04/11/12	Boeing-SSFL	WATER	8608-001	80B/80		04/26/12	04/27/12	BW	Gross Beta in Water
04/14/12	440-3894.1		8608-001	AC		04/25/12	05/03/12	BW	Radium-228 in Water
			8608-001	GAM		04/23/12	04/30/12	$\mathbf{M}\mathbf{W}\mathbf{T}$	Gamma Emitters in Water
			8608-001	Н		04/20/12	04/24/12	BW	Tritium in Water
			8608-001	RA		04/30/12	05/01/12	BW	Radium-226 in Water
			8608-001	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8608-001	U_T		04/25/12	04/26/12	CSS	Uranium, Total
S204064-02	TRIP-BLANK (440-8443-2)	,	8608-002	80A/80		04/26/12	04/27/12	MWT	Gross Alpha in Water
04/13/12	Boeing-SSFL	WATER	8608-002	80B/80		04/26/12	04/27/12	BW	Gross Beta in Water
04/14/12	440-3894.1		8608-002	AC		04/25/12	05/03/12	BW	Radium-228 in Water
			8608-002	GAM		04/20/12	04/30/12	MWT	Gamma Emitters in Water
			8608-002	RA		04/30/12	05/01/12	BW	Radium-226 in Water
			8608-002	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8608-002	U_T		04/25/12	04/26/12	CSS	Uranium, Total
S204064-03	Lab Control Sample		8608-003	80A/80		04/26/12	04/27/12	MWT	Gross Alpha in Water
		WATER	8608-003	80B/80		04/26/12	04/27/12	BW	Gross Beta in Water
			8608-003	AC		04/25/12	05/03/12	BW	Radium-228 in Water
			8608-003	GAM		04/23/12	04/30/12	MWT	Gamma Emitters in Water
			8608-003	Н		04/20/12	04/24/12	BW	Tritium in Water
			8608-003	RA		04/30/12	05/01/12	BW	Radium-226 in Water
			8608-003	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8608-003	U_T		04/25/12	04/26/12	CSS	Uranium, Total
S204064-04	Method Blank		8608-004	80A/80		04/26/12	04/27/12	MWT	Gross Alpha in Water
		WATER	8608-004	80B/80		04/26/12	04/27/12	BW	Gross Beta in Water
			8608-004	AC		04/25/12	05/03/12	BW	Radium-228 in Water
			8608-004	GAM		04/23/12	04/30/12	MWT	Gamma Emitters in Water
			8608-004	Н		04/20/12	04/24/12	BW	Tritium in Water
			8608-004	RA		04/30/12	05/01/12	BW	Radium-226 in Water
			8608-004	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8608-004	U_T		04/25/12	04/26/12	CSS	Uranium, Total

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LWS</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

3

6

Ω

9

11

SDG 8608

SDG <u>8608</u>
Contact <u>Joseph Verville</u>

WORK SUMMARY, cont.

Client Test America, Inc.
Contract 44002624

LAB SAMPLE CLIENT SAMPLE ID SUF-COLLECTED LOCATION MATRIX PLANCHET TEST FIX ANALYZED REVIEWED BY RECEIVED CUSTODY SAS no 8608-005 80A/80 04/26/12 04/27/12 MWT Gross Alpha in Water S204064-05 Duplicate (S204064-01) Gross Beta in Water Boeing-SSFL 8608-005 80B/80 04/26/12 04/27/12 BW 04/11/12 WATER 8608-005 AC 04/25/12 05/03/12 BW Radium-228 in Water 04/14/12 8608-005 04/24/12 04/30/12 MWT Gamma Emitters in Water GAM 8608-005 04/20/12 04/24/12 BW Tritium in Water Н 04/30/12 05/01/12 BW Radium-226 in Water 8608-005 RA 8608-005 04/24/12 04/30/12 BW Strontium-90 in Water SR 8608-005 04/25/12 04/26/12 CSS Uranium, Total U_T

TEST	SAS no	COUNTS	OF TESTS BY	SAMPLE TYPE CLIENT MORE	RE BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0	2	1	1	1	5
80B/80		Gross Beta in Water	900.0	2	1	1	1	5
AC		Radium-228 in Water	904.0	2	1	1	1	5
GAM		Gamma Emitters in Water	901.1	2	1	1	1	5
Н		Tritium in Water	906.0	1	1	1	1	4
RA		Radium-226 in Water	903.1	2	1	1	1	5
SR		Strontium-90 in Water	905.0	2	1	1	1	5
U_T		Uranium, Total	D5174	2	1	1	1	5
TOTALS				15	8	8	8	39

WORK SUMMARY
Page 2
SUMMARY DATA SECTION
Page 7

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LWS</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

3

_

0

10

40

_1

2

EBERLINE ANALYTICAL SDG 8608

8608-004

METHOD BLANK

Method Blank

		8608 Joseph Verville		Test America, Inc. 44002624	
1	Lab sample id Dept sample id	<u>5204064-04</u>	Client sample id Material/Matrix		WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.060	0.32	0.599	3.00	υ	80A
Gross Beta	12587472	-0.339	0.50	0.864	4.00	U	80B
Tritium	10028178	5.24	100	174	500	U	Н
Radium-226	13982633	-0.004	0.28	0.508	1.00	U	RA
Radium-228	15262201	-0.071	0.23	0.393	1.00	U	AC
Strontium-90	10098972	0.035	0.14	0.277	2.00	U	SR
Uranium, Total		0	0.008	0.019	1.00	U	U_T
Potassium-40	13966002	9.54	17	29.1	25.0	U	GAM
Cesium-137	10045973	-0.038	1.0	1.50	20.0	U	GAM

QC-BLANK #81580

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>
Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

5

7

10

SDG 8608

8608-003

Lab Control Sample

LAB CONTROL SAMPLE

SDG 8608 Client Test America, Inc.

Contact Joseph Verville Contract 44002624

Lab sample id S204064-03

Dept sample id 8608-003

Client sample id Lab Control Sample

Material/Matrix

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	39.4	2.2	0.540	3.00		80A	33.7	1.3	117	75-125	70-130
Gross Beta	27.9	1.2	0.837	4.00		80B	28.3	1.1	99	88-112	70-130
Tritium	1990	160	174	500		Н	2210	88	90	88-112	80-120
Radium-226	50.6	2.0	0.639	1.00		RA	55.7	2.2	91	84-116	80-120
Radium-228	5.21	0.57	0.356	1.00		AC	5.30	0.21	98	85-115	60-140
Strontium-90	9.29	0.59	0.296	2.00		SR	9.34	0.37	99	87-113	80-120
Uranium, Total	66.0	7.7	0.193	1.00		U_T	62.0	2.5	106	87-113	80-120
Cobalt-60	106	5.6	5.40	10.0		GAM	130	5.2	82	92-108	80-120
Cesium-137	141	5.3	5.26	20.0		GAM	147	5.9	96	91-109	80-120

QC-LCS #81579

LAB CONTROL SAMPLES
Page 1
SUMMARY DATA SECTION
Page 9

Lab id <u>FAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LCS</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

5

6

8

10

11

12

8608-005

OUTFALL 009 (440-8443-1)

DUPLICATE

SDG 8608

Contact Joseph Verville

DUPLICATE

Lab sample id <u>S204064-05</u>

Dept sample id <u>8608-005</u>

ORIGINAL

Lab sample id <u>\$204064-01</u> Dept sample id <u>8608-001</u>

Received <u>04/14/12</u>

Client <u>Test America</u>, Inc.

Contract 44002624

Client sample id OUTFALL 009 (440-8443-1)

Location/Matrix Boeing-SSFL

Collected/Volume <u>04/11/12 20:31</u> 10.0 L

Chain of custody id 440-3894.1

	DUPLICATE	2σ ERR	MDA	\mathtt{RDL}	QUALI-		ORIGINAL	2σ ERR	MDA	QUALI-	RPD	3σ	DEF
ANALYTE	pCi/L	(COUNT)	pCi/L	pCi/L	FIERS	TEST	pCi/L	(COUNT)	pCi/L	FIERS	%	TOT	•
Gross Alpha	1.68	0.42	0.371	3.00	J	A08	1.23	0.36	0.347	J	31	72	1.3
Gross Beta	1.43	0.58	0.889	4.00	J	80B	2.29	0.72	1.08	J	46	78	1.8
Tritium	-22.4	100	172	500	σ	Н	-72.3	100	176	U	-		0.
Radium-226	-0.044	0.32	0.590	1.00	U	RA	0.126	0.29	0.509	U	-		0.
Radium-228	-0.006	0.31	0.612	1.00	U	AC	0.118	0.14	0.378	U	-		0.
Strontium-90	0.361	0.51	1.04	2.00	U	SR	-0.156	0.36	0.943	U	-		1.
Uranium, Total	0.080	0.012	0.019	1.00	J	U_T	0.074	0.012	0.019	J	8	33	0.
Potassium-40	2.44	18	31.3	25.0	υ	GAM	1.85	32	57.4	U	-		0
Cesium-137	1.06	1.7	2.86	20.0	U	GAM	0.386	2.8	4.96	U	_		0.4

QC-DUP#1 81581

DUPLICATES Page 1 SUMMARY DATA SECTION Page 10

Lab id EAS Protocol TA Version <u>Ver 1.0</u> Form DVD-DUP Version 3.06 Report date 05/08/12

2

EBERLINE ANALYTICAL SDG 8608

8608-001

DATA SHEET

OUTFALL 009 (440-8443-1)

	8608 Joseph Verville		Test America, Inc. 44002624	
Lab sample id Dept sample id Received		Location/Matrix	04/11/12 20:31 10.0 L	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	1.23	0.36	0.347	3.00	J	80A
Gross Beta	12587472	2.29	0.72	1.08	4.00	J	80B
Tritium	10028178	-72.3	100	176	500	U	H
Radium-226	13982633	0.126	0.29	0.509	1.00	U	RA
Radium-228	15262201	0.118	0.14	0.378	1.00	U	AC
Strontium-90	10098972	-0.156	0.36	0.943	2.00	U	SR
Uranium, Total		0.074	0.012	0.019	1.00	J	UT
Potassium-40	13966002	1.85	32	57.4	25.0	U	GAM
Cesium-137	10045973	0.386	2.8	4.96	20.0	U	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-DS

 Version
 3.06

 Report date
 05/08/12

1

2

EBERLINE ANALYTICAL SDG 8608

8608-002

TRIP-BLANK (440-8443-2)

DATA SHEET

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.009	0.17	0.306	3.00	U	80A
Gross Beta	12587472	-0.428	0.46	0.784	4.00	U	80B
Radium-226	13982633	0.022	0.27	0.498	1.00	U	RA
Radium-228	15262201	-0.131	0.17	0.416	1.00	U	AC
Strontium-90	10098972	0.352	0.50	1.02	2.00	U	SR
Uranium, Total		0	0.008	0.019	1.00	U	UΤ
Potassium-40	13966002	-13.1	20	35.6	25.0	U	GAM
Cesium-137	10045973	-1.89	2.1	2.03	20.0	U	GAM

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 05/08/12

SDG 8608

Test AC Matrix WATER SDG <u>8608</u> Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING

Client Test America, Inc. Contract 44002624

RESULTS

LAB RAW SUF-

SAMPLE ID TEST F	'IX PLANCHET	CLIENT SAMPLE ID	Radium-228
Preparation batch	7271-142		
S204064-01	8608-001	OUTFALL 009 (440-8443-1)	U
S204064-02	8608-002	TRIP-BLANK (440-8443-2)	Ŭ
S204064-03	8608-003	Lab Control Sample	ok
S204064-04	8608-004	Method Blank	υ
S204064-05	8608-005	Duplicate (S204064-01)	- U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD	EFF %			 	PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7271-142 2σ prep error 10	1.4 % Re	ference	Lab N	iotebool	k No.	7271	pg.012	2				
S204064-01	OUTFALL 009 (440-8443-1)	0.378	1.80			85		150		14	04/25/12	04/25	GRB-228
S204064-02	TRIP-BLANK (440-8443-2)	0.416	1.80			87		150		12	04/25/12	04/25	GRB-201
S204064-03	Lab Control Sample	0.356	1.80			89		150			04/25/12	04/25	GRB-202
S204064-04	Method Blank	0.393	1.80			80		150			04/25/12	04/25	GRB-204
S204064-05	Duplicate (S204064-01)	0.612	1.80			91		150		14	04/25/12	04/25	GRB-206
Nominal val	ues and limits from method	1.00	1.80			30-10	5	50		180			

PROCEDURES REFERENCE 904.0 D**W**P-894 Sequential Separation of Actinium-228 and

Radium-226 in Drinking Water (>1 Liter Aliquot), rev 5

MDA 0.431 ± 0.207 AVERAGES ± 2 SD FOR 5 SAMPLES YIELD <u>86</u> ± <u>8</u>

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 13

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>05/08/12</u>

LAB METHOD SUMMARY

SDG 8608

STRONTIUM-90 IN WATER BETA COUNTING Client Test America, Inc.
Contract 44002624

RESULTS

LAB RAW SUF-

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Strontium-90 Preparation batch 7271-142 S204064-01 8608-001 OUTFALL 009 (440-8443-1) \$204064-02 8608-002 TRIP-BLANK (440-8443-2) U S204064-03 8608-003 Lab Control Sample 8608-004 Method Blank S204064-04 U S204064-05 8608-005 Duplicate (S204064-01)

Nominal values and limits from method RDLs (pCi/L) 2.00

METHOD PERFORMANCE

LAB RAW SHE-MDA ALIO PREP DILU- YIELD EFF COUNT FWHM DRIFT DAYS ANAL-SAMPLE ID TEST FIX CLIENT SAMPLE ID pCi/L % min keV KeV HELD PREPARED YZED DETECTOR Preparation batch 7271-142 2σ prep error 10.4 % Reference Lab Notebook No. 7271 pg.012 S204064-01 OUTFALL 009 (440-8443-1) 0.943 <u>0.500</u> 13 04/24/12 04/24 GRB-228 S204064-02 TRIP-BLANK (440-8443-2) 1.02 _0.500 81 11 04/24/12 04/24 GRB-229 Lab Control Sample S204064-03 0.296 1.00 80 100 04/24/12 04/24 GRB-231 S204064-04 Method Blank 0.277 1.00 79 100 04/24/12 04/24 GRB-232 S204064-05 Duplicate (S204064-01) 1.04 0.500 78 50 13 04/24/12 04/24 GRB-229 Nominal values and limits from method 2.00 1.00 30-105 50 180

PROCEDURES REFERENCE 905.0

CP-380 Strontium in Water Samples, rev 5

 AVERAGES ± 2 SD
 MDA
 0.715 ±
 0.786

 FOR 5 SAMPLES
 YIELD
 79 ±
 2

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 14

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 05/08/12

4

9

44

15

SDG 8608

Test <u>80A</u> Matrix <u>WATER</u>
SDG <u>8608</u>

Contact Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

RESULTS

LAB RAW SUF-

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alpha
Preparation	hatah 727	1_142		
-				
S204064-01	80	8608-001	OUTFALL 009 (440-8443-1)	1.23 J
S204064-02	80	8608-002	TRIP-BLANK (440-8443-2)	U
S204064-03	80	8608-003	Lab Control Sample	ok
S204064-04	80	8608-004	Method Blank	U
S204064-05	80	8608-005	Duplicate (S204064-01)	ok J

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU-	RESID mg	EFF %	COUNT min	FWHM keV	 	PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 727	1-142 2σ prep e	rror 20.6 % Re	eference	Lab N	ioteboo	k No.	7271	pg.012	2				
S204064-01	80	OUTFALL 009 (440-8	443-1) 0.347	0.300			11		400		15	04/24/12	04/26	GRB-107
S204064-02	80	TRIP-BLANK (440-84	43-2) 0.306	0.300			0		400		13	04/24/12	04/26	GRB-109
S204064-03	80	Lab Control Sample	0.540	0.300			59		400			04/24/12	04/26	GRB-111
S204064-04	80	Method Blank	0.599	0.300			62		400			04/24/12	04/26	GRB-112
S204064-05	80	Duplicate (S204064	-01) 0.371	0.300			12		400		15	04/24/12	04/26	GRB-105
											 	······································		
Nominal val	ues and li	mits from method	3.00	0.300			0-25	0	100		180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 05/08/12

3

6

1

9

11

SDG 8608

Test 80B Matrix WATER

SDG 8608

Contact Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

Client Test America, Inc.
Contract 44002624

4

RESULTS

LAB RAW SUF-

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Gross Beta Preparation batch 7271-142 S204064-01 80 OUTFALL 009 (440-8443-1) 2.29 J 8608-001 S204064-02 80 8608-002 TRIP-BLANK (440-8443-2) S204064-03 80 8608-003 Lab Control Sample ok \$204064-04 80 8608-004 Method Blank U \$204064-05 80 8608-005 Duplicate (\$204064-01) ok ιT

4.00

RDLs (pCi/L)

Nominal values and limits from method

METHOD PERFORMANCE

RAW SUF-MDA ALIQ PREP DILU- RESID EFF COUNT FWHM DRIFT DAYS TEST FIX CLIENT SAMPLE ID pCi/L SAMPLE ID L FAC TION % min keV KeV HELD PREPARED YZED mg DETECTOR Preparation batch 7271-142 2σ prep error 11.0 % Reference Lab Notebook No. 7271 pg.012 S204064-01 80 OUTFALL 009 (440-8443-1) 1.08 0.300 15 04/24/12 04/26 GRB-107 S204064-02 80 TRIP-BLANK (440-8443-2) 0.784 0.300 Ω 400 13 04/24/12 04/26 GRB-109 S204064-03 80 Lab Control Sample 0.837 0.300 59 400 04/24/12 04/26 GRB-111 S204064-04 80 Method Blank 0.864 0.300 62 400 04/24/12 04/26 GRB-112 0.889 0.300 S204064-05 80 Duplicate (S204064-01) 15 04/24/12 04/26 GRB-105 400 Nominal values and limits from method 4.00 0.300 0-250 100 180

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 0.891 ± 0.225 FOR 5 SAMPLES RESIDUE 29 ± 59

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 16

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 05/08/12

SDG 8608

Test GAM Matrix WATER

SDG 8608

Contact Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

5

RESULTS

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-137	
Preparation	batch 727	1-142				
S204064-01		8608-001	OUTFALL 009 (440-8443-1)		U	
S204064-02		8608-002	TRIP-BLANK (440-8443-2)		U	
S204064-03		8608-003	Lab Control Sample	ok	ok	
S204064-04		8608-004	Method Blank		U	
S204064-05		8608-005	Duplicate (S204064-01)		- U	

4

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	t pCi/L	L	FAC	TION	. ક	왕	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
				-				•		· <u>-</u> .					
Preparation	ı batch 727	'1-142 2σ prep erro	or 7.0% R	eference	Lab 1	Noteboo!	k No.	7271	pg.012	2					
S204064-01		OUTFALL 009 (440-8443	1-1)	2.00					400			12	04/19/12	04/23	MB,G5,0
S204064-02		TRIP-BLANK (440-8443-	2)	2.00					400			7	04/19/12	04/20	MB,G2,0
S204064-03		Lab Control Sample		2.00					400				04/19/12	04/23	MB,G3,0
S204064-04		Method Blank		2.00					400				04/19/12	04/23	MB,G4,0
S204064-05		Duplicate (S204064-0	.)	2.00					400			13	04/19/12	04/24	MB,G3,0
Nominal val	ues and li	mits from method	6.00	2.00					400			180			

PROCEDURES REFERENCE 901.1

DWP-100 Preparation of Drinking Water Samples for Gamma

Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 17

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 05/08/12

8

9

11

SDG 8608

Test <u>U T Matrix WATER</u>

SDG <u>8608</u>

Contact <u>Joseph Verville</u>

LAB METHOD SUMMARY

URANIUM, TOTAL
KINETIC PHOSPHORIMETRY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

4

RESULTS

LAB	RAW SUF-		Uranium,
SAMPLE ID	TEST FIX PLANCHET	CLIENT SAMPLE ID	Total
Preparation	n batch 7271-142		
S204064-01	8608-001	OUTFALL 009 (440-8443-1)	0.074 J
S204064-02	8608-002	TRIP-BLANK (440-8443-2)	U
S204064-03	8608-003	Lab Control Sample	ok
S204064-04	8608-004	Method Blank	U
S204064-05	8608-005	Duplicate (S204064-01)	ok J
Nominal val	lues and limits from m	method RDLs (pCi/L)	1.00
		•	·

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD %		COUNT min	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7271-142 2σ prep error	Re	ference	Lab N	oteboo!	k No.	7271	pg.012	2	 			_
S204064-01	OUTFALL 009 (440-8443-1)	0.019	0.0200							14	04/25/12	04/25	KPA-001
S204064-02	TRIP-BLANK (440-8443-2)	0.019	0.0200							12	04/25/12	04/25	KPA-001
S204064-03	Lab Control Sample	0.193	0.0200								04/25/12	04/25	KPA-001
S204064-04	Method Blank	0.019	0.0200								04/25/12	04/25	KPA-001
S204064-05	Duplicate (S204064-01)	0.019	0.0200							14	04/25/12	04/25	KPA-001
Nominal val	ues and limits from method	1.00	0.0200							180			

PROCEDURES REFERENCE D5174

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 18

SDG 8608

Test H Matrix WATER SDG 8608 Contact Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER LIQUID SCINTILLATION COUNTING

Client Test America, Inc. Contract 44002624

RESULTS

S204064-05

RAW SUF-LAB

Tritium SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Preparation batch 7271-142 OUTFALL 009 (440-8443-1) S204064-01 8608-001 Lab Control Sample 8608-003 S204064-03 ok 8608-004 Method Blank S204064-04 S204064-05 8608-005 Duplicate (S204064-01) U Nominal values and limits from method RDLs (pCi/L) 500

METHOD PERFORMANCE

RAW SUF-MDA ALIQ PREP DILU- YIELD EFF COUNT FWHM DRIFT DAYS ANALpCi/L TEST FIX CLIENT SAMPLE ID Τ. FAC TION min keV KeV HELD PREPARED YZED DETECTOR SAMPLE ID Preparation batch 7271-142 2σ prep error 10.0 % Reference Lab Notebook No. 7271 pg.012 S204064-01 OUTFALL 009 (440-8443-1) 176 0.0100 100 9 04/19/12 04/20 LSC-006 150 S204064-03 Lab Control Sample 0.100 150 04/19/12 04/20 LSC-006 174 10 S204064-04 Method Blank 174 0.100 10 04/19/12 04/20 LSC-006 150

100

150

Nominal values and limits from method 500 0.0100 100 180

0.0100

PROCEDURES REFERENCE 906.0 DWP-212

Duplicate (S204064-01) 172

Tritium in Drinking Water by Distillation, rev 8

AVERAGES ± 2 SD MDA 174 ± 3.27 YIELD <u>55</u> ± <u>104</u> FOR 4 SAMPLES

9 04/19/12 04/20 LSC-006

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 19

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date 05/08/12

SDG 8608

Test RA Matrix WATER SDG 8608_ Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING

Client Test America, Inc. Contract 44002624

RESULTS

RAW SUF-LAB

CLIENT SAMPLE ID SAMPLE ID TEST FIX PLANCHET Radium-226 Preparation batch 7271-142 S204064-01 8608-001 OUTFALL 009 (440-8443-1) S204064-02 8608-002 TRIP-BLANK (440-8443-2) U S204064-03 8608-003 Lab Control Sample ok Method Blank S204064-04 8608-004 TT S204064-05 8608-005 Duplicate (S204064-01) Nominal values and limits from method RDLs (pCi/L) 1.00

METHOD PERFORMANCE

RAW SUF-MDA ALIQ PREP DILU- YIELD EFF COUNT FWHM DRIFT DAYS ANAL-SAMPLE ID TEST FIX CLIENT SAMPLE ID pCi/L L FAC TION % min keV KeV HELD PREPARED YZED DETECTOR Preparation batch 7271-142 2σ prep error 16.4 % Reference Lab Notebook No. 7271 pg.012 S204064-01 OUTFALL 009 (440-8443-1) 0.509 0.100 100 132 19 04/30/12 04/30 RN-013 TRIP-BLANK (440-8443-2) 100 S204064-02 0.498 0.100 132 17 04/30/12 04/30 RN-015 \$204064-03 Lab Control Sample 0.639 0.100 100 132 04/30/12 04/30 RN-009 S204064-04 Method Blank 0.508 0.100 100 132 04/30/12 04/30 RN-010 S204064-05 Duplicate (S204064-01) 0.590 0.100 100 132 19 04/30/12 04/30 RN-016 Nominal values and limits from method 1.00 0.100 100 180

PROCEDURES REFERENCE

DWP-881A Ra-226 Screening in Drinking Water, rev 6 AVERAGES ± 2 SD MDA 0.549 ± 0.125 FOR 5 SAMPLES YIELD 100 ± 0

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 20

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>05/08/12</u>

SDG 8608

SDG <u>8608</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>. Contract 44002624

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- \star LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.

QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.

* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES
Page 1
SUMMARY DATA SECTION
Page 21

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

5

7

10

11

SDG 8608

SDG <u>8608</u>
Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>. Contract 44002624

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 22

Lab id EASProtocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date 05/08/12

4

5

7

9

12

SDG 8608

SDG <u>8608</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract 44002624

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES

Page 3
SUMMARY DATA SECTION

Page 23

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

5

7

10

11

SDG 8608

SDG <u>8608</u>
Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES

Page 4

SUMMARY DATA SECTION

Page 24

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

4

5

7

0

10

11

12

Ц

SDG 8608

SDG 8608
Contact Joseph Verville

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 25

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

_

6

8

9

11

12

SDG 8608

SDG <u>8608</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 26

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

Page 58 of 74

5/23/2012

/

_

6

9

10

10

1.

SDG 8608

SDG 8608
Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 27

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

7

10

SDG 8608

SDG 8608
Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 28

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

6

7

9

10

46

SDG 8608

cont.

SDG	8608	
Contact	Joseph Verville	GUIDE,

Client <u>Test America</u>, <u>Inc.</u> Contract 44002624

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 29

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

Page 61 of 74

5/23/2012

- 5

6

8

9

11

12

SDG 8608

SDG 8608
Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 30

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

4

5

7

10

46

SDG 8608

SDG <u>8608</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 31

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

A

5

6

8

9

11

12

SDG 8608

SDG 8608
Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract 44002624

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 32

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

5

7

8

10

11

SDG 8608

SDG <u>8608</u>
Contact Joseph Verville

GUIDE, cont.

Client <u>Test America</u>, <u>Inc</u>. Contract <u>44002624</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 33

Lab id $\overline{\text{EAS}}$ Protocol $\overline{\text{TA}}$ Version $\overline{\text{Ver 1.0}}$ Form $\overline{\text{DVD-RG}}$ Version 3.06Report date 05/08/12

4

5

7

9

10

12

IR

SDG 8608

SDG 8608 Contact Joseph Verville

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like ' $1\div3$ ' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 34

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>05/08/12</u>

4

5

7

_

10

11

SDG 8608

SDG 8608
Contact Joseph Verville G U

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract 44002624

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 35

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

3

4

5

7

ŏ

10

11

TestAmerica Irvine

Phone (949) 261-1022 Fax (949) 260-3297 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Chain of Custody Record

TestAmerica

8608

N - None
O - Ashao2
P - Na2O4S
Q - Na2O5O
R - Na2SSO3
S - H2SO4
T - TSP Dodecahydrate
U - Acelone
V - MCAA
W - ph 4-5
Z - other (specify) Special Instructions/Note: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Company Job #: 440-8315-1 Preservation Codes: 6.6 C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 COC No: 440-3894.1 I - ice J - Di Water K - EDTA L - EDA A - HCL B - NaOH Method of Shipment: Carrier Tracking No(s) Analysis Requested Special Instructions/QC Requirements: SUBCONTRACT/ Gamma Spec K-40 CS-137 × SUBCONTRACT/ Uranium, Combined E-Mail: debby.wilson@testamericainc.com × × × Received by: × Lab PM: Wilson, Debby Time: 20:31
Pacific Matrix Type (C=comp, G=grab) Sample Date: TAT Requested (days): Due Date Requested: 4/26/2012 Sample Date 4/11/12 Project #: 44002624 SSOW#: Phone: :# OM Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Sample Identification - Client ID (Lab ID) 下ものメ Outfall 009 Composite (440-8443-1) Possible Hazard Identification Empty Kit Relinquished by: Address: 2030 Wright Avenue Relinquished by: Shipping/Receiving Routine Outfall 009 Company: Eberline Services Boeing SSFL Relinquished by: Relinquished by: **Jnconfirmed** City: Richmond State, Zip: CA, 94804 Phone:

Cooler Temperature(s) °C and Other Remarks:

-age 68 of 74

Company

Date/Time

Custody Seals Intact: Custody Seal No.:

.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817

Chain of Custody Record

DestAmerica record reco

N. None
O - AsnaO2
P - Na2O4S
Q - Na2SO3
R - Na2SSO3
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
V - MCAA
W - ph 4-5
Z - other (specify) COMPANY CREALINE Special Instructions/Note: Company Sompany Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitro Acid
F - MaCOH
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 Job #: 440-8443-1 COC No: 440-3894.1 J - DI Water K - EDTA L - EDA Archive For Total:Number of containers; Date/Time: 4 / Date/Time // Jate/Time: Method of Shipment: Carrier Tracking No(s): Disposal By Lab **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: SUBCONTRACTI Gamma Spec K-40 CS-137 × E-Mail: debby.wilson@testamericainc.com × SUBCONTRACT/ Uranium, Combined × × Received by: × Lab PM: Wilson, Debby SUBCONTRACT/ Gross Alpha × Time: 1 X Amediuo) Matrix tlon Code Water Company Type (C=comp, Sample G=grab) 2.0 Sample Date: Due Date Requested: 4/26/2012 TAT Requested (days): Sample Date 4/13/12 Date/Time: Project #: 44002624 Date/Time: Date/Time: Phone :# O/M PO #: Client Information (Sub Contract Lab) Unconfirmed Defiverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No.: Sample Identification - Client ID (Lab ID) Phone (949) 261-1022 Fax (949) 260-3297 Possible Hazard Identification Empty Kit Relinquished by: Trip Blank (440-8443-2) 2030 Wright Avenue, Project Name: Boeing SSFL outfalls Client Contact: Shipping/Receiving Company: Eberline Services Relinquished by: Site: Boeing SSFL Relinquished by: 5 Relinquished by: City: Richmond State, Zip: CA, 94804 Phone: Email:

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

				· · · · · · · · · · · · · · · · · · ·					
Client:	TES	T	AME	eig-	_ City/R_1	11NE -3894. j	State	<u>C4</u>	
Date/Ti	me rece	ived	4/14/12	10:0000 N	10. <u>440</u>	-3894.1	 		****
1						<u>STAN</u> 13.0. R			
					INSPE	CTION			
1.	Custod	ly sea	ls on ship	ping container i	ntact?		Yes [🗸]	No [] N/A	[]
2.	Custod	y sea	ls on ship	ping container of	dated & signe	ed?	Yes [🗸]	No[] N/A	[]
3.	Custod	y sea	ls on sam	ple containers i	ntact?		Yes[]	No [] N/A	[/]
4.	Custod	y sea	ls on sam	ple containers	dated & signe	ed?		No[] N/A	- /
5.		-	erial is:		ą			Dry []	NIAV
6.						Sample Mat		ER_	
7.	Numbe	r of c	ontainers	per sample:		(Or see CoC)		
8.	Sample	es are	in correc	t container		Yes [V]	No []		
9.	Paperw	vork a	grees with	n samples?		Yes[🔏	No []		
10.	Sample	es hav	/e: Tap	e [] Hazard	labels []	Rad labels []	Appropriate san	nple labels [🥞	
11.	•		_	-		g[] Broker]
12.	Sample	es are	: Preser	ved [J Not p	reserved [•	1 pH <u>216</u> Pr	eservative		
13.	Descrit	e any	y anomalie	es:					
			· · ·						
				= · · · · · · · · · · · · · · · ·					
14.	Was P.	M. n	otified of a	any,anomalies?		· / /] Date		
15.	Inspect	ed by		fk	Date: _	4/16/12 Tim	e: <u>10:20</u>		
Custo		Beta	/Gamma cpm	lon Chamber mR/hr	Wipe	Customer Sample No.	Beta/Gamma	lon Chamber mR/hr	wipe
MI	James	Post	4 80			Gample No.			
Mac	11-45	120							
<u> </u>									
-									
:									
i									
 		<u> </u>							
!		-							
	-								
on Char	shar Co-	No				Calibratia = ===			
Alpha Me					***		·		
			r No.	100482		Calibration date Calibration date	1 6 00	2011	
المت بدير	a MEL	J. 00	1. 14U			- canoranon date	·	• (

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

Test America version 7/19/2010	ica _{ve}	ersion 7/19/.	2010	·		Ö	ΗAΗ	Ö	ກວ :	STO	DY F	CHAIN OF CUSTODY FORM	5		E	9	1	(γ)	Page 1 of 2	of 2
Client Name/Address: MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Debby Wilson	dress: a Ave, St. 007 ontact:	uite 200 Debby V	Vilson	Project: Boeing-SSFL NPDES Routine Outfall 009 GRAB Stormwater at SW-13	NPDES all 009 SW-13		нем)							ANAL YSIS REQUIRED	REQUI	RED			Field readings: (Log in and include in report Temp and pH) Temp *F = \(\sum_{\text{T}} \sigma_{\text{T}} \)	ie Elle
Project Manager: Bronwyn Kelly Sample: R Christier Sample Sample Sample Sample Sample Sample Container Type	er: Bron	Nayn Kelly ろみが舟ぐ Container Type	Cont.	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515 Sampling Date/Time	5 Preservative	Bottle#	-H-681) & Grease (1664-F												pn = C, / Time of readings = Comments	II ; (A
	3	=	7	3× °	HCi	1A, 1B	×													
													<u> </u>							
			-																	
		·																		
		hese Sar		These Samples are the Grab Portion of Outfall 009 for this storm event. Composite samples will follow and are to be added to this work order.	ortion of O	utfall 009 fc	 or this	storm	event		oosite :		s will f	oliow and	are to	be added	1 to this	work ord	er.	
Relinquished By	1		Date	Date/Time: by -// - 2012	7017	Received By	2	3		Date/Time:	# [m] Se:	13	Turn-arou 24 Hour. 48 Hour.	Turn-around time: (Check) 24 Hour:	Check)	72 Hour			10 Day: Normal: X	
Relinquished By	3	X	Date	Date/Time:	02	Received By Received By	3	Ju Brand	l I	Date/Time		30	Sample Infact:	Sample Integrity: (Check) Intact:	theck)	On Ice:	La	8	5.90,5	
													Data No Le	Data Requirements: (Check) No Level IV:	: (Check)	All Level IV.		-	NPDES Level IV.	

CHAIN OF CUSTODY FORM

	Comments							a subtraction of the subtraction	Filter w/in 24hrs of receipt at lab	Unfiltered and unpreserved	analysis	Only test if first or second rain		The state of the s		A Month of the Control of the Contro		And a second second second second second second second second second second second second second second second			10 Day.		NPDES Level IV:	
	a company in		en et				\$ 110 mg					valuaris programa de la composição de la			Acting o				-	ent.	72 Hour:		All Level IV:	
ANALYSIS REQUIRED				The state of the s					died			SONOLUMNATURE PROPRIES CONTRACTOR PROPRIES CON							his storm event.	to the same work order for COC Page 1 of 2 for Outfall 009 for the same event.	Turn-around time: (Check) 24 Hour	Semple Integrity: (Check) Intact: On Ice:	Data Requirements: (Check) No Level IV:	
	Gross Beta(900.0), Sr-90 (905.0), Total 26 (903.0 or 903.1) & - Uranium (908.0), K- 1 (901.1)	(0.409) (6.4) Maded Radium S Maded (0.409) Maded Tritiun Comb Radiui 40, CS		grado-read.				and the		<	The Description of the State of	×	**************************************			-11.12	an man	of 2 list the Composite Samples for Outfall 009 for this storm event.	C Page 1 of 2 for Outf	76-11 71-21-h	4.12.12 (835		ed contribution	
		NO ₂ -NO ₂ +NO ₂ -N SST Dissolved Mete	CL, SC				×	×	×			A STATE OF THE PROPERTY OF THE							Composite Sample	work order for CO	MM Cate/Time:	Date/Filme:	Date/Time:	Local districtions
	letals: Sb, Cd, Cu, Pb,	Recoverable M	IT ,gH	J	×	×						A CONTRACTOR OF THE PARTY OF TH							2 list the	the same	The same of the sa			
			Bottle #	ZA	2B	3A, 3B	4A, 4B	5	9	7A	7B	8	6						COC Page 2 of		Section with the second	Received By	Received By	
	009 W-13	Tree of the state	Preservative	HNO3	HNO3	None	Nane	None	None	None	None	None	NaOH							These must be added	2-20/1 Receive	2		
Project:	Boeing-SSFL NPDES Routine Outfall 009 COMPOSITE Stormwater at SW-13	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time	201.62				_	4	1152-11-	10 cd	TOTAL STREET	では、これで							Thes	1 =	4-12-4 (8:8)		
P.G.			# of Cont	+	-	2	2		_	7	4 # A	-	1,	H				1	-		Date/Time:	Date/Time:	Date/⊺ime:	
	itė 200 Debby Wilso	wyn Kelly SA × AG	Container	1	1L Poly	1L Amber	500 mL Poly	500 mL Poly	1L Poly	2.5 Gal Cube	500 mL Amber	1 Gai Polv	500 mL Poly								12	and a	Da	
ress:	a Ave, Su 007 ontact:	r. Bron	Sample Matrix	1	3	×	W	×	3		ا '' ه	1	×								100	19		
Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Debby Wilson	Project Manager. Bronwyn Kelly Sampler: $RickSam$ eeA	Sample S Description		Ouffall 009 Dup	Outfall 009	Outfall 009	Outfall 009	Ontfall 009	3		Ontfall 009	Ontfall 009								Refinquished By	Relinquished By	Relinquished By	

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-8315-1

Login Number: 8315 List Source: TestAmerica Irvine

List Number: 1 Creator: Kim, Will

Creator: Kim, Will		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	Rick Banaga
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

5

6

8

10

11

12

13

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-8315-1

Login Number: 8443 List Source: TestAmerica Irvine

List Number: 1 Creator: Perez, Angel

Creator. Perez, Anger		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

4

6

7

Q

10

40

APPENDIX G

Section 11

Outfall 018 – April 10 &11, 2012 MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: 440-8129-1

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SDG: 440-8129-1

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: 440-8129-1 Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 018 Grab	440-8129-1	N/A	Water	4/10/2012 2:45:00 PM	120.1, 8015B
Outfall 018 Composite	440-8282-1	G2D130465-001, S204062-01	Water		1613B, 180.1, 200.7, 200.8, 245.0, 314.0, 625, 900. 901.1, 903.1, 904, 905, 906, SM2340B,SM5310B, ASTM D5174

II. Sample Management

No anomalies were observed regarding sample management. One cooler was received at 7.2°C. The GRO result was qualified as estimated, "J." Remaining analyses were nonvolatile in nature and required no qualification. Eberline did not note the temperature upon receipt; however, due to the nonvolatile nature of the analytes, no qualifications were necessary. The remaining samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at Eberline and TestAmerica-West Sacramento. As the samples were delivered by courier to TestAmerica-Irvine, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: May 31, 2012

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects reported below the EDL for total HpCDD, 1,2,3,4,6,7,8-HpCDF, and OCDF, and a detect above the EDL but below the RL for total HpCDF. All of the method blank results were reported as EMPCs; however, the reviewer deemed it appropriate to evaluate all method blank results for the purpose of qualifying sample results. Sample results for 1,2,3,4,6,7,8-HpCDF and OCDF were qualified as

nondetected "U," at the level of contamination. Total HpCDD and total HpCDF were qualified as estimated, "J," as only a portion of the total was considered method blank contamination.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were below the acceptance criteria listed in Table 7 of Method 1613 for all internal standard except 13C-OCDD, 13C-2,3,7,8-TCDF, and 13C-2,3,4,7,8-PeCDF. Signal to noise ratios were acceptable for all internal standards; however, due to the low recoveries, all target compounds except OCDD, 2,3,7,8-TCDF, total TCDF, and 2,3,4,7,8-PeCDF were qualified as estimated, "J," for detects and "UJ," for nondetects.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any reportable sample concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

Results reported as EMPCs previously qualified as nondetected for method blank contamination were not further qualified as EMPCs. The result for 1,2,3,4,6,7,8-HpCDD, reported as an EMPC, was qualified as an estimated nondetect, "UJ," at the level of the EMPC. Totals containing isomers reported as EMPCs or other EMPC peaks were qualified as estimated, "J."

B. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: June 1, 2012

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^x Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Total boron was detected in the method blank at 0.0487 mg/L; therefore, total boron detected in the sample was qualified as nondetected, "U." Dissolved boron was also detected in the method blank, but at a concentration nominally less than 5x the sample result. Method blanks and CCBs had no other applicable detects.
- Interference Check Samples: Recoveries were within 80-120%. There were target compounds present in the ICSA solution, but not at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within methodestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the total and dissolved ICP-MS analytes. Recoveries and RPDs were within method-established QC limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 60-125% of the internal standard intensities measured in the initial calibration blank.

• Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The total arsenic result was -7.9 μ g/L; therefore, the reviewer raised the DL to the absolute value of the result.

Total antimony and total thallium were not detected but dissolved antimony and dissolved thallium were detected nominally above the MDL. These differences are within the error of the method.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: June 4, 2012

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within the five-day holding time.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. All RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHODS 8015Mod—Gasoline Range Organics (GRO), and 8015B—Diesel Range Organics (DRO)

Reviewed By: L. Calvin

Date Reviewed: May 29, 2012

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for Total Fuel Hydrocarbons (DVP-8, Rev. 0), EPA Method 8015B, and the National Functional Guidelines for Organic Data Review (10/99).

 Holding Times: Extraction and analytical holding times were met. The GRO sample was analyzed within 14 days of collection and the DRO sample was extracted within seven days of collection and analyzed within 40 days of extraction.

- Calibration: The initial calibration %RSD for GRO was less than 20%, the DRO r² was ≥0.995, and all continuing calibration %Ds were less than 15%.
- Blanks: The method blanks had no GRO or DRO detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries for all LCSs and RPDs for the DRO LCS/LCSD were within laboratory-established QC limits.
- Surrogate Recovery: The surrogate recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Method accuracy for GRO and DRO, and precision for DRO were evaluated based on the blank spike results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Two hydrocarbon ranges were reported: GRO (C4-C12) and DRO (C13-C28). Review of the sample chromatograms and retention time ranges indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibrations and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

E. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: May 29, 2012

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: The initial calibration average RRFs and the ICV and continuing calibration RRFs were ≥0.05 for all target compounds. The initial calibration %RSDs were ≤35%, or r² values ≥0.995. The ICV %D for benzidine, ICV and CCV %Ds for hexachlorocyclopentadiene, and CCV %Ds for n-nitroso-di-n-propylamine, 2-nitroaniline, and 4-nitrophenol exceeded 20%. Sample results for the %D outliers, all nondetects, were qualified as estimated, "UJ." The remaining ICV and CCV %Ds were ≤20% for all applicable target compounds.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: In both the LCS and LCSD, benzidine was recovered below the QC limits but ≥10%, and 4-nitrophenol was recovered above the QC limits. The nondetected sample result for benzidine was qualified as estimated, "UJ." As 4-nitrophenol was not detected in the associated sample, no qualification was necessary. In the LCS only, 2-nitroaniline was recovered above the QC limits. The RPD for n-nitroso-dimethylamine exceeded the QC limit; therefore, the nondetected sample result for n-nitroso-dimethylamine was qualified as estimated, "UJ." Remaining recoveries and RPDs for applicable target compounds were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Method accuracy and precision was evaluated based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

- Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

F. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: June 4, 2012

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Calibration criteria were met. The initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. The IPC recovery was within the method control limit of 80-120%. ICCS recovery was within the method control limit of 75-125%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the methodestablished QC limits of 85-115%.

Laboratory Duplicates: No laboratory duplicate analyses were performed.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on a sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

G. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: June 4, 2012

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.0 and 180.0, Standard Method SM 5310B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, 48 hours from preparation for turbidity and 28 days for conductivity and TOC, were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995. The
 turbidity ICV was recovered at 70%; therefore, turbidity detected in the sample was
 qualified as estimated, "J." The remaining initial and all continuing calibration recoveries
 were within 90-110%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for turbidity. The RPD was within the laboratory-established control limit.

 Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.

- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms 440-8129-1

Analysis Method 120.1

Sample Name Outfall 018 Grab Matrix Type: Water Validation Level: IV

Lab Sample Name: 440-8129-1 **Sample Date:** 4/10/2012 2:45:00 PM

Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes

Specific Conductance STL00244 600 1.0 1.0 umhos/c

Analysis Method 1613B

Sample Name Outfall 018 Composite Matrix Type: Water Validation Level: IV

Lab Sample Name: 440-8282-1 **Sample Date:** 4/11/2012 1:45:00 PM

Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.000050	0.0000026	ug/L	J Q	UJ	I, *III
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.000050	0.0000022	ug/L	J B	UJ	B, I
1,2,3,4,7,8,9-HpCDF	55673-89-7	0.000014	0.000050	0.0000028	ug/L	J	J	DNQ, I
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.000050	0.0000023	ug/L		UJ	I
1,2,3,4,7,8-HxCDF	70648-26-9	0.000005	0.000050	0.0000015	ug/L	J	J	DNQ, I
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.000050	0.0000023	ug/L		UJ	I
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.000050	0.0000015	ug/L		UJ	I
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.000050	0.0000021	ug/L		UJ	I
1,2,3,7,8,9-HxCDF	72918-21-9	0.000004	0.000050	0.0000018	ug/L	J	J	DNQ, I
1,2,3,7,8-PeCDD	40321-76-4	ND	0.000050	0.0000040	ug/L		UJ	I
1,2,3,7,8-PeCDF	57117-41-6	ND	0.000050	0.0000045	ug/L		UJ	I
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.000050	0.0000014	ug/L		UJ	I
2,3,4,7,8-PeCDF	57117-31-4	ND	0.000050	0.0000045	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.000010	0.0000033	ug/L		UJ	I
2,3,7,8-TCDF	51207-31-9	ND	0.000010	0.0000032	ug/L		U	
OCDD	3268-87-9	0.000033	0.00010	0.0000055	ug/L	J	J	DNQ
OCDF	39001-02-0	ND	0.00010	0.0000076	ug/L	J Q B	UJ	B, I
Total HpCDD	37871-00-4	0.000006	0.000050	0.0000026	ug/L	J Q B	J	B, DNQ, I, *III
Total HpCDF	38998-75-3	0.000036	0.000050	0.0000025	ug/L	J B	J	B, DNQ, I
Total HxCDD	34465-46-8	ND	0.000050	0.0000021	ug/L		UJ	I
Total HxCDF	55684-94-1	0.000020	0.000050	0.0000015	ug/L	J Q	J	DNQ, I, *III
Total PeCDD	36088-22-9	ND	0.000050	0.0000040	ug/L		UJ	I
Total PeCDF	30402-15-4	ND	0.000050	0.0000045	ug/L		UJ	I
Total TCDD	41903-57-5	ND	0.000010	0.0000033	ug/L		UJ	I
Total TCDF	55722-27-5	ND	0.000010	0.0000032	ug/L		U	

Tuesday, June 05, 2012 Page 1 of 7

Sample Name	Outfall 018 C	omposite	Matri	х Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Turbidity	STL00189	1.8	0.10	0.040	NTU		J	С
Analysis Metho	od 200.7	Rev 4.	4					
Sample Name	Outfall 018 C	omposite	Matri	х Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Arsenic	7440-38-2	ND	10	7.9	ug/L		U	\$, DL changed from 7
Arsenic, Dissolved	7440-38-2	ND	10	7.0	ug/L		U	
Barium	7440-39-3	21	10	6.0	ug/L			
Barium, Dissolved	7440-39-3	18	10	6.0	ug/L			
Beryllium	7440-41-7	ND	2.0	0.90	ug/L		U	
Beryllium, Dissolved	7440-41-7	ND	2.0	0.90	ug/L		U	
Boron	7440-42-8	ND	0.22	0.020	mg/L	MB	U	В
Boron, Dissolved	7440-42-8	0.20	0.050	0.020	mg/L	MB		
Calcium	7440-70-2	28	0.10	0.050	mg/L	MB		
Calcium, Dissolved	7440-70-2	27	0.10	0.050	mg/L	MB		
Chromium	7440-47-3	ND	5.0	2.0	ug/L		U	
Chromium, Dissolved	7440-47-3	ND	5.0	2.0	ug/L		U	
Iron	7439-89-6	0.086	0.040	0.015	mg/L			
Iron, Dissolved	7439-89-6	ND	0.040	0.015	mg/L		U	
Magnesium	7439-95-4	7.9	0.020	0.012	mg/L			
Magnesium, Dissolved	7439-95-4	7.3	0.020	0.012	mg/L			
Manganese	7439-96-5	18	20	7.0	ug/L	J,DX	J	DNQ
Manganese, Dissolved	7439-96-5	9.7	20	7.0	ug/L	J,DX	J	DNQ
Nickel	7440-02-0	2.2	10	2.0	ug/L	J,DX	J	DNQ
Nickel, Dissolved	7440-02-0	ND	10	2.0	ug/L		U	
Silver	7440-22-4	ND	10	6.0	ug/L		U	
Silver, Dissolved	7440-22-4	ND	10	6.0	ug/L		U	
Vanadium	7440-62-2	ND	10	3.0	ug/L		U	
Vanadium, Dissolved	7440-62-2	ND	10	3.0	ug/L		U	
Zinc	7440-66-6	ND	20	6.0	ug/L		U	
Zinc, Dissolved	7440-66-6	ND	20	6.0	ug/L		U	

Tuesday, June 05, 2012 Page 2 of 7

Analysis	Method	200.8
$\Delta muvsis$	memoa	200.0

Sample Name	Outfall 018 C	omposite	Matri	х Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	440-8282-1				2 1:45:00 PM	·		·•
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony	7440-36-0	ND	2.0	0.30	ug/L		U	
Antimony, Dissolved	7440-36-0	0.43	2.0	0.30	ug/L	J,DX	J	DNQ
Cadmium	7440-43-9	ND	1.0	0.10	ug/L		U	
Cadmium, Dissolved	7440-43-9	ND	1.0	0.10	ug/L		U	
Cobalt	7440-48-4	0.10	1.0	0.10	ug/L	J,DX	J	DNQ
Cobalt, Dissolved	7440-48-4	0.16	1.0	0.10	ug/L	J,DX	J	DNQ
Copper	7440-50-8	0.85	2.0	0.50	ug/L	J,DX	J	DNQ
Copper, Dissolved	7440-50-8	0.81	2.0	0.50	ug/L	J,DX	J	DNQ
Lead	7439-92-1	ND	1.0	0.20	ug/L		U	
Lead, Dissolved	7439-92-1	ND	1.0	0.20	ug/L		U	
Selenium	7782-49-2	ND	2.0	0.50	ug/L		U	
Selenium, Dissolved	7782-49-2	ND	2.0	0.50	ug/L		U	
Thallium	7440-28-0	ND	1.0	0.20	ug/L		U	
Thallium, Dissolved	7440-28-0	0.24	1.0	0.20	ug/L	J,DX	J	DNQ
Analysis Metho	od 245.1							
Sample Name	Outfall 018 C	omposite	Matri	х Туре:	Water	Validation Level: IV		vel: IV
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/L		U	
Mercury, Dissolved	7439-97-6	ND	0.20	0.10	ug/L		U	
Analysis Metho	od 314.0							
Sample Name	Outfall 018 C	omposite	Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Perchlorate	14797-73-0	ND	4.0	0.95	ug/L		U	

Tuesday, June 05, 2012 Page 3 of 7

Sample Name	Outfall 018 C	omposite	Matri	x Type:	Water	Validation Level:		
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,4-Trichlorobenzene	120-82-1	ND	0.943	0.0943	ug/L		U	
1,2-Dichlorobenzene	95-50-1	ND	0.472	0.0943	ug/L		U	
1,2-Diphenylhydrazine(as Azobenzene)	122-66-7	ND	0.943	0.189	ug/L		U	
1,3-Dichlorobenzene	541-73-1	ND	0.472	0.0943	ug/L		U	
1,4-Dichlorobenzene	106-46-7	ND	0.472	0.189	ug/L		U	
2,4,6-Trichlorophenol	88-06-2	ND	0.943	0.0943	ug/L		U	
2,4-Dichlorophenol	120-83-2	ND	1.89	0.189	ug/L		U	
2,4-Dimethylphenol	105-67-9	ND	1.89	0.283	ug/L		U	
2,4-Dinitrophenol	51-28-5	ND	4.72	0.849	ug/L		U	
2,4-Dinitrotoluene	121-14-2	ND	4.72	0.189	ug/L		U	
2,6-Dinitrotoluene	606-20-2	ND	4.72	0.0943	ug/L		U	
2-Chloronaphthalene	91-58-7	ND	0.472	0.0943	ug/L		U	
2-Chlorophenol	95-57-8	ND	0.943	0.189	ug/L		U	
2-Methylnaphthalene	91-57-6	ND	0.943	0.189	ug/L		U	
2-Methylphenol	95-48-7	ND	1.89	0.0943	ug/L		U	
2-Nitroaniline	88-74-4	ND	4.72	0.0943	ug/L	LQ	UJ	С
2-Nitrophenol	88-75-5	ND	1.89	0.0943	ug/L		U	
3,3'-Dichlorobenzidine	91-94-1	ND	4.72	0.472	ug/L		U	
3-Nitroaniline	99-09-2	ND	4.72	0.943	ug/L		U	
4,6-Dinitro-2-methylphenol	534-52-1	ND	4.72	0.283	ug/L		U	
4-Bromophenyl phenyl ether	101-55-3	ND	0.943	0.189	ug/L		U	
4-Chloro-3-methylphenol	59-50-7	ND	1.89	0.189	ug/L		U	
4-Chloroaniline	106-47-8	ND	1.89	0.283	ug/L		U	
4-Chlorophenyl phenyl ether	7005-72-3	ND	0.472	0.189	ug/L		U	
4-Methylphenol	106-44-5	ND	4.72	0.189	ug/L		U	
4-Nitroaniline	100-01-6	ND	4.72	0.472	ug/L		U	
4-Nitrophenol	100-02-7	ND	4.72	2.36	ug/L	LQ	UJ	C
Acenaphthene	83-32-9	ND	0.472	0.189	ug/L		U	
Acenaphthylene	208-96-8	ND	0.472	0.189	ug/L		U	
Aniline	62-53-3	ND	9.43	0.283	ug/L		U	
Anthracene	120-12-7	ND	0.472	0.0943	ug/L		U	
Benzidine	92-87-5	ND	4.72	0.943	ug/L	LR	UJ	C, L
Benzo[a]anthracene	56-55-3	ND	4.72	0.0943	ug/L		U	
Benzo[a]pyrene	50-32-8	ND	1.89	0.0943	ug/L		U	
Benzo[b]fluoranthene	205-99-2	ND	1.89	0.0943	ug/L		U	

Tuesday, June 05, 2012 Page 4 of 7

Analysis Method 625

Benzo[g,h,i]perylene	191-24-2	ND	4.72	0.0943	ug/L		U	
Benzo[k]fluoranthene	207-08-9	ND	0.472	0.189	ug/L		U	
Benzoic acid	65-85-0	ND	18.9	2.83	ug/L		U	
Benzyl alcohol	100-51-6	ND	4.72	0.0943	ug/L		U	
bis (2-chloroisopropyl) ether	108-60-1	ND	0.472	0.0943	ug/L		U	
Bis(2-chloroethoxy)methane	111-91-1	ND	0.472	0.0943	ug/L		U	
Bis(2-chloroethyl)ether	111-44-4	ND	0.472	0.0943	ug/L		U	
Bis(2-ethylhexyl) phthalate	117-81-7	ND	4.72	1.60	ug/L		U	
Butyl benzyl phthalate	85-68-7	ND	4.72	0.660	ug/L		U	
Chrysene	218-01-9	ND	0.472	0.0943	ug/L		U	
Dibenz(a,h)anthracene	53-70-3	ND	0.472	0.0943	ug/L		U	
Dibenzofuran	132-64-9	ND	0.472	0.0943	ug/L		U	
Diethyl phthalate	84-66-2	0.195	0.943	0.0943	ug/L	J,DX	J	DNQ
Dimethyl phthalate	131-11-3	ND	0.472	0.189	ug/L		U	
Di-n-butyl phthalate	84-74-2	ND	1.89	0.283	ug/L		U	
Di-n-octyl phthalate	117-84-0	ND	4.72	0.189	ug/L		U	
Fluoranthene	206-44-0	ND	0.472	0.0943	ug/L		U	
Fluorene	86-73-7	ND	0.472	0.0943	ug/L		U	
Hexachlorobenzene	118-74-1	ND	0.943	0.0943	ug/L		U	
Hexachlorobutadiene	87-68-3	ND	1.89	0.189	ug/L		U	
Hexachlorocyclopentadiene	77-47-4	ND	4.72	0.0943	ug/L		UJ	C
Hexachloroethane	67-72-1	ND	2.83	0.189	ug/L		U	
Indeno[1,2,3-cd]pyrene	193-39-5	ND	1.89	0.0943	ug/L		U	
Isophorone	78-59-1	ND	0.943	0.0943	ug/L		U	
Naphthalene	91-20-3	ND	0.943	0.0943	ug/L		U	
Nitrobenzene	98-95-3	ND	0.943	0.0943	ug/L		U	
N-Nitrosodimethylamine	62-75-9	ND	1.89	0.0943	ug/L	BA	UJ	*III
N-Nitrosodi-n-propylamine	621-64-7	ND	1.89	0.0943	ug/L		UJ	C
N-Nitrosodiphenylamine	86-30-6	ND	0.943	0.0943	ug/L		U	
Pentachlorophenol	87-86-5	ND	1.89	0.377	ug/L		U	
Phenanthrene	85-01-8	ND	0.472	0.0943	ug/L		U	
Phenol	108-95-2	ND	0.943	0.283	ug/L		U	
Pyrene	129-00-0	ND	0.472	0.0943	ug/L		U	

Tuesday, June 05, 2012 Page 5 of 7

Analysis	Method	8015B
$\Delta nuvvsis$	memou	001JD

Analysis Meine	ou 50151	D						
Sample Name	Outfall 018 G	irab	Matri	іх Туре:	Water	Validation Level: IV		
Lab Sample Name:	440-8129-1	Sam	ple Date:	4/10/201	2 2:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
C13-C28	STL01628	ND	0.47	0.094	mg/L		U	
GRO (C4-C12)	STL00350	0.035	0.050	0.025	mg/L	J,DX	J	DNQ, *II
Analysis Metho	od Gami	na Spec	c K-40	CS-13	7			
Sample Name	Outfall 018 C	Composite	Matri	іх Туре:	Water	7	Validation Le	evel: IV
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	0.048	20	1.76	pCi/L	U	U	
Potassium-40	13966002	12.9	25	23.3	pCi/L	U	U	
Analysis Metho	od Gross	s Alpha	and Be	eta				
Sample Name	Outfall 018 C	Composite	Matri	іх Туре:	Water	7	Validation Le	evel: IV
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	0.114	3	0.835	pCi/L	U	UJ	С
Gross Beta	12587472	4.32	4	0.853	pCi/L			
Analysis Metho	od Radii	ım 226						
Sample Name	Outfall 018 C	Composite	Matri	іх Туре:	Water	7	Validation Le	evel: IV
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.118	1	0.477	pCi/L	U	U	
Analysis Metho	od Radii	ım 228						
Sample Name	Outfall 018 C	Composite	Matri	іх Туре:	Water	Validation Level: IV		
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	15262201	-0.12	1	0.396	pCi/L	U	U	

Tuesday, June 05, 2012 Page 6 of 7

Analysis Method SM 2340B

Sample Name	Outfall 018 C	omposite	Matri	x Type:	Water	Validation Level: IV			
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Hardness, as CaCO3	STL00009	100	0.33	0.17	mg/L				
Hardness, as CaCO3, Dissol	ved STL00009	97	0.33	0.17	mg/L				
Analysis Metho	d SM 5.	310B							
Sample Name	Outfall 018 C	omposite	Matri	х Туре:	Water	7	Validation Le	vel: IV	
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Total Organic Carbon	7440-44-0	7.4	1.0	0.75	mg/L				
Analysis Metho	d Stron	tium 90)						
Sample Name	Outfall 018 C	omposite	Matri	х Туре:	Water	7	Validation Le	vel: IV	
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Strontium-90	10098972	-0.277	2	0.981	pCi/L	U	U		
Analysis Metho	d Tritiu	m							
Sample Name	Outfall 018 C	omposite	Matri	x Type:	Water	Validation Level: IV			
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Tritium	10028178	47.2	500	172	pCi/L	U	U		
Analysis Metho	d Uran	ium, Ca	ombine	d					
Sample Name	Outfall 018 C	omposite	Matri	х Туре:	Water	7	Validation Le	vel: IV	
Lab Sample Name:	440-8282-1	Sam	ple Date:	4/11/201	2 1:45:00 PM				
Analyte	CAS No	Result	RL	MDL	Result	Lab	Validation	Validation	
inary to		Value			Units	Qualifier	Qualifier	Notes	

Tuesday, June 05, 2012 Page 7 of 7

APPENDIX G

Section 12

Outfall 018 – April 10 & 11, 2012
Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-8129-1

Client Project/Site: Boeing SSFL Annual Outfall 018

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 5/17/2012 10:30:01 AM

Debby Wilson
Project Manager I
debby.wilson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 440-8129-1

Project/Site: Boeing SSFL Annual Outfall 018

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Debby Wilson

Project Manager I 5/17/2012 10:30:01 AM

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	8
Chronicle	17
QC Sample Results	20
QC Association	54
Definitions	62
Certification Summary	64
Subcontract Data	65
Chain of Custody	130
Receipt Checklists	133

4

6

8

9

10

12

13

Sample Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-8129-1	Outfall 018 Grab	Water	04/10/12 14:45	04/10/12 18:05
440-8129-2	Trip Blanks	Water	04/10/12 14:45	04/10/12 18:05
440-8282-1	Outfall 018 Composite	Water	04/11/12 13:45	04/11/12 18:30

3

4

_

6

8

9

10

10

13

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Job ID: 440-8129-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-8129-1

Comments

No additional comments.

Receipt

The samples were received on 4/10/2012 6:05 PM and 4/11/2012 6:30 PM; the samples arrived in good conditions, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 5.8 C and 7.2 C.

GC/MS VOA

Method(s) 624, 8260B: The following sample(s) submitted for volatiles analysis was analyzed from an unpreserved VOA vial (pH >2): (440-8172-1 MS), (440-8172-1 MSD), Outfall 018 Grab (440-8129-1), Trip Blanks (440-8129-2), pH= 7. However, sample was analyzed within 7 days per EPA recommendation.

Method(s) 624, 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries of 2-CVE for batch 19096 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8260B SIM: Surrogate recovery for the following sample(s) was outside the upper control limit: 440-8277-1, 440-8689-1, and 440-8282-1. These sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 625: Surrogate recovery for the following sample(s) was outside control limits: Outfall 018 Composite (440-8282-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 625: The continuing calibration verification (CCV) for 2-nitroaniline, 4-nitrophenol, hexachlorocyclopentadiene, and n-nitrosodi-n-propylamine associated with batch 21217 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 625: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 20598. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

Method(s) 625: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 20598 exceeded control limits for the following analytes: 4-nitrophenol. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 625: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 20598 exceeded control limits for the following analytes: 2-nitroaniline and 4-nitrophenol. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 625: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 20598 exceeded control limits for the following analytes: benzidine. Per the EPA method, benzidine is known to be subject to oxidative losses during solvent concentration.

Method(s) 625: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 20598 exceeded control limits for the following analytes: n-nitrosodimethylamine.

Method(s) 625: Surrogate recovery for the following sample(s) was outside the upper control limit: (MB 440-20598/1-A). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

HPLC

TestAmerica Irvine 5/17/2012

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Job ID: 440-8129-1 (Continued)

Laboratory: TestAmerica Irvine (Continued)

Method(s) 300.0: Results exceeded the linear range in the MS/MSD for chloride and sulfate in batch 18919 and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).

No other analytical or quality issues were noted.

GC VOA

No analytical or quality issues were noted.

GC Semi VOA

Method(s) 608: The continuing calibration verification (CCV) for 1260 associated with batch 20064 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 608: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 19875. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

Method(s) 608: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 19875. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

No other analytical or quality issues were noted.

Metals

Method(s) 200.7 Rev 4.4: The method blank for preparation batch 19452 contained Ca above the reporting limit (RL). The associated sample(s) contained detects for this analyte at concentrations greater than 10X the value found in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 200.8: The continuing calibration verification (CCV) for Se associated with batch 20965 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other analytical or quality issues were noted.

General Chemistry

Method(s) 1664A: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 21254. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

No other analytical or quality issues were noted.

Biology

No analytical or quality issues were noted.

WATER, 1613B, Dioxins/Furans with Totals

Some analytes in this sample and the associated method blank (MB) have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

Several internal standard recoveries are below the method criteria. Data quality is not considered affected if the internal standard signal-to-noise ratio is greater than 10:1, which is achieved for all internal standards in the sample. All detection limits are below the lower calibration limit and there is no adverse impact on data quality.

Some analytes in the MB are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

The reporting limit has been raised for 2,3,7,8-TCDF in the associated laboratory control sample (LCS) due to elevated instrument noise. There is no adverse impact to the quality of the data as a result of this anomaly.

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Job ID: 440-8129-1 (Continued)

Laboratory: TestAmerica Irvine (Continued)

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

- 3

4

5

6

Ö

4 4

46

13

Project/Site: Boeing SSFL Annual Outfall 018

Client Sample ID: Outfall 018 Grab

Lab Sample ID: 440-8129-1

TestAmerica Job ID: 440-8129-1

Matrix: Water

Date Collected: 04/10/12 14:45 Date Received: 04/10/12 18:05

GRO (C4-C12)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		0.50	0.30	ug/L			04/12/12 11:54	
2-Chloroethyl vinyl ether	ND		2.0	1.8	ug/L			04/12/12 01:40	
1,1,2,2-Tetrachloroethane	ND		0.50	0.30	ug/L			04/12/12 11:54	
Acrolein	ND		5.0	4.0	ug/L			04/12/12 01:40	• • • • • • • • • • • • • • • • • • • •
1,1,2-Trichloroethane	ND		0.50	0.30	ug/L			04/12/12 11:54	
Acrylonitrile	ND		2.0	1.2	ug/L			04/12/12 01:40	
1,1-Dichloroethane	ND		0.50	0.40	ug/L			04/12/12 11:54	· · · · · · · · ·
Trichlorotrifluoroethane(F-113)	ND		2.0	0.50				04/12/12 11:54	
1,1-Dichloroethene	ND		0.50	0.42				04/12/12 11:54	
1,2-Dichlorobenzene	ND		0.50	0.32				04/12/12 11:54	,
1,2-Dichloroethane	ND		0.50	0.28	_			04/12/12 11:54	
1,2-Dichloropropane	ND		0.50	0.35				04/12/12 11:54	
1,3-Dichlorobenzene	ND		0.50	0.35				04/12/12 11:54	
1,4-Dichlorobenzene	ND		0.50	0.37	-			04/12/12 11:54	
Benzene	ND		0.50	0.28				04/12/12 11:54	
Bromoform	ND		0.50	0.40				04/12/12 11:54	· · · · · .
1,2-Dichloro-1,1,2-trifluoroethane	ND		2.0		ug/L			04/12/12 11:54	,
Bromomethane	ND		0.50	0.42				04/12/12 11:54	,
Carbon tetrachloride	ND		0.50	0.42				04/12/12 11:54	,
Chlorobenzene	ND		0.50	0.26				04/12/12 11:54	
Dibromochloromethane	ND								
Chloroethane			0.50	0.40				04/12/12 11:54	
	ND		0.50	0.40				04/12/12 11:54	
Chloroform	ND		0.50	0.33	_			04/12/12 11:54	•
Chloromethane	ND		0.50	0.40				04/12/12 11:54	
cis-1,3-Dichloropropene	ND		0.50	0.22	_			04/12/12 11:54	
Bromodichloromethane	ND		0.50	0.30	_			04/12/12 11:54	
Ethylbenzene	ND		0.50	0.25				04/12/12 11:54	
Methylene Chloride	ND		1.0	0.95				04/12/12 11:54	,
Tetrachloroethene	ND		0.50	0.32				04/12/12 11:54	,
Toluene	ND		0.50	0.36				04/12/12 11:54	
trans-1,2-Dichloroethene	ND		0.50	0.30				04/12/12 11:54	•
trans-1,3-Dichloropropene	ND		0.50	0.32	ug/L			04/12/12 11:54	•
Trichlorofluoromethane	ND		0.50	0.34				04/12/12 11:54	
Vinyl chloride	ND		0.50	0.40	ug/L			04/12/12 11:54	•
Trichloroethene	ND		0.50	0.26	-			04/12/12 11:54	•
cis-1,2-Dichloroethene	ND		0.50	0.32	ug/L			04/12/12 11:54	
Cyclohexane	ND		2.0	0.40	ug/L			04/12/12 11:54	•
Xylenes, Total	ND		1.0	0.90	ug/L			04/12/12 11:54	•
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120					04/12/12 01:40	
Dibromofluoromethane (Surr)	94		80 - 120					04/12/12 01:40	•
4-Bromofluorobenzene (Surr)	113		80 - 120					04/12/12 11:54	
Dibromofluoromethane (Surr)	99		80 - 120					04/12/12 11:54	
Toluene-d8 (Surr)	106		80 - 120					04/12/12 11:54	1
Method: 8015B - Gasoline Rang									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F

04/18/12 15:56

0.050

0.025 mg/L

0.035 J,DX

Project/Site: Boeing SSFL Annual Outfall 018

Lab Sample ID: 440-8129-1

TestAmerica Job ID: 440-8129-1

Matrix: Water

Client Sample ID: Outfall 018 Grab

Date Collected: 04/10/12 14:45 Date Received: 04/10/12 18:05

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		65 - 140		04/18/12 15:56	1

4-Bromofluorobenzene (Surr)	108	65 - 140	04/18/12 15:56 1
Method: 8015B - Diesel Range Orga	anics (DRO) (GC)		

Analyte	•	Ŭ	Result	Qualifier	RL	MDL	Unit	Prepared	Analyzed	Dil Fac
C13-C28			ND		0.47	0.094	mg/L	 04/16/12 11:19	04/17/12 06:50	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
n-Octacosane	82		45 - 120	04/16/12 11:19	04/17/12 06:50	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	ND		4.7	1.3	mg/L		04/23/12 06:18	04/23/12 06:54	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Specific Conductance	600	-	1.0	1.0	umhos/cm			04/16/12 10:04	1
Settleable Solids	ND		0.10	0.10	mL/L/Hr			04/11/12 09:00	1
	Analyte HEM Analyte Specific Conductance	Analyte Result HEM ND Analyte Result Specific Conductance 600	Analyte Result HEM Qualifier Qualifier Analyte Result Result Specific Conductance Qualifier	Analyte Result HEM Qualifier Qualifier RL 4.7 Analyte Result Result Specific Conductance Qualifier All 1.0	Analyte Result HEM Qualifier RL A.7 MDL 4.7 MDL 4.7	Analyte Result Qualifier RL MDL Unit HEM ND 4.7 1.3 mg/L Analyte Result Qualifier RL RL RL Unit Specific Conductance 600 1.0 1.0 umhos/cm	Analyte Result Qualifier RL MDL Unit D HEM ND 4.7 1.3 mg/L Analyte Result Qualifier RL RL Unit D Specific Conductance 600 1.0 1.0 umhos/cm	Analyte Result Qualifier RL MDL Unit D Prepared HEM ND 4.7 1.3 mg/L 04/23/12 06:18 Analyte Result Qualifier RL RL Unit D Prepared Specific Conductance 600 1.0 1.0 umhos/cm D Prepared	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed HEM ND 4.7 1.3 mg/L 04/23/12 06:18 04/23/12 06:54 Analyte Result Qualifier RL RL Unit D Prepared Analyzed Specific Conductance 600 1.0 1.0 umhos/cm D 04/16/12 10:04

Method: SM 9221E - Coliforms, Fed	cal (Multiple-Tube Ferment	tation)					
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Coliform Fecal	ND —	20	2.0 MPN/100ml	_		04/10/12 18:23	

Method: SM 9221F - E.Coli (Multiple	e-Tube Ferm	entation; EC-	MUG)						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Escherichia coli	ND		2.0	2.0	MPN/100mL			04/10/12 18:23	1

Client Sample ID: Trip Blanks Lab Sample ID: 440-8129-2

Date Collected: 04/10/12 14:45	Matrix: Water
Date Received: 04/10/12 18:05	
Method: 624 - Volatile Organic Compounds (GC/MS)	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	0.50	0.30	ug/L			04/12/12 12:22	1
2-Chloroethyl vinyl ether	ND	2.0	1.8	ug/L			04/12/12 02:09	1
1,1,2,2-Tetrachloroethane	ND	0.50	0.30	ug/L			04/12/12 12:22	1
Acrolein	ND	5.0	4.0	ug/L			04/12/12 02:09	1
1,1,2-Trichloroethane	ND	0.50	0.30	ug/L			04/12/12 12:22	1
Acrylonitrile	ND	2.0	1.2	ug/L			04/12/12 02:09	1
1,1-Dichloroethane	ND	0.50	0.40	ug/L			04/12/12 12:22	1
Trichlorotrifluoroethane(F-113)	ND	2.0	0.50	ug/L			04/12/12 12:22	1
1,1-Dichloroethene	ND	0.50	0.42	ug/L			04/12/12 12:22	1
1,2-Dichlorobenzene	ND	0.50	0.32	ug/L			04/12/12 12:22	1
1,2-Dichloroethane	ND	0.50	0.28	ug/L			04/12/12 12:22	1
1,2-Dichloropropane	ND	0.50	0.35	ug/L			04/12/12 12:22	1
1,3-Dichlorobenzene	ND	0.50	0.35	ug/L			04/12/12 12:22	1
1,4-Dichlorobenzene	ND	0.50	0.37	ug/L			04/12/12 12:22	1
Benzene	ND	0.50	0.28	ug/L			04/12/12 12:22	1
Bromoform	ND	0.50	0.40	ug/L			04/12/12 12:22	1
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.0	1.1	ug/L			04/12/12 12:22	1
Bromomethane	ND	0.50	0.42	ug/L			04/12/12 12:22	1
Carbon tetrachloride	ND	0.50	0.28	ug/L			04/12/12 12:22	1
Chlorobenzene	ND	0.50	0.36	ug/L			04/12/12 12:22	1
Dibromochloromethane	ND	0.50	0.40	ug/L			04/12/12 12:22	1
Chloroethane	ND	0.50	0.40	ug/L			04/12/12 12:22	1
Chloroform	ND	0.50	0.33	ug/L			04/12/12 12:22	1

Project/Site: Boeing SSFL Annual Outfall 018

Client Sample ID: Trip Blanks

Date Collected: 04/10/12 14:45 Date Received: 04/10/12 18:05 Lab Sample ID: 440-8129-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		0.50	0.40	ug/L			04/12/12 12:22	1
cis-1,3-Dichloropropene	ND		0.50	0.22	ug/L			04/12/12 12:22	1
Bromodichloromethane	ND		0.50	0.30	ug/L			04/12/12 12:22	1
Ethylbenzene	ND		0.50	0.25	ug/L			04/12/12 12:22	1
Methylene Chloride	ND		1.0	0.95	ug/L			04/12/12 12:22	1
Tetrachloroethene	ND		0.50	0.32	ug/L			04/12/12 12:22	1
Toluene	ND		0.50	0.36	ug/L			04/12/12 12:22	1
trans-1,2-Dichloroethene	ND		0.50	0.30	ug/L			04/12/12 12:22	1
trans-1,3-Dichloropropene	ND		0.50	0.32	ug/L			04/12/12 12:22	1
Trichlorofluoromethane	ND		0.50	0.34	ug/L			04/12/12 12:22	1
Vinyl chloride	ND		0.50	0.40	ug/L			04/12/12 12:22	1
Trichloroethene	ND		0.50	0.26	ug/L			04/12/12 12:22	1
cis-1,2-Dichloroethene	ND		0.50	0.32	ug/L			04/12/12 12:22	1
Cyclohexane	ND		2.0	0.40	ug/L			04/12/12 12:22	1
Xylenes, Total	ND		1.0	0.90	ug/L			04/12/12 12:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120			-		04/12/12 02:09	1
Dibromofluoromethane (Surr)	94		80 - 120					04/12/12 02:09	1
4-Bromofluorobenzene (Surr)	110		80 - 120					04/12/12 12:22	1

80 - 120

80 - 120

RL

MDL Unit

D

Prepared

Client Sample ID: Outfall 018 Composite

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

102

107

Result Qualifier

Date Collected: 04/11/12 13:45

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte

Date Received: 04/11/12 18:30

Lab Sample ID: 440-8282-1

Analyzed

04/12/12 12:22

04/12/12 12:22

Matrix: Water

Dil Fac

1,4-Dioxane	ND ND		2.0	1.0	ug/L			04/19/12 00:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	132	AY	80 - 120					04/19/12 00:15	1
- Method: 625 - Semivolatile Or	ganic Compound	s (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.472	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	1
Acenaphthylene	ND		0.472	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	1
Aniline	ND		9.43	0.283	ug/L		04/18/12 18:02	04/22/12 19:54	1
Anthracene	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	1
Benzidine	ND	LR	4.72	0.943	ug/L		04/18/12 18:02	04/22/12 19:54	1
Benzo[a]anthracene	ND		4.72	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	1
Benzo[b]fluoranthene	ND		1.89	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	1
Benzo[k]fluoranthene	ND		0.472	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	1
Benzoic acid	ND		18.9	2.83	ug/L		04/18/12 18:02	04/22/12 19:54	1
Benzo[a]pyrene	ND		1.89	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	1
Bis(2-chloroethoxy)methane	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	1
Bis(2-chloroethyl)ether	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	1
Bis(2-ethylhexyl) phthalate	ND		4.72	1.60	ug/L		04/18/12 18:02	04/22/12 19:54	1
4-Bromophenyl phenyl ether	ND		0.943	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	1
Butyl benzyl phthalate	ND		4.72	0.660	ug/L		04/18/12 18:02	04/22/12 19:54	1
4-Chloro-3-methylphenol	ND		1.89	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	1

Client Sample Results

Client: MWH Americas Inc

4-Nitroaniline

Benzo[g,h,i]perylene

Project/Site: Boeing SSFL Annual Outfall 018

Client Sample ID: Outfall 018 Composite Lab Sample ID: 440-8282-1

Date Collected: 04/11/12 13:45 Date Received: 04/11/12 18:30 Lab Sample ID: 440-8282-1

TestAmerica Job ID: 440-8129-1

Matrix: Water

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
2-Chloronaphthalene	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	•
2-Chlorophenol	ND		0.943	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	•
4-Chlorophenyl phenyl ether	ND		0.472	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	
Chrysene	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	
Dibenz(a,h)anthracene	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	
Di-n-butyl phthalate	ND		1.89	0.283	ug/L		04/18/12 18:02	04/22/12 19:54	
1,2-Dichlorobenzene	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	•
1,3-Dichlorobenzene	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	•
1,4-Dichlorobenzene	ND		0.472	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	· · · · · · · · ·
3,3'-Dichlorobenzidine	ND		4.72	0.472	ug/L		04/18/12 18:02	04/22/12 19:54	
2,4-Dichlorophenol	ND		1.89	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	
Diethyl phthalate	0.195	J,DX	0.943	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	
2,4-Dimethylphenol	ND		1.89	0.283	ug/L		04/18/12 18:02	04/22/12 19:54	
Dimethyl phthalate	ND		0.472	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	
4,6-Dinitro-2-methylphenol	ND		4.72	0.283	ug/L		04/18/12 18:02	04/22/12 19:54	
2,4-Dinitrophenol	ND		4.72	0.849	-		04/18/12 18:02	04/22/12 19:54	
2,4-Dinitrotoluene	ND		4.72	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	
2,6-Dinitrotoluene	ND		4.72	0.0943			04/18/12 18:02	04/22/12 19:54	
Di-n-octyl phthalate	ND		4.72	0.189	•		04/18/12 18:02	04/22/12 19:54	
1,2-Diphenylhydrazine(as	ND		0.943	0.189	-		04/18/12 18:02	04/22/12 19:54	
Azobenzene)					J				
Fluoranthene	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	· · · · · · · · ·
Fluorene	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	
Hexachlorobenzene	ND		0.943	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	
Hexachlorobutadiene	ND		1.89	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	
Hexachloroethane	ND		2.83	0.189	ug/L		04/18/12 18:02	04/22/12 19:54	
Hexachlorocyclopentadiene	ND		4.72	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	
Indeno[1,2,3-cd]pyrene	ND		1.89	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	
Isophorone	ND		0.943	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	
4-Methylphenol	ND		4.72	0.189			04/18/12 18:02	04/22/12 19:54	
Naphthalene	ND		0.943	0.0943	-		04/18/12 18:02	04/22/12 19:54	,
Nitrobenzene	ND		0.943	0.0943			04/18/12 18:02	04/22/12 19:54	
2-Nitrophenol	ND		1.89	0.0943			04/18/12 18:02	04/22/12 19:54	
4-Nitrophenol	ND	LQ	4.72		ug/L		04/18/12 18:02	04/22/12 19:54	,
N-Nitrosodimethylamine	ND	BA	1.89	0.0943	-		04/18/12 18:02	04/22/12 19:54	
N-Nitrosodiphenylamine	ND		0.943	0.0943	•		04/18/12 18:02	04/22/12 19:54	
N-Nitrosodi-n-propylamine	ND		1.89	0.0943			04/18/12 18:02	04/22/12 19:54	,
Pentachlorophenol	ND		1.89	0.377	-		04/18/12 18:02	04/22/12 19:54	
Phenanthrene	ND		0.472	0.0943			04/18/12 18:02	04/22/12 19:54	,
Phenol	ND		0.943	0.283			04/18/12 18:02	04/22/12 19:54	,
Pyrene	ND		0.472	0.0943	•		04/18/12 18:02	04/22/12 19:54	
-	ND		0.943		-		04/18/12 18:02	04/22/12 19:54	
1,2,4-Trichlorobenzene	ND		0.943	0.0943				04/22/12 19:54	,
2,4,6-Trichlorophenol 2-Methylphenol	ND ND		1.89		-		04/18/12 18:02		
* *				0.0943	-		04/18/12 18:02	04/22/12 19:54	
4-Chloroaniline	ND		1.89	0.283			04/18/12 18:02	04/22/12 19:54	
2-Methylnaphthalene	ND	10	0.943	0.189			04/18/12 18:02	04/22/12 19:54	,
2-Nitroaniline	ND	LQ	4.72	0.0943			04/18/12 18:02	04/22/12 19:54	•
3-Nitroaniline	ND		4.72	0.943			04/18/12 18:02	04/22/12 19:54	
Dibenzofuran	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	•

А

5

8

10

11

13

04/22/12 19:54

04/22/12 19:54

04/18/12 18:02

04/18/12 18:02

4.72

4.72

0.472 ug/L

0.0943 ug/L

ND

ND

Client Sample ID: Outfall 018 Composite

Date Collected: 04/11/12 13:45 Date Received: 04/11/12 18:30

DCB Decachlorobiphenyl (Surr)

Lab Sample ID: 440-8282-1

04/15/12 14:34

04/16/12 22:57

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzyl alcohol	ND		4.72	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	1
bis (2-chloroisopropyl) ether	ND		0.472	0.0943	ug/L		04/18/12 18:02	04/22/12 19:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	108		50 - 120				04/18/12 18:02	04/22/12 19:54	1
2-Fluorophenol	91		30 - 120				04/18/12 18:02	04/22/12 19:54	1
2,4,6-Tribromophenol	119		40 - 120				04/18/12 18:02	04/22/12 19:54	1
Nitrobenzene-d5	115		45 - 120				04/18/12 18:02	04/22/12 19:54	1
Terphenyl-d14	132	AY	50 - 125				04/18/12 18:02	04/22/12 19:54	1
Phenol-d6	96		35 - 120				04/18/12 18:02	04/22/12 19:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		0.48	0.24	ug/L		04/15/12 14:34	04/16/12 22:57	1
Aroclor 1221	ND		0.48	0.24	ug/L		04/15/12 14:34	04/16/12 22:57	1
Aroclor 1232	ND		0.48	0.24	ug/L		04/15/12 14:34	04/16/12 22:57	1
Aroclor 1242	ND		0.48	0.24	ug/L		04/15/12 14:34	04/16/12 22:57	1
Aroclor 1248	ND		0.48	0.24	ug/L		04/15/12 14:34	04/16/12 22:57	1
Aroclor 1254	ND		0.48	0.24	ug/L		04/15/12 14:34	04/16/12 22:57	1
Aroclor 1260	ND		0.48	0.24	ug/L		04/15/12 14:34	04/16/12 22:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

45 - 120

88

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0048	0.0014	ug/L		04/15/12 14:34	04/16/12 14:12	1
alpha-BHC	ND		0.0048	0.0024	ug/L		04/15/12 14:34	04/16/12 14:12	1
beta-BHC	ND		0.0095	0.0038	ug/L		04/15/12 14:34	04/16/12 14:12	1
Chlordane (technical)	ND		0.095	0.0076	ug/L		04/15/12 14:34	04/16/12 14:12	1
delta-BHC	ND		0.0048	0.0033	ug/L		04/15/12 14:34	04/16/12 14:12	1
Dieldrin	ND		0.0048	0.0019	ug/L		04/15/12 14:34	04/16/12 14:12	1
Endosulfan I	ND		0.0048	0.0029	ug/L		04/15/12 14:34	04/16/12 14:12	1
Endosulfan II	ND		0.0048	0.0019	ug/L		04/15/12 14:34	04/16/12 14:12	1
Endosulfan sulfate	ND		0.0095	0.0029	ug/L		04/15/12 14:34	04/16/12 14:12	1
Endrin	ND		0.0048	0.0019	ug/L		04/15/12 14:34	04/16/12 14:12	1
Endrin aldehyde	ND		0.0095	0.0019	ug/L		04/15/12 14:34	04/16/12 14:12	1
gamma-BHC (Lindane)	ND		0.0095	0.0029	ug/L		04/15/12 14:34	04/16/12 14:12	1
Heptachlor	ND		0.0095	0.0029	ug/L		04/15/12 14:34	04/16/12 14:12	1
Heptachlor epoxide	ND		0.0048	0.0024	ug/L		04/15/12 14:34	04/16/12 14:12	1
Toxaphene	ND		0.48	0.24	ug/L		04/15/12 14:34	04/16/12 14:12	1
4,4'-DDD	ND		0.0048	0.0038	ug/L		04/15/12 14:34	04/16/12 14:12	1
4,4'-DDE	ND		0.0048	0.0029	ug/L		04/15/12 14:34	04/16/12 14:12	1
4,4'-DDT	ND		0.0095	0.0038	ug/L		04/15/12 14:34	04/16/12 14:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	60		35 - 115				04/15/12 14:34	04/16/12 14:12	1

Method: 218.6 - Chromium, Hexav	alent (Ion Chromato	ography)						
Analyte	Result Qualific	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND	1.0	0.25	ug/L			04/12/12 00:07	1

Client Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

ojeci/oite. Boeing ooi L'Annual Ottilali 010

Lab Sample ID: 440-8282-1

TestAmerica Job ID: 440-8129-1

Client Sample ID: Outfall 018 Composite Date Collected: 04/11/12 13:45

Matrix: Water

Date Received: 04/11/12 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	25		5.0	4.0	mg/L			04/12/12 00:32	10
Nitrate as N	1.1		0.11	0.080	mg/L			04/12/12 00:16	1
Nitrate Nitrite as N	1.1		0.26	0.19	mg/L			04/12/12 00:16	1
Sulfate	150		5.0	4.0	mg/L			04/12/12 00:32	10
Nitrite as N	ND		0.15	0.11	mg/L			04/12/12 00:16	1

Method: 314.0 - Perchlorate (IC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L		-	04/19/12 15:40	1

Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000033	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
Total TCDD	ND		0.000010	0.0000033	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,7,8-PeCDD	ND		0.000050	0.0000040	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
Total PeCDD	ND		0.000050	0.0000040	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,4,7,8-HxCDD	ND		0.000050	0.0000023	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,6,7,8-HxCDD	ND		0.000050	0.0000023	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,7,8,9-HxCDD	ND		0.000050	0.0000021	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
Total HxCDD	ND		0.000050	0.0000021	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,4,6,7,8-HpCDD	0.0000030	JQ	0.000050	0.0000026	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
Total HpCDD	0.0000062	JQB	0.000050	0.0000026	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
OCDD	0.000033	J	0.00010	0.0000055	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
2,3,7,8-TCDF	ND		0.000010	0.0000032	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
Total TCDF	ND		0.000010	0.0000032	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,7,8-PeCDF	ND		0.000050	0.0000045	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
2,3,4,7,8-PeCDF	ND		0.000050	0.0000045	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
Total PeCDF	ND		0.000050	0.0000045	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,4,7,8-HxCDF	0.0000054	J	0.000050	0.0000015	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,6,7,8-HxCDF	ND		0.000050	0.0000015	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
2,3,4,6,7,8-HxCDF	ND		0.000050	0.0000014	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,7,8,9-HxCDF	0.0000046	J	0.000050	0.0000018	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
Total HxCDF	0.000020	JQ	0.000050	0.0000015	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,4,6,7,8-HpCDF	0.000011	JB	0.000050	0.0000022	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
1,2,3,4,7,8,9-HpCDF	0.000014	J	0.000050	0.0000028	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
Total HpCDF	0.000036	JB	0.000050	0.0000025	ug/L		04/17/12 09:00	04/22/12 01:24	0.96
OCDF	0.000015	JQB	0.00010	0.0000076	ug/L		04/17/12 09:00	04/22/12 01:24	0.96

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac
37Cl4-2,3,7,8-TCDD	70		35 - 197	04/17/12 09:00	04/22/12 01:24	0.96
Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	22	*	25 - 164	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,7,8-PeCDD	20	*	25 - 181	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,4,7,8-HxCDD	21	*	32 - 141	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,6,7,8-HxCDD	22	*	28 - 130	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,4,6,7,8-HpCDD	21	*	23 - 140	04/17/12 09:00	04/22/12 01:24	0.96
13C-OCDD	22		17 - 157	04/17/12 09:00	04/22/12 01:24	0.96
13C-2,3,7,8-TCDF	24		24 - 169	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,7,8-PeCDF	20	*	24 - 185	04/17/12 09:00	04/22/12 01:24	0.96
13C-2,3,4,7,8-PeCDF	22		21 - 178	04/17/12 09:00	04/22/12 01:24	0.96

TestAmerica Irvine 5/17/2012

3

6

8

3

11

12

Date Received: 04/11/12 18:30

TestAmerica Job ID: 440-8129-1

Client Sample ID: Outfall 018 Composite

Lab Sample ID: 440-8282-1 Date Collected: 04/11/12 13:45

Matrix: Water

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Internal Standard	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,6,7,8-HxCDF	22	*	26 - 123	04/17/12 09:00	04/22/12 01:24	0.96
13C-2,3,4,6,7,8-HxCDF	21	*	28 - 136	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,7,8,9-HxCDF	20	*	29 - 147	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,4,6,7,8-HpCDF	20	*	28 - 143	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,4,7,8,9-HpCDF	22	*	26 - 138	04/17/12 09:00	04/22/12 01:24	0.96
13C-1,2,3,4,7,8-HxCDF	22	*	26 - 152	04/17/12 09:00	04/22/12 01:24	0.96

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		10	7.0	ug/L		04/18/12 17:48	04/20/12 03:40	1
Boron	0.22	MB	0.050	0.020	mg/L		04/18/12 17:48	04/20/12 03:40	1
Beryllium	ND		2.0	0.90	ug/L		04/18/12 17:48	04/20/12 03:40	1
Calcium	28	MB	0.10	0.050	mg/L		04/18/12 17:48	04/20/12 13:22	1
Chromium	ND		5.0	2.0	ug/L		04/18/12 17:48	04/20/12 03:40	1
Iron	0.086		0.040	0.015	mg/L		04/18/12 17:48	04/20/12 13:22	1
Magnesium	7.9		0.020	0.012	mg/L		04/18/12 17:48	04/20/12 03:40	1
Nickel	2.2	J,DX	10	2.0	ug/L		04/18/12 17:48	04/20/12 03:40	1
Vanadium	ND		10	3.0	ug/L		04/18/12 17:48	04/20/12 03:40	1
Zinc	ND		20	6.0	ug/L		04/18/12 17:48	04/20/12 03:40	1
Silver	ND		10	6.0	ug/L		04/18/12 17:48	04/20/12 03:40	1
Barium	21		10	6.0	ug/L		04/18/12 17:48	04/20/12 03:40	1
Manganese	18	J.DX	20	7.0	ug/L		04/18/12 17:48	04/20/12 03:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		10	7.0	ug/L		04/20/12 09:32	04/20/12 17:31	1
Boron	0.20	MB	0.050	0.020	mg/L		04/20/12 09:32	04/20/12 17:31	1
Beryllium	ND		2.0	0.90	ug/L		04/20/12 09:32	04/20/12 17:31	1
Calcium	27	MB	0.10	0.050	mg/L		04/20/12 09:32	04/20/12 17:31	1
Chromium	ND		5.0	2.0	ug/L		04/20/12 09:32	04/20/12 17:31	1
Iron	ND		0.040	0.015	mg/L		04/20/12 09:32	04/20/12 17:31	1
Magnesium	7.3		0.020	0.012	mg/L		04/20/12 09:32	04/20/12 17:31	1
Nickel	ND		10	2.0	ug/L		04/20/12 09:32	04/20/12 17:31	1
Vanadium	ND		10	3.0	ug/L		04/20/12 09:32	04/20/12 17:31	1
Zinc	ND		20	6.0	ug/L		04/20/12 09:32	04/20/12 17:31	1
Silver	ND		10	6.0	ug/L		04/20/12 09:32	04/20/12 17:31	1
Barium	18		10	6.0	ug/L		04/20/12 09:32	04/20/12 17:31	1
Manganese	9.7	J,DX	20	7.0	ug/L		04/20/12 09:32	04/20/12 17:31	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		04/19/12 10:41	04/21/12 21:21	1
Copper	0.85	J,DX	2.0	0.50	ug/L		04/19/12 10:41	04/21/12 21:21	1
Lead	ND		1.0	0.20	ug/L		04/19/12 10:41	04/23/12 15:32	1
Antimony	ND		2.0	0.30	ug/L		04/19/12 10:41	04/21/12 21:21	1
Selenium	ND		2.0	0.50	ug/L		04/19/12 10:41	04/21/12 21:21	1
Thallium	ND		1.0	0.20	ug/L		04/19/12 10:41	04/23/12 15:32	1
Cobalt	0.10	J,DX	1.0	0.10	ug/L		04/19/12 10:41	04/21/12 21:21	1

Date Collected: 04/11/12 13:45

Date Received: 04/11/12 18:30

Project/Site: Boeing SSFL Annual Outfall 018

Client Sample ID: Outfall 018 Composite

TestAmerica Job ID: 440-8129-1

Lab Sample ID: 440-8282-1

Matrix: Water

Method: 200.8 - Metals (ICP/MS) - Di		0	5.		1114	_	B :	A 1	p
Analyte		Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil F
Cadmium	ND		1.0	0.10	ug/L		04/20/12 09:35	04/25/12 17:10	
Copper	0.81	J,DX	2.0	0.50	ug/L		04/20/12 09:35	04/26/12 18:48	
_ead	ND		1.0	0.20	ug/L		04/20/12 09:35	04/25/12 17:10	
Antimony		J,DX	2.0	0.30	ug/L		04/20/12 09:35	04/25/12 17:10	
Selenium	ND		2.0	0.50	ug/L		04/20/12 09:35	04/25/12 17:10	
Thallium	0.24	J,DX	1.0	0.20	ug/L		04/20/12 09:35	04/25/12 17:10	
Cobalt	0.16	J,DX	1.0	0.10	ug/L		04/20/12 09:35	04/26/12 18:48	
Method: 245.1 - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	ND		0.20	0.10	ug/L		04/12/12 18:47	04/13/12 21:18	
Method: 245.1 - Mercury (CVAA) - Di	ssolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	ND		0.20	0.10	ug/L		04/12/12 20:37	04/13/12 23:08	
Method: SM 2340B - Total Hardness									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Hardness, as CaCO3	100		0.33	0.17	mg/L			04/18/12 13:18	
Method: SM 2340B - Total Hardness	(as CaCO3	by calculat	ion - Dissolve	ed					
Analyte	Result	Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil F
Hardness, as CaCO3	97		0.33	0.17	mg/L			04/23/12 11:19	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Furbidity	1.8		0.10	0.040	NTU			04/12/12 12:47	
Total Dissolved Solids	310		10	10	mg/L			04/13/12 09:21	
Total Suspended Solids	ND		10	10	mg/L			04/17/12 22:29	
Cyanide, Total	ND		0.0050	0.0030	mg/L		04/25/12 15:36	04/25/12 19:45	
Fluoride	0.11		0.10	0.020	mg/L			04/16/12 06:20	
Ammonia (as N)	0.280	J,DX	0.400	0.157	mg/L		04/12/12 16:52	04/12/12 21:16	
Total Organic Carbon	7.4		1.0	0.75	mg/L			04/13/12 07:23	
Methylene Blue Active Substances	ND		0.10	0.050	mg/L			04/12/12 19:40	
Biochemical Oxygen Demand	ND		2.0	0.50	mg/L			04/13/12 09:06	
Method: Gamma Spec K-40 CS-137	- General S	ub Contract	Method						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Cesium-137	0.048		20		pCi/L		04/19/12 00:00	04/19/12 00:00	
Potassium-40	12.9	U	25		pCi/L		04/19/12 00:00	04/19/12 00:00	
Method: Gross Alpha and Beta - Gro	-								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Gross Alpha	0.114	U	3		pCi/L	_	04/24/12 00:00	04/25/12 08:07	
Gross Beta	4.32		4		pCi/L		04/24/12 00:00	04/25/12 08:07	
Method: Radium 226 - General Sub	Contract M	ethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Radium-226	0.118	U	1		pCi/L		05/02/12 00:00	05/02/12 13:19	
Method: Radium 228 - RAD-226-228	combined								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Radium-228	-0.12						-		

Client Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Client Sample ID: Outfall 018 Composite

Lab Sample ID: 440-8282-1 Date Collected: 04/11/12 13:45

Matrix: Water

Date Received: 04/11/12 18:30

Method: Strontium 90 - General Su	b Contract N	/lethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium-90	-0.277	U	2		pCi/L		04/24/12 00:00	04/24/12 08:20	1
Mathada Taitiana Cananal Sub Can	tua at Matha	.1							

Method: Tritium - General Sub Con	ntract Method	I							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tritium	47.2	U	500		pCi/L		04/19/12 00:00	04/19/12 20:20	1

Method: Uranium, Combined - Gei	neral Sub Co	ntract Metho	od						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Uranium. Total	0.047	J	1		pCi/L		04/25/12 00:00	04/25/12 03:59	1

Project/Site: Boeing SSFL Annual Outfall 018

Client Sample ID: Outfall 018 Grab Lab Sample ID: 440-8129-1

Date Collected: 04/10/12 14:45 Matrix: Water

Date Received: 04/10/12 18:05

Client: MWH Americas Inc

	Batch	Batch		Dil	Init	ial	Fin	al	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amo	unt	Amo	unt	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	10	mL	10	mL	19096	04/12/12 01:40	RM	TAL IRV
Total/NA	Analysis	624		1	10	mL	10	mL	19220	04/12/12 11:54	MR	TAL IRV
Total/NA	Analysis	8015B		1	10	mL	10	mL	20433	04/18/12 15:56	KS	TAL IRV
Total/NA	Prep	3510C			1060	mL	1	mL	19972	04/16/12 11:19	AV	TAL IRV
Total/NA	Analysis	8015B		1					19895	04/17/12 06:50	CP	TAL IRV
Total/NA	Analysis	SM 2540F		1	1000	mL	1000	mL	18926	04/11/12 09:00	RR	TAL IRV
Total/NA	Analysis	120.1		1					19950	04/16/12 10:04	XL	TAL IRV
Total/NA	Prep	1664A			1055	mL	1000	mL	21239	04/23/12 06:18	DA	TAL IRV
Total/NA	Analysis	1664A		1					21254	04/23/12 06:54	DA	TAL IRV
Total/NA	Analysis	SM 9221E		1	100	mL	100	mL	19610		AK	TAL IRV
									(Start)	04/10/12 18:23		
									(End)	04/13/12 14:47		
Total/NA	Analysis	SM 9221F		1	100	mL	100	mL	19611		AK	TAL IRV
									(Start)	04/10/12 18:23		
									(End)	04/13/12 14:47		

Client Sample ID: Trip Blanks Lab Sample ID: 440-8129-2

Date Collected: 04/10/12 14:45

Date Received: 04/10/12 18:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	10 mL	10 mL	19096	04/12/12 02:09	RM	TAL IRV
Total/NA	Analysis	624		1	10 mL	10 mL	19220	04/12/12 12:22	MR	TAL IRV

Client Sample ID: Outfall 018 Composite Lab Sample ID: 440-8282-1

Date Collected: 04/11/12 13:45 Date Received: 04/11/12 18:30

	Batch	Batch		Dil	Init	ial	Fin	al	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amo	unt	Amo	unt	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B SIM		1	10	mL	10	mL	20473	04/19/12 00:15	GK	TAL IRV
Total/NA	Prep	625			1060	mL	2	mL	20598	04/18/12 18:02	DM	TAL IRV
Total/NA	Analysis	625		1					21217	04/22/12 19:54	Al	TAL IRV
Total/NA	Prep	608			1050	mL	2	mL	19875	04/15/12 14:34	AB	TAL IRV
Total/NA	Analysis	608 Pesticides		1					19946	04/16/12 14:12	DD	TAL IRV
Total/NA	Analysis	608 PCB LL		1					20064	04/16/12 22:57	CN	TAL IRV
Total/NA	Analysis	300.0		1	1	mL	1.0	mL	18918	04/12/12 00:16	NN	TAL IR\
Total/NA	Analysis	300.0		10	1	mL	1.0	mL	18919	04/12/12 00:32	NN	TAL IRV
Total/NA	Analysis	218.6		1	10	mL	10	mL	19011	04/12/12 00:07	SL	TAL IRV
Total/NA	Analysis	314.0		1	5	mL	1.0	mL	20654	04/19/12 15:40	MN	TAL IRV
Total	Prep	3542			1040.23	mL	20	uL	2108092_P	04/17/12 09:00	TL	TAL WS
Total	Analysis	1613B		0.96					2108092	04/22/12 01:24	SO	TAL WS
Total/NA	Prep	245.1			20	mL	20	mL	19442	04/12/12 18:47	SN	TAL IR\
Γotal/NA	Analysis	245.1		1					19759	04/13/12 21:18	DB	TAL IR

Matrix: Water

Matrix: Water

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

Client Sample ID: Outfall 018 Composite

Lab Sample ID: 440-8282-1

Date Collected: 04/11/12 13:45

Matrix: Water

Date Received: 04/11/12 18:30

	Batch	Batch		Dil	Initi	al	Fin	al	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amou	unt	Amo	unt	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	245.1			20	mL	20	mL	19467	04/12/12 20:37	SN	TAL IRV
Dissolved	Analysis	245.1		1					19759	04/13/12 23:08	DB	TAL IRV
Total/NA	Analysis	SM 2340B		1					20492	04/18/12 13:18	FR	TAL IRV
Total Recoverable	Prep	200.2			50	mL	50	mL	20594	04/18/12 17:48	SC	TAL IRV
Total Recoverable	Analysis	200.7 Rev 4.4		1					20926	04/20/12 03:40	TK	TAL IRV
Total Recoverable	Analysis	200.7 Rev 4.4		1					21033	04/20/12 13:22	VS	TAL IRV
Dissolved	Prep	200.2			50	mL	50	mL	20964	04/20/12 09:32	EN	TAL IRV
Dissolved	Analysis	200.7 Rev 4.4		1					21093	04/20/12 17:31	DP	TAL IRV
Total Recoverable	Prep	200.2			50	mL	50	mL	20735	04/19/12 10:41	EN	TAL IRV
Total Recoverable	Analysis	200.8		1					21222	04/21/12 21:21	NH	TAL IRV
Dissolved	Analysis	SM 2340B		1					21322	04/23/12 11:19	FR	TAL IRV
Total Recoverable	Analysis	200.8		1					21383	04/23/12 15:32	NH	TAL IRV
Dissolved	Prep	200.2			50	mL	50	mL	20965	04/20/12 09:35	EN	TAL IRV
Dissolved	Analysis	200.8		1					22049	04/25/12 17:10	RC	TAL IRV
Dissolved	Analysis	200.8		1					22325	04/26/12 18:48	RC	TAL IRV
Total/NA	Analysis	180.1		1					19334	04/12/12 12:47	RR	TAL IRV
Total/NA	Analysis	SM 5540C		1	100	mL	100	mL	19455	04/12/12 19:40	NEA	TAL IRV
Total/NA	Prep	SM 4500 NH3 B			50	mL	50	mL	19411	04/12/12 16:52	NP	TAL IRV
Total/NA	Analysis	SM 4500 NH3 C		1					19480	04/12/12 21:16	NP	TAL IRV
Total/NA	Analysis	SM5210B		1					19553	04/13/12 09:06	QPD	TAL IRV
Total/NA	Analysis	SM 2540C		1	100	mL	100	mL	19559	04/13/12 09:21	XL	TAL IRV
Total/NA	Analysis	SM 5310B		1					19604	04/13/12 07:23	FZ	TAL IRV
Total/NA	Analysis	SM 4500 F C		1					19968	04/16/12 06:20	FZ	TAL IRV
Total/NA	Analysis	SM 2540D		1	100	mL	100	mL	20344	04/17/12 22:29	DK	TAL IRV
Total/NA	Prep	Distill/CN			50	mL	50	mL	21913	04/25/12 15:36	PQI	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1					21973	04/25/12 19:45	PQI	TAL IRV
Total/NA	Analysis	Gamma Spec K-40 CS-137		1					8607	04/19/12 00:00	LS	Eber-Rich
Total/NA	Prep	General Prep		1					8607_P	04/19/12 00:00		Eber-Rich
Total/NA	Prep	General Prep		1					8607_P	04/24/12 00:00		Eber-Rich
Total/NA	Analysis	Gross Alpha and Beta		1					8607	04/25/12 08:07	DVP	Eber-Rich
Total/NA	Prep	General Prep		1					8607_P	05/02/12 00:00		Eber-Rich
Total/NA	Analysis	Radium 226		1					8607	05/02/12 13:19	TM	Eber-Rich
Total/NA	Prep	General Prep		1					8607_P	04/25/12 00:00		Eber-Rich
Total/NA	Analysis	Radium 228		1					8607	04/25/12 14:21	ASM	Eber-Rich
Total/NA	Analysis	Strontium 90		1					8607	04/24/12 08:20	SK	Eber-Rich
Total/NA	Analysis	Tritium		1					8607	04/19/12 20:20	WL	Eber-Rich
Total/NA	Analysis	Uranium, Combined		1					8607	04/25/12 03:59	LS	Eber-Rich

5

TestAmerica Job ID: 440-8129-1

J

6

8

40

11

13

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Laboratory References:

= Truesdail Laboratories Inc, 14201 Franklin Ave, Tustin, CA 92780

Eber-Rich = Eberline - Richmond, 2030 Wright Avenue, Richmond, CA 94804

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077

SC0127 = Aquatic Testing Laboratories, 4350 Transport #107, Ventura, CA 93003

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL WSC = TestAmerica West Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

4

6

_

10

11

40

13

Analysis Batch: 19096

Matrix: Water

Surrogate

Toluene-d8 (Surr)

Project/Site: Boeing SSFL Annual Outfall 018

Lab Sample ID: MB 440-19096/4

Method: 624 - Volatile Organic Compounds (GC/MS)

Client Sample ID: Method Blank

04/11/12 20:55

TestAmerica Job ID: 440-8129-1

Prep Type: Total/NA

	MB MB							
Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chloroethyl vinyl ether	ND ND	2.0	1.8	ug/L			04/11/12 20:55	1
Acrolein	ND	5.0	4.0	ug/L			04/11/12 20:55	1
Acrylonitrile	ND	2.0	1.2	ug/L			04/11/12 20:55	1

MR MR Qualifier Limits Prepared Analyzed Dil Fac %Recovery 101 80 - 120 04/11/12 20:55

Lab Sample ID: LCS 440-19096/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

80 - 120

Analysis Batch: 19096

Dibromofluoromethane (Surr)

LCS LCS %Rec. Spike Added Result Qualifier Unit %Rec Limits 2-Chloroethyl vinyl ether 25.0 20.8 ug/L 83 25 - 170

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 101 80 - 120 Dibromofluoromethane (Surr) 87 80 - 120

84

Lab Sample ID: 440-7823-A-10 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 19096

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Chloroethyl vinyl ether	ND		25.0	ND	LN	ua/L			25 - 170

MS MS Qualifier Limits Surrogate %Recovery Toluene-d8 (Surr) 102 80 - 120 80 - 120 Dibromofluoromethane (Surr) 92

Lab Sample ID: 440-7823-A-10 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 19096

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chloroethyl vinyl ether	ND		25.0	ND	AY	ug/L		0	25 - 170	NC	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		80 - 120
Dibromofluoromethane (Surr)	94		80 - 120

MB MB

Lab Sample ID: MB 440-19220/4 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 19220

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	0.50	0.30 ug/L			04/12/12 09:08	1
1,1,2,2-Tetrachloroethane	ND	0.50	0.30 ug/L			04/12/12 09:08	1

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 440-19220/4

Matrix: Water

Analysis Batch: 19220

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	ND		0.50	0.30	ug/L			04/12/12 09:08	1
1,1-Dichloroethane	ND		0.50	0.40	ug/L			04/12/12 09:08	1
Trichlorotrifluoroethane(F-113)	ND		2.0	0.50	ug/L			04/12/12 09:08	1
1,1-Dichloroethene	ND		0.50	0.42	ug/L			04/12/12 09:08	1
1,2-Dichlorobenzene	ND		0.50	0.32	ug/L			04/12/12 09:08	1
1,2-Dichloroethane	ND		0.50	0.28	ug/L			04/12/12 09:08	1
1,2-Dichloropropane	ND		0.50	0.35	ug/L			04/12/12 09:08	1
1,3-Dichlorobenzene	ND		0.50	0.35	ug/L			04/12/12 09:08	1
1,4-Dichlorobenzene	ND		0.50	0.37	ug/L			04/12/12 09:08	1
Benzene	ND		0.50	0.28	ug/L			04/12/12 09:08	1
Bromoform	ND		0.50	0.40	ug/L			04/12/12 09:08	1
1,2-Dichloro-1,1,2-trifluoroethane	ND		2.0	1.1	ug/L			04/12/12 09:08	1
Bromomethane	ND		0.50	0.42	ug/L			04/12/12 09:08	1
Carbon tetrachloride	ND		0.50	0.28	ug/L			04/12/12 09:08	1
Chlorobenzene	ND		0.50	0.36	ug/L			04/12/12 09:08	1
Dibromochloromethane	ND		0.50	0.40	ug/L			04/12/12 09:08	1
Chloroethane	ND		0.50	0.40	ug/L			04/12/12 09:08	1
Chloroform	ND		0.50	0.33	ug/L			04/12/12 09:08	1
Chloromethane	ND		0.50	0.40	ug/L			04/12/12 09:08	1
cis-1,3-Dichloropropene	ND		0.50	0.22	ug/L			04/12/12 09:08	1
Bromodichloromethane	ND		0.50	0.30	ug/L			04/12/12 09:08	1
Ethylbenzene	ND		0.50	0.25	ug/L			04/12/12 09:08	1
Methylene Chloride	ND		1.0	0.95	ug/L			04/12/12 09:08	1
Tetrachloroethene	ND		0.50	0.32	ug/L			04/12/12 09:08	1
Toluene	ND		0.50	0.36	ug/L			04/12/12 09:08	1
trans-1,2-Dichloroethene	ND		0.50	0.30	ug/L			04/12/12 09:08	1
trans-1,3-Dichloropropene	ND		0.50	0.32	ug/L			04/12/12 09:08	1
Trichlorofluoromethane	ND		0.50	0.34	ug/L			04/12/12 09:08	1
Vinyl chloride	ND		0.50	0.40	ug/L			04/12/12 09:08	1
Trichloroethene	ND		0.50	0.26	ug/L			04/12/12 09:08	1
cis-1,2-Dichloroethene	ND		0.50	0.32	ug/L			04/12/12 09:08	1
Cyclohexane	ND		2.0	0.40	ug/L			04/12/12 09:08	1
Xylenes, Total	ND		1.0	0.90	ug/L			04/12/12 09:08	1

Dibromofluoromethane (Surr) 100 80 - 120 Toluene-d8 (Surr) 80 - 120 106

MB MB

%Recovery Qualifier

109

Lab Sample ID: LCS 440-19220/5 **Matrix: Water**

4-Bromofluorobenzene (Surr)

Surrogate

Analysis Batch: 19220

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
25.0	24.9		ug/L		100	65 - 135	
25.0	24.4		ug/L		98	55 - 130	
25.0	24.4		ug/L		98	70 - 125	
25.0	26.0		ug/L		104	70 - 125	
25.0	23.2		ug/L		93	70 - 125	
	Added 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 24.9 25.0 24.4 25.0 24.4 25.0 26.0	Added Result Qualifier 25.0 24.9 25.0 24.4 25.0 24.4 25.0 26.0	Added Result Qualifier Unit 25.0 24.9 ug/L 25.0 24.4 ug/L 25.0 24.4 ug/L 25.0 26.0 ug/L	Added Result Qualifier Unit D 25.0 24.9 ug/L 25.0 24.4 ug/L 25.0 24.4 ug/L 25.0 26.0 ug/L	Added Result Qualifier Unit D %Rec 25.0 24.9 ug/L 100 25.0 24.4 ug/L 98 25.0 24.4 ug/L 98 25.0 26.0 ug/L 104	Added Result Qualifier Unit D %Rec Limits 25.0 24.9 ug/L 100 65 - 135 25.0 24.4 ug/L 98 55 - 130 25.0 24.4 ug/L 98 70 - 125 25.0 26.0 ug/L 104 70 - 125

Limits

80 - 120

Client Sample ID: Lab Control Sample

Prepared

Prep Type: Total/NA

Analyzed

04/12/12 09:08

04/12/12 09:08

04/12/12 09:08

Dil Fac

Project/Site: Boeing SSFL Annual Outfall 018

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-19220/5

Matrix: Water

Analysis Batch: 19220

Client: MWH Americas Inc

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier %Rec Limits Analyte Unit 1,2-Dichlorobenzene 25.0 25.5 102 75 - 120 ug/L 1,2-Dichloroethane 25.0 27.0 ug/L 108 60 - 140 25.0 1,2-Dichloropropane 24.5 ug/L 98 70 - 125 1,3-Dichlorobenzene 25.0 26.6 ug/L 106 75 - 120 1,4-Dichlorobenzene 25.0 25.6 102 75 - 120 ug/L Benzene 25.0 93 70 - 120 ug/L Bromoform 25.0 16.3 ug/L 65 55 _ 130 Bromomethane 25.0 25.3 ug/L 101 65 - 140Carbon tetrachloride 25.0 21.8 ug/L 87 65 - 140 Chlorobenzene 25.0 25.3 ug/L 101 75 - 120 Dibromochloromethane 25.0 22.2 ug/L 89 70 - 140 25.0 Chloroethane 22.9 ug/L 92 60 - 140 Chloroform 25.0 26.8 107 ug/L 70 - 130 Chloromethane 25.0 22.4 50 - 140 ug/L 90 25.0 25.2 101 75 - 125 cis-1,3-Dichloropropene ug/L Bromodichloromethane 25.0 25.6 ug/L 102 70 - 135 Ethylbenzene 25.0 24.8 99 75 - 125 ug/L 25.0 98 55 - 130 Methylene Chloride 24 4 ug/L Tetrachloroethene 25.0 24.1 96 70 - 125 ug/L Toluene 25.0 ug/L 70 - 120 25.3 101 trans-1,2-Dichloroethene 25.0 24.1 ug/L 96 70 - 125 trans-1,3-Dichloropropene 25.0 26.4 106 70 - 125 ug/L Trichlorofluoromethane 25.0 28.8 ug/L 115 65 - 145

25.0

25.0

25.0

75.0

23.2

25.8

26.2

75.9

ug/L

ug/L

ug/L

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		80 - 120
Dibromofluoromethane (Surr)	103		80 - 120
Toluene-d8 (Surr)	105		80 - 120

Lab Sample ID: 440-8172-F-1 MS

Matrix: Water

Vinyl chloride

Trichloroethene

Xylenes, Total

cis-1,2-Dichloroethene

Analysis Batch: 19220

Client Sample ID: Matrix Spike Prep Type: Total/NA

93

103

105

101

55 - 135

70 - 125

70 - 125

70 - 125

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		25.0	23.4		ug/L		94	65 - 140
1,1,2,2-Tetrachloroethane	ND		25.0	23.1		ug/L		92	55 - 135
1,1,2-Trichloroethane	ND		25.0	23.5		ug/L		94	65 _ 130
1,1-Dichloroethane	ND		25.0	24.2		ug/L		97	65 _ 130
1,1-Dichloroethene	ND		25.0	22.1		ug/L		88	60 - 130
1,2-Dichlorobenzene	ND		25.0	24.4		ug/L		98	75 - 125
1,2-Dichloroethane	ND		25.0	25.9		ug/L		104	60 - 140
1,2-Dichloropropane	ND		25.0	23.1		ug/L		92	65 _ 130
1,3-Dichlorobenzene	ND		25.0	24.8		ug/L		99	75 - 125
1,4-Dichlorobenzene	ND		25.0	24.4		ug/L		98	75 - 125
Benzene	ND		25.0	22.0		ug/L		88	65 - 125

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-8172-F-1 MS

Matrix: Water

Analysis Batch: 19220

Client Sample ID: Matrix Spike	9
Prep Type: Total/NA	4
%Rec.	

•	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bromoform	ND		25.0	16.4		ug/L		66	55 _ 135
Bromomethane	ND		25.0	23.9		ug/L		96	55 ₋ 145
Carbon tetrachloride	ND		25.0	20.8		ug/L		83	65 _ 140
Chlorobenzene	ND		25.0	23.7		ug/L		95	75 - 125
Dibromochloromethane	ND		25.0	21.7		ug/L		87	65 _ 140
Chloroethane	ND		25.0	20.9		ug/L		84	55 - 140
Chloroform	ND		25.0	25.0		ug/L		100	65 _ 135
Chloromethane	ND		25.0	19.9		ug/L		80	45 _ 145
cis-1,3-Dichloropropene	ND		25.0	24.1		ug/L		96	70 - 130
Bromodichloromethane	ND		25.0	24.6		ug/L		98	70 _ 135
Ethylbenzene	ND		25.0	23.2		ug/L		93	65 - 130
Methylene Chloride	ND		25.0	23.2		ug/L		93	50 _ 135
Tetrachloroethene	ND		25.0	22.3		ug/L		89	65 _ 130
Toluene	ND		25.0	23.8		ug/L		95	70 _ 125
trans-1,2-Dichloroethene	ND		25.0	22.3		ug/L		89	65 _ 130
trans-1,3-Dichloropropene	ND		25.0	25.6		ug/L		102	65 - 135
Trichlorofluoromethane	ND		25.0	27.0		ug/L		108	60 _ 145
Vinyl chloride	ND		25.0	21.0		ug/L		84	45 _ 140
Trichloroethene	ND		25.0	24.1		ug/L		96	65 - 125
cis-1,2-Dichloroethene	ND		25.0	24.4		ug/L		98	65 _ 130
Xylenes, Total	ND		75.0	70.8		ug/L		94	60 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	110	80 - 120
Dibromofluoromethane (Surr)	105	80 - 120
Toluene-d8 (Surr)	104	80 - 120

Lab Sample ID: 440-8172-F-1 MSD

Matrix: Water

Analysis Batch: 19220

Client Sample ID: Ma	atrix Spike Duplicate
	Prep Type: Total/NA

Analysis Batch: 19220											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	24.0		ug/L		96	65 - 140	3	20
1,1,2,2-Tetrachloroethane	ND		25.0	22.5		ug/L		90	55 - 135	3	30
1,1,2-Trichloroethane	ND		25.0	23.2		ug/L		93	65 - 130	1	25
1,1-Dichloroethane	ND		25.0	25.1		ug/L		100	65 - 130	4	20
1,1-Dichloroethene	ND		25.0	23.0		ug/L		92	60 - 130	4	20
1,2-Dichlorobenzene	ND		25.0	24.3		ug/L		97	75 - 125	0	20
1,2-Dichloroethane	ND		25.0	25.8		ug/L		103	60 - 140	0	20
1,2-Dichloropropane	ND		25.0	23.9		ug/L		96	65 - 130	3	20
1,3-Dichlorobenzene	ND		25.0	24.9		ug/L		100	75 - 125	0	20
1,4-Dichlorobenzene	ND		25.0	24.2		ug/L		97	75 - 125	1	20
Benzene	ND		25.0	22.9		ug/L		92	65 - 125	4	20
Bromoform	ND		25.0	17.0		ug/L		68	55 - 135	4	25
Bromomethane	ND		25.0	23.7		ug/L		95	55 - 145	1	25
Carbon tetrachloride	ND		25.0	21.5		ug/L		86	65 - 140	3	25
Chlorobenzene	ND		25.0	25.2		ug/L		101	75 - 125	6	20
Dibromochloromethane	ND		25.0	23.4		ug/L		94	65 - 140	8	25
Chloroethane	ND		25.0	22.1		ug/L		88	55 - 140	6	25

TestAmerica Irvine 5/17/2012

Page 23 of 134

Project/Site: Boeing SSFL Annual Outfall 018

Lab Sample ID: 440-8172-F-1 MSD

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Matrix Spike Duplicate

TestAmerica Job ID: 440-8129-1

Prep Type: Total/NA

Matrix: Water Analysis Batch: 19220

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	ND		25.0	25.9		ug/L		104	65 - 135	4	20
Chloromethane	ND		25.0	20.6		ug/L		82	45 - 145	3	25
cis-1,3-Dichloropropene	ND		25.0	24.8		ug/L		99	70 - 130	3	20
Bromodichloromethane	ND		25.0	24.8		ug/L		99	70 - 135	1	20
Ethylbenzene	ND		25.0	24.6		ug/L		98	65 - 130	6	20
Methylene Chloride	ND		25.0	23.7		ug/L		95	50 - 135	2	20
Tetrachloroethene	ND		25.0	23.0		ug/L		92	65 - 130	3	20
Toluene	ND		25.0	24.2		ug/L		97	70 - 125	2	20
trans-1,2-Dichloroethene	ND		25.0	22.9		ug/L		92	65 - 130	3	20
trans-1,3-Dichloropropene	ND		25.0	25.6		ug/L		102	65 - 135	0	25
Trichlorofluoromethane	ND		25.0	27.1		ug/L		108	60 - 145	0	25
Vinyl chloride	ND		25.0	21.6		ug/L		86	45 - 140	3	30
Trichloroethene	ND		25.0	24.3		ug/L		97	65 - 125	1	20
cis-1,2-Dichloroethene	ND		25.0	25.2		ug/L		101	65 - 130	3	20
Xylenes, Total	ND		75.0	75.3		ug/L		100	60 - 130	6	20

MSD MSD

MB MB

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	114	80 - 120
Dibromofluoromethane (Surr)	105	80 - 120
Toluene-d8 (Surr)	106	80 - 120

Method: 8260B SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-20473/2

Matrix: Water

Analysis Batch: 20473

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

MB MB

Result Qualifier Dil Fac Analyte RL MDL Unit D Prepared Analyzed 04/18/12 15:08 1,4-Dioxane ND 20 1.0 ug/L

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane (Surr) 115 80 - 120 04/18/12 15:08

Lab Sample ID: LCS 440-20473/3

M

Matrix: Water			Prep Type: Total/NA
Analysis Batch: 20473			
	Spike	LCS LCS	%Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 10.0 9.22 1,4-Dioxane ug/L 92 70 _ 125 LCS LCS

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 112 80 - 120

Lab Sample ID: 440-8769-A-2 MS

Matrix: Water

Analysis Batch: 20473

Analysis Batom 25475	Sample	Sample	Spike	MS	MS			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	%Re	c Limits	
1,4-Dioxane	ND		10.0	9.25		ug/L	9	3 70 - 130	

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Boeing SSFL Annual Outfall 018

Method: 8260B SIM - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-8769-A-2 MS

Matrix: Water

Surrogate

Analysis Batch: 20473

Dibromofluoromethane (Surr)

Client: MWH Americas Inc

MS MS

%Recovery Qualifier Limits 80 - 120 114

Lab Sample ID: 440-8769-A-2 MSD

Matrix: Water

Analysis Batch: 20473

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier RPD Limit Unit D %Rec Limits 1,4-Dioxane ND 10.0 9.58 ug/L 96 70 - 130 3.51

MSD MSD

Surrogate %Recovery Qualifier Limits 80 - 120 Dibromofluoromethane (Surr) 117

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-20598/1-A

Matrix: Water

Analysis Batch: 21217

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 20598

Analysis Batch: 21217	MD	MD						Prep Batch	1: 20598
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.500	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	
Acenaphthylene	ND		0.500	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Aniline	ND		10.0	0.300	ug/L		04/18/12 18:02	04/22/12 15:46	1
Anthracene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Benzidine	ND		5.00	1.00	ug/L		04/18/12 18:02	04/22/12 15:46	1
Benzo[a]anthracene	ND		5.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Benzo[b]fluoranthene	ND		2.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Benzo[k]fluoranthene	ND		0.500	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Benzoic acid	ND		20.0	3.00	ug/L		04/18/12 18:02	04/22/12 15:46	1
Benzo[a]pyrene	ND		2.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Bis(2-chloroethoxy)methane	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Bis(2-chloroethyl)ether	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Bis(2-ethylhexyl) phthalate	ND		5.00	1.70	ug/L		04/18/12 18:02	04/22/12 15:46	1
4-Bromophenyl phenyl ether	ND		1.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Butyl benzyl phthalate	ND		5.00	0.700	ug/L		04/18/12 18:02	04/22/12 15:46	1
4-Chloro-3-methylphenol	ND		2.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
2-Chloronaphthalene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
2-Chlorophenol	ND		1.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
4-Chlorophenyl phenyl ether	ND		0.500	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Chrysene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Dibenz(a,h)anthracene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Di-n-butyl phthalate	ND		2.00	0.300	ug/L		04/18/12 18:02	04/22/12 15:46	1
1,2-Dichlorobenzene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
1,3-Dichlorobenzene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
1,4-Dichlorobenzene	ND		0.500	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
3,3'-Dichlorobenzidine	ND		5.00	0.500	ug/L		04/18/12 18:02	04/22/12 15:46	1
2,4-Dichlorophenol	ND		2.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Diethyl phthalate	ND		1.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
2,4-Dimethylphenol	ND		2.00	0.300	ug/L		04/18/12 18:02	04/22/12 15:46	1
Dimethyl phthalate	ND		0.500	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1

TestAmerica Irvine 5/17/2012

Page 25 of 134

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-20598/1-A

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 21217

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 20598

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,6-Dinitro-2-methylphenol	ND		5.00	0.300	ug/L		04/18/12 18:02	04/22/12 15:46	1
2,4-Dinitrophenol	ND		5.00	0.900	ug/L		04/18/12 18:02	04/22/12 15:46	1
2,4-Dinitrotoluene	ND		5.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
2,6-Dinitrotoluene	ND		5.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Di-n-octyl phthalate	ND		5.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
1,2-Diphenylhydrazine(as	ND		1.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Azobenzene)									
Fluoranthene	ND		0.500	0.100	•		04/18/12 18:02	04/22/12 15:46	1
Fluorene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Hexachlorobenzene	ND		1.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Hexachlorobutadiene	ND		2.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Hexachloroethane	ND		3.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Hexachlorocyclopentadiene	ND		5.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Indeno[1,2,3-cd]pyrene	ND		2.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Isophorone	ND		1.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
4-Methylphenol	ND		5.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
Naphthalene	ND		1.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Nitrobenzene	ND		1.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
2-Nitrophenol	ND		2.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
4-Nitrophenol	ND		5.00	2.50	ug/L		04/18/12 18:02	04/22/12 15:46	1
N-Nitrosodimethylamine	ND		2.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
N-Nitrosodiphenylamine	ND		1.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
N-Nitrosodi-n-propylamine	ND		2.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Pentachlorophenol	ND		2.00	0.400	ug/L		04/18/12 18:02	04/22/12 15:46	1
Phenanthrene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
Phenol	ND		1.00	0.300	ug/L		04/18/12 18:02	04/22/12 15:46	1
Pyrene	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
1,2,4-Trichlorobenzene	ND		1.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
2,4,6-Trichlorophenol	ND		1.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
2-Methylphenol	ND		2.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
4-Chloroaniline	ND		2.00	0.300	ug/L		04/18/12 18:02	04/22/12 15:46	1
2-Methylnaphthalene	ND		1.00	0.200	ug/L		04/18/12 18:02	04/22/12 15:46	1
2-Nitroaniline	ND		5.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
3-Nitroaniline	ND		5.00	1.00	ug/L		04/18/12 18:02	04/22/12 15:46	1
Dibenzofuran	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1
4-Nitroaniline	ND		5.00	0.500	ug/L		04/18/12 18:02	04/22/12 15:46	1
Benzo[g,h,i]perylene	ND		5.00	0.100	•		04/18/12 18:02	04/22/12 15:46	1
Benzyl alcohol	ND		5.00	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	
bis (2-chloroisopropyl) ether	ND		0.500	0.100	ug/L		04/18/12 18:02	04/22/12 15:46	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fa
2-Fluorobiphenyl	117		50 - 120	04/18/12 18:02	04/22/12 15:46	
2-Fluorophenol	88		30 - 120	04/18/12 18:02	04/22/12 15:46	
2,4,6-Tribromophenol	127	AY	40 - 120	04/18/12 18:02	04/22/12 15:46	
Nitrobenzene-d5	107		45 - 120	04/18/12 18:02	04/22/12 15:46	
Terphenyl-d14	114		50 ₋ 125	04/18/12 18:02	04/22/12 15:46	
Phenol-d6	96		35 - 120	04/18/12 18:02	04/22/12 15:46	

TestAmerica Irvine 5/17/2012

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

Lab Sample ID: LCS 440-20598/2-A

Matrix: Water

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Drop Patch: 20509

Prep Type: Total/NA
Prep Batch: 20598
%Rec.

7

Analysis Batch: 21217	<u></u>		1.00				Prep Batch: 205
	Spike		LCS		_	a. =	%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Acenaphthene	10.0	9.120		ug/L		91	60 - 120
Acenaphthylene	10.0	11.12	. =	ug/L		111	60 - 120
Aniline	10.0	8.680	J,DX	ug/L		87	35 _ 120
Anthracene	10.0	10.40		ug/L		104	65 _ 120
Benzidine	10.0	3.140	J,DX	ug/L		31	30 - 160
Benzo[a]anthracene	10.0	10.86		ug/L		109	65 - 120
Benzo[b]fluoranthene	10.0	10.32		ug/L		103	55 - 125
Benzo[k]fluoranthene	10.0	9.260		ug/L		93	50 - 125
Benzoic acid	10.0	9.140	J,DX	ug/L		91	25 - 120
Benzo[a]pyrene	10.0	10.28		ug/L		103	55 - 130
Bis(2-chloroethoxy)methane	10.0	9.580		ug/L		96	55 ₋ 120
Bis(2-chloroethyl)ether	10.0	8.840		ug/L		88	50 - 120
Bis(2-ethylhexyl) phthalate	10.0	11.60		ug/L		116	65 _ 130
4-Bromophenyl phenyl ether	10.0	8.560		ug/L		86	60 - 120
Butyl benzyl phthalate	10.0	12.02		ug/L		120	55 - 130
4-Chloro-3-methylphenol	10.0	10.98		ug/L		110	60 _ 120
2-Chloronaphthalene	10.0	9.500		ug/L		95	60 - 120
2-Chlorophenol	10.0	8.540		ug/L		85	45 _ 120
4-Chlorophenyl phenyl ether	10.0	9.020		ug/L		90	65 - 120
Chrysene	10.0	9.780		ug/L		98	65 - 120
Dibenz(a,h)anthracene	10.0	8.660		ug/L		87	50 ₋ 135
Di-n-butyl phthalate	10.0	12.28		ug/L		123	60 - 125
1,2-Dichlorobenzene	10.0	7.320		ug/L		73	40 - 120
1,3-Dichlorobenzene	10.0	7.020		ug/L		70	35 ₋ 120
1,4-Dichlorobenzene	10.0	7.060		ug/L		71	35 - 120
3,3'-Dichlorobenzidine	10.0	8.640		ug/L		86	45 - 135
2,4-Dichlorophenol	10.0	9.260		ug/L		93	55 - 120
Diethyl phthalate	10.0	10.22		ug/L		102	55 - 120
2,4-Dimethylphenol	10.0	8.620		ug/L		86	40 - 120
Dimethyl phthalate	10.0	9.520		ug/L		95	30 - 120
4,6-Dinitro-2-methylphenol	10.0	10.92		ug/L		109	45 - 120
2,4-Dinitrophenol	10.0	6.220				62	40 - 120
•				ug/L		97	
2,4-Dinitrotoluene	10.0	9.740		ug/L			65 - 120
2,6-Dinitrotoluene	10.0	9.400		ug/L		94	65 ₋ 120
Di-n-octyl phthalate	10.0	11.68		ug/L		117	65 - 135
1,2-Diphenylhydrazine(as	10.0	10.46		ug/L		105	60 - 120
Azobenzene) Fluoranthene	10.0	10.98		ug/L		110	60 - 120
Fluorene	10.0	9.460		ug/L		95	65 ₋ 120
Hexachlorobenzene	10.0	9.040		ug/L		90	60 - 120
Hexachlorobutadiene	10.0	6.640				66	40 - 120
				ug/L			
Hexachloroethane	10.0	6.920		ug/L		69 7 4	35 - 120
Hexachlorocyclopentadiene	10.0	7.100		ug/L		71	25 - 120
Indeno[1,2,3-cd]pyrene	10.0	9.340		ug/L		93	45 - 135
Isophorone	10.0	10.44		ug/L		104	50 - 120
4-Methylphenol	10.0	9.720		ug/L		97	50 - 120
Naphthalene	10.0	8.280		ug/L		83	55 - 120
Nitrobenzene	10.0	9.600		ug/L		96	55 - 120
2-Nitrophenol	10.0	9.460	-,	ug/L		95	50 - 120
4-Nitrophenol	10.0	13.44	LQ	ug/L		134	45 - 120

Client: MWH Americas Inc Project/Site: Boeing SSFL Annual Outfall 018

Lab Sample ID: LCS 440-20598/2-A

Matrix: Water

Analysis Batch: 21217

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA
Prep Batch: 20598

	Spike	LCS LC	S		%Rec.	
Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits	
N-Nitrosodimethylamine	10.0	7.360	ug/L	74	45 - 120	
N-Nitrosodiphenylamine	10.0	9.160	ug/L	92	60 - 120	
N-Nitrosodi-n-propylamine	10.0	11.24	ug/L	112	45 _ 120	
Pentachlorophenol	10.0	8.920	ug/L	89	24 - 121	
Phenanthrene	10.0	9.660	ug/L	97	65 _ 120	
Phenol	10.0	8.420	ug/L	84	40 - 120	
Pyrene	10.0	10.76	ug/L	108	55 ₋ 125	
1,2,4-Trichlorobenzene	10.0	7.280	ug/L	73	45 _ 120	
2,4,6-Trichlorophenol	10.0	9.980	ug/L	100	55 - 120	
2-Methylphenol	10.0	9.060	ug/L	91	50 - 120	
4-Chloroaniline	10.0	8.800	ug/L	88	55 _ 120	
2-Methylnaphthalene	10.0	9.440	ug/L	94	55 ₋ 120	
2-Nitroaniline	10.0	11.54	ug/L	115	65 _ 120	
3-Nitroaniline	10.0	9.140	ug/L	91	60 - 120	
Dibenzofuran	10.0	9.440	ug/L	94	65 _ 120	
4-Nitroaniline	10.0	9.380	ug/L	94	55 - 125	
Benzo[g,h,i]perylene	10.0	9.240	ug/L	92	45 _ 135	
Benzyl alcohol	10.0	9.560	ug/L	96	50 - 120	
bis (2-chloroisopropyl) ether	10.0	9.680	ug/L	97	45 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	100		50 - 120
2-Fluorophenol	74		30 - 120
2,4,6-Tribromophenol	104		40 - 120
Nitrobenzene-d5	103		45 - 120
Terphenyl-d14	108		50 - 125
Phenol-d6	84		35 - 120

Lab Sample ID: LCSD 440-20598/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 21217

Prep Type: Total/NA

Prep Batch: 20598

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	10.0	9.720		ug/L		97	60 - 120	6	20
Acenaphthylene	10.0	11.84		ug/L		118	60 - 120	6	20
Aniline	10.0	10.04		ug/L		100	35 - 120	15	30
Anthracene	10.0	10.44		ug/L		104	65 - 120	0	20
Benzidine	10.0	2.520	J,DX LR	ug/L		25	30 - 160	22	35
Benzo[a]anthracene	10.0	10.68		ug/L		107	65 - 120	2	20
Benzo[b]fluoranthene	10.0	10.24		ug/L		102	55 - 125	1	25
Benzo[k]fluoranthene	10.0	10.00		ug/L		100	50 - 125	8	20
Benzoic acid	10.0	9.780	J,DX	ug/L		98	25 - 120	7	30
Benzo[a]pyrene	10.0	10.12		ug/L		101	55 - 130	2	25
Bis(2-chloroethoxy)methane	10.0	10.40		ug/L		104	55 - 120	8	20
Bis(2-chloroethyl)ether	10.0	9.620		ug/L		96	50 - 120	8	20
Bis(2-ethylhexyl) phthalate	10.0	11.38		ug/L		114	65 - 130	2	20
4-Bromophenyl phenyl ether	10.0	8.980		ug/L		90	60 - 120	5	25
Butyl benzyl phthalate	10.0	11.60		ug/L		116	55 - 130	4	20
4-Chloro-3-methylphenol	10.0	10.94		ug/L		109	60 - 120	0	25

Client: MWH Americas Inc

Matrix: Water

Project/Site: Boeing SSFL Annual Outfall 018

Lab Sample ID: LCSD 440-20598/3-A

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Dup

RPD	Limit	

		%Rec.		RPD	
D	%Rec	Limits	RPD	Limit	
_	101	60 - 120	6	20	
	90	45 - 120	5	25	ī
	98	65 - 120	8	20	
	93	65 - 120	5	20	ı
	92	50 - 135	6	25	
	118	60 - 125	4	20	
	80	40 - 120	9	25	
	78	35 - 120	11	25	

Analysis Batch: 21217								Batch:	
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chloronaphthalene	10.0	10.08		ug/L		101	60 - 120	6	20
2-Chlorophenol	10.0	8.960		ug/L		90	45 - 120	5	25
4-Chlorophenyl phenyl ether	10.0	9.800		ug/L		98	65 - 120	8	20
Chrysene	10.0	9.300		ug/L		93	65 - 120	5	20
Dibenz(a,h)anthracene	10.0	9.160		ug/L		92	50 - 135	6	25
Di-n-butyl phthalate	10.0	11.80		ug/L		118	60 - 125	4	20
1,2-Dichlorobenzene	10.0	8.020		ug/L		80	40 - 120	9	25
1,3-Dichlorobenzene	10.0	7.820		ug/L		78	35 - 120	11	25
1,4-Dichlorobenzene	10.0	7.780		ug/L		78	35 - 120	10	25
3,3'-Dichlorobenzidine	10.0	7.960		ug/L		80	45 - 135	8	25
2,4-Dichlorophenol	10.0	9.780		ug/L		98	55 - 120	5	20
Diethyl phthalate	10.0	10.96		ug/L		110	55 - 120	7	30
2,4-Dimethylphenol	10.0	8.760		ug/L		88	40 - 120	2	25
Dimethyl phthalate	10.0	10.28		ug/L		103	30 - 120	8	30
4,6-Dinitro-2-methylphenol	10.0	10.52		ug/L		105	45 - 120	4	25
2,4-Dinitrophenol	10.0	6.600		ug/L		66	40 - 120	6	25
2,4-Dinitrotoluene	10.0	10.38		ug/L		104	65 - 120	6	20
2,6-Dinitrotoluene	10.0	10.24		ug/L		102	65 - 120	9	20
Di-n-octyl phthalate	10.0	10.96		ug/L		110	65 - 135	6	20
1,2-Diphenylhydrazine(as	10.0	11.44		ug/L		114	60 - 120	9	25
Azobenzene)									
Fluoranthene	10.0	10.86		ug/L		109	60 - 120	1	20
Fluorene	10.0	10.20		ug/L		102	65 - 120	8	20
Hexachlorobenzene	10.0	9.060		ug/L		91	60 - 120	0	20
Hexachlorobutadiene	10.0	7.840		ug/L		78	40 - 120	17	25
Hexachloroethane	10.0	7.760		ug/L		78	35 - 120	11	25
Hexachlorocyclopentadiene	10.0	8.660		ug/L		87	25 - 120	20	30
Indeno[1,2,3-cd]pyrene	10.0	9.140		ug/L		91	45 - 135	2	25
Isophorone	10.0	10.36		ug/L		104	50 - 120	1	20
4-Methylphenol	10.0	10.72		ug/L		107	50 - 120	10	20
Naphthalene	10.0	9.040		ug/L		90	55 - 120	9	20
Nitrobenzene	10.0	10.34		ug/L		103	55 - 120	7	25
2-Nitrophenol	10.0	9.740		ug/L		97	50 - 120	3	25
4-Nitrophenol	10.0	13.52	LQ	ug/L		135	45 - 120	1	30
N-Nitrosodimethylamine	10.0	10.18	BA	ug/L		102	45 - 120	32	20
N-Nitrosodiphenylamine	10.0	9.500		ug/L		95	60 - 120	4	20
N-Nitrosodi-n-propylamine	10.0	11.52		ug/L		115	45 - 120	2	20
Pentachlorophenol	10.0	8.280		ug/L		83	24 - 121	7	25
Phenanthrene	10.0	9.900		ug/L		99	65 - 120	2	20
Phenol	10.0	9.920		ug/L		99	40 - 120	16	25
Pyrene	10.0	10.98		ug/L		110	55 - 125	2	25
1,2,4-Trichlorobenzene	10.0	7.880		ug/L		79	45 - 120	8	20
2,4,6-Trichlorophenol	10.0	10.54		ug/L		105	55 - 120	5	30
2-Methylphenol	10.0	9.620		ug/L		96	50 - 120	6	20
4-Chloroaniline	10.0	10.34		ug/L		103	55 ₋ 120	16	25
2-Methylnaphthalene	10.0	9.780		ug/L		98	55 ₋ 120	4	20
2-Nitroaniline	10.0	12.48	LQ	ug/L		125	65 - 120	8	20
3-Nitroaniline	10.0	10.04		ug/L		100	60 - 120	9	25
Dibenzofuran	10.0	10.16		ug/L		102	65 - 120	7	20
	10.0			-					20

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

MD MD

Lab Sample ID: LCSD 440-20598/3-A Matrix: Water Analysis Batch: 21217				Clie	ent Sam	iple ID: I	•	I Sampl ype: To Batch:	tal/NA
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[g,h,i]perylene	10.0	9.020		ug/L		90	45 - 135	2	25
Benzyl alcohol	10.0	11.42		ug/L		114	50 - 120	18	20
bis (2-chloroisopropyl) ether	10.0	10.38		ug/L		104	45 - 120	7	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	108		50 - 120
2-Fluorophenol	84		30 - 120
2,4,6-Tribromophenol	104		40 - 120
Nitrobenzene-d5	110		45 - 120
Terphenyl-d14	111		50 - 125
Phenol-d6	98		35 - 120

Method: 8015B - Gasoline Range Organics - (GC)

Lab Sample ID: MB 440-20433/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 20433

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C4-C12)	ND		0.050	0.025	mg/L			04/18/12 10:25	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		65 - 140					04/18/12 10:25	1

Lab Sample ID: LCS 440-20433/2

Matrix: Water

Analysis Batch: 20433

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)	0.800	0.747		mg/L	_	93	80 - 120	

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 127 65 - 140

Lab Sample ID: 440-8149-B-5 MS

Matrix: Water									Prep 1	ype: Total/NA
Analysis Batch: 20433										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)	0.046	J,DX	0.800	0.738		mg/L		87	65 - 140	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	117		65 - 140							

TestAmerica Irvine 5/17/2012

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 8015B - Gasoline Range Organics - (GC) (Continued)

Lab Sample ID: 440-8149-B-5 MSD	Client Sample ID: Matrix Spike Duplicate
Matrix: Water	Prep Type: Total/NA

Med Med

Analysis Batch: 20433

	Sample	Sample	Spike	MISD	MISD				70Rec.		KFD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GRO (C4-C12)	0.046	J,DX	0.800	0.735		mg/L		86	65 - 140	0.000	20
	MCD	MCD									

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	123		65 - 140

Method: 608 PCB LL - Polychlorinated Biphenyls (PCBs) Low level

Lab Sample ID: MB 440-19875/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 20064 Prep Batch: 19875

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		0.50	0.25	ug/L		04/15/12 14:34	04/16/12 21:52	1
Aroclor 1221	ND		0.50	0.25	ug/L		04/15/12 14:34	04/16/12 21:52	1
Aroclor 1232	ND		0.50	0.25	ug/L		04/15/12 14:34	04/16/12 21:52	1
Aroclor 1242	ND		0.50	0.25	ug/L		04/15/12 14:34	04/16/12 21:52	1
Aroclor 1248	ND		0.50	0.25	ug/L		04/15/12 14:34	04/16/12 21:52	1
Aroclor 1254	ND		0.50	0.25	ug/L		04/15/12 14:34	04/16/12 21:52	1
Aroclor 1260	ND		0.50	0.25	ug/L		04/15/12 14:34	04/16/12 21:52	1

MB MB Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed DCB Decachlorobiphenyl (Surr) 48 45 - 120 04/15/12 14:34 04/16/12 21:52

Lab Sample ID: LCS 440-19875/4-A **Client Sample ID: Lab Control Sample**

Matrix: Water Analysis Batch: 20064

Prep Batch: 19875 LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Aroclor 1016 4.00 3.75 ug/L 94 50 - 115 Aroclor 1260 4.00 3.70 ug/L 93 60 - 120

45 - 120

LCS LCS Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr)

94

Ma

Analysis Batch: 20064

ab Sample ID: LCSD 440-19875/5-A	Client Sample ID: Lab Control Sample Dup
atrix: Water	Prep Type: Total/NA

Prep Batch: 19875

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclor 1016	4.00	3.25		ug/L		81	50 - 115	14	30
Aroclor 1260	4.00	3.60		ug/L		90	60 - 120	3	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	94		45 - 120

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

Method: 608 Pesticides - Organochlorine Pesticides Low level

Lab Sample ID: MB 440-19875/1-A

Matrix: Water

Analysis Batch: 19946

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 19875

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0050	0.0015	ug/L		04/15/12 14:34	04/16/12 12:21	1
alpha-BHC	ND		0.0050	0.0025	ug/L		04/15/12 14:34	04/16/12 12:21	1
beta-BHC	ND		0.010	0.0040	ug/L		04/15/12 14:34	04/16/12 12:21	1
Chlordane (technical)	ND		0.10	0.0080	ug/L		04/15/12 14:34	04/16/12 12:21	1
delta-BHC	ND		0.0050	0.0035	ug/L		04/15/12 14:34	04/16/12 12:21	•
Dieldrin	ND		0.0050	0.0020	ug/L		04/15/12 14:34	04/16/12 12:21	•
Endosulfan I	ND		0.0050	0.0030	ug/L		04/15/12 14:34	04/16/12 12:21	1
Endosulfan II	ND		0.0050	0.0020	ug/L		04/15/12 14:34	04/16/12 12:21	•
Endosulfan sulfate	ND		0.010	0.0030	ug/L		04/15/12 14:34	04/16/12 12:21	•
Endrin	ND		0.0050	0.0020	ug/L		04/15/12 14:34	04/16/12 12:21	
Endrin aldehyde	ND		0.010	0.0020	ug/L		04/15/12 14:34	04/16/12 12:21	•
gamma-BHC (Lindane)	ND		0.010	0.0030	ug/L		04/15/12 14:34	04/16/12 12:21	
Heptachlor	ND		0.010	0.0030	ug/L		04/15/12 14:34	04/16/12 12:21	1
Heptachlor epoxide	ND		0.0050	0.0025	ug/L		04/15/12 14:34	04/16/12 12:21	•
Toxaphene	ND		0.50	0.25	ug/L		04/15/12 14:34	04/16/12 12:21	•
4,4'-DDD	ND		0.0050	0.0040	ug/L		04/15/12 14:34	04/16/12 12:21	•
4,4'-DDE	ND		0.0050	0.0030	ug/L		04/15/12 14:34	04/16/12 12:21	•
4,4'-DDT	ND		0.010	0.0040	ug/L		04/15/12 14:34	04/16/12 12:21	

MB MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Tetrachloro-m-xylene
 82
 35 - 115
 04/15/12 14:34
 04/16/12 12:21
 1

Lab Sample ID: LCS 440-19875/2-A

Matrix: Water

Analysis Batch: 19946

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 19875

/ indigoto Batom 100 to								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aldrin	0.500	0.467		ug/L		93	40 - 115	
alpha-BHC	0.500	0.489		ug/L		98	45 - 115	
beta-BHC	0.500	0.480		ug/L		96	55 ₋ 115	
delta-BHC	0.500	0.497		ug/L		99	55 - 115	
Dieldrin	0.500	0.497		ug/L		99	55 ₋ 115	
Endosulfan I	0.500	0.482		ug/L		96	55 - 115	
Endosulfan II	0.500	0.463		ug/L		93	55 - 120	
Endosulfan sulfate	0.500	0.469		ug/L		94	60 - 120	
Endrin	0.500	0.504		ug/L		101	55 - 115	
Endrin aldehyde	0.500	0.514		ug/L		103	50 - 120	
gamma-BHC (Lindane)	0.500	0.488		ug/L		98	45 - 115	
Heptachlor	0.500	0.481		ug/L		96	45 - 115	
Heptachlor epoxide	0.500	0.486		ug/L		97	55 ₋ 115	
4,4'-DDD	0.500	0.538		ug/L		108	55 - 120	
4,4'-DDE	0.500	0.508		ug/L		102	50 - 120	
4,4'-DDT	0.500	0.549		ug/L		110	55 - 120	

LCS LCS

 Surrogate
 %Recovery
 Qualifier
 Limits

 Tetrachloro-m-xylene
 80
 35 - 115

TestAmerica Irvine 5/17/2012

3

4

6

R

9

11

12

Ш

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 608 Pesticides - Organochlorine Pesticides Low level (Continued)

Lab Sample ID: LCSD 440-19875/3-A **Matrix: Water**

Analysis Ratch: 19946

Client: MWH Americas Inc

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Pren Batch: 19875

Analysis Batch: 19946							Prep	Batch:	198/5	
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Aldrin	0.500	0.439		ug/L		88	40 - 115	6.10	30	
alpha-BHC	0.500	0.460		ug/L		92	45 - 115	6.11	30	
beta-BHC	0.500	0.461		ug/L		92	55 - 115	4.04	30	
delta-BHC	0.500	0.471		ug/L		94	55 - 115	5.41	30	
Dieldrin	0.500	0.470		ug/L		94	55 - 115	5.63	30	
Endosulfan I	0.500	0.456		ug/L		91	55 - 115	5.54	30	П
Endosulfan II	0.500	0.438		ug/L		88	55 - 120	5.68	30	
Endosulfan sulfate	0.500	0.449		ug/L		90	60 - 120	4.31	30	
Endrin	0.500	0.479		ug/L		96	55 - 115	5.05	30	
Endrin aldehyde	0.500	0.502		ug/L		100	50 - 120	2.28	30	
gamma-BHC (Lindane)	0.500	0.461		ug/L		92	45 - 115	5.77	30	
Heptachlor	0.500	0.454		ug/L		91	45 - 115	5.65	30	
Heptachlor epoxide	0.500	0.461		ug/L		92	55 - 115	5.41	30	
4,4'-DDD	0.500	0.508		ug/L		102	55 - 120	5.62	30	
4,4'-DDE	0.500	0.481		ug/L		96	50 - 120	5.46	30	

0.520

ug/L

0.500

LCSD LCSD

MB MB

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 76 35 - 115

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 440-19972/1-A

Matrix: Water

4,4'-DDT

Analysis Batch: 19895

Client	Sampl	le ID:	Meth	od	Blank
	_	_	_	_	

55 - 120

104

Prep Type: Total/NA

5.28

Prep Batch: 19972

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C13-C28	ND		0.50	0.10	mg/L		04/16/12 11:19	04/16/12 23:52	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

45 _ 120

LCS LCS

Lab Sample ID: LCS 440-19972/2-A

Matrix: Water

n-Octacosane

Analysis Batch: 19895

Client Sample ID: Lab Control Sample

04/16/12 11:19 04/16/12 23:52

Prep Type: Total/NA Prep Batch: 19972

%Rec. Limits

Analyte Added Result Qualifier Unit %Rec C10-C28 1.00 0.745 mg/L 75 40 - 115

Spike

LCS LCS

Surrogate %Recovery Qualifier Limits n-Octacosane 77 45 - 120

Lab Sample ID: LCSD 440-19972/3-A

Matrix: Water

Analysis Batch: 19895

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 19972

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit Limit C10-C28 1.00 0.772 mg/L 40 - 115 3.44

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 440-19972/3-A

Matrix: Water

Analysis Batch: 19895

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 19972

LCSD LCSD

%Recovery Qualifier Surrogate 81

Limits 45 - 120

n-Octacosane

Method: 218.6 - Chromium, Hexavalent (Ion Chromatography)

Lab Sample ID: MB 440-19011/3

Matrix: Water

Analysis Batch: 19011

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chromium, hexavalent 1.0 0.25 04/11/12 13:08 ND ug/L

Lab Sample ID: LCS 440-19011/2

Matrix: Water

Analysis Batch: 19011

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Analyte Limits 50.0 49.8 100 90 - 110 Chromium, hexavalent ug/L

Lab Sample ID: 440-8238-I-2 MS

Matrix: Water

Analysis Batch: 19011

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chromium, hexavalent 2.8 50.0 54.8 ug/L 104 90 - 110

Lab Sample ID: 440-8238-I-2 MSD

Matrix: Water

Analysis Batch: 19011

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 50.0 103 Chromium, hexavalent 2.8 54.1 ug/L 90 - 110 1.29 10

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 440-18918/2

Matrix: Water

Analysis Batch: 18918

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N ND 0.11 04/11/12 09:40 0.080 mg/L Nitrate Nitrite as N ND 04/11/12 09:40 0.26 0.19 mg/L Nitrite as N ND 0.15 0.11 mg/L 04/11/12 09:40

Lab Sample ID: LCS 440-18918/3

Matrix: Water

Analysis Batch: 18918

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	1.13	1.13		mg/L		100	90 - 110	
Nitrate Nitrite as N	2.65	2.64		mg/L		100	90 - 110	

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 440-18918/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 18918

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrite as N	1.52	1.51		mg/L		99	90 - 110	

Lab Sample ID: 440-6335-C-1 MS

Matrix: Water

Analysis Batch: 18918

Analysis Batom 10010									
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nitrate as N	0.087	J,DX	1.13	1.13		mg/L		92	80 - 120
Nitrate Nitrite as N	ND		2.65	2.89		mg/L		109	80 - 120
Nitrite as N	ND		1.52	1.76		mg/L		116	80 - 120

Lab Sample ID: 440-6335-C-1 MSD

Matrix: Water

Analysis Batch: 18918

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	0.087	J,DX	1.13	1.09		mg/L		89	80 - 120	4	20
Nitrate Nitrite as N	ND		2.65	2.79		mg/L		105	80 - 120	4	20
Nitrite as N	ND		1.52	1.70		mg/L		112	80 - 120	3	20
Nitrite as N	ND		1.52	1.70		mg/L		112	80 - 120	3	

Lab Sample ID: MB 440-18919/2

Matrix: Water

Analysis Batch: 18919

MB	MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	0.40	mg/L			04/11/12 09:40	1
Sulfate	ND		0.50	0.40	mg/L			04/11/12 09:40	1

Lab Sample ID: LCS 440-18919/3

Matrix: Water

Analysis Batch: 18919

	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	5.00	4.81		mg/L		96	90 - 110		_
Sulfate	10.0	10.1		mg/L		101	90 - 110		

Method: 314.0 - Perchlorate (IC)

Lab Sample ID: MB 440-20654/5 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 20654

- 1	7										
			MB								
	Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
	Perchlorate	ND		4.0	0.95	ua/l				04/19/12 07:57	

Lab Sample ID: LCS 440-20654/4

Matrix: Water

Analysis Batch: 20654

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perchlorate	25.0	25.5		ug/L		102	85 - 115	

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 314.0 - Perchlorate (IC) (Continued)

Lab Sample ID: 440-8128-C-1 MS

Matrix: Water

Analysis Batch: 20654

Client Sample ID: Matrix Spike Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte %Rec Unit Perchlorate ND 25.0 108 80 - 120 27.1 ug/L

Lab Sample ID: 440-8128-C-1 MSD

Matrix: Water

Analysis Batch: 20654

raidiyele Batom 2000 i	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perchlorate	ND		25.0	26.2		ug/L		105	80 - 120	3.38	20

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B)

Lab Sample ID: G2D170000092B

Matrix: Water

Analysis Batch: 2108092

Client Sample ID: Method Blank **Prep Type: Total** Prep Batch: 2108092_P

Client Sample ID: Matrix Spike Duplicate

Allalysis Balcii. 2100092	МВ	МВ						Prep Batch. 210	_
Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000070	ug/L		04/17/12 09:00	04/19/12 14:25	1
Total TCDD	ND		0.000010	0.0000070	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,7,8-PeCDD	ND		0.000050	0.0000052	ug/L		04/17/12 09:00	04/19/12 14:25	1
Total PeCDD	ND		0.000050	0.0000052	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,4,7,8-HxCDD	ND		0.000050	0.0000060	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,6,7,8-HxCDD	ND		0.000050	0.0000055	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,7,8,9-HxCDD	ND		0.000050	0.0000051	ug/L		04/17/12 09:00	04/19/12 14:25	1
Total HxCDD	ND		0.000050	0.0000051	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,4,6,7,8-HpCDD	ND		0.000050	0.0000021	ug/L		04/17/12 09:00	04/19/12 14:25	1
Total HpCDD	0.0000015	JQ	0.000050	0.0000021	ug/L		04/17/12 09:00	04/19/12 14:25	1
OCDD	ND		0.00010	0.000016	ug/L		04/17/12 09:00	04/19/12 14:25	1
2,3,7,8-TCDF	ND		0.000010	0.0000028	ug/L		04/17/12 09:00	04/19/12 14:25	1
Total TCDF	ND		0.000010	0.0000028	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,7,8-PeCDF	ND		0.000050	0.000010	ug/L		04/17/12 09:00	04/19/12 14:25	1
2,3,4,7,8-PeCDF	ND		0.000050	0.0000097	ug/L		04/17/12 09:00	04/19/12 14:25	1
Total PeCDF	ND		0.000050	0.0000097	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,4,7,8-HxCDF	ND		0.000050	0.0000070	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,6,7,8-HxCDF	ND		0.000050	0.0000068	ug/L		04/17/12 09:00	04/19/12 14:25	1
2,3,4,6,7,8-HxCDF	ND		0.000050	0.0000069	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,7,8,9-HxCDF	ND		0.000050	0.0000096	ug/L		04/17/12 09:00	04/19/12 14:25	1
Total HxCDF	ND		0.000050	0.0000068	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,4,6,7,8-HpCDF	0.0000047	JQ	0.000050	0.0000049	ug/L		04/17/12 09:00	04/19/12 14:25	1
1,2,3,4,7,8,9-HpCDF	ND		0.000050	0.0000065	ug/L		04/17/12 09:00	04/19/12 14:25	1
Total HpCDF	0.0000097	JQ	0.000050	0.0000056	ug/L		04/17/12 09:00	04/19/12 14:25	1
OCDF	0.0000058	JQ	0.00010	0.0000081	ug/L		04/17/12 09:00	04/19/12 14:25	1
	МВ	MD							

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	91		35 - 197	04/17/12 09:00	04/19/12 14:25	1

	MB MB				
Internal Standard	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	39	25 - 164	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,7,8-PeCDD	37	25 - 181	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,4,7,8-HxCDD	38	32 - 141	04/17/12 09:00	04/19/12 14:25	1

Project/Site: Boeing SSFL Annual Outfall 018

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2D170000092B

Matrix: Water

Analysis Batch: 2108092

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 2108092_P

MΒ	MB	
ery	Qualifier	Limi

Internal Standard	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,6,7,8-HxCDD	51	28 - 130	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,4,6,7,8-HpCDD	50	23 - 140	04/17/12 09:00	04/19/12 14:25	1
13C-OCDD	46	17 - 157	04/17/12 09:00	04/19/12 14:25	1
13C-2,3,7,8-TCDF	43	24 - 169	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,7,8-PeCDF	37	24 - 185	04/17/12 09:00	04/19/12 14:25	1
13C-2,3,4,7,8-PeCDF	43	21 - 178	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,6,7,8-HxCDF	58	26 - 123	04/17/12 09:00	04/19/12 14:25	1
13C-2,3,4,6,7,8-HxCDF	55	28 - 136	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,7,8,9-HxCDF	48	29 - 147	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,4,6,7,8-HpCDF	54	28 - 143	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,4,7,8,9-HpCDF	56	26 - 138	04/17/12 09:00	04/19/12 14:25	1
13C-1,2,3,4,7,8-HxCDF	49	26 - 152	04/17/12 09:00	04/19/12 14:25	1

Lab Sample ID: G2D170000092C

Matrix: Water

Analysis Batch: 2108092

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 2108092_P

Spike LCS LCS

	Эріке	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	0.000200	0.000212		ug/L		106	67 _ 158	
1,2,3,7,8-PeCDD	0.00100	0.00111		ug/L		111	70 - 142	
1,2,3,4,7,8-HxCDD	0.00100	0.00107		ug/L		107	70 - 164	
1,2,3,6,7,8-HxCDD	0.00100	0.00106		ug/L		106	76 ₋ 134	
1,2,3,7,8,9-HxCDD	0.00100	0.00119		ug/L		119	64 - 162	
1,2,3,4,6,7,8-HpCDD	0.00100	0.00120		ug/L		120	70 - 140	
OCDD	0.00200	0.00215		ug/L		107	78 - 144	
2,3,7,8-TCDF	0.000200	0.000221		ug/L		111	75 ₋ 158	
1,2,3,7,8-PeCDF	0.00100	0.00102		ug/L		102	80 _ 134	
2,3,4,7,8-PeCDF	0.00100	0.000966		ug/L		97	68 ₋ 160	
1,2,3,4,7,8-HxCDF	0.00100	0.000922		ug/L		92	72 _ 134	
1,2,3,6,7,8-HxCDF	0.00100	0.00100		ug/L		100	84 - 130	
2,3,4,6,7,8-HxCDF	0.00100	0.000907		ug/L		91	70 ₋ 156	
1,2,3,7,8,9-HxCDF	0.00100	0.000964		ug/L		96	78 ₋ 130	
1,2,3,4,6,7,8-HpCDF	0.00100	0.00104	В	ug/L		104	82 _ 122	
1,2,3,4,7,8,9-HpCDF	0.00100	0.000987		ug/L		99	78 ₋ 138	
OCDF	0.00200	0.00235	В	ug/L		117	63 - 170	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
37CI4-2,3,7,8-TCDD	84	31 - 191

LCS	LCS
-----	-----

Internal Standard	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	40	-	20 - 175
13C-1,2,3,7,8-PeCDD	35		21 - 227
13C-1,2,3,4,7,8-HxCDD	39		21 - 193
13C-1,2,3,6,7,8-HxCDD	54		25 - 163
13C-1,2,3,4,6,7,8-HpCDD	48		26 - 166
13C-OCDD	45		13 - 199
13C-2,3,7,8-TCDF	43		22 - 152
13C-1,2,3,7,8-PeCDF	38		21 - 192

Project/Site: Boeing SSFL Annual Outfall 018

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2D170000092C **Matrix: Water**

Analysis Batch: 2108092

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 2108092 P

LCS LCS

Internal Standard	%Recovery	Qualifier	Limits
13C-2,3,4,7,8-PeCDF	42		13 - 328
13C-1,2,3,6,7,8-HxCDF	61		21 - 159
13C-2,3,4,6,7,8-HxCDF	61		22 - 176
13C-1,2,3,7,8,9-HxCDF	53		17 - 205
13C-1,2,3,4,6,7,8-HpCDF	57		21 - 158
13C-1,2,3,4,7,8,9-HpCDF	58		20 - 186
13C-1,2,3,4,7,8-HxCDF	53		19 - 202

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 440-20594/1-A

Matrix: Water

Analysis Batch: 20926

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 20594

		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	ND		10	7.0	ug/L		04/18/12 17:48	04/20/12 02:30	1
1	Boron	0.0487	J,DX	0.050	0.020	mg/L		04/18/12 17:48	04/20/12 02:30	1
ı	Beryllium	ND		2.0	0.90	ug/L		04/18/12 17:48	04/20/12 02:30	1
ı	Chromium	ND		5.0	2.0	ug/L		04/18/12 17:48	04/20/12 02:30	1
١	Magnesium	ND		0.020	0.012	mg/L		04/18/12 17:48	04/20/12 02:30	1
İ	Nickel	ND		10	2.0	ug/L		04/18/12 17:48	04/20/12 02:30	1
1	Vanadium	ND		10	3.0	ug/L		04/18/12 17:48	04/20/12 02:30	1
ı	Zinc	ND		20	6.0	ug/L		04/18/12 17:48	04/20/12 02:30	1
1	Silver	ND		10	6.0	ug/L		04/18/12 17:48	04/20/12 02:30	1
1	Barium	ND		10	6.0	ug/L		04/18/12 17:48	04/20/12 02:30	1
ı	Manganese	ND		20	7.0	ug/L		04/18/12 17:48	04/20/12 02:30	1

Lab Sample ID: MB 440-20594/1-A

Matrix: Water

Analysis Batch: 21033

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 20594

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	0.0501	J,DX	0.10	0.050	mg/L		04/18/12 17:48	04/20/12 12:22	1
Iron	ND		0.040	0.015	mg/L		04/18/12 17:48	04/20/12 12:22	1

MB MB

Lab Sample ID: LCS 440-20594/2-A

Matrix: Water

Analysis Batch: 20926

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 20594

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	500	514		ug/L		103	85 _ 115	
Boron	0.500	0.564		mg/L		113	85 _ 115	
Beryllium	500	507		ug/L		101	85 - 115	
Chromium	500	529		ug/L		106	85 - 115	
Magnesium	2.50	2.62		mg/L		105	85 _ 115	
Nickel	500	515		ug/L		103	85 - 115	
Vanadium	500	512		ug/L		102	85 ₋ 115	
Zinc	500	500		ug/L		100	85 - 115	
Silver	250	232		ug/L		93	85 - 115	
Barium	500	520		ug/L		104	85 - 115	

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 440-20594/2-A

Lab Sample ID: LCS 440-20594/2-A

Matrix: Water

Analyte

Manganese

Matrix: Water

Analysis Batch: 20926

Analysis Batch: 21033

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable

Prep Batch: 20594

 Spike
 LCS
 LCS
 %Rec.

 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 500
 571
 ug/L
 114
 85 - 115

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 20594

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Calcium 2.50 2.47 mg/L 99 85 - 115 0.500 0.487 97 85 - 115 Iron mg/L

Lab Sample ID: 440-8290-F-3-C MS

Matrix: Water

Analysis Batch: 20926

Client Sample ID: Matrix Spike Prep Type: Total Recoverable

Prep Batch: 20594

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		500	493		ug/L		99	70 - 130	
Boron	ND		0.500	0.516		mg/L		103	70 - 130	
Beryllium	ND		500	488		ug/L		98	70 - 130	
Chromium	ND		500	508		ug/L		102	70 _ 130	
Magnesium	0.38		2.50	2.93		mg/L		102	70 - 130	
Nickel	2.3	J,DX	500	497		ug/L		99	70 _ 130	
Vanadium	ND		500	497		ug/L		99	70 - 130	
Zinc	13	J,DX	500	494		ug/L		96	70 - 130	
Silver	ND		250	241		ug/L		96	70 _ 130	
Barium	7.8	J,DX	500	498		ug/L		98	70 - 130	
Manganese	8.3	J,DX	500	551		ug/L		109	70 - 130	

Lab Sample ID: 440-8290-F-3-C MS

Matrix: Water

Analysis Batch: 21033

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 20594

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	2.7	MB	2.50	5.10		mg/L		97	70 - 130	
Iron	0.20		0.500	0.708		mg/L		102	70 - 130	

Lab Sample ID: 440-8290-F-3-D MSD

Matrix: Water

Analysis Batch: 20926

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total Recoverable

Prep Batch: 20594

Alialysis Datcii. 20320									rieh	Datell.	20334
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		500	511		ug/L		102	70 - 130	3.64	20
Boron	ND		0.500	0.528		mg/L		106	70 - 130	2.37	20
Beryllium	ND		500	499		ug/L		100	70 - 130	2.12	20
Chromium	ND		500	517		ug/L		103	70 - 130	1.89	20
Magnesium	0.38		2.50	2.99		mg/L		104	70 - 130	2.20	20
Nickel	2.3	J,DX	500	500		ug/L		100	70 - 130	1.00	20
Vanadium	ND		500	504		ug/L		101	70 - 130	1.32	20
Zinc	13	J,DX	500	503		ug/L		98	70 - 130	1.69	20
Silver	ND		250	249		ug/L		100	70 - 130	3.35	20
Barium	7.8	J,DX	500	512		ug/L		101	70 - 130	2.79	20
Manganese	8.3	J,DX	500	562		ug/L		111	70 - 130	1.96	20

TestAmerica Irvine 5/17/2012

3

4

6

7

9

11

13

Spike

Added

2.50

0.500

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Sample Sample

2.7 MB

0.20

Result Qualifier

Lab Sample ID: 440-8290-F-3-D MSD

Matrix: Water

Analyte

Calcium

Iron

Analysis Batch: 21033

Client Sample ID: Matrix Spike Duplicate **Prep Type: Total Recoverable**

70 - 130

Prep Batch: 20594 Limit D %Rec Limits RPD 103 70 - 130 2.82 20

Lab Sample ID: MB 440-19452/1-D Client Sample ID: Method Blank

MSD MSD

5.25

0.751

Result Qualifier

Unit

mg/L

mg/L

Matrix: Water

Analysis Batch: 21093

Prep Type: Dissolved

110

Prep Batch: 20964

5.91

20

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Arsenic ND 10 7.0 ug/L 04/20/12 09:32 04/20/12 17:21 Boron 0.0382 J,DX 0.050 0.020 mg/L 04/20/12 09:32 04/20/12 17:21 04/20/12 09:32 Beryllium ND 20 0.90 ug/L 04/20/12 17:21 Calcium 0.766 0.10 0.050 mg/L 04/20/12 09:32 04/20/12 17:21 Chromium ND 2.0 ug/L 04/20/12 09:32 04/20/12 17:21 5.0 Iron ND 0.040 0.015 mg/L 04/20/12 09:32 04/20/12 17:21 Magnesium ND 0.020 0.012 mg/L 04/20/12 09:32 04/20/12 17:21 04/20/12 17:21 Nickel ND 10 2.0 ug/L 04/20/12 09:32 04/20/12 09:32 Vanadium ND 10 3.0 ug/L 04/20/12 17:21 Zinc ND 20 6.0 ug/L 04/20/12 09:32 04/20/12 17:21 ND 10 Silver 6.0 ug/L 04/20/12 09:32 04/20/12 17:21 10 Barium ND 6.0 ug/L 04/20/12 09:32 04/20/12 17:21 Manganese ND 20 7.0 ug/L 04/20/12 09:32 04/20/12 17:21

Lab Sample ID: LCS 440-19452/2-D

Matrix: Water

Analysis Batch: 21093

Client Sample ID: Lab Control Sample Prep Type: Dissolved

Prep Batch: 20964

/ indigoto Batom E 1000							op Bato.	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	500	486		ug/L		97	85 _ 115	
Boron	0.500	0.532		mg/L		106	85 _ 115	
Beryllium	500	479		ug/L		96	85 _ 115	
Calcium	2.50	2.47		mg/L		99	85 - 115	
Chromium	500	517		ug/L		103	85 _ 115	
Iron	0.500	0.491		mg/L		98	85 _ 115	
Magnesium	2.50	2.46		mg/L		99	85 _ 115	
Nickel	500	481		ug/L		96	85 _ 115	
Vanadium	500	502		ug/L		100	85 - 115	
Zinc	500	484		ug/L		97	85 _ 115	
Silver	250	248		ug/L		99	85 _ 115	
Barium	500	492		ug/L		98	85 _ 115	
Manganese	500	496		ug/L		99	85 ₋ 115	

Lab Sample ID: 440-8290-G-1-F MS

Matrix: Water

Analysis Batch: 21093

Client Sample ID: Matrix Spike **Prep Type: Dissolved**

Prep Batch: 20964

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		500	496		ug/L		99	70 - 130	
Boron	0.078	MB	0.500	0.592		mg/L		103	70 - 130	
Beryllium	ND		500	492		ug/L		98	70 - 130	
Calcium	35	MB	2.50	37.2	BB	mg/L		91	70 - 130	

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: 440-8290-G-1-F MS

Matrix: Water

Analysis Batch: 21093

Client Sample ID: Matrix Spike **Prep Type: Dissolved**

Prep Batch: 20964

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium	ND		500	521		ug/L		104	70 - 130	
Iron	0.040		0.500	0.508		mg/L		94	70 - 130	
Magnesium	5.3		2.50	7.80		mg/L		99	70 - 130	
Nickel	2.8	J,DX	500	478		ug/L		95	70 - 130	
Vanadium	ND		500	514		ug/L		103	70 - 130	
Zinc	ND		500	495		ug/L		99	70 - 130	
Silver	ND		250	247		ug/L		99	70 - 130	
Barium	29		500	518		ug/L		98	70 - 130	
Manganese	ND		500	502		ug/L		100	70 - 130	

Lab Sample ID: 440-8290-G-1-G MSD

Matrix: Water

Client Sample ID: Matrix Spike Duplicate Prep Type: Dissolved

Analysis Batch: 21093									Prep	Batch:	20964
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		500	516		ug/L		103	70 - 130	3.94	20
Boron	0.078	MB	0.500	0.602		mg/L		105	70 - 130	1.68	20
Beryllium	ND		500	502		ug/L		100	70 - 130	1.96	20
Calcium	35	MB	2.50	38.4	BB	mg/L		141	70 - 130	3.29	20
Chromium	ND		500	535		ug/L		107	70 - 130	2.66	20
Iron	0.040		0.500	0.529		mg/L		98	70 - 130	3.90	20
Magnesium	5.3		2.50	7.90		mg/L		103	70 - 130	1.28	20
Nickel	2.8	J,DX	500	488		ug/L		97	70 - 130	2.18	20
Vanadium	ND		500	523		ug/L		105	70 - 130	1.68	20
Zinc	ND		500	504		ug/L		101	70 - 130	1.84	20
Silver	ND		250	250		ug/L		100	70 - 130	1.22	20
Barium	29		500	528		ug/L		100	70 - 130	1.98	20
Manganese	ND		500	512		ug/L		102	70 - 130	2.03	20

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 440-20735/1-A

Matrix: Water

Analysis Batch: 21222

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 20735

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		04/19/12 10:41	04/21/12 20:36	1
Copper	ND		2.0	0.50	ug/L		04/19/12 10:41	04/21/12 20:36	1
Antimony	ND		2.0	0.30	ug/L		04/19/12 10:41	04/21/12 20:36	1
Selenium	ND		2.0	0.50	ug/L		04/19/12 10:41	04/21/12 20:36	1
Cobalt	ND		1.0	0.10	ug/L		04/19/12 10:41	04/21/12 20:36	1

Lab Sample ID: MB 440-20735/1-A

Matrix: Water

Analysis Batch: 21383

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 20735

	МВ	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		1.0	0.20	ug/L		04/19/12 10:41	04/23/12 14:46	1
Thallium	ND		1.0	0.20	ug/L		04/19/12 10:41	04/23/12 14:46	1

TestAmerica Irvine 5/17/2012

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 440-20735/2-A

Matrix: Water

Analysis Batch: 21222

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 20735

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	80.0	84.4		ug/L		105	85 - 115	
Copper	80.0	85.3		ug/L		107	85 - 115	
Antimony	80.0	84.6		ug/L		106	85 - 115	
Selenium	80.0	80.1		ug/L		100	85 - 115	
Cobalt	80.0	81.2		ug/L		102	85 - 115	

Lab Sample ID: LCS 440-20735/2-A

Matrix: Water

Analyte Lead

Thallium

Analysis Batch: 21383

						Prep Batch: 207	735
Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
80.0	83.9	-	ug/L		105	85 - 115	

ug/L

Lab Sample ID: 440-8282-1 MS

Matrix: Water

Analysis Batch: 21222

Client Sample ID: Outfall 018 Composite

85 - 115

105

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Prep Batch: 20735

,										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND		80.0	82.6		ug/L		103	70 - 130	
Copper	0.85	J,DX	80.0	80.7		ug/L		100	70 - 130	
Antimony	ND		80.0	87.9		ug/L		110	70 - 130	
Selenium	ND		80.0	77.9		ug/L		97	70 - 130	
Cobalt	0.10	J,DX	80.0	80.2		ug/L		100	70 - 130	

80.0

84.4

Lab Sample ID: 440-8282-1 MS

Matrix: Water

Analysis Batch: 21383

Client	Sample	ID:	Outfall	018	Composite
--------	--------	-----	---------	-----	-----------

Prep Type: Total Recoverable

Prep Batch: 20735

ı		Sample	Sample	Spike	MS	MS				%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Lead	ND		80.0	78.3		ug/L		98	70 - 130	
	Thallium	ND		80.0	83.2		ug/L		104	70 - 130	

Lab Sample ID: 440-8282-1 MSD

Matrix: Water

Analysis Batch: 21222

Client Sample ID: Outfall 018 Composite								
Prep Type: Total Recoverable								

Prep Batch: 20735

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		80.0	83.6		ug/L		104	70 - 130	1.21	20
Copper	0.85	J,DX	80.0	80.8		ug/L		100	70 - 130	0.000	20
Antimony	ND		80.0	87.9		ug/L		110	70 - 130	0.000	20
Selenium	ND		80.0	77.4		ug/L		97	70 - 130	1.00	20
Cobalt	0.10	J,DX	80.0	80.0		ug/L		100	70 - 130	0.000	20

Lab Sample ID: 440-8282-1 MSD

Matrix: Water

Analysis Batch: 21383

Client Sample ID: Outfall 018 Composite							
Prep Type: Total Recoverable							

Prep Batch: 20735

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	%F	Rec	Limits	RPD	Limit
Lead	ND		80.0	77.1		ug/L		96	70 - 130	2	20
Thallium	ND		80.0	82.6		ug/L	1	103	70 - 130	1	20

TestAmerica Irvine 5/17/2012

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 440-20965/1-A

Matrix: Water

Analysis Batch: 22049

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 20965

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		04/20/12 09:35	04/25/12 17:06	1
Lead	ND		1.0	0.20	ug/L		04/20/12 09:35	04/25/12 17:06	1
Antimony	ND		2.0	0.30	ug/L		04/20/12 09:35	04/25/12 17:06	1
Selenium	ND		2.0	0.50	ug/L		04/20/12 09:35	04/25/12 17:06	1
Thallium	ND		1.0	0.20	ug/L		04/20/12 09:35	04/25/12 17:06	1

Lab Sample ID: MB 440-20965/1-A

Matrix: Water

Analysis Batch: 22325

MR MR

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 20965

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	ND		2.0	0.50	ug/L		04/20/12 09:35	04/26/12 18:44	1
Cobalt	ND		1.0	0.10	ug/L		04/20/12 09:35	04/26/12 18:44	1

Lab Sample ID: LCS 440-20965/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 22049

Prep Batch: 20965

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	80.0	86.7		ug/L		108	85 - 115	
Lead	80.0	79.4		ug/L		99	85 - 115	
Antimony	80.0	86.5		ug/L		108	85 - 115	
Selenium	80.0	89.0		ug/L		111	85 - 115	
Thallium	80.0	79.7		ug/L		100	85 - 115	

Lab Sample ID: LCS 440-20965/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 22325

Prep Type: Total Recoverable

Prep Batch: 20965

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Copper	80.0	91.5		ug/L		114	85 - 115	
Cobalt	80.0	87.2		ug/L		109	85 - 115	

Lab Sample ID: 440-8282-1 MS Client Sample ID: Outfall 018 Composite **Matrix: Water Prep Type: Dissolved**

Analysis Batch: 22049

Prep Batch: 20965

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cadmium ND 80.0 85.5 107 70 - 130 ug/L Lead ND 80.0 76.9 ug/L 96 70 - 130 Antimony 0.43 J,DX 80.0 87.3 ug/L 109 70 - 130 ND 80.0 89.8 ug/L 70 - 130 Selenium 112 Thallium 0.24 J,DX 80.0 76.8 ug/L 70 - 130

Lab Sample ID: 440-8282-1 MS

Matrix: Water

Analysis Batch: 22325

Client Sample ID: Outfall 018 Composite **Prep Type: Dissolved**

Prep Batch: 20965

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Copper	0.81	J,DX	80.0	90.7		ug/L		112	70 - 130	
Cobalt	0.16	J,DX	80.0	84.9		ug/L		106	70 - 130	

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-8282-1 MSD

Matrix: Water

Analysis Batch: 22049

Client Sample ID:	Outfall	018	Composite
	D		a Branch Land

Prep Type: Dissolved

Prep Batch: 20965

_											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		80.0	86.1		ug/L		108	70 - 130	1	20
Lead	ND		80.0	76.5		ug/L		96	70 - 130	0	20
Antimony	0.43	J,DX	80.0	87.9		ug/L		109	70 - 130	1	20
Selenium	ND		80.0	89.7		ug/L		112	70 - 130	0	20
Thallium	0.24	JDX	80.0	77 7		ua/l		97	70 - 130	1	20

Client Sample ID: Outfall 018 Composite

Matrix: Water

Analysis Batch: 22325

Lab Sample ID: 440-8282-1 MSD

Prep Type: Dissolved
Prep Batch: 20965

%Rec. RPD Limits RPD Limit

Prep Type: Total/NA

Prep Batch: 19442

Client Sample ID: Method Blank

Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier %Rec Analyte Unit D 80.0 Copper 0.81 J,DX 87.9 ug/L 109 70 - 130 3 20 Cobalt 80.0 83.3 104 0.16 J,DX ug/L 70 - 1302 20

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 440-19442/1-A

Matrix: Water

Analysis Batch: 19759

Prep Type: Total/NA Prep Batch: 19442 MB MB

Result Qualifier RL MDL Unit Prepared Dil Fac Analyte D Analyzed 04/12/12 18:47 0.20 04/13/12 20:43 Mercury ND 0.10 ug/L

Lab Sample ID: LCS 440-19442/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 19759

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Mercury 8.00 8.07 ug/L 101 85 - 115

Lab Sample ID: 440-7955-C-1-B MS Client Sample ID: Matrix Spike

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 19759** Prep Batch: 19442 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Mercury ND 8.00 5.96 ug/L 70 - 130

Lab Sample ID: 440-7955-C-1-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Prep Type: Total/NA Analysis Batch: 19759 Prep Batch: 19442 MSD MSD Sample Sample Spike %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Limit ND 8.00 5.91 70 - 130 Mercury ug/L

Lab Sample ID: MB 440-19452/1-C

Matrix: Water

Analysis Batch: 19759

Client Sample ID: Method Blank **Prep Type: Dissolved** Prep Batch: 19467

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.20	0.10 ug/L		04/12/12 20:37	04/13/12 22:50	1

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: 245.1 - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 440-19452/2-C Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Dissolved Analysis Batch: 19759** Prep Batch: 19467 Spike LCS LCS

Added Result Qualifier Limits Analyte Unit D %Rec 8.00 85 - 115 Mercury 8.18 ug/L 102

Lab Sample ID: 440-8277-M-1-C MS Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Dissolved Analysis Batch: 19759** Prep Batch: 19467

MS Sample Sample Spike MS Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Mercury ND 8.00 7.13 ug/L 89 70 - 130

Lab Sample ID: 440-8277-M-1-D MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water Prep Type: Dissolved Prep Batch: 19467 **Analysis Batch: 19759** Spike MSD MSD %Rec. RPD Sample Sample Added RPD Limit

Analyte Result Qualifier Result Qualifier Unit D %Rec Limits ND 8.00 Mercury 7.17 ug/L

Method: 120.1 - Conductivity, Specific Conductance

Lab Sample ID: MB 440-19950/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 19950

MR MR

Result Qualifier RL Unit Analyzed Dil Fac Prepared ND 1.0 04/16/12 10:04 Specific Conductance 10 umhos/cm

Lab Sample ID: LCS 440-19950/2 Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA **Analysis Batch: 19950**

LCS LCS

Spike %Rec. Added Result Qualifier Limits Analyte Unit %Rec 501 Specific Conductance 541 umhos/cm 108 90 - 110

Lab Sample ID: 440-8593-C-1 DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 19950 DU DU Sample Sample RPD

Result Qualifier RPD Analyte Result Qualifier Unit Limit Specific Conductance 150 149 umhos/cm 5

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-21239/1-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA **Analysis Batch: 21254** Prep Batch: 21239

мв мв Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac HEM ND 5.0 1.4 mg/L 04/23/12 06:18 04/23/12 06:54

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Client Sample ID: Lab Control Sample

78 - 114

Client Sample ID: Lab Control Sample Dup

Method: 1664A - HEM and SGT-HEM (Continued)

Lab Sample ID: LCS 440-21239/2-A

Matrix: Water

Analysis Batch: 21254

Analyte

HEM

Prep Type: Total/NA Prep Batch: 21239 Spike LCS LCS Added Result Qualifier Limits Unit D %Rec

HEM

Lab Sample ID: LCSD 440-21239/3-A

Analysis Batch: 21254

Matrix: Water LCSD LCSD Spike Analyte

Added 20.0

20.0

Result Qualifier 18.6

18.0

Unit mg/L

mg/L

%Rec 93

90

Limits RPD Limit 78 - 114

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 21239

11

Method: 180.1 - Turbidity, Nephelometric

Lab Sample ID: MB 440-19334/6

Matrix: Water

Analysis Batch: 19334

MR MR

Analyte Turbidity

Result Qualifier ND

RL 0.10

Spike

Added

1.00

MDL Unit 0.040 NTU

MRL MRL

Qualifier

Result

1.08

Prepared

D

%Rec

108

Analyzed 04/12/12 12:47

Client Sample ID: Lab Control Sample

%Rec.

Limits

Client Sample ID: Outfall 018 Composite

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: MRL 440-19334/4 MRL

Matrix: Water

Analysis Batch: 19334

Analyte Turbidity

Lab Sample ID: 440-8282-1 DU

Matrix: Water

Analysis Batch: 19334

Sample Sample Analyte Result Qualifier Turbidity 1.8

DU DU 1.65

RL

10

Result Qualifier

MDL Unit

10 mg/L Unit NTU

Unit

NTU

Prep Type: Total/NA RPD RPD

Limit

Dil Fac

20

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Analyzed

04/13/12 09:21

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 440-19559/1

Matrix: Water

Analysis Batch: 19559

мв мв

Result Qualifier Total Dissolved Solids ND

Lab Sample ID: LCS 440-19559/2

Matrix: Water

Analysis Batch: 19559

Analyte

Spike Added Total Dissolved Solids 1000

LCS LCS Result Qualifier

944

Unit mg/L %Rec 94

Prepared

Limits

90 - 110

%Rec.

Client Sample ID: Lab Control Sample

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 440-8288-A-1 DU

Matrix: Water

Analysis Batch: 19559

Client Sample ID: Duplicate Prep Type: Total/NA

DU DU RPD Sample Sample Result Qualifier RPD Result Qualifier D Limit Analyte Unit **Total Dissolved Solids** 1800 1690 mg/L 10

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-20344/1

Matrix: Water

Analysis Batch: 20344

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Duplicate

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Suspended Solids ND 10 10 mg/L 04/17/12 22:29

Lab Sample ID: LCS 440-20344/2

Matrix: Water

Analysis Batch: 20344

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Total Suspended Solids 1000 999 mg/L 100 85 - 115

Lab Sample ID: 440-8289-A-3 DU

Matrix: Water

Analysis Batch: 20344

Allalysis Datcil. 20044								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Suspended Solids	27	·	27.0		mg/L		 0.000	10

Method: SM 4500 CN E - Cyanide, Total (Low Level)

Lab Sample ID: MB 440-21913/1-A

Matrix: Water

Analysis Batch: 21973

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 21913

MDI Unit Analyte Result Qualifier RI Prepared Dil Fac Analyzed 0.0050 04/25/12 15:36 Cyanide, Total ND 0.0030 mg/L 04/25/12 19:45

Lab Sample ID: LCS 440-21913/2-A

Matrix: Water

Analysis Batch: 21973

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 21913

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits Cyanide, Total 0.100 0.106 mg/L 106 90 - 110

MB MB

Lab Sample ID: 440-8515-A-3-B MS

Matrix: Water

Analysis Batch: 21973

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 21913

%Rec.

Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.0077 0.100 0.112 mg/L 104 70 - 115

> TestAmerica Irvine 5/17/2012

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

80 - 120

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 19411

Method: SM 4500 CN E - Cyanide, Total (Low Level) (Continued)

Lab Sample ID: 440-8515-A-3-D MSD

Matrix: Water

Analysis Batch: 21973

Sample Sample Sample Spike MSD MSD

Client Sample ID: Matrix Spike Duplicate
Prep Type: Total/NA
Prep Batch: 21913
%Rec. RPD

Added Analyte Result Qualifier Result Qualifier %Rec Limits RPD Limit Unit D 0.100 104 0 15 Cyanide, Total 0.0077 0.112 mg/L 70 - 115

Method: SM 4500 F C - Fluoride

Lab Sample ID: MB 440-19968/10 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 19968

 Analyte
 Result
 Qualifier
 RL
 MDL Unit
 D Prepared
 Analyzed
 Dil Fac

 Fluoride
 ND
 0.10
 0.020
 mg/L
 04/16/12 06:01
 1

Lab Sample ID: LCS 440-19968/9

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 19968

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Fluoride 1.00 1.00 mg/L 100 90 - 110

Lab Sample ID: 440-8444-A-4 MS

Client Sample ID: Matrix Spike

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 19968

Fluoride

Analyte Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

1.00

0.32

Lab Sample ID: 440-8444-A-4 MSD

Client Sample ID: Matrix Spike Duplicate

1.32

mg/L

Matrix: Water

Analysis Batch: 19968

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Fluoride 1.00 0.32 1.33 mg/L 100 80 - 120 20

Method: SM 4500 NH3 C - Ammonia

Lab Sample ID: MB 440-19411/1-A Client Sample ID: Method Blank

Matrix: Water Analysis Batch: 19480

MB MB

Analyte Plant MDI Unit D Propered Analyzed Dil Fac

Lab Sample ID: LCS 440-19411/2-A

Client Sample ID: Lab Control Sample

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 19480 Prep Batch: 19411
Spike LCS LCS %Rec.

 Analyte
 Added Ammonia (as N)
 Result 10.0
 Qualifier Posso
 Unit Posso
 Mec Limits Posso
 Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec Limits Posso
 Mec

Project/Site: Boeing SSFL Annual Outfall 018

Method: SM 4500 NH3 C - Ammonia (Continued)

Lab Sample ID: 440-8181-D-1-B MS **Matrix: Water**

Analysis Batch: 19480

Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 19411 Spike MS MS Sample Sample

Added Result Qualifier Result Qualifier Limits Analyte Unit D %Rec 10.0 Ammonia (as N) 0.840 10.08 mg/L 92 70 - 120

Lab Sample ID: 440-8181-D-1-C MSD

Matrix: Water

Analysis Batch: 19480

Analyte Ammonia (as N) 0.840

Sample Sample Result Qualifier

Spike Added 10.0

Result 10.08

MSD MSD

Qualifier

Unit

mg/L

%Rec 92

70 - 120

Client Sample ID: Matrix Spike Duplicate

Limits RPD

Client Sample ID: Method Blank

TestAmerica Job ID: 440-8129-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 19411

Limit 15

Dil Fac

Method: SM 5310B - Organic Carbon, Total (TOC)

Lab Sample ID: MB 440-19604/5

Matrix: Water

Analysis Batch: 19604

MR MR

Analyte Result Total Organic Carbon ND

Qualifier

RL 1.0

Spike

Added

10.0

Spike

Added

5.00

MDL Unit 0.75 mg/L

Qualifier

Unit

mg/L

Unit

mg/L

LCS LCS

MS MS

13.7

Result Qualifier

Result

9.93

D

Prepared

%Rec

%Rec

110

Analyzed 04/13/12 05:23

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 _ 110

%Rec.

Limits

80 - 120

Client Sample ID: Matrix Spike Duplicate

%Rec.

Client Sample ID: Matrix Spike

Lab Sample ID: LCS 440-19604/6

Matrix: Water

Analysis Batch: 19604

Analyte

Total Organic Carbon Lab Sample ID: 440-7927-B-2 MS

Matrix: Water

Analysis Batch: 19604

Sample Sample Result Qualifier Analyte Total Organic Carbon 8.2

Lab Sample ID: 440-7927-B-2 MSD

Matrix: Water

Analysis Batch: 19604

Analyte **Total Organic Carbon** 8.2

Sample Sample Result Qualifier

Spike Added 5.00

MSD MSD Result Qualifier 13.7

Unit mg/L

D

%Rec 110

Limits 80 - 120

RPD Limit

Prep Type: Total/NA

Prep Type: Total/NA

RPD

20

Method: SM 5540C - Methylene Blue Active Substances (MBAS)

Lab Sample ID: MB 440-19455/3

Matrix: Water

Analysis Batch: 19455

Methylene Blue Active Substances

мв мв Result Qualifier

ND

RL 0.10

MDL Unit 0.050 mg/L D

Prepared

Analyzed Dil Fac 04/12/12 19:39

Client Sample ID: Method Blank

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: SM 5540C - Methylene Blue Active Substances (MBAS) (Continued)

Lab Sample ID: LCS 440-19455/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water Analysis Batch: 19455

Spike LCS LCS %Rec. babbA Result Qualifier Limits Analyte Unit D %Rec

0.250 0.244 mg/L 97 90 _ 110 Methylene Blue Active

Substances

Lab Sample ID: 440-8282-1 MS Client Sample ID: Outfall 018 Composite

Matrix: Water Prep Type: Total/NA

Analysis Batch: 19455

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 0.250 0.230 mg/L 92 50 - 125 Methylene Blue Active

Substances

Lab Sample ID: 440-8282-1 MSD Client Sample ID: Outfall 018 Composite

Matrix: Water Prep Type: Total/NA

Analysis Batch: 19455

MSD MSD %Rec. RPD Sample Sample Spike Result Qualifier Result Qualifier babbA RPD Analyte Unit D %Rec Limits Limit

ND 0.250 0.286 RA mg/L 115 50 - 125 22 20 Methylene Blue Active

Substances

Method: SM5210B - BOD, 5 Day

Lab Sample ID: USB 440-19553/1 USB Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 19553

USB USB

Result Qualifier RL **MDL** Unit D Dil Fac Analyte Prepared Analyzed ND 2 0 **Biochemical Oxygen Demand** 0.50 mg/L 04/13/12 09:06

Lab Sample ID: LCS 440-19553/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 19553

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte Biochemical Oxygen Demand 199 85 - 115 200 mg/L 101

Lab Sample ID: LCSD 440-19553/5

Matrix: Water

Analysis Batch: 19553

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Biochemical Oxygen Demand 199 205 mg/L 103 85 - 115 2.48 20

Method: Gross Alpha and Beta - Gross Alpha/Beta

Lab Sample ID: S204062-05 Client Sample ID: Method Blank **Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 8607 Prep Batch: 8607_P Blank Blank

Analyte Result Qualifier MDL Unit RL Prepared Analyzed Tritium 12.2 Ū 500 pCi/L 04/19/12 00:00 04/19/12 20:20

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Gross Alpha

Gross Beta

Tritium

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Lab Sample ID: S204062-05							Client Sa	mple ID: Metho	d Blank
Matrix: WATER								Prep Type: 1	Γotal/NA
Analysis Batch: 8607								Prep Batch:	8607_P
	Blank	Blank							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	1.25	U	20		pCi/L		04/19/12 00:00	04/20/12 00:00	1
Potassium-40	20.2	U	25		pCi/L		04/19/12 00:00	04/20/12 00:00	1
Lab Sample ID: S204062-05							Client Sa	mple ID: Metho	d Blank
Matrix: WATER								Prep Type: 1	Γotal/NA
Analysis Batch: 8607								Prep Batch:	8607_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium-90	0.127	U	2		pCi/L		04/24/12 00:00	04/24/12 08:20	1
Lab Sample ID: S204062-05							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 1	Γotal/NA
Analysis Batch: 8607								Prep Batch:	8607_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Uranium, Total	0	U	1		pCi/L		04/25/12 00:00	04/25/12 01:53	1
Lab Sample ID: S204062-05							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 1	Γotal/NA
Analysis Batch: 8607								Prep Batch:	8607_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-228	0.006	U	1		pCi/L		04/25/12 00:00	04/25/12 14:21	1
Lab Sample ID: S204062-05							Client Sa	mple ID: Metho	od Blank
Matrix: WATER								Prep Type: 1	Γotal/NA
Analysis Batch: 8607								Prep Batch:	8607_P
	Blank	Blank						-	_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: S204062-05 Client Sample ID: Method Blank

3

4

pCi/L

pCi/L

pCi/L

04/24/12 00:00

04/24/12 00:00

90

80 - 120

-0.105 U

-0.378 U

Matrix: WATER Prep Type: Total/NA
Analysis Batch: 8607 Prep Batch: 8607_P

Radium-226 -0.07 U 1 pCi/L 05/02/12 00:00 05/02/12 13:19 1

Lab Sample ID: S204062-04

Matrix: WATER

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 8607

Spike LCS LCS LCS
Analyte

Prep Batch: 8607_P

%Rec.

Added Result Qualifier Unit D %Rec Limits

2200

2440

TestAmerica Irvine

5/17/2012

04/25/12 16:16

04/25/12 16:16

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

300 tillellod 000 lB. 110 0120 1

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Lab Sample ID: S204062-04					Client	Sample	ID: Lab Control Sample
Matrix: WATER							Prep Type: Total/NA
Analysis Batch: 8607							Prep Batch: 8607_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cesium-137	122	120		pCi/L		98	80 - 120
Cobalt-60	108	101		pCi/L		94	80 - 120
Lab Sample ID: S204062-04					Client	Sample	ID: Lab Control Sample
Matrix: WATER							Prep Type: Total/NA
Analysis Batch: 8607							Prep Batch: 8607_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Strontium-90	8.49	8.52		pCi/L		100	80 - 120
Lab Sample ID: S204062-04					Client	Sample	ID: Lab Control Sample
Matrix: WATER							Prep Type: Total/NA
Analysis Batch: 8607							Prep Batch: 8607_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Uranium, Total	56.5	59.4		pCi/L		105	80 - 120
Lab Sample ID: S204062-04					Client	Sample	ID: Lab Control Sample
Matrix: WATER							Prep Type: Total/NA
Analysis Batch: 8607							Prep Batch: 8607_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Radium-228	4.42	4.94	-	pCi/L		112	60 - 140
Lab Sample ID: S204062-04					Client	Sample	ID: Lab Control Sample
Matrix: WATER							Prep Type: Total/NA
Analysis Batch: 8607							Prep Batch: 8607_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

Analysis Baton. 6007							1.00	Baton. ooo1
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gross Alpha	37	43.3		pCi/L		117	70 - 130	
Gross Beta	34	33.6		pCi/L		99	70 - 130	

Lab Sample ID: S204062-04 Matrix: WATER Analysis Batch: 8607					Client	Sample	Prep	Control Sample Type: Total/NA Batch: 8607_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Radium-226	50.1	55		pCi/L		110	80 - 120	

Lab Sample ID: S204062-06 Matrix: WATER					Client Sa	imple ID: OU	TFALL 018 (440-8282 Prep Type: To	tal/NA
Analysis Batch: 8607			5	5			Prep Batch: 8	_
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Tritium	47.2	U	10.8	U	pCi/L			

Lab Sample ID: S204062-06

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Client Sample ID: OUTFALL 018 (440-8282-1) DU

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

	Lab Sample ID: S204062-06					Client Sai	mple ID: OU	TFALL 018 (440-8282	-1) DU
	Matrix: WATER							Prep Type: To	tal/NA
	Analysis Batch: 8607							Prep Batch: 8	607_P
ı		Sample	Sample	Duplicate	Duplicate				RPD
	Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
	Cesium-137	0.048	U	-0.679	U	pCi/L			
ı	Potassium-40	12.9	U	0.265	U	pCi/L		0	
1	_ _								
ı	Lab Cample ID: 0004000 00					011	I- ID. OII	TEALL 040 /440 0000	4) BH

1	Lab Sample ID: \$204062-06				•	Jilent San	npie iL): 0011	-ALL U18 (44	40-8282	-1) טע
	Matrix: WATER								Prep T	ype: To	tal/NA
	Analysis Batch: 8607								Prep E	Batch: 8	607_P
		Sample	Sample	Duplicate	Duplicate						RPD
	Analyte	Result	Qualifier	Result	Qualifier	Unit	D			RPD	Limit
	Strontium-90	-0.277	U	 0.002	U	pCi/L				0	

Matrix: WATER							Prep Ty	pe: To	tal/NA
Analysis Batch: 8607							Prep B	atch: 8	607_P
	Sample	Sample	Duplicate	Duplicate					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Uranium, Total	0.047	J	0.052	J	pCi/L	_		10	

Lab Sample ID: S204062-06				(Client S	ample ID: OU <mark>1</mark>	FALL 018 (440	-8282-	1) DU
Matrix: WATER							Prep Typ	e: Tot	al/NA
Analysis Batch: 8607							Prep Ba	tch: 86	607_P
	Sample	Sample	Duplicate	Duplicate					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Radium-228	-0.12	U	 -0.052	U	pCi/L			0	

Lab Sample ID: S204062-06					Client Sa	ample ID: OUT	FALL 018 (440-8282	-1) DU
Matrix: WATER							Prep Type: To	tal/NA
Analysis Batch: 8607							Prep Batch: 8	607_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Gross Alpha	0.114	U	0.008	U	pCi/L			
Gross Beta	4.32		3.59	J	pCi/L		18	

Lab Sample ID: S204062-06					Client S	Sample ID: OUT	FALL 018 (440-8282	•
Matrix: WATER							Prep Type: To	tal/NA
Analysis Batch: 8607							Prep Batch: 8	607_P
	Sample	Sample	Duplica	te Duplicat	9			RPD
Analyte	Result	Qualifier	Res	lt Qualifier	Unit	D	RPD	Limit
Radium-226	0.118	U	-0.0	2 U	pCi/L			

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

GC/MS VOA

Analysis Batch: 19096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-7823-A-10 MS	Matrix Spike	Total/NA	Water	624	
440-7823-A-10 MSD	Matrix Spike Duplicate	Total/NA	Water	624	
440-8129-1	Outfall 018 Grab	Total/NA	Water	624	
440-8129-2	Trip Blanks	Total/NA	Water	624	
LCS 440-19096/5	Lab Control Sample	Total/NA	Water	624	
MB 440-19096/4	Method Blank	Total/NA	Water	624	

Analysis Batch: 19220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-8129-1	Outfall 018 Grab	Total/NA	Water	624	<u> </u>
440-8129-2	Trip Blanks	Total/NA	Water	624	
440-8172-F-1 MS	Matrix Spike	Total/NA	Water	624	
440-8172-F-1 MSD	Matrix Spike Duplicate	Total/NA	Water	624	
LCS 440-19220/5	Lab Control Sample	Total/NA	Water	624	
MB 440-19220/4	Method Blank	Total/NA	Water	624	

Analysis Batch: 20473

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	8260B SIM	-
440-8769-A-2 MS	Matrix Spike	Total/NA	Water	8260B SIM	
440-8769-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B SIM	
LCS 440-20473/3	Lab Control Sample	Total/NA	Water	8260B SIM	
MB 440-20473/2	Method Blank	Total/NA	Water	8260B SIM	

GC/MS Semi VOA

Prep Batch: 20598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	625	
LCS 440-20598/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 440-20598/3-A	Lab Control Sample Dup	Total/NA	Water	625	
MB 440-20598/1-A	Method Blank	Total/NA	Water	625	

Analysis Batch: 21217

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	625	20598
LCS 440-20598/2-A	Lab Control Sample	Total/NA	Water	625	20598
LCSD 440-20598/3-A	Lab Control Sample Dup	Total/NA	Water	625	20598
MB 440-20598/1-A	Method Blank	Total/NA	Water	625	20598

GC VOA

Analysis Batch: 20433

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	8015B	<u> </u>
440-8149-B-5 MS	Matrix Spike	Total/NA	Water	8015B	
440-8149-B-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B	
LCS 440-20433/2	Lab Control Sample	Total/NA	Water	8015B	
MB 440-20433/3	Method Blank	Total/NA	Water	8015B	

1

5

ŏ

10

11

12

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

GC Semi VOA

Prep Batch: 19875

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	608	
LCS 440-19875/2-A	Lab Control Sample	Total/NA	Water	608	
LCS 440-19875/4-A	Lab Control Sample	Total/NA	Water	608	
LCSD 440-19875/3-A	Lab Control Sample Dup	Total/NA	Water	608	
LCSD 440-19875/5-A	Lab Control Sample Dup	Total/NA	Water	608	
MB 440-19875/1-A	Method Blank	Total/NA	Water	608	

Analysis Batch: 19895

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	8015B	19972
LCS 440-19972/2-A	Lab Control Sample	Total/NA	Water	8015B	19972
LCSD 440-19972/3-A	Lab Control Sample Dup	Total/NA	Water	8015B	19972
MB 440-19972/1-A	Method Blank	Total/NA	Water	8015B	19972

Analysis Batch: 19946

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	608 Pesticides	19875
LCS 440-19875/2-A	Lab Control Sample	Total/NA	Water	608 Pesticides	19875
LCSD 440-19875/3-A	Lab Control Sample Dup	Total/NA	Water	608 Pesticides	19875
MB 440-19875/1-A	Method Blank	Total/NA	Water	608 Pesticides	19875

Prep Batch: 19972

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	3510C	<u> </u>
LCS 440-19972/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 440-19972/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 440-19972/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 20064

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	608 PCB LL	19875
LCS 440-19875/4-A	Lab Control Sample	Total/NA	Water	608 PCB LL	19875
LCSD 440-19875/5-A	Lab Control Sample Dup	Total/NA	Water	608 PCB LL	19875
MB 440-19875/1-A	Method Blank	Total/NA	Water	608 PCB LL	19875

HPLC/IC

Analysis Batch: 18918

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-6335-C-1 MS	Matrix Spike	Total/NA	Water	300.0	
440-6335-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
440-8282-1	Outfall 018 Composite	Total/NA	Water	300.0	
LCS 440-18918/3	Lab Control Sample	Total/NA	Water	300.0	
MB 440-18918/2	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 18919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	300.0	
LCS 440-18919/3	Lab Control Sample	Total/NA	Water	300.0	
MB 440-18919/2	Method Blank	Total/NA	Water	300.0	

5

3

4

6

8

11

12

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

HPLC/IC (Continued)

Analysis Batch: 19011

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8238-I-2 MS	Matrix Spike	Total/NA	Water	218.6	
440-8238-I-2 MSD	Matrix Spike Duplicate	Total/NA	Water	218.6	
440-8282-1	Outfall 018 Composite	Total/NA	Water	218.6	
LCS 440-19011/2	Lab Control Sample	Total/NA	Water	218.6	
MB 440-19011/3	Method Blank	Total/NA	Water	218.6	

Analysis Batch: 20654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-8128-C-1 MS	Matrix Spike	Total/NA	Water	314.0	
440-8128-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	314.0	
440-8282-1	Outfall 018 Composite	Total/NA	Water	314.0	
LCS 440-20654/4	Lab Control Sample	Total/NA	Water	314.0	
MB 440-20654/5	Method Blank	Total/NA	Water	314.0	

Specialty Organics

Analysis Batch: 2108092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total	Water	1613B	
G2D170000092B	Method Blank	Total	Water	1613B	
G2D170000092C	Lab Control Sample	Total	Water	1613B	

Prep Batch: 2108092_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total	Water	3542	
G2D170000092B	Method Blank	Total	Water	3542	
G2D170000092C	Lab Control Sample	Total	Water	3542	

Metals

Prep Batch: 19442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-7955-C-1-B MS	Matrix Spike	Total/NA	Water	245.1	
440-7955-C-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	
440-8282-1	Outfall 018 Composite	Total/NA	Water	245.1	
LCS 440-19442/2-A	Lab Control Sample	Total/NA	Water	245.1	
MB 440-19442/1-A	Method Blank	Total/NA	Water	245.1	

Prep Batch: 19467

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8277-M-1-C MS	Matrix Spike	Dissolved	Water	245.1	
440-8277-M-1-D MSD	Matrix Spike Duplicate	Dissolved	Water	245.1	
440-8282-1	Outfall 018 Composite	Dissolved	Water	245.1	
LCS 440-19452/2-C	Lab Control Sample	Dissolved	Water	245.1	
MB 440-19452/1-C	Method Blank	Dissolved	Water	245.1	

Analysis Batch: 19759

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-7955-C-1-B MS	Matrix Spike	Total/NA	Water	245.1	19442
440-7955-C-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	19442
440-8277-M-1-C MS	Matrix Spike	Dissolved	Water	245.1	19467
440-8277-M-1-D MSD	Matrix Spike Duplicate	Dissolved	Water	245.1	19467

TestAmerica Irvine 5/17/2012

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Metals (Continued)

Analysis Batch: 19759 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	245.1	19442
440-8282-1	Outfall 018 Composite	Dissolved	Water	245.1	19467
LCS 440-19442/2-A	Lab Control Sample	Total/NA	Water	245.1	19442
LCS 440-19452/2-C	Lab Control Sample	Dissolved	Water	245.1	19467
MB 440-19442/1-A	Method Blank	Total/NA	Water	245.1	19442
MB 440-19452/1-C	Method Blank	Dissolved	Water	245.1	19467

Analysis Batch: 20492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 2340B	

Prep Batch: 20594

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total Recoverable	Water	200.2	
440-8290-F-3-C MS	Matrix Spike	Total Recoverable	Water	200.2	
440-8290-F-3-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.2	
LCS 440-20594/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-20594/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 20735

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total Recoverable	Water	200.2	
440-8282-1 MS	Outfall 018 Composite	Total Recoverable	Water	200.2	
440-8282-1 MSD	Outfall 018 Composite	Total Recoverable	Water	200.2	
LCS 440-20735/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-20735/1-A	Method Blank	Total Recoverable	Water	200.2	

Analysis Batch: 20926

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total Recoverable	Water	200.7 Rev 4.4	20594
440-8290-F-3-C MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	20594
440-8290-F-3-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	20594
LCS 440-20594/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	20594
MB 440-20594/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	20594

Prep Batch: 20964

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Dissolved	Water	200.2	
440-8290-G-1-F MS	Matrix Spike	Dissolved	Water	200.2	
440-8290-G-1-G MSD	Matrix Spike Duplicate	Dissolved	Water	200.2	
LCS 440-19452/2-D	Lab Control Sample	Dissolved	Water	200.2	
MB 440-19452/1-D	Method Blank	Dissolved	Water	200.2	

Prep Batch: 20965

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Dissolved	Water	200.2	
440-8282-1 MS	Outfall 018 Composite	Dissolved	Water	200.2	
440-8282-1 MSD	Outfall 018 Composite	Dissolved	Water	200.2	
LCS 440-20965/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-20965/1-A	Method Blank	Total Recoverable	Water	200.2	

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Metals (Continued)

Analysis Batch: 21033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total Recoverable	Water	200.7 Rev 4.4	20594
440-8290-F-3-C MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	20594
440-8290-F-3-D MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	20594
LCS 440-20594/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	20594
MB 440-20594/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	20594

Analysis Batch: 21093

1	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
- 4	440-8282-1	Outfall 018 Composite	Dissolved	Water	200.7 Rev 4.4	20964
4	440-8290-G-1-F MS	Matrix Spike	Dissolved	Water	200.7 Rev 4.4	20964
4	440-8290-G-1-G MSD	Matrix Spike Duplicate	Dissolved	Water	200.7 Rev 4.4	20964
1	LCS 440-19452/2-D	Lab Control Sample	Dissolved	Water	200.7 Rev 4.4	20964
1	MB 440-19452/1-D	Method Blank	Dissolved	Water	200.7 Rev 4.4	20964

Analysis Batch: 21222

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total Recoverable	Water	200.8	20735
440-8282-1 MS	Outfall 018 Composite	Total Recoverable	Water	200.8	20735
440-8282-1 MSD	Outfall 018 Composite	Total Recoverable	Water	200.8	20735
LCS 440-20735/2-A	Lab Control Sample	Total Recoverable	Water	200.8	20735
MB 440-20735/1-A	Method Blank	Total Recoverable	Water	200.8	20735

Analysis Batch: 21322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Dissolved	Water	SM 2340B	

Analysis Batch: 21383

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total Recoverable	Water	200.8	20735
440-8282-1 MS	Outfall 018 Composite	Total Recoverable	Water	200.8	20735
440-8282-1 MSD	Outfall 018 Composite	Total Recoverable	Water	200.8	20735
LCS 440-20735/2-A	Lab Control Sample	Total Recoverable	Water	200.8	20735
MB 440-20735/1-A	Method Blank	Total Recoverable	Water	200.8	20735

Analysis Batch: 22049

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Dissolved	Water	200.8	20965
440-8282-1 MS	Outfall 018 Composite	Dissolved	Water	200.8	20965
440-8282-1 MSD	Outfall 018 Composite	Dissolved	Water	200.8	20965
LCS 440-20965/2-A	Lab Control Sample	Total Recoverable	Water	200.8	20965
MB 440-20965/1-A	Method Blank	Total Recoverable	Water	200.8	20965

Analysis Batch: 22325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Dissolved	Water	200.8	20965
440-8282-1 MS	Outfall 018 Composite	Dissolved	Water	200.8	20965
440-8282-1 MSD	Outfall 018 Composite	Dissolved	Water	200.8	20965
LCS 440-20965/2-A	Lab Control Sample	Total Recoverable	Water	200.8	20965
MB 440-20965/1-A	Method Blank	Total Recoverable	Water	200.8	20965

4

6

9

10

15

1:

Client: MWH Americas Inc Test/
Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

General Chemistry

Analysis Batch: 18926

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	SM 2540F	

Analysis Batch: 19334

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	180.1	
440-8282-1 DU	Outfall 018 Composite	Total/NA	Water	180.1	
MB 440-19334/6	Method Blank	Total/NA	Water	180.1	
MRL 440-19334/4 MRL	Lab Control Sample	Total/NA	Water	180.1	

Prep Batch: 19411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8181-D-1-B MS	Matrix Spike	Total/NA	Water	SM 4500 NH3 B	
440-8181-D-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 NH3 B	
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 4500 NH3 B	
LCS 440-19411/2-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 B	
MB 440-19411/1-A	Method Blank	Total/NA	Water	SM 4500 NH3 B	

Analysis Batch: 19455

	011 (0 1 10				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 5540C	
440-8282-1 MS	Outfall 018 Composite	Total/NA	Water	SM 5540C	
440-8282-1 MSD	Outfall 018 Composite	Total/NA	Water	SM 5540C	
LCS 440-19455/4	Lab Control Sample	Total/NA	Water	SM 5540C	
MB 440-19455/3	Method Blank	Total/NA	Water	SM 5540C	

Analysis Batch: 19480

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8181-D-1-B MS	Matrix Spike	Total/NA	Water	SM 4500 NH3 C	19411
440-8181-D-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 NH3 C	19411
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 4500 NH3 C	19411
LCS 440-19411/2-A	Lab Control Sample	Total/NA	Water	SM 4500 NH3 C	19411
MB 440-19411/1-A	Method Blank	Total/NA	Water	SM 4500 NH3 C	19411

Analysis Batch: 19553

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM5210B	
LCS 440-19553/4	Lab Control Sample	Total/NA	Water	SM5210B	
LCSD 440-19553/5	Lab Control Sample Dup	Total/NA	Water	SM5210B	
USB 440-19553/1 USB	Method Blank	Total/NA	Water	SM5210B	

Analysis Batch: 19559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 2540C	
440-8288-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	
LCS 440-19559/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 440-19559/1	Method Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 19604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-7927-B-2 MS	Matrix Spike	Total/NA	Water	SM 5310B	
440-7927-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 5310B	
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 5310B	

2

3

4

^

10

11

1

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

General Chemistry (Continued)

Analysis Batch: 19604 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 440-19604/6	Lab Control Sample	Total/NA	Water	SM 5310B	
MB 440-19604/5	Method Blank	Total/NA	Water	SM 5310B	

Analysis Batch: 19950

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	120.1
440-8593-C-1 DU	Duplicate	Total/NA	Water	120.1
LCS 440-19950/2	Lab Control Sample	Total/NA	Water	120.1
MB 440-19950/1	Method Blank	Total/NA	Water	120.1

Analysis Batch: 19968

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 4500 F C	
440-8444-A-4 MS	Matrix Spike	Total/NA	Water	SM 4500 F C	
440-8444-A-4 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 F C	
LCS 440-19968/9	Lab Control Sample	Total/NA	Water	SM 4500 F C	
MB 440-19968/10	Method Blank	Total/NA	Water	SM 4500 F C	

Analysis Batch: 20344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 2540D	
440-8289-A-3 DU	Duplicate	Total/NA	Water	SM 2540D	
LCS 440-20344/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-20344/1	Method Blank	Total/NA	Water	SM 2540D	

Prep Batch: 21239

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	1664A	
LCS 440-21239/2-A	Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-21239/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	
MB 440-21239/1-A	Method Blank	Total/NA	Water	1664A	

Analysis Batch: 21254

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	1664A	21239
LCS 440-21239/2-A	Lab Control Sample	Total/NA	Water	1664A	21239
LCSD 440-21239/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	21239
MB 440-21239/1-A	Method Blank	Total/NA	Water	1664A	21239

Prep Batch: 21913

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	Distill/CN	
440-8515-A-3-B MS	Matrix Spike	Total/NA	Water	Distill/CN	
440-8515-A-3-D MSD	Matrix Spike Duplicate	Total/NA	Water	Distill/CN	
LCS 440-21913/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
MB 440-21913/1-A	Method Blank	Total/NA	Water	Distill/CN	

Analysis Batch: 21973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	SM 4500 CN E	21913
440-8515-A-3-B MS	Matrix Spike	Total/NA	Water	SM 4500 CN E	21913
440-8515-A-3-D MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 CN E	21913

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

General Chemistry (Continued)

Analysis Batch: 21973 (Continued)

l	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	LCS 440-21913/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	21913
l	MB 440-21913/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	21913

Biology

Analysis Batch: 19610

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	SM 9221E	

Analysis Batch: 19611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8129-1	Outfall 018 Grab	Total/NA	Water	SM 9221F	

Subcontract

Analysis Batch: 8607

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-8282-1	Outfall 018 Composite	Total/NA	Water	Gamma Spec	8607_P
				K-40 CS-137	
440-8282-1	Outfall 018 Composite	Total/NA	Water	Gross Alpha	8607_P
				and Beta	
440-8282-1	Outfall 018 Composite	Total/NA	Water	Radium 226	8607_P
440-8282-1	Outfall 018 Composite	Total/NA	Water	Radium 228	8607_P
440-8282-1	Outfall 018 Composite	Total/NA	Water	Strontium 90	8607_P
440-8282-1	Outfall 018 Composite	Total/NA	Water	Tritium	8607_P
440-8282-1	Outfall 018 Composite	Total/NA	Water	Uranium,	8607_P
				Combined	
S204062-04	Lab Control Sample	Total/NA	WATER	Gross Alpha	8607_P
				and Beta	
S204062-05	Method Blank	Total/NA	WATER	Gross Alpha	8607_P
				and Beta	
S204062-06	OUTFALL 018 (440-8282-1) DU	Total/NA	WATER	Gross Alpha	8607_P
				and Beta	

Prep Batch: 8607_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	1
440-8282-1	Outfall 018 Composite	Total/NA	Water	General Prep	
S204062-04	Lab Control Sample	Total/NA	WATER	General Prep	
S204062-05	Method Blank	Total/NA	WATER	General Prep	
S204062-06	OUTFALL 018 (440-8282-1) DU	Total/NA	WATER	General Prep	

3

4

6

0

9

11

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
LN	MS and/or MSD below acceptance limits. See Blank Spike (LCS)
AY	Matrix Interference suspected

GC/MS Semi VOA

Qualifier	Qualifier Description
LQ	LCS/LCSD recovery above method control limits
LR	LCS/LCSD recovery below method control limits
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL
ВА	Relative percent difference out of control
AY	Matrix Interference suspected

GC VOA

Qualifier	Qualifier Description
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL

HPLC/IC

Qualifier	Qualifier Description
IDY	Estimated value: value < lowest standard (MOL), but >than MD

DIOXIN

Qualifier	Qualifier Description
J	Estimated result. Result is less than the reporting limit.
Q	Estimated maximum possible concentration (EMPC).
В	Method blank contamination. The associated method blank contains the target analyte at a reportable level.
*	Surrogate recovery is outside stated control limits.

Metals

Qualifier	Qualifier Description
MB	Analyte present in the method blank
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL
ВВ	Sample > 4X spike concentration

General Chemistry

Qualifier	Qualifier Description
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL
RA	RPD exceeds limits due to matrix interference. % recoveries were within limits

Subcontract

Qualifier	Qualifier Description
U	The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
J	The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

Definitions/Glossary

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

1

4

Q

9

10

10

Certification Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL Annual Outfall 018

TestAmerica Job ID: 440-8129-1

_aboratory	Authority	Program	EPA Region	Certification ID
estAmerica Irvine	Arizona	State Program	9	AZ0671
estAmerica Irvine	California	LA Cty Sanitation Districts	9	10256
estAmerica Irvine	California	NELAC	9	1108CA
estAmerica Irvine	California	State Program	9	2706
estAmerica Irvine	Guam	State Program	9	Cert. No. 12.002r
estAmerica Irvine	Hawaii	State Program	9	N/A
estAmerica Irvine	Nevada	State Program	9	CA015312007A
estAmerica Irvine	New Mexico	State Program	6	N/A
estAmerica Irvine	Northern Mariana Islands	State Program	9	MP0002
estAmerica Irvine	Oregon	NELAC	10	4005
estAmerica Irvine	USDA	Federal		P330-09-00080
estAmerica West Sacramento	A2LA	DoD ELAP		2928-01
estAmerica West Sacramento	Alaska (UST)	State Program	10	UST-055
estAmerica West Sacramento	Arizona	State Program	9	AZ0708
estAmerica West Sacramento	Arkansas DEQ	State Program	6	88-0691
estAmerica West Sacramento	California	NELAC	9	1119CA
estAmerica West Sacramento	Colorado	State Program	8	N/A
estAmerica West Sacramento	Connecticut	State Program	1	PH-0691
estAmerica West Sacramento	Florida	NELAC	4	E87570
estAmerica West Sacramento	Georgia	State Program	4	960
estAmerica West Sacramento	Guam	State Program	9	N/A
estAmerica West Sacramento	Hawaii	State Program	9	N/A
estAmerica West Sacramento	Illinois	NELAC	5	200060
estAmerica West Sacramento	Kansas	NELAC	7	E-10375
estAmerica West Sacramento	Louisiana	NELAC	6	30612
estAmerica West Sacramento	Michigan	State Program	5	9947
estAmerica West Sacramento	Nevada	State Program	9	CA44
estAmerica West Sacramento	New Jersey	NELAC	2	CA005
estAmerica West Sacramento	New Mexico	State Program	6	N/A
estAmerica West Sacramento	New York	NELAC	2	11666
estAmerica West Sacramento	Northern Mariana Islands	State Program	9	MP0007
estAmerica West Sacramento	Oregon	NELAC	10	CA200005
estAmerica West Sacramento	Pennsylvania	NELAC	3	68-01272
estAmerica West Sacramento	South Carolina	State Program	4	87014
estAmerica West Sacramento	Texas	NELAC	6	T104704399-08-TX
estAmerica West Sacramento	US Fish & Wildlife	Federal		LE148388-0
estAmerica West Sacramento	USDA	Federal		P330-09-00055
estAmerica West Sacramento	Utah	NELAC	8	QUAN1
estAmerica West Sacramento	Virginia	State Program	3	178
estAmerica West Sacramento	Washington	State Program	10	C581
estAmerica West Sacramento	West Virginia	State Program	3	9930C
estAmerica West Sacramento	West Virginia DEP	State Program	3	334
estAmerica West Sacramento	Wisconsin	State Program	5	998204680
estAmerica West Sacramento	Wyoming	State Program	8	8TMS-Q

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

2

- 5

0

8

4.0

11

12

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

http://www.emsl.com E-mail: MicrobiologyLab@emsl.com

 Client: TestAmerica Irvine
 EMSL Order ID: 371205759

 17461 Derian Avenue Suite 100
 Date Received: 4/13/2012

 Irvine , CA 92614
 Date Analyzed: 4/13/2012

 Attn. Debby Wilson
 Date Reported: 4/18/2012

Project: Boeing SSFL Outfalls: 44002624 Date Amended:

Real-Time PCR Analysis for Human Bacteroides

(Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011)

Lab Sample Number	Client Sample ID	Sample Date and Time	Amount Received	Amount Sampled	CEs /100 mL
5759-1	Outfall 018(440-8129-1)	4/10/12, 14:45 Pacific		Water 250 ml	None Detected

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific total bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

USEPA License No: 0240-02

Quar L:

Quanyi "Charlie" Li, Ph.D. Director, PCR and DNA Analysis Lab Δ

5

b

8

46

11

www.eberlineservices.com

May 8, 2012

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Test America-Irvine 44002624 Reference:

Eberline Analytical Report S204062-8607

Sample Delivery Group 8607

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for three water samples received under Test America Project No. 44002624. The samples were received on April 13, 2012.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

Joseph Verville

Client Services Manager

NJV/mw

Enclosure: Level IV CLP-like Data Package CD

1.0 General Comments

Sample delivery group 8607 consists of the analytical results and supporting documentation for three water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The samples were received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the samples as received i.e. the samples were not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, and duplicate analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2σ error (Total):

Method Error
20.6%
11.0%
10.0%
10.4%
16.4%
10.4%
7.0%

Test America
Test America Project No. 44002624

Case Narrative, page 2

May 8, 2012

4.0 Analysis Notes

- 4.1 Gross Alpha/Gross Beta Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.3 Strontium-90 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.4 Radium-226 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.5 Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

Joseph Verville

Client Services Manager

Data

Page 68 of 134

4

7

10

11

5/17/2012

SDG 8607 Contact Joseph Verville

Client Test America, Inc. Contract <u>44002624</u>

SUMMARY DATA SECTION

TABLE OF	CO	NT	E N	TS	
About this section					1
Sample Summaries	i di	•	•	•	3
Prep Batch Summary	•		÷	•	5
Work Summary	•	•			6
Method Blanks	-			4	8
Lab Control Samples		4	16	1	9
Duplicates	4	•	*	•	10
Data Sheets	•		•	÷	11
Method Summaries		•			14
Report Guides	•	œ.			22
End of Section		i.			36

Prepared by

Reviewed by

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-TOC Version 3.06 Report date <u>05/08/12</u> SDG 8607

SDG <u>8607</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>

Contract <u>44002624</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 1

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-RG

 Version 3.06

 Report date 05/08/12

4

5

7

9

4

15

SDG 8607

SDG 8607

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>

Contract <u>44002624</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

3

,

6

8

4.0

11

12

1,

SDG 8607

SDG <u>8607</u>
Contact <u>Joseph Verville</u>

LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S204062-01	OUTFALL 018 (440-8282-1)	Boeing-SSFL	WATER			440-3828.1	04/11/12 13:45
S204062-02	OUTFALL 002 (440-8277-1)	Boeing-SSFL	WATER			440-3828.1	04/11/12 14:50
S204062-03	TRIP BLANK (440-8277-2)	Boeing-SSFL	WATER			440-3828.1	04/12/12 14:13
5204062-04	Lab Control Sample		WATER				
S204062-05	Method Blank		WATER				
S204062-06	Duplicate (S204062-01)	Boeing-SSFL	WATER				04/11/12 13:45

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LS

 Version
 3.06

 Report date
 05/08/12

3

Ţ

6

9

4 4

10

SDG 8607

SDG <u>8607</u> Contact <u>Joseph Verville</u>

QC SUMMARY

Client <u>Test America, Inc.</u>

Contract 44002624

QC BATCH	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8607	440-3828.1	OUTFALL 002 (440-8277-1) OUTFALL 018 (440-8282-1) TRIP BLANK (440-8277-2)	WATER WATER WATER		10.0 L 10.0 L 10.0 L		04/13/12 04/13/12 04/13/12	2 2 1	S204062-02 S204062-01 S204062-03	8607-002 8607-001 8607-003
		Method Blank Lab Control Sample Duplicate (S204062-01)	WATER WATER WATER		10.0 L		04/13/12	2	\$204062-05 \$204062-04 \$204062-06	8607-005 8607-004 8607-006

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

 3

4

6

7

9

10

12

SDG 8607

SDG	8607
Contact	Joseph Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

			PREPARATION ERROR			- PLA	QUALI-				
TEST	MATRIX	METHOD	BATCH	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting										
AC	WATER	Radium-228 in Water	7726-059	10.4	3			1	1	1/1	
SR	WATER	Strontium-90 in Water	7726-059	10.4	3			1	1.	1/1	
Gas I	roportion	al Counting									
A08	WATER	Gross Alpha in Water	7726-059	20.6	3			1	1	1/1	
80B	WATER	Gross Beta in Water	7726-059	11.0	3			1	ı	1/1	
Gamma	Spectros	сору									
GAM	WATER	Gamma Emitters in Water	7726-059	7.0	3			1	1	1/1	
Kinet	ic Phosph	orimetry									
U_T	WATER	Uranium, Total	7726-059		3	,		1	1	1/1	
Liqui	d Scintil.	lation Counting									
H	WATER	Tritium in Water	7726-059	10.0	2			1	1	1/1	
Rador	Counting										
RA	WATER	Radium-226 in Water	7726-059	16.4	3			1	1	1/1	

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY

Page 1

SUMMARY DATA SECTION

Page 5

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-PBS</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

2

J

5

0

10

SDG 8607

SDG <u>8607</u>
Contact <u>Joseph Verville</u>

LAB WORK SUMMARY

Client <u>Test America, Inc.</u>

Contract <u>44002624</u>

LAB SAMPLE COLLECTED RECEIVED	CLIENT SAMPLE ID LOCATION CUSTODY SAS no	MATRIX	PLANCHET	TEST	SUF- FIX	ANALYZED	REVIEWED	вұ	METHOD
S204062-01	OUTFALL 018 (440-8282-1)		8607-001	80A/80		04/25/12	04/27/12	MWT	Gross Alpha in Water
04/11/12	Boeing-SSFL	WATER	8607-001	80B/80		04/25/12	04/27/12	MWT	Gross Beta in Water
04/13/12	440-3828.1		8607-001	AC		04/25/12	05/04/12	MWT	Radium-228 in Water
			8607-001	GAM		04/19/12	04/23/12	MWT	Gamma Emitters in Water
			8607-001	H		04/19/12	05/04/12	MWT	Tritium in Water
			8607-001	RA		05/02/12	05/02/12	BW	Radium-226 in Water
			8607-001	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8607-001	U_T		04/25/12	04/26/12	CSS	Uranium, Total
S204062-02	OUTFALL 002 (440-8277-1)		8607-002	80A/80		04/25/12	04/27/12	MWT	Gross Alpha in Water
04/11/12	Boeing-SSFL	WATER	8607-002	80B/80		04/25/12	04/27/12	MWT	Gross Beta in Water
04/13/12	440-3828.1		8607-002	AC		04/25/12	05/04/12	MWT	Radium-228 in Water
			8607-002	GAM		04/19/12	04/23/12	MWT	Gamma Emitters in Water
			8607-002	H		04/19/12	05/04/12	MWT	Tritium in Water
			8607-002	RA		05/02/12	05/02/12	BW	Radium-226 in Water
			8607-002	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8607-002	U_T		04/25/12	04/26/12	CSS	Uranium, Total
S204062-03	TRIP BLANK (440-8277-2)		8607-003	80A/80		04/25/12	04/27/12	MWT	Gross Alpha in Water
04/12/12	Boeing-SSFL	WATER	8607-003	80B/80		04/25/12	04/27/12	TWM	Gross Beta in Water
04/13/12	440-3828.1		8607-003	AC		04/25/12	05/04/12	TWM	Radium-228 in Water
			8607-003	GAM		04/20/12	04/23/12	MWT	Gamma Emitters in Water
			8607-003	RA		05/02/12	05/02/12	BW	Radium-226 in Water
			8607-003	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8607-003	U_T		04/25/12	04/26/12	CSS	Uranium, Total
S204062-04	Lab Control Sample		8607-004	80A/80		04/25/12	04/27/12	MWT	Gross Alpha in Water
		WATER	8607-004	80B/80		04/25/12	04/27/12	MWT	Gross Beta in Water
			8607-004	AC.		04/25/12	05/04/12	MWT	Radium-228 in Water
			8607-004	GAM		04/20/12	04/23/12	MWT	Gamma Emitters in Water
			8607-004	Н		04/19/12	05/04/12	MWT	Tritium in Water
			8607-004	RA		05/02/12	05/02/12	BW	Radium-226 in Water
			8607-004	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8607-004	U_T		04/25/12	04/26/12	CSS	Uranium, Total

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LWS</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

3

5

6

0

10

11

SDG <u>8607</u>
Contact <u>Joseph Verville</u>

WORK SUMMARY, cont.

Client <u>Test America</u>, <u>Inc</u>.

Contract <u>44002624</u>

LAB SAMPLE COLLECTED RECEIVED	CLIENT SAMPLE ID LOCATION CUSTODY	MATRIX SAS no	PLANCHET	TEST	SUF-	ANALYZED	REVIEWED	вч	метнор
S204062-05	Method Blank		8607-005	80A/80		04/25/12	04/27/12	MWT	Gross Alpha in Water
		WATER	8607-005	80B/80		04/25/12	04/27/12	MWT	Gross Beta in Water
			8607-005	AC		04/25/12	05/04/12	MWT	Radium-228 in Water
			8607-005	GAM		04/20/12	04/23/12	MWT	Gamma Emitters in Water
			8607-005	H		04/19/12	05/04/12	MWT	Tritium in Water
			8607-005	RA		05/02/12	05/02/12	BW	Radium-226 in Water
			8607-005	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8607-005	u_r		04/25/12	04/26/12	CSS	Uranium, Total
S204062-06	Duplicate (S2040)	62~01)	8607-006	80A/80	•	04/26/12	04/27/12	MWT	Gross Alpha in Water
04/11/12	Boeing-SSFL	WATER	8607-006	80B/80		04/26/12	04/27/12	MWT	Gross Beta in Water
04/13/12			8607-006	AC		04/25/12	05/04/12	MWT	Radium-228 in Water
			8607-006	GAM		04/20/12	04/23/12	MWT	Gamma Emitters in Water
			8607-006	H		04/19/12	05/04/12	MWT	Tritium in Water
			8607-006	RA		05/02/12	05/02/12	BW	Radium-226 in Water
			8607-006	SR		04/24/12	04/30/12	BW	Strontium-90 in Water
			8607-006	U_T		04/25/12	04/26/12	CSS	Uranium, Total

THE CITY	GNG	COUNTS	OF TESTS B		שונה או אוי	Y 00	DEED CELLED	TOTAL
TEST	SAS no	METHOD	REFERENCE	CLIENT MORE	RE BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0	3	ı	1	1	6
80B/80		Gross Beta in Water	900.0	3	1	1	1	6
AC		Radium-228 in Water	904.0	3	1	1	1	6
GAM		Gamma Emitters in Water	901.1	3	1	1	1	6
H .		Tritium in Water	906.0	2	1	1	1	5
RA		Radium-226 in Water	903.1	3	1	1	1	6
SR		Strontium-90 in Water	905.0	3	1	1	1	6
U_T		Uranium, Total	D5174	3	1	1	1	6
TOTALS				23	8	8	8	47

WORK SUMMARY
Page 2
SUMMARY DATA SECTION

Page 7

Page 76 of 134

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 05/08/12

5/17/2012

3

5

7

9

11

8607-005

METHOD BLANK

Method Blank

SDG 8607 Client Test America, Inc.
Contact Joseph Verville Contract 44002624

Lab sample id S204062-05 Client sample id Method Blank
Dept sample id 8607-005 Material/Matrix WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.105	0.29	0.571	3.00	U	80A
Gross Beta	12587472	-0.378	0.68	1.12	4.00	U	80B
Tritium	10028178	12.2	100	171	500	Ŭ	H
Radium-226	13982633	-0.070	0.27	0.518	1.00	U	RA
Radium-228	15262201	0.006	0.16	0.417	1.00	U	AC
Strontium-90	10098972	0.127	0.25	0.518	2.00	U	SR.
Uranium, Total		0	0.008	0.019	1.00	U	UT
Potassium-40	13966002	20.2	38	65.0	25.0	U	GAM
Cesium-137	10045973	1.25	3.0	5.18	20.0	Ū	GAM

QC-BLANK #81577

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 05/08/12

9

5

7

8

10

11

SDG 8607

8607-004

LAB CONTROL SAMPLE

Lab Control Sample

SDG 8607 Client Test America, Inc.
Contact Joseph Verville Contract 44002624

Lab sample id S204062-04 Client sample id Lab Control Sample
Dept sample id 8607-004 Material/Matrix WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	43.3	2.3	0.592	3.00		80A	37.0	1.5	117	75-125	70-130
Gross Beta	33.6	1.3	0.925	4.00		80B	34.0	1.4	99	88-112	70-130
Tritium	2200	160	172	500		н	2440	98	90	88-112	80-120
Radium-226	55.0	2.1	0.621	1.00		RA	50.1	2.0	110	81-119	80-120
Radium-228	4.94	0.50	0.415	1.00		AC	4,42	0.18	112	83-117	60-140
Strontium-90	8.52	0.59	0.309	2.00		SR	8.49	0.34	100	87-113	80-120
Uranium, Total	59,4	6.9	0.193	1.00		U_T	56.5	2.3	105	87-113	80-120
Cobalt-60	101	5.6	4.64	10.0		GAM	108	4.3	94	91-109	80-120
Cesium-137	120	0.48	2.82	20.0		GAM	122	4.9	98	92-108	80-120

QC-LCS #81576

LAB CONTROL SAMPLES

Page 1

SUMMARY DATA SECTION

Page 9

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LCS
Version 3.06
Report date 05/08/12

4

5

6

8

4.0

11

12

1,

8607-006

OUTFALL 018 (440-8282-1)

DUPLICATE

SDG <u>8607</u>

Contact Joseph Verville

DUPLICATE

DUPLICATE

Lab sample id <u>S204062-06</u>

Dept sample id <u>8607-006</u>

ORIGINAL

Lab sample id <u>S204062-01</u>
Dept sample id <u>8607-001</u>

Received <u>04/13/12</u>

Client Test America, Inc.

Contract 44002624

Client sample id OUTFALL 018 (440-8282-1)

Location/Matrix Boeing-SSFL

Collected/Volume 04/11/12 13:45 10.0 L

Chain of custody id 440-3828.1

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD	3σ ΤΟΤ	DER σ
Gross Alpha	0.008	0.51	0.908	3.00	ט	A08	0.114	0.49	0.835	U	-		0.3
Gross Beta	3.59	0.68	0.957	4.00	J	80B	4.32	0.65	0.853		18	43	1.3
Tritium	10.8	110	178	500	U	Н	47.2	100	172	U			0.5
Radium-226	-0.012	0.29	0.543	1.00	U	RA	0.118	0.27	0.477	Ü	-		0.7
Radium-228	-0.052	0.15	0.412	1.00	Ü	AC	-0.120	0.14	0.396	U	-		0.7
Strontium-90	0.002	0.28	0.579	2.00	U	SR	-0.277	0.36	0.981	U	-		1.2
Uranium, Total	0.052	0.010	0.019	1.00	ĭ	U_T	0.047	0.010	0.019	J	10	43	0.7
Potassium-40	0.265	14	25.2	25.0	U	GAM	12.9	14	23.3	Ū	_		1.3
Cesium-137	-0.679	1.7	2.97	20.0	Ū	GAM	0.048	0.89	1.76	U	_		0.8

QC-DUP#1 81578

DUPLICATES

Page 1

SUMMARY DATA SECTION

Page 10

 Lab id
 EAS

 Protocool
 TA

 Version
 Ver 1.0

 Form
 DVD-DUP

 Version
 3.06

 Report date
 05/08/12

4

5

6

Q

4 ^

46

8607-001

OUTFALL 018 (440-8282-1)

DATA SHEET

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.114	0.49	0.835	3.00	Ü	80A
Gross Beta	12587472	4.32	0.65	0.853	4.00		80B
Tritium	10028178	47.2	100	172	500	U	H
Radium-226	13982633	0.118	0.27	0.477	1.00	U	RA
Radium-228	15262201	-0.120	0.14	0.396	1.00	U	AC
Strontium-90	10098972	-0.277	0.36	0.981	2.00	U	SR
Uranium, Total		0.047	0.010	0.019	1.00	J	υT
Potassium-40	13966002	12.9	14	23.3	25.0	U	GAM
Cesium-137	10045973	0.048	0.89	1.76	20.0	Ū	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION

Page 11

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-DS

Version 3.06

Report date 05/08/12

3

4

7

Ŏ

10

11

2

EBERLINE ANALYTICAL SDG 8607

8607-002

DATA SHEET

OUTFALL 002 (440-8277-1)

	8607 Joseph Verville	Client Contract	Test America, Inc. 44002624	
Lab sample id Dept sample id Received	8607-002 04/13/12	Location/Matrix	04/11/12 14:50 10.0 L	

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.226	0.51	0.872	3.00	ש	80A
Gross Beta	12587472	4.16	0.89	1.26	4.00		80B
Tritium	10028178	5.22	100	172	500	U	H
Radium-226	13982633	0.354	0.31	0.497	1.00	Ŭ	RA
Radium-228	15262201	-0.025	0.13	0.381	1.00	Ŭ	AC
Strontium-90	10098972	0.378	0.45	0.901	2.00	Ŭ	SR
Uranium, Total		0.147	0.018	0.019	1.00	J	UΤ
Potassium-40	13966002	-7.20	18	31.8	25.0	Ū	GAM
Cesium-137	10045973	-0.824	1.8	3.23	20.0	U	GAM

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 05/08/12

4

5

7

9

10

$\hbox{\tt E} \hbox{\tt B} \hbox{\tt E} \hbox{\tt R} \hbox{\tt L} \hbox{\tt I} \hbox{\tt N} \hbox{\tt E} \hspace{0.5cm} \hbox{\tt A} \hbox{\tt N} \hbox{\tt A} \hbox{\tt L} \hbox{\tt Y} \hbox{\tt T} \hbox{\tt I} \hbox{\tt C} \hbox{\tt A} \hbox{\tt L} \\$

SDG 8607

8607-003

TRIP BLANK (440-8277-2)

DATA SHEET

1	8607 Joseph Verville		Test America, Inc. 44002624
Lab sample id Dept sample id Received	8607-003 04/13/12	Location/Matrix	04/12/12 14:13 10.0 L

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.051	0.17	0.332	3.00	Ū	A08
Gross Beta	12587472	-0.209	0.48	0.821	4.00	U	80B
Radium-226	13982633	0.250	0.32	0.526	1.00	U	RA
Radium-228	15262201	-0.032	0.13	0.371	1.00	U	AC
Strontium-90	10098972	0.079	0.44	0.988	2.00	U	SR
Uranium, Total		0	0.008	0.019	1.00	U	U_T
Potassium-40	13966002	4.50	17	30.0	25.0	U	GAM
Cesium-137	10045973	0.219	0.61	1.86	20.0	Ū	GAM

DATA SHEETS
Page 3
SUMMARY DATA SECTION
Page 13

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

3

.

6

_

10

11

SDG 8607

Test AC Matrix WATER SDG 8607 Contact <u>Joseph Verville</u>

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING

Radium-228

IJ

U

ok

Client Test America, Inc.

Contract 44002624

RESULTS

S204062-01

S204062-02

S204062-03

S204062-04

5204062-05

S204062-06

S204062-01

5204062-02

S204062-03

S204062-04

S204062-05

S204062-06

LAB

RAW SUF-

SAMPLE ID TEST FIX PLANCHET

Preparation batch 7726-059

8607-001 8607-002

8607-006

OUTFALL 018 (440-8282-1) OUTFALL 002 (440-8277-1) TRIP BLANK (440-8277-2) 8607-003

CLIENT SAMPLE ID

8607-004 Lab Control Sample 8607-005 Method Blank

Nominal values and limits from method

RDLs (pCi/L)

Duplicate (S204062-01)

1.00

METHOD PERFORMANCE

LAB RAW SUF-SAMPLE ID

TEST FIX CLIENT SAMPLE ID Preparation batch 7726-059

MDA pCi/L

0.396

0.381

0.371

0.415

0.417

0.412 1.80

2σ prep error 10.4 % Reference Lab Notebook 7724 pg. 119

1.80

1.80

1.80

1.80

1.80

PREP DILU- YIELD EFF COUNT FWHM DRIFT DAYS FAC TION

85

91

87

84

83

min keV KeV HELD PREPARED YZED DETECTOR

150

150

150

150

150

150

14 04/25/12 04/25 GRB-221

14 04/25/12 04/25 GRB-222 13 04/25/12 04/25 GRB-223

ANAL-

04/25/12 04/25 GRB-224 04/25/12 04/25 GRB-225 14 04/25/12 04/25 GRB-227

30-105 1.00 1.80 50 180

PROCEDURES REFERENCE

Nominal values and limits from method

904.0

Sequential Separation of Actinium-228 and

OUTFALL 018 (440-8282-1)

OUTFALL 002 (440-8277-1)

TRIP BLANK (440-8277-2)

Duplicate (S204062-01)

Lab Control Sample

Method Blank

Radium-226 in Drinking Water (>1 Liter Aliquot),

AVERAGES ± 2 SD FOR 6 SAMPLES

 $MDA = 0.399 \pm 0.039$

YIELD 86 ± 6

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 14

Lab id EAS

Protocol TA

Version <u>Ver 1.0</u>

Form DVD-LMS

Version 3.06 Report date 05/08/12 SDG 8607

Test SR Matrix WATER
SDG 8607
Contact Joseph Verville

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER BETA COUNTING Client Test America, Inc.

Contract 44002624

RESULTS

AB RAW SUF-

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Strontium-90 Preparation batch 7726-059 S204062-01 8607-001 OUTFALL 018 (440-8282-1) OUTFALL 002 (440-8277-1) S204062-02 8607-002 \$204062-03 8607-003 TRIP BLANK (440-8277-2) Lab Control Sample S204062-04 8607-004 ok S204062-05 8607-005 Method Blank S204062-06 8607-006 Duplicate (S204062-01) Nominal values and limits from method RDLs (pCi/L) 2.00

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU-	YIELD %	EFF %	COUNT min	 		PREPARED	ANAL- YZED	DETECTOR
Preparation	. batch 7726-059 2σ prep error 10	.4 % Rei	ference	Lab N	oteboo}		pg.						
S204062-01 S204062-02	OUTFALL 018 (440-8282-1) OUTFALL 002 (440-8277-1)	0.981 _ 0.901				80 84		50 50			04/24/12	·	
\$204062-03	TRIP BLANK (440-8277-2)	0.988				77		50			04/24/12		
S204062-04	Lab Control Sample	0.309	1.00			75		100			04/24/12	04/24	GRB-229
\$204062-05	Method Blank	0.518	1.00			79		50			04/24/12	04/24	GRB-225
S204062-06	Duplicate (S204062-01)	0.579	0.500			76		100		13	04/24/12	04/24	GRB-230
Nominal val	ues and limits from method	2.00	1.00			30-105	<u> </u>	50		180			

PROCEDURES REFERENCE 905.0

CP-380 Strontium in Water Samples, rev 5

AVERAGES ± 2 SD MDA 0.713 ± 0.567 FOR 6 SAMPLES YIELD 78 ± 7

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 15

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 05/08/12

3

4

O —

1

9

11

SDG 8607

Test 80A Matrix WATER

SDG 8607

Contact Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client Test America, Inc.
Contract 44002624

RESULTS

LAB RAW SUF-

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alpha
Preparation	batch 772	6-059		
S204062-01	80	8607-001	OUTFALL 018 (440-8282-1)	U
S204062-02	80	8607-002	OUTFALL 002 (440-8277-1)	U
S204062-03	80	8607-003	TRIP BLANK (440-8277-2)	Ü
\$204062-04	80	8607-004	Lab Control Sample	ok
S204062-05	80	8607-005	Method Blank	Ü
S204062-06	80	8607-006	Duplicate (S204062-01)	- Ū

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	뫔	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 772	6-059 2σ prep error 20).6 % Re	eference	Lab N	lotebool	c 7724	pg.	119						
S204062-01	80	OUTFALL 018 (440-8282-1)	0.835	0.300			104		400			14	04/24/12	04/25	GRB-109
5204062-02	80	OUTFALL 002 (440-8277-1)	0.872	0.200			67		400			14	04/24/12	04/25	GRB-111
S204062-03	80	TRIP BLANK (440-8277-2)	0.332	0.300			0		400			13	04/24/12	04/25	GRB-112
S204062-04	80	Lab Control Sample	0.592	0.300			60		400				04/24/12	04/25	GRB-105
S204062-05	80	Method Blank	0.571	0.300			62		400				04/24/12	04/25	GRB-107
\$204062-06	80	Duplicate (S204062-01)	0.908	0.300			105		400			15	04/24/12	04/26	GRB-105
<u> </u>															
Nominal val	ues and li	mits from method	3.00	0.300			0-25	0	100			180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 0.685 ± 0.450 FOR 6 SAMPLES RESIDUE 66 ± 77

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 16

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 05/08/12

3

9

11

12

Н

SDG 8607

Test 80B Matrix WATER SDG <u>8607</u>

Contact Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER

GAS PROPORTIONAL COUNTING

Client Test America, Inc.

Contract <u>44002624</u>

RESULTS

\$204062-05 80

S204062-06 80

LAB

RAW SUF-

SAMPLE ID TEST FIX PLANCHET

CLIENT SAMPLE ID

OUTFALL 018 (440-8282-1)

OUTFALL 002 (440-8277-1)

Gross Beta

4.32

4.16

U

ok

ŢΤ

Preparation batch 7726-059 S204062-01 80 8607-001

S204062-02 80 8607-002 S204062-03 80 8607-003 S204062-04 80

8607-004 8607-005

TRIP BLANK (440-8277-2) Lab Control Sample Method Blank 8607-006

Duplicate (S204062-01)

RDLs (pCi/L)

ok 4.00

METHOD PERFORMANCE

Nominal values and limits from method

RAW SUF-MDA ALIQ PREP DILU- RESID EFF COUNT FWHM DRIFT DAYS ANAL-SAMPLE ID TEST FIX CLIENT SAMPLE ID pCi/L FAC TION min keV KeV HELD PREPARED YZED DETECTOR Preparation batch 7726-059 2σ prep error 11.0 % Reference Lab Notebook 7724 pg. 119 S204062-01 80 OUTFALL 018 (440-8282-1) 0.853 0.300 104 400 14 04/24/12 04/25 GRB-109 OUTFALL 002 (440-8277-1) 1.26 0.200 67 400 14 04/24/12 04/25 GRB-111 S204062-02 80 S204062-03 80 TRIP BLANK (440-8277-2) 0.821 0.300 0 400 13 04/24/12 04/25 GRB-112 S204062-04 80 Lab Control Sample 0.925 0.300 400 04/24/12 04/25 GRB-105 60 S204062-05 80 Method Blank 1.12 0.300 62 400 04/24/12 04/25 GRB-107 Duplicate (S204062-01) 0.957 0.300 105 400 15 04/24/12 04/26 GRB-105 S204062-06 80 Nominal values and limits from method 4.00 0.300 0-250 100 180

PROCEDURES REFERENCE 900.0

Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES \pm 2 SD

MDA 0.989 ± 0.338

FOR 6 SAMPLES

RESIDUE 66 ± 77

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 17

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date 05/08/12

SDG 8607

Test GAM Matrix WATER SDG 8607

Contact Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER GAMMA SPECTROSCOPY

Client Test America, Inc. Contract 44002624

RESULTS

RAW SUF-

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Cobalt-60 Cesium-137 Preparation batch 7726-059 S204062-01 8607-001 OUTFALL 018 (440-8282-1) υ S204062-02 8607-002 OUTFALL 002 (440-8277-1) U 5204062-03 8607-003 TRIP BLANK (440-8277-2) U S204062-04 8607-004 Lab Control Sample ok ok Method Blank S204062-05 8607-005 U 8607-006 Duplicate (S204062-01) U S204062-06 RDLs (pCi/L) 10.0 20.0 Nominal values and limits from method

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	AIETD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ક	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	. batch 7726-059 2σ prep error 7.	0 % R	Reference	Lab :	Notebool	c 7724	pg.	119						,
S204062-01	OUTFALL 018 (440-8282-1)		2.00					400			8	04/19/12	04/19	MB,G8,0
S204062-02	OUTFALL 002 (440-8277-1)		2.00					400			8	04/19/12	04/19	MB,G3,0
S204062-03	TRIP BLANK (440-8277-2)		2.00					400			8	04/19/12	04/20	MB,G3,0
\$204062-04	Lab Control Sample		2.00					400				04/19/12	04/20	MB,G4,0
S204062-05	Method Blank		2.00					400				04/19/12	04/20	MB,G5,0
\$204062-06	Duplicate (S204062-01)		2.00					400			9	04/19/12	04/20	MB,G8,0
							*							
Nominal val	ues and limits from method	6.00	2.00					400			180			

PROCEDURES REFERENCE 901.1

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 18

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>05/08/12</u>

Preparation of Drinking Water Samples for Gamma

Spectroscopy, rev 5

SDG 8607

KINETIC PHOSPHORIMETRY

Test <u>U T</u> Matrix <u>WATER</u> SDG <u>8607</u>

Contact Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

URANIUM, TOTAL

RESULTS

LAB	RAW SUF-		Uranium,
SAMPLE ID	TEST FIX PLAN	ICHET CLIENT SAMPLE ID	Total
Preparation	n batch 7726-059	1	
5204062-01	8607	-001 OUTFALL 018 (440-8282-1)	0.047 J
S204062-02	8607	-002 OUTFALL 002 (440-8277-1)	0.147 J
S204062-03	8607	7-003 TRIP BLANK (440-8277-2)	U
S204062-04	8607	-004 Lab Control Sample	ok
S204062-05	8607	-005 Method Blank	Ū
\$204062-06	8607	-006 Duplicate (S204062-01)	ok J
Nominal val	lues and limits	from method RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	₩	°k	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7726-059 2σ prep error	Ref	ference	Lab N	otebool	c 7724	pq.	119						
S204062-01	OUTFALL 018 (440-8282-1)	0.019	0.0200				1.5				14	04/25/12	04/25	KPA-001
5204062-02	OUTFALL 002 (440-8277-1)	0.019	.0200								14	04/25/12	04/25	KPA-001
S204062-03	TRIP BLANK (440-8277-2)	0.019	0.0200								13	04/25/12	04/25	KPA-001
5204062-04	Lab Control Sample	0.193 0	0.0200									04/25/12	04/25	KPA-001
S204062-05	Method Blank	0.019 0	0.0200									04/25/12	04/25	KPA-001
5204062-06	Duplicate (S204062-01)	0.019 0	0.0200								14	04/25/12	04/25	KPA-001
														·
Nominal val	ues and limits from method	1.00 0	0.0200								180			

PROCEDURES REFERENCE D5174

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 19

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-LMS
Version 3.06

Report date 05/08/12

3

5

a

10

10

SDG 8607

Test H Matrix WATER
SDG 8607
Contact Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

RESULTS

LAB RAW SUF-

SAMPLE ID TEST	FIX PLANCHET	CLIENT SAMPLE ID	Tritium
Preparation batch	7726-059		
S204062-01	8607-001	OUTFALL 018 (440-8282-1)	ΰ
S204062-02	8607-002	OUTFALL 002 (440-8277-1)	σ
S204062-04	8607-004	Lab Control Sample	ok
\$204062-05	8607-005	Method Blank	U
S204062-06	8607-006	Duplicate (S204062-01)	- U

METHOD PERFORMANCE

HHIHOD	I DRI ORMINOD													
LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	8	ક	min	keV	KeV	HELL	PREPARED	YZED	DETECTOR
Preparation	batch 7726-059 2σ prep error 10	1.0 %	Reference	Lab N	loteboo!	k 7724	рg.	119						
S204062-01	OUTFALL 018 (440-8282-1)	172	0.0100			100		150			8	04/19/12	04/19	LSC-006
5204062-02	OUTFALL 002 (440-8277-1)	172	0.0100			100		150			8	04/19/12	04/19	LSC-006
S204062-04	Lab Control Sample	172	0.100			10		150				04/19/12	04/19	LSC-006
S204062-05	Method Blank	171	0.100			10		150				04/19/12	04/19	LSC-006
S204062-06	Duplicate (S204062-01)	178	0.0100			100		150			8	04/19/12	04/19	LSC-006
						 								
Nominal val	ues and limits from method	500	0.0100					100			180			

PROCEDURES REFERENCE 906.0

DWP-212 Tritium in Drinking Water by Distillation, rev 8

AVERAGES ± 2 SD MDA 173 ± 5.66

FOR 5 SAMPLES YIELD 64 ± 99

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 20

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 05/08/12

4

5

7

ŏ

10

11

SDG 8607

Test RA Matrix WATER
SDG 8607
Contact Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING

Client <u>Test America</u>, Inc.

Contract 44002624

RESULTS

LAB RAW SUF-

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Radium-226 Preparation batch 7726-059 OUTFALL 018 (440-8282-1) U S204062-01 8607-001 S204062-02 8607-002 OUTFALL 002 (440-8277-1) 8607-003 TRIP BLANK (440-8277-2) 5204062-03 Ū S204062-04 8607-004 Lab Control Sample ok \$204062-05 8607-005 Method Blank S204062-06 8607-006 Duplicate (S204062-01)

1.00

RDLs (pCi/L)

METHOD PERFORMANCE

Nominal values and limits from method

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ક્	왕	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
											·········			
Preparation	n batch 7726-059 2σ prep err	or 16.4 % Re	ference	Lab N	oteboo	k 7724	pg.	119						
S204062-01	OUTFALL 018 (440-828	2-1) 0.477	0.100			100		120			21	05/02/12	05/02	RN-012
S204062-02	OUTFALL 002 (440-827	7-1) 0.497	0.100			100		120			21	05/02/12	05/02	RN-010
S204062-03	TRIP BLANK (440-8277	-2) 0.526	0.100			100		120			20	05/02/12	05/02	RN-011
S204062-04	Lab Control Sample	0.621	0.100			100		120				05/02/12	05/02	RN-009
S204062-05	Method Blank	0.518	0.100			100		120				05/02/12	05/02	RN-013
S204062-06	Duplicate (S204062-0	1) 0.543	0.100			100		120			21	05/02/12	05/02	RN-015
Nominal val	lues and limits from method	1.00	0.100					100			180			

PROCEDURES REFERENCE 903.1

DWP-881A Ra-226 Screening in Drinking Water, rev 6

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 21

 3

6

8

9

11

12

:

.

SDG 8607

SDG <u>8607</u>
Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.

QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.

* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 22

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

5

9

8

10

11

12

Н

SDG 8607

SDG <u>8607</u>

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u>

Contract 44002624

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

Lab id $\overline{\text{EAS}}$ Protocol $\overline{\text{TA}}$

Version Ver 1.0

Form <u>DVD-RG</u> Version <u>3.06</u>

Report date <u>05/08/12</u>

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 23

4

7

9

11

12

1,

SDG 8607

SDG <u>8607</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>

Contract <u>44002624</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 24

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

7

Q

10

SDG <u>8607</u>

Contact Joseph Verville

REPORT GUIDE

Client Test America, Inc.

Contract <u>44002624</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES
Page 4
SUMMARY DATA SECTION
Page 25

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

- 5

5

7

8

4.0

11

12

L

SDG <u>8607</u>

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>

Contract 44002624

DATA SHEET

J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 26

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>05/08/12</u>

- 5

5

0

8

10

11

SDG 8607

SDG <u>8607</u>

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 27

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

Page 96 of 134

5/17/2012

3

E

6

0

10

SDG 8607

SDG <u>8607</u>
Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>. Contract <u>44002624</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 28

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

5

6

ا

9

11

12

Ш

SDG <u>8607</u>

Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc.</u> Contract 44002624

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 29

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>05/08/12</u>

5

6

8

46

11

SDG 8607

SDG <u>8607</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

DUPLICATE

2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.

- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 30

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

Page 99 of 134

5/17/2012

3

E

6

8

9

11

12

Ш

SDG 8607

SDG <u>8607</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 31

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

7

10

12

K

SDG 8607

SDG <u>8607</u>

Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>

Contract <u>44002624</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 32

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

2

4

5

7

8

10

11

12

SDG 8607

SDG <u>8607</u> Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 33

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

7

0

10

11

SDG 8607

SDG <u>8607</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 34

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

7

5

6

8

10

10

SDG 8607

SDG <u>8607</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>

Contract 44002624

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like ' $1\div3$ ' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 35

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>05/08/12</u>

4

5

6

8

9

4 4

12

SDG 8607

SDG <u>8607</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>

Contract 44002624

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES

Page 15

SUMMARY DATA SECTION

Page 36

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 05/08/12

1

5

6

8

46

11

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING Special Instructions/Note: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Moni Сотрапу Preservation Codes ි ර Page: Page 1 of 1 COC No: 440-3828.1 440-8282-1 Total Number of containers: Method of Shipment **Analysis Requested** Cooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirements: SUBCONTRACT/ Gamma Spec K-40 CS-137 Chain of Custody Record × SUBCONTRACT\ Uranium, Combined E-Mail: debby.wilson@testamericainc.com × SUBCONTRACT/ Tritium × × × × Lab PM: Wilson, Debby Time: S=solld, O=wsste/oll, Matrix Water Company Sample Type (C=comb) G=grab 17:02 Sample Pacific Due Date Requested: 4/25/2012 TAT Requested (days): Sample Date 4/11/12 Project #: 44002624 SOCIOON - 8601 Date/Time: Phone: ₩ON Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Phone (949) 261-1022 Fax (949) 260-3297 Custody Seal No.: Sample Identification - Client ID (Lab ID) (コピレスペイ) Possible Hazard Identification **TestAmerica Irvine** 17461 Derian Ave Suite 100 Empty Kit Relinquished by: Irvine, CA 92614-5817 Outfall 018 (440-8282-1) Custody Seals Intact: Address: 2030 Wright Avenue Project Name: Boeing SSFL outfalls Client Contact; Shipping/Receiving △ Yes △ No Company: Eberline Services Boeing SSFL elinquished by: elinquished by: Relinquished by: Jnconfirmed State, Zip. CA, 94804 Richmond Phone:

0 - ASNAOZ 0 - NAZOAS 0 - NAZOSO3 R - NAZOSO3 S - HZSO4 I - TSP Dodecatydrate U - Acetone **TestAmerica** THE LEAGER IN ENVIRORMENTAL TESTING Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Preservation Codes: G - Zn Acetate D - Nitrio Acid E - NaHSO4 F - MeOH G - Amchlor H - Ascorbio Acid Page: Page 1 of 1 440-8277-1 J - DI Water K - EDTA L - EDA 440-3828.1 Archive For Total Number of containers Method of Shipment: Disposal By Lab Analysis Requested Cooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirements: SUBCONTRACT/ Gamma Spec K-40 CS-137 × × Chain of Custody Record × × SUBCONTRACT/ Uranium, Combined Lab PM: Wilson, Debby E-Mait debby wilson@testamericainc.com × MUITH TOARTNOORUR Return To Client × × × Received by: × × Time: Matrix (W=water, S=solid, O=waste/oll, Water Water Company (С≡сошр, Sample G=grab) Type $\mathcal{S}'_{\mathcal{S}}$ Sample Pacific 14:13 Pacific Due Date Requested: 4/25/2012 TAT Requested (days): Date: Sample Date 4/12/12 4/11/12 2304063 - 8607 Project#: 44002624 Date/Time: Sampler: Phone: # OM Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297 Sample Identification - Client ID (Lab ID) Possible Hazard Identification TestAmerica Irvine 17461 Derian Ave Suite 100 empty Kit Relinquished by: Outfall 002 (440-8277-1) Custody Seals Intact: Δ Yes Δ No Trip Blank (440-8277-2) Address: 2030 Wright Avenue, Boeing SSFL outfalls Shipping/Receiving Company: Eberline Services Boeing SSFL Inconfirmed Relinquished by: ient Contact State, Zip: CA, 94804 Richmond roject Name .auoue

	1102)	<u> </u>	Calibration date Calibration date Calibration date		287001	.01	on Chamber Ser. A pha Meter Ser. A sta/Gamma Mete
							/
əqiw	lon Chamber mR/br	Beta/Gamma mgo	Сизютег Sample No.	ədiW	јол Сћатрет т.К/ћг	BetakGamma	Customer Sample No. HC JCcoo
		Container []	9[] Broken	Leakin	od condition [v	s ste: In go	11. Sample: 12. Sample:
لر	[√] slədal əlqr	[] oN	. (Or see CoC Yes [V] Yes [√] ?ad labels []		: container samples?	of containers of sortect of age	8. Sample: 9. Paperwi
/ *// [/]	A\N [] ON A\N [] ON A\N [] ON [] ON [] \N G	[] səY [] səY [] jəW T M Xi		əngiz & bəts: «:	ple containers d	mes no sleas v v seals on sam material is: of samples io	4 Custody 5. Packing
[]	A\N [] ON A\N [] ON	[V] 29Y V] 29Y	NOITO	Staetr		qida no alsea y qida no alsea y	.4
	[] ON []	seY beviece) -3828;		•		Date/Time recei
	th)	etat2					Client: 7ES

Fþrm SCP-02, 07-30-07

"over 55 years of quality nuclear services"

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: TestAmerica Analytical - Irvine

17461 Derian Avenue, Suite 100

Project Name: Boeing SSFL outfalls

Project Number: 44002624 P.O. Number: 440-8282-1

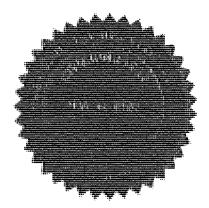
Release Number: 440-8282-1

Samples Received on 4/13/2012

Laboratory No. 801024 Page 1 of 2 Irvine, CA 92614 Printed 4/23/2012 Attention: Debby Wilson

Field ID				Lab ID	Co	llected	Matrix		
Outfall 018 (440-8282 O	utfall 018 (440)-8282-1)		801024-001	04/11	1/2012 13:45	Wat	er	
EPA 8315 M-Hydrazines	s (water)		Batch	709867					
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result	
801024-001 Hydrazine		ug/L	04/14	/2012 19:14	1	0.439	1.00	ND	
Monomethyl Hydra:	zine	ug/L	04/14	/2012 19:14	1	1.77	5.00	ND	
Unsymmetrical Dim	nethyl Hydrazine	ug/L	04/14	/2012 19:14	1	1.13	5.00	ND	
Method Blank				,					
Parameter	Unit	DF	Result						
Hydrazine	ug/L	1	ND						
Monomethyl Hydrazine	ug/L	1	ND						
Unsymmetrical Dimethyl H	ydr: ug/L	1	ND						
Lab Control Sample									
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range	
Hydrazine	ug/L	1	9.38	10.0		93.8	50 - 150)	
Monomethyl Hydrazine	ug/L	1	34.7	50.0		69.4	50 - 150)	
Unsymmetrical Dimethyl H	ydr: ug/L	1	34.2	50.0		68.4	50 - 150)	
Lab Control Sample	Duplicate								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range	
Hydrazine	ug/L	1	8.65	10.0		86.5	50 - 150)	
Monomethyl Hydrazine	ug/L	1	39.9	50.0		79.8	50 - 150)	
Un s ymmetrical Dimethyl H	ydr⊱ug/L	1	40.7	50.0		81.4	50 - 150)	

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. Page 109 of 134 5/17/2012 Report Continued


Client: TestAmerica Ana	lytical - Irvir	ne	Project Name: Project Number:	Boeing SSFL outfa 44002624	alls	Page 2 of 2 Printed 4/23/2012
Matrix Spike						Lab ID = 801024-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Hydrazine	ug/L	1	6.43	10.0(10.0)	64.3	45 - 146
Monomethyl Hydrazine	ug/L	1	35.2	50.0(50.0)	70.4	7 - 149
Unsymmetrical Dimethyl Hy	ydra ug/L	1	33.8	50.0(50.0)	67.6	45 - 137
Matrix Spike Duplicat	e					Lab ID = 801024-001
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Range
Hydrazine	ug/L	1	6.39	10.0(10.0)	63.9	45 - 146
Monomethyl Hydrazine	ug/L	1	38.5	50.0(50.0)	77.0	7 - 149
Unsymmetrical Dimethyl Hy	ydr: ug/L	1	36.1	50.0(50.0)	72.2	45 - 137
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Hydrazine	ug/L	1	10.4	10.0	104	85 - 115
Monomethyl Hydrazine	ug/L	1	48.8	50.0	97.6	85 - 115
Unsymmetrical Dimethyl Hy	ydra ug/L	1	52.3	50.0	105.	85 - 115
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Hydrazine	ug/L	1	5.44	5.00	109.	85 - 115
Monomethyl Hydrazine	ug/L	1	24.6	25.0	98.4	85 - 115
Unsymmetrical Dimethyl Hy	ydr: ug/L	1	25.7	25.0	103.	85 - 115

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Jeff Lee

Assistant Project Manager

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Aquatic Testing Laboratories

Date:

April 18, 2012

Client:

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-12041207-001

Job No.:

440-8282-1

Sample I.D.:

Outfall 018 (440-8282-1)

Sample Control:

The sample was received by ATL chilled, within the recommended hold time and with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled:

04/11/12

Date Received:

04/12/12

Temp. Received:

5.8°C

Chlorine (TRC):

0.0 mg/l

Date Tested:

04/12/12 to 04/18/12

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample. All testing was conducted under the direct supervision of Joseph A. LeMay. Daily test readings were taken by Joseph A. LeMay (initialed: JAL) and Jacob LeMay (initialed: J).

Result Summary:

Chronic:

NOEC

<u>TUc</u>

Ceriodaphnia Survival:

Ceriodaphnia Reproduction:

100 % 100 % 1.0 1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-12041207-001

Date Tested: 04/12/12 to 04/18/12

Client/ID: TestAmerica - Outfall 018 (440-8282-1)

TEST SUMMARY

Test type: Daily static-renewal.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

QA/QC Batch No.: RT-120403.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

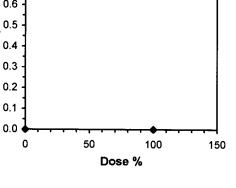
RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	20.5
100% Sample	100%	22.7
Sample not statistically	significantly less than Co	ontrol for either endpoint.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY


Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (20.5 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 16.2%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

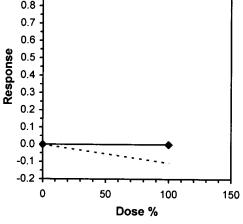
			Cerioda	phnia Sur	vival and	Reprodu	uction Tes	t-Surviva	al Day 6	
End Date: Sample Date:	4/12/2012 4/18/2012 4/11/2012	15:00	Test ID: Lab ID: (Protocol: I		uatic Test	ting Labs	Sample ID Sample Ty Test Spec	/pe:		3 Iustrial stormwater Iaphnia dubia
Comments:										•
Conc-%	1	2	3	4	5	6	7	8	9	10
	1.0000	2	3	4 1.0000	5 1.0000	6	7	8 1.0000	9 1.0000	10

				Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TÜ		··	
Fisher's Exa	ct Test		100	>100	-	1			
Treatments	vs D-Control								
				Line	ar Interpo	lation (20	0 Resamples)		
Point	%	SD	95%		Skew	•	• •		
IC05	>100		***				· · · · · · · · · · · · · · · · · · ·		
IC10	>100								
IC15	>100						1.0		
IC20	>100						4		
IC25	>100						0.9		
IC40	>100						0.8 -		
IC50	>100						<u>, , 1</u>		
					****		0.7		
							% 0.6 -		
							ا م ق		
							9.06 - 0.5 - 0.4 - 0.4 - 0.4		
							№ 0.4 -		

0.3 0.2 0.1

Ceriodaphnia Survival and Reproduction Test-Reproduction										
Start Date: 4/12/2012 14:30 End Date: 4/18/2012 15:00 Sample Date: 4/11/2012 13:45 Comments:			Test ID: 12041207c Lab ID: CAATL-Aquatic Testing Lab ID: FWCH-EPA-821-R-02-013			ting Labs			Outfall 018 SRW2-Industrial stormwater CD-Ceriodaphnia dubia	
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	21.000	21.000	22.000	16.000	21.000	24.000	12.000	21.000	23.000	24.000
100	25.000	17.000	23.000	24.000	28.000	22.000	26.000	24.000	12.000	26.000


			Transform: Untransformed			Rank	1-Tailed	Isotonic			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	20.500	1.0000	20.500	12.000	24.000	18.288	10	****	······································	21,600	
100	22.700	1.1073	22.700	12.000	28.000	21.081	10	129.50	82.00	21.600	

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.83651	0.905	-1.4159 1.45813
F-Test indicates equal variances (p = 0.48)	1.62925	6.54109	
Hypothesis Tost (1 tail 0.05)	*******		

Hypothesis Test (1-tail, 0.05)
Wilcoxon Two-Sample Test indicates no significant differences

Treatments vs D-Control

	Linear Interpolation (200 Resamples)								
Point	%	SD	95% CL	Skew	• •				
IC05	>100				·				
IC10	>100								
IC15	>100				1.0				
IC20	>100				4				
IC25	>100				0.9				
IC40	>100				0.8 -	Į.			
IC50	>100				0.7				
					0.6				
					% 0.5 -				
					98 0.5 0.4				

			Cerioda	phnia Su	rvival and	Reprodu	iction Tes	t-Reprod	uction	
Start Date:	4/12/2012	14:30	Test ID:	12041207	С		Sample ID	:	Outfall 018	3
End Date:	4/18/2012	15:00	Lab ID: (CAATL-Aq	uatic Test	ing Labs S	Sample Ty	rpe:	SRW2-Ind	lustrial stormwater
Sample Date:	4/11/2012	13:45	Protocol: I	FWCH-FP	A-821-R-0	02-013	Test Spec	ies:	CD-Ceriod	laphnia dubia
campic bate.	7/11/2012	10.10								
Comments:	471172012	10.40								
	1	2	3	4	5	6	7	8	9	10
Comments:	1	21.000	3 22.000	4 16.000		6 24.000	7 12.000	8 21.000	9 23.000	•

				Transforn	n: Untran	sformed		_	1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD
D-Control	20.500	1.0000	20.500	12.000	24.000	18.288	10			
100	22.700	1.1073	22.700	12.000	28.000	21.081	10	-1.144	1.730	3.326

Auxiliary Tests			•	•	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution (p <= 0.05)		0.83651		0.905		-1.4159	1.45813
F-Test indicates equal variances	(p = 0.48)				1.62925		6.54109			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	3.32572	0.16223	24.2	18.4778	0.26744	1, 18
Treatments vs D-Control										

CERIODAPHNIA DUBIA CHRONIC BIOASSAY **EPA METHOD 1002.0 Raw Data Sheet**

Lab No.: A-12041207-001

Client ID: TestAmerica - Outfall 018 (440-8282-1) Start Date: 04/12/2012

Client ID: 7	TestAmeri	ica - O	utfall (18 (44)-8282-1	.)						Start	Date: 04	/12/20	12
		D,	AY I		DAY 2		DAY 3	DA	Y 4	DA	Y 5	D/	AY 6	D.	AY 7
		0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr
Analyst I	nitials:		12		2	0	1	· · · · ·		M	-1	1	M		
Time of R	eadings:	1430	1400	140	V 1400	140	0 1400	1400	140	/HW	1400	1400	1500	_	
	DO	8.1	815	8.5	83	94	8. 3	8.1	8-1	8.2	75	8.7	7-9	_	
Control	pН	8,2	8,2	8.2	8.1	8.1	8.1	8.2	8.1	8.2	8.0	8.2	8./		_
	Temp	24.4	242	24.6	24.4	24.3	24.3	24.5	24.3	242	24.)	24.3	24.4		1
	DO	8.	8,5	9.3	8. >	9.4	8,1	9.2	8-1	9.6	7.7	4.7	7-7	_	_
100%	pН	7.5	8.1	7.4	_	7.7	8,1	8.1	8.0	26	8.0	7.6	8-0		
	Temp	24.7	243	щ	3 24.4	243	24,5	24.3	243	24.3	24.3	24.7	29.3		
	Ac	lditional	Parame	ters				Cor	ıtrol				100% Sam	ple	
	Co	nductivit	y (umohr	ns)				32					473	,	
	Al	kalinity (mg/I CaC	CO ₃)				le	,				60	, ,	
	 	ardness (1						91	1				120		
	Aı	mmonia (mg/l NH	₃ -N)				0			1		0.4		
							Source of	Neonates			-				
Rep	plicate:		A	В			D	E	F		G	H	I	_	J
Bro	ood ID:		<u>(A</u>	16	2 (210	2E	IG	7 >	H	<u> 1 T</u>	ンエ		×2
Sampl	e	Day		- T	T	П		g Produced	Т	<u> </u>		otal Live Young	No. Live Adults		nalyst nitials
				A F		D		F G	H	I	<u></u>				74
	<u> </u> -	2						<u>ひし</u> つし		$\frac{c}{c}$		0	10	+	
	-	3		00	0		4	7/2			4	4	10	╁	<i>y</i> ,
		4		_	1 2	ч		2 (3	3 4		27	10	1	12
Contro	1	5		6 -	7	0	7	80	6	7 6	7 (56	10	1	m
		6		21	013	12	101	38	12	13 1	2	115	10		M
	<u></u>	7		<u> </u>		-				_	<u> </u>			1	<i></i>
		Total		21 2	122	16	21/2	24/12	121	23/2	4	<u> 205 </u>	10	_	
		1		0 0	0	0	_	<u>ン </u>	0			0	10	-	
	-	2		0	70	0	-, -, -	00	0		2	4	10	1/	
	 	3				4	-, -	2 5	15	C (_	8	10	⊹	
100%		4	$-\parallel$	- [<u> </u>	0	0		3	8	5	5 7	10	+	
	-	6	$-\parallel$	-/. -`	2 10	9	9	11,1	9	0 1	7 -	111	10	+	M
	-			_	<u>v 10</u>	 	15 1		1/2				10	\ <u> </u>	1/
li	- 11	,	- 11												
	F	7 Total		20 1	7 2 3	24	282	726	24	12 -	26	227	10	 	1/2

Circled fourth brood not used in statistical analysis.

7th day only used if <60% of the surviving control females have produced their third brood.

CHAIN OF CUSTODY

Chain of Custody Record

Phone (949) 261-1022 Fax (949) 260-3297	Oznaka			1 25					Topol				DO NO.	023	ENLYP LESING
Client Information (Sub Contract Lab)	Carrie			Wilson	Wilson, Debby				Carrier reacting rectal	ang rao(s).		440-3785.1	785.1		
	Phone:			E-Ma⊪ debby	ı; y.wilson@	E-Mail: debby.wilson@testamerica	cainc.com					Page: Page 1 of 1	of 1		
Company: Aquatic Testing Laboratories							Analysis	sis Req	Requested			Job #: 440-8282-1	82-1		
Address: 4350 Transport #107,	Due Date Requested: 4/25/2012	#									* 1		ation Cod	les:	p
City: Ventura	TAT Requested (days):	/8):			Lucial State									N - None	⊼ ั๋
State, Zip: CA, 93003					uni. na						. 13.4			P - Na204 Q - Na2SC	ខ្លួន
Phone:	PO #:				1%						north the	- and - regions	<u>c</u>	S - H2SO4	R - Nazszso3 S - H2SO4 T - TSP Dodecahydrate
Email:	WO #:				35.2						ii.	A TANKS AFFERS	ξ,	U - Acetone V - MCAA	ดี
Project Name: Boeing SSFL outfalls	Project #: 44002624				<u> </u>							L-EDA	-)	Z - other (specify)	specify)
Site: Boeing SSFL	SSOW#:											Other:			
			Sample Type	Matrix (w=water,	ONTRAC						Number	- Truisity			
Sample Identification - Client ID (Lab ID)	Sample Date		G=grab) _B										Special In	pecial Instructions/Note:	s/Note:
A CONTRACTOR OF THE PROPERTY O	NV K	19:46	Preservation Code		XX.						×				
Outhali 018 (440-8282-1)	4/11/12	Pacific		Water	 					-					
									_						
												4 7 4			
												9.00			
											137				
												25.00			
												Tana			
											u V				
Possible Hazard Identification					Samp	Sample Disposal	(A fee	nay be as	assessed if san Disposal By Lah	may be assessed if samples		are retained longer	ger than 1	(month)	ñ
Deliverable Requested: I, II, III, IV, Other (specify)					Speci	Special Instructions/QC Requirements	ons/QC Re	quiremen	s.						
Empty Kit Welinquished by:		Date:			Time:				Method	Method of Shipment					
Reinay by to the Many	2 The partition	. 13	`.75°	Company) Re	Received by	1	12	}	Date/Time:	12.	121	Σ ₹₹	Company	7
4	Date/Time:			Company 🖊 🗸	Re	Receive by:	7	1		Date/Time:				Company	,
Relinquished by:	Date/Time:		0	Company	\sqrt{v}	R ceived by:				Date/Time:	ne:			Company	
Custody Seals Intact: Custody Seal No.:					S	Cooler Temperature(s) °C and Other Remarks.	iture(s) °C ar	id Other Ren	narks:	5	80				

Ceriodaphnia dubia Chronic Toxicity Test Reference Toxicant Data

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-120403

Date Tested: 04/03/12 to 04/09/12

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 + /- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survi	ival	Mean Numb Young Per F	
Control	100%		23.5	
0.25 g/l	100%		24.3	
0.5 g/l	100%		21.4	
1.0 g/l	100%		16.0	*
2.0 g/l	60%	*	1.4	**
4.0 g/l	0%	*	0	**

^{*} Statistically significantly less than control at P = 0.05 level

** Reproduction data from concentrations greater than survival NOEC are

excluded from statistical analysis.

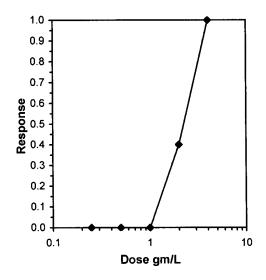
CHRONIC TOXICITY

Survival LC50	2.1 g/l
Reproduction IC25	0.82 mg/l

QA/QC TEST ACCEPTABILITY

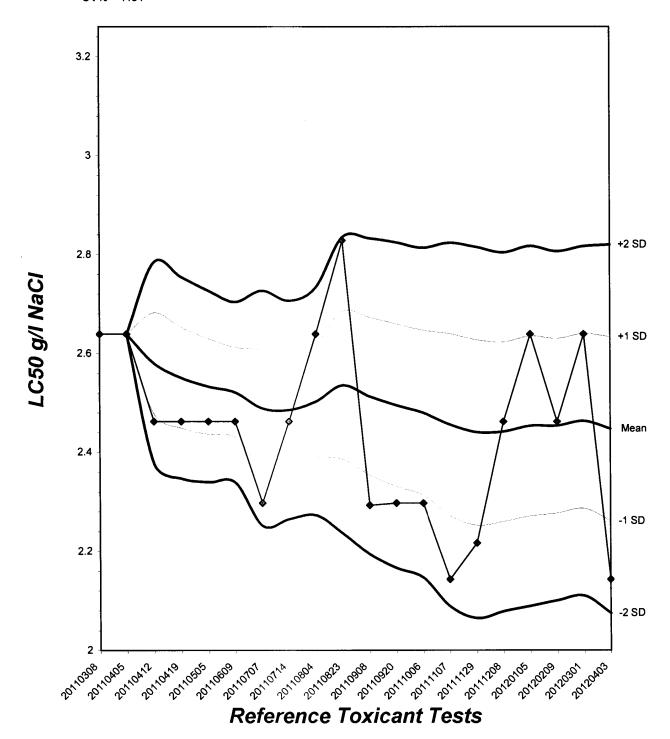
Parameter Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (23.5 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 16.2%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 31.9%)
Concentration response relationship acceptable	Pass (Response curve normal)

			Cerioda	phnia Sur	vival and	Reprodu	uction Tes	t-Surviva	al Day 6	
Start Date:	4/3/2012 1	4:00	Test ID:	RT120403	С		Sample ID	:	REF-Ref T	oxicant
End Date:	4/9/2012 1	4:00	Lab ID:	CAATL-Aq	uatic Test	ing Labs	Sample Ty	/pe:	NACL-Soc	lium chloride
Sample Date:	4/3/2012		Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	1.0000	1.0000
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000


				Not			Fisher's	1-Tailed	Number	Totai
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
*2	0.6000	0.6000	4	6	10	10	0.0433	0.0500	4	10
4	0.0000	0.0000	10	0	10	10			10	10

Treatments vs D-Control

Page 1

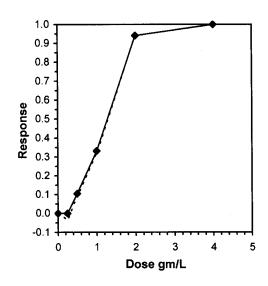

Trimmed Spearman-Karber

Trim Level	EC50	95%	CL	
0.0%	2.1435	1.7293	2.6571	
5.0%	2.1584	1.6984	2.7429	
10.0%	2.1732	1.6538	2.8556	
20.0%	2.2021	1.5017	3.2291	
Auto-0.0%	2.1435	1.7293	2.6571	

Ceriodaphnia Chronic Survival Laboratory Control Chart

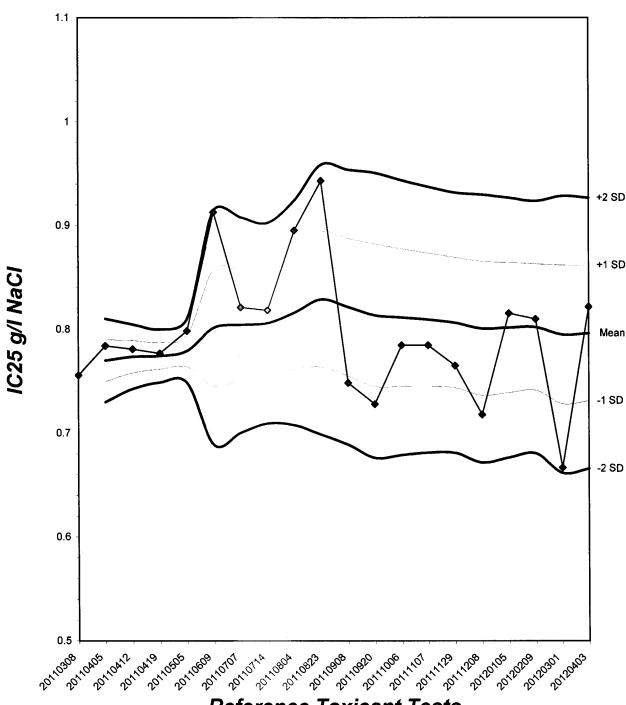
CV% = 7.61

			Ceriod	aphnia Su	rvival and	l Reprod	uction Tes	t-Repro	duction		
Start Date:	4/3/2012	14:00	Test ID:	RT120403	c		Sample ID	:	REF-Ref T	oxicant	
End Date:	4/9/2012	14:00	Lab ID:	CAATL-Ac	quatic Tes t	ting Labs	Sample Ty	rpe:	NACL-Soc	lium chloride	
Sample Date:	4/3/2012		Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Cerioc	laphnia dubia	à
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	-
D-Control	20.000	17.000	25.000	25.000	24.000	27.000	28.000	27.000	20.000	22.000	
0.25	21.000	17.000	29.000	26.00 0	27.00 0	25.000	25.000	27.000	23.000	23.000	
0.5	16.000	14.000	23.000	22.000	24.000	23.000	23.000	23.000	23.000	23.000	
1	15.000	17.000	8.000	20.000	23.000	15.000	12.000	22.000	9.000	19.000	
2	0.000	0.000	0.000	2.000	4.000	3.000	0.000	0.000	0.000	5.000	
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	


	-		•	Transforn	n: Untran	sformed		Rank	1-Tailed	Isoto	onic
Conc-gm/L	Mean	N-Mean -	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	23.500	1.0000	23.500	17.00 0	28.000	15.441	10			23.900	1.0000
0.25	24.300	1.0340	24.300	17.000	29.000	14.262	10	111.50	77.00	23.900	1.0000
0.5	21.400	0.9106	21.400	14.000	24.000	16.067	10	87.00	77.00	21.400	0.8954
*1	16.000	0.6809	16.000	8.000	23.000	32.409	10	66.00	77.00	16.000	0.6695
2	1.400	0.0596	1.400	0.000	5.00 0	139.646	10			1.400	0.0586
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests	***				Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution	(p <= 0.05)		0.93053	0.94	-0.5964	-0.342
Bartlett's Test indicates equal var	iances (p =	0.53)			2.22089	11.3449		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711		_			

Treatments vs D-Control


Linear Interpolation	(200 Resamples)
----------------------	-----------------

Point	gm/L	SD	95%	CL	Skew
IC05	0.3695	0.0911	0.1696	0.5686	0.2464
IC10	0.4890	0.0910	0.3077	0.6 62 2	0.1815
IC15	0.6005	0.1009	0.4034	0.7714	0.1407
IC20	0.7111	0.1157	0.4592	0.95 79	0.18 07
IC25	0.8218	0.1195	0.5745	1.0536	0.0455
IC40	1.1137	0.1010	0.8928	1.26 09	-0.5191
IC50	1.2774	0.0905	1.0680	1.401 9	-0.8577

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 8.18

			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	st-Repro	duction	
Start Date:	4/3/2012	14:00	Test ID:	RT120403	c		Sample ID);	REF-Ref	Toxicant
End Date:	4/9/2012	14:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride
Sample Date:	4/3/2012		Protocol:	FWCH-EF	A-821-R-	02-013	Test Spec	ies:	CD-Cerio	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	20.000	17.000	25.000	25.000	24.000	27.000	28.000	27.000	20.000	22.000
0.25	21.000	17.000	29.000	26.000	27.000	25.000	25.000	27.000	23.000	23.000
0.5	16.000	14.000	23.000	22.000	24.000	23.000	23.000	23.000	23.000	23.000
1	15.000	17.000	8.000	20.000	23.000	15.000	12.000	22.000	9.000	19.000
2	0.000	0.000	0.000	2.000	4.000	3.000	0.000	0.000	0.000	5.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		_		Transform	n: Untran	sformed			1-Tailed		
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	
D-Control	23.500	1.0000	23.500	17.000	28.000	15.441	10				
0.25	24.300	1.0340	24.300	17.000	29.000	14.262	10	-0.448	2.137	3.819	
0.5	21.400	0.9106	21.400	14.000	24.000	16.067	10	1.175	2.137	3.819	
*1	16.000	0.6809	16.000	8.000	23.000	32.409	10	4.196	2.137	3.819	
2	1.400	0.0596	1.400	0.000	5.000	139.646	10				
4	0.000	0.0000	0.000	0.000	0.000	0.000	10				

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	stribution	(p <= 0.05)		0.93053		0.94		-0.5964	-0.342
Bartlett's Test indicates equal var	iances (p =	0.53)			2.22089		11.3449			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	0.5	1	0.70711		3.81887	0.1625	139.8	15.9722	1.7E-04	3, 36
Treatments vs D-Control										

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-120403

Start Date:04/03/2012

				NI	m h s	. of V		D.,				Total	N ₂	
Sample	Day	A	В	C	mbei D	E	oung F	Produ G	uced H	I	J	Total Live Young	No. Live Adults	Analyst Initials
	1	0	0	0	0	0	0	\mathcal{O}	0	C	C		10	On
	2	0	0	0	0	0	0	0	0	0	0	0	10	
	3	U	0	0	<u></u>	3		, 4	3	0	0	10	10	Pa
	4	3	5	4	4	0	4	U	0	3	4	27	10	n
Control	5	U	0	10	8	8	9	9	10	7	8	69	10	h
	6	17	12	11	13	13	14	15	14	10	10	129	10	In
	7	1		_		_		_		-	-	-	_	- -
	Total	20	17	25	25	24	27	28	27	20	22	235	10	2
	1	0	0	0	0	0	0	Ò	0	0	C	0	10	M
	2	0	0	0	0	0	0	0	0	0	0	0	10	m
	3	0	0	0	0	4	C	4	C	C	0	8	10	1
0.25 //	4	5	4	5	5	0	4	Ü	5	4	4	36	10	1
0.25 g/l	5	0	0	10	9	IV	9	Ų	9	9	8	71	10	m
	6	16	13	14	12	13	12	14	13	10	11	128	10	1/
	7	1	1	_	_		_)	ĺ	_	-			_
	Total	21	17	29	26	27	25	<u> </u>	2)	23	23	243	IU	gh
	1	0	0	0	0	0	0	0	0	0	0	0	10	m
	2	0	0	0	0	0	\mathcal{C}	0	C	U	C	0	10	h
	3	0	0	0	0	0	c	4	0	0	0	U	10	M
0.5 ~/1	4	4	4	3	3	5	4	Ò	3	4	4	34	10	
0.5 g/l	5	O	0	7	9	8	7	9	7	フ	8	62	10	M
	6	12	-10	13	10	11	12	.10	13	12	11	114	10	1/
	7			_		_	_		_	_			_	
	Total	مال	14	23	22	.24	93	23	23	23	23	214	10	

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-120403

Start Date: 04/03/2012

Cample	Davi			Νυ	ımbe	r of Y	oung l	Produ	ced			Total Live	No. Live	Analyst
Sample	Day	A	В	C	D	Е	F	G	н	I	J	Young	Adults	Initials
	1	0	0	0	0	0	0	C	0	C	0	\mathcal{C}	10	h
	2	0	0	0	0	0	0	0	0	c	0	<u></u>	10	12
	3	0	0	0	0	3	0	0	0	0	0	3	10	h
1.0 g/l	4	3	4	2	3	0	3	니	L	2	3	28	10	1
1.0 g/i	5	0	0	0	7	7	U	8	7	7	6	42\$	40	h
	6	12	13	6	10	13	12	0	11	0	10	87	10	n
	7		_		_		_	_	•	_	_		_	
	Total	15	17	8	20	23	15	12	22	9	19	160	lυ	2
	1	0	0	0	0	0	<u>C</u>	C	C	C	9	0	10	R
	2	X	X	0	C	C	0	X	X	0	0	0	6	B
	3	<u> </u>	_	0	C	10	0	-	(0	\mathcal{C}	0	6	
2.0 ~/1	4			0	0	0	0			0	0	C	6	12
2.0 g/l	5		_	0	2	2	3	_	_	0	2	9	6	1/2
	6		_	0	0	Z	0	_	_	0	3	5	6	
	7			_		_	_	_	_	_	_			
	Total	0	0	0	2	دا	3	0	0	0	5	14	6	12
	1	/	X	×	入	X	×	<u>></u>	<i>></i>	X	X	Ò	0	Je
	2		_	-	_	_	_	_	_	_	_	_	_	/_
	3	_	_	_	_	_	_			_	_	_		
4.0 //	4	_	_	-	_		_	_	_	_		1	_	
4.0 g/l	5			_	_	_			_	_	_			
	6	_				_	_	_	_	_	_		_	
	7	_	-	_	_	_	_							
	Total	0	0	0	0	C	0		0	C	0	0	0	n

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

Aquatic Testing Laboratories

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-120403

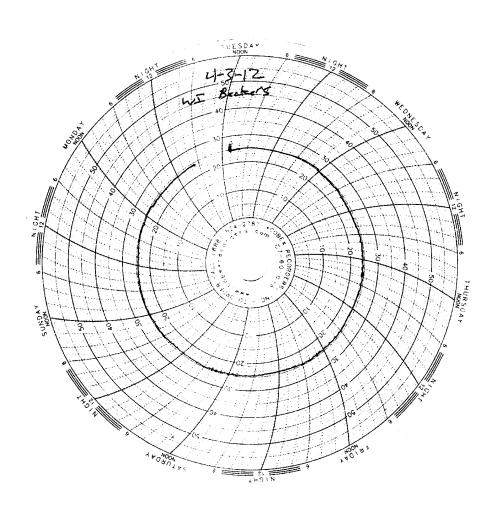
Start Date:04/03/2012

((Diari	Date.o	1/05/20	,14
		DA	Y 1	D/	AY 2	DA	Y 3	DA	Y 4	DA	Y 5	D/	AY 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initíal	Final
Analyst I	Initials:	1	1	1	1	1	2	7	9	1	1	7	<i>[</i> -		h
Time of R	eadings:	1400	1400	1400	1400	1400	140	1400	1400	140	1400	1400	14		
	DO	8.3	8.2	29	8.1	7.8	4.5	7. 9	8.4	8.5	8,7	8.3	8.6	_)
Control	рН	80	8,2	8.1	8,1	8.)	8.2	8.1	8.2	8.1	810	8-1	80)
	Temp	24.7	24.7	243	24.3	24.6	24.7	24.8	24.7	24.8	24.4	24.3	24.5		
	DO	8.4	8.4	8,2	8:6	8,4	8,3	8->	8.3	7.9	26	8.3	9.7		
0.25 g/l	pН	8.0	8, 1	8.2	812	8.2	8.2	8,1	8, 2	8.1	8.0	8.1	80		
	Temp	۶.4ک	<u> ૨</u> 4. ७	24.5	ટ4. ક	24. 7	24.8	ટપ. 6	24.7	24.8	24.4	૮५.૬	246		1
	DO	8.2	8,3	8:1	8,6	8,2	8, 6	8.0	8.4	8.1	8.6	8.4	8-0		Ì
0.5 g/l	рН	8.0	8.1	8,2	8,1	8,)	8.2	8:1	8.1	8.1	8.0	8.1	8-0)
	Temp	24.6	२५. व	245	24.2	24.3	24.8	24. >	ટપ,8	24.8	24.3	24.7	25.2		
	DO	8.2	8, 3	8.1	8.4	8,3	8,5	7. 9	8.1	810	8,4	8. 3	8.1		1
1.0 g/l	pН	8.0	8,2	8,2	8,2	8,2	81	8.1	8.1	811	8,1	8.1	8.0		1
	Temp	24.7	247	24.5	242	24.5	24.7	24.7	246	24.8	24.7	24.5	24.5)
	DO	8.4	8.2	7.9	812	8:1	8.3	7.9	8.2	8,1	8.3	8-1	8.2		
2.0 g/l	pН	8.0	8,1	8.2	8.1	8,2	4.1	8,0	8.1	8.1	8.0	8.0	8.0		1
	Temp	24.7	25,2	८५5	24,5	24, 3	24.5	२५ ७	24.8	24.8	243	24.6	24-6		
	DO	8.5	8.1		_	1	1	^	/		,	_	`		/
4.0 g/l	pН	80	8.1	-	-	-	-	_	_		-	_	-	_	1
	Temp	24.7	24.5		_	_			_		_)	_	
il				(Th. 10.)											

Dissolved Oxygen (DO) readings are in mg/l O2; Temperature (Temp) readings are in °C.

A1122 13		Control		High Concentration				
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5		
Conductivity (µS)	309	319	316	6960	2520	3310		
Alkalinity (mg/l CaCO ₃)	69	67	67	68	68	68		
Hardness (mg/l CaCO ₃)	90	87	88	90	89	88		

				Source of	Neonates					
Replicate:	A	В	С	D	E	F	G	Н	I	j≠J
D 110	I D	2.0	7/	120	10	2 8		1	Ī .	



Test Temperature Chart

Test No: RT-120403

Date Tested: 04/03/12 to 04/09/06

Acceptable Range: 25+/- 1°C

CHAIN OF CUSTODY FORM

1	۴	4	١
•	•		
1	ľ	L	
(-		١
١	•	•	
•		,	
:	_		
•	٤	1	
,	-		
i	,		
(Ĺ		Į

Test America version 4/01/2012

	•	<u> </u>																						
	Field readings: (Log in and include in report Temp and pH)	1 emp °F = 100 pH = 7. 2 mc/2 DO = 7.35 mc/2 Total Bosidual	Chlorine =	Time of readings = 14° 45°	Comments		3.									000				Deliver to lab ASAP	k order.	1 .	Car.	×
													and the state of t								Composite samples will follow and are to be added to this work order	10 Day:		NPDES Level IV:
RED		וותווומוו	 'eai	Bacterioda	- I CIAI										·····		·			×	be add			
REQUI			301	Toxicity			:												×	_	are to			
ANALYSIS REQUIRED				(SM9221)														×			w and	ne: (Check) 72 Hour: 5 Day:	c (Check)	ments: (Check)
ANA		(122	6W9	eoliform (S	Fecal												×				II follo	nd tin	Sample Integrity: (Check)	Data Requirements: (Check) No Level IV: All Level IV:
			ləuì	- diesel/jet	8015										×	×					oles wi	Turn-arou 24 Hour. 48 Hour.	Sample Intact:	Data Require No Level IV:
					3108								×	×							e sam	20	10 Sec. 1	
		HEM)	l- 1 99	uctivity Grease (16					×	×											mposit	Date Time:	Date/Time:	Date/Time:
			٤	able Solids	əhtəS			×													- 1	٠ حت	, 77 Y,	ď
				4+A+ 4S8 ;			×					×									m eve	H. C.)}	
	113, Freon	no917 + ; 49 +	eue saue	624 + xyle	VOCs	×					×						,				is sto			
					Bottle #	1A, 1B, 1C, 1D, 1E	2A, 2B, 2C	3	4A, 4B	5A, 5B	6A, 6B, 6C	7A, 7B, 7C	8A	8B, 8C	9A	9B	10	11	12	13	I 018 før th	Received By	Redejved By	Received By
	PDES 018				Preservative	HCI	None	None	None		HCI	None		HCI	None	None	Na2S203	Na2S203	None	None	n of Outfal	7	31/2	
	Boeing-SSFL NPDES Annual Outfall 018 GRAB Time Waite		Phone Number:	(626) 568-6691 Fax Number: (626) 568-6515	ing Ime	451					********		*********						•	47.074	Portio	3.15		
Project:	oeing-S nnual RAB		hone N	(626) 568-669 Fax Number: (626) 568-65	Sampling Date/Time	100-01-1							,,		W	Administration of the last of	***************************************	and the same of	A	01.10	Grab	1	3	
<u>а</u>	www		<u> </u>		Corr.	5	6	-	2	2	3	6	-	2	_	1	1	-	-	1	are the	Date/Time: 6	mte/Time	Date/Time:
	lite 200 Debby Wils		wyn Kelly	ANAGI	Container Type	VOAs	VOAs	1L Poly	500 mL Poly	1L Amber	· VOAs	VOAs	VOAs	VOAs	1L Amber	1L Amber	125mL Poly	125mL Poly	1 Gal Cube	125mL Poly	These Samples are the Grab Portion of Outfall 018 for this storm event.	ر ا کر ر	and the second	
dress:	ia Ave, Su 1007		ır: Bron	いたね	Sample Matrix	3	W	3	3	. 🛪	Μ	W	8	W	Μ	Μ	W	W	W	Μ	Thes	M.		
Client Name/Address:	MWWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Dehby Wilson		Project Manager: Bronwyn Kelly	Sampler. Rick BANAGA	Sample Description	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Trip Blanks	Trip Blanks	Outfall 018	Ouffall 018 Dup	Ouffall 018	Ouffall 018 Dup	Outfall 018	Outfall 018	Outfall 018	Outfall 018		Relinquished By	Relinquish dy By	Relinquished By

CHAIN OF CUSTODY FORM

446-8782 Comp1 of 3

	Comments				ender de				, danside state of the										SiBic	Committee of the Commit
																		10 Day:		NPDES Lavel IV:
ANAI YSIS REQUIRED																COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 018 for this storm event.	of 3 for Outfall 018 for the same event.	Check} 72 Hour 5 Day:	Zheck) On Ice:	: (Check) All Level IV:
AI YSIS E	rotoluene, Bis(2-	TCP, 2,4 Dinit	2,4,6											×		for this	018 for th	Turn-around time: (Check) 24 Hour. 72 Ho 48 Hour. 5 Day	825 Sample Integrity: (Check) Intact: On Ic	Data Requirements: (Check) No Level IV:All Level
A													×		\perp	1 3	utfall		Sampl	No L
											×	×				OF#	for O	100	83	
		e-N, Nitrite-N dity, TDS, TSS								×						es for	1 of 3	-CUI	12/	
	N, F, Perchlorate								×							ample	COC Page 1	13	ig (1)	:: ::
		dants (MBAS)			_			×								site s	200	Sate/Time	Date/Time:	Date/Time
	(3	O seergeb OS) ;	BOD ²				×									dwo	er for	\Rightarrow	2	
	(sners)	egnoo ils bas) (TCDE			×	-									the	k ord	(3) \$	20	
	Netals: Cu, Pb, Hg, B, Be, Cd, Cr, Ni, Se, Ag, ess as CaCO ₃	e, Mn, Sb, As, I	Ba, F	×	×											3 of 3 are	ame wor		3	
	Q		Bottle #	14A	148	15A, 15B	91	17A, 17B	18A, 18B	49	20A, 20B	21	22A, 22B	23A, 23B		ind Page	d to the s	Received By	Received By	Received By
	Boeing-SSFL NPDES Annual Outfall 018 COMPOSITE TIME LUEIGHTED		Preservative	HNO3	HNO3	None	None	None	None	None	None	H₂SO₄	None	None		ge 2 of 3 a	These must be added to the same work order for	1107-	25	
1	Boeing-SSFL NPDES Annual Outfall 018 COMPOSITE TIME WEIGH	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time	4.1.20.12									4	1.20/2	S	COC Pa	hese mu	r-11-4	19120	
Proje	Boein Boein COMI	Phon (626) Fax N (626)	Sa	12/										1/2/					me:	me:
	nosi		# of Cont.	۲.,	-	2	-	2	2	<u>_</u>	2	-	2	2				Date/Time:	Date/Time:	Date/Time:
	uite 200 Debby Wi	nwyn Keily	Container Type	1L Poly	1L Poly	1L Amber	1L Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	1L Amber	1L Amber					7	
deres.	ija 1 Ave, Si 1007 Contact:	er: Broi	Sample Matrix	≯	3	8	3	3	3	≯	×	8	W	Μ				1	3	
Client Name/Address	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Debby Wilson	Project Manager. Bronwyn Kelly Sampler: R ' c k ' β \mathcal{H} β β	Sample Description	Outfall 018	Outfall 018 Dup	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfail 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018				Relinquished By	Relinquished By	Relinquished By

	Comments	,				Unfiltered and unpreserved	analysis			second rain events of the	Filter w/in 24hrs of receipt at lab						×	\ \ \	, XI
					***************************************										nt.	vent.	Turn-around time: (Check) 24 Hour. 72 Hour. 10 Day: — 48 Hour. 5 Day:	Sample Inlegrity: (Check) Inlact:On Ice:	Data Requirements: (Check) No Level IV:All Level IV:NPDES Level IV.
ANALYSIS REQUIRED		әр	ineyO										×		torm eve	e same e	Turn-around 24 Hour48 Hour	Sample Integ	Data Require No Level IV;
LYSIS R	as Cacus	o, V, Hardness) (218.6)					·					×			or this s	8 for th		0,0	:
ANA	als: Cu, Pb, Hg, B, Ba, Cd, Cr, Ni, Se, Ag, Ti,	Dissolved Mets n, Sb, As, Be, (Total M. _: 93								×				all 018 f	utfall 01	6 8	1830	
	ne	metiryl Hydrazi nic Toxicity							×	×				_	or Out	3 for Ç	1111/	1	
			SCB ²	ļ				×							ples fo	ye 1 of	ne:	ine:	ne:
	, Sr-90 (905.0), Total 26 (903.0 or 903.1) & , Uranium (908.0), K-	,(0.809) (6-H) r S muibs兒 bəni	Trittur Comb Radiu			>	<					odkor sande viz eferskaliskiskiskiskiskiskiskiskiskiskiskiskiski			COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 018 for this storm event.	to the same work order for COC Page 1 of 3 for Qutfall 018 for the same event.	Date/Time:	Date/Time	Date/Time:
	n 	Organic Carbor			×										e the co	rk order	N	me	
		joxane	1,4-Di	×										 	of 3 ar	ne wo	\$	~ CX	λ _ε
	E		Bottle #	24A, 24B, 24C	25	26A	26B	27A, 27B	28A, 28B	29	30	31	32		Page 3	o the sar	Received	Received B	Received By
!	Boeing-SSFL NPDES Annual Outfall 018 COMPOSITE でかんがらけ	i 10	Preservative	豆	豆	None	None	None	None	None	None	None	NaOH		2 of 3 and	These must be added t	7/02-	200	
į	Boeing-SSFL NPDES Annual Outfall 018 COMPOSITE でかど WEi ら	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time	2/05-11-4									47.50		OC Page	e must t	-11 7/4	1/3/	
Project	Boein Annu COMI	Phone (626) Fax N (626)	S PE	12/2								7	12.1		ပြ	The		me:	ne;
	son	a a	Cont.	п	ψ	1		2	2	<u>-</u>	-	-	-				Date/Time:	Date/Time:	Date/Time;
	Suite 200 ct: Debby Wi	nwyn Keily S BwB c	Container Type	VOAs	250 mL Glass	2.5 Gal Cube	500 mL Amber	1L Amber	1L Amber	1 Gal Cube	1L Poly	500 mL Poly	500 mL Poly					Jo	
ddress:	ilia a Ave, S 31007 Contact:	Jer: Broi	Sample Matrix	W	Х	//\	\$	W	≥	≥	3	3	Α					Z	
lient Name/Address:	IWH-Arcadia 18 Michillinda Ave, Suite 200 rcadia, CA 91007 est America Contact: Debby Wilson	roject Manager: Bronwyn Keily ampler: 兵、た パパッカらの	Sample Description	Outfall 018	Outfall 018	0 () () () () ()	Odinan	Outfall 018	Outfall 018	Outfall 018	Ouffall 018	Outfall 018	Outfall 018		and the state of t		elinquished By	elinquished By	alinquished By

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-8129-1

Login Number: 8129 List Source: TestAmerica Irvine

List Number: 1 Creator: Perez, Angel

Creator: Perez, Angel		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

2

4

_

۹ Q

3

10

12

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-8129-1

Login Number: 8282 List Source: TestAmerica Irvine

List Number: 1 Creator: Perez, Angel

Creator: Perez, Angel		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

2

А

46

11

12

LABORATORY REPORT

Date: April 15, 2012

Client: Test America - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson Aquatic **Testina** Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-12041102-001 Job No.: 440-8129-1

Sample ID.: Outfall 018 (440-8129-1)

Sample Control: The sample was received by ATL in a chilled state, within the recommended hold

time and with the chain of custody record attached.

Date Sampled: 04/10/12 Date Received: 04/11/12 Temp. Received: 2.4°C Chlorine (TRC): 0.0 mg/l

Date Tested: 04/11/12 to 04/15/12

Sample Analysis: The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample. All testing was conducted under the direct supervision of Joseph A. LeMay. Daily test readings were taken by Joseph A. LeMay (initialed: JAL) and Jacob LeMay (initialed: J).

Result Summary:

Sample ID. Results

Outfall 018 (404-8129-1) 100% Survival (TUa = 0.0)

Quality Control: Reviewed and approved by:

Laboratory Direct

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-12041102-001

Client/ID: TestAmerica Outfall 018 (440-8129-1)

Start Date: 04/11/2012

TEST SUMMARY

Species: Pimephales promelas.

Age: 13 (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Control water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10.

QA/QC No.: RT-120403.

TEST DATA

		20	20	**	# D	ead	Analyst & Time
		°C	DO	pН	Α	В	of Readings
TO LIMIT A L	Control	20-6	8-6	7,9	0	0	1
INITIAL	100%	20.6	8-9	7.5	0	0	11230
2411	Control	19.8	7.9	7. 9	0	0	7
24 Hr	100%	14.8	8.2	8.0	0	d	1200
40.44	Control	199	8. 2	8.0	0	0	71200
48 Hr	100%	14.4	8,1	7.9	0	0	1200
2 1	Control	19.8	7.8	8.1	0	0	7
Renewal	100%	19.8	8,5	7. 7	0	0	1200
50 V	Control	19.7	8.7	8.0	0	0	2
72 Hr	100%	19.5	8.6	8.0	0	\mathcal{O}	ROU
0611	Control	19.7	8.2	8.0	0	0	7
96 Hr	100%	19.5	8.4	7.9	0	U	1200

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 7-5; Conductivity: 593 umho; Temp: 2.4°C;

DO: 0,7 mg/l; Alkalinity: 90 mg/l; Hardness: 125 mg/l; NH₃-N: 0,1 mg/l. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No.)

Control: Alkalinity: 6 mg/l; Hardness: 62 mg/l; Conductivity: 380 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297

Chain of Custody Record

TestAmerica THE LEADER IN EWINGHMENTAL TESTING

															ı
Client Information (Sub Contract Lab)	Sampler			Lab PM: Wilson	Lab PM: Wilson, Debby				Carrier Tracking No(s)	oking No(s):		COC No: 440-3741.	•		
Client Contact. Shipping/Receiving	Phone.	:		E-Mail debb	E-Mail: debby.wilson@testamericainc.com	testameric	cainc.com					Page: Page 1 of			1
Company: Annatic Testing Laboratories							Agan	:	70400			Job #:	,		Т
אלאמוני ו פאוויוט במסטומוטופא					River to a person		Aildiysis	313 146	Delsenbeu			440-8129-1	_		7
Address. 4350 Transport #107, ,	Due Date Requested: 4/24/2012	<u></u>										Preservation Codes			
City: Ventura	TAT Requested (days):	s):										B - NaOH		- None	
State, Zip: CA, 93003												D - Nitric Acid E - NaHSO4		Na2O4S - Na2SO3	
Phone:	PO#:				agr∷rc S							F - MeOH G - Amchior		- Na2S2SO3 - H2SO4	
Email:	WO #:											H - Ascorbic - ce - Di Water		I - fSP Dodecanydrate U - Acetone V - MCAA	
Project Name: Boeing SSFL outfalls	Project #: 44002624											K-EDTA L-EDA		- ph 4-5 other (specify)	
	SSOW#:									-		of con			_
		<u>ə</u>		Matrix (w-water, 3-solid, 0-waste/oll,	pid Filmred: TOARTNOOBL							admily lsk			T T
Sample Identification - Client ID (Lab ID)	Sample Date	1	G=grab) s	BT=Tissue, A-Air) (för) Code:								N.	cial Instru	Special Instructions/Note:	
Outfall 018 (440-8129-1)	4/10/12	္သ		Water	×										T
															$\overline{}$
															1
															Т
												<i>1</i> -			Ι
												*			T
															T
													:		
															T
															Γ
Possible Hazard Identification Unconfirmed					Sample	le Disposal (A 1	I (A fee I	nay be as	sessed i	fsample	s are ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	than 1 mc	onth)	
Deliverable Requested: I, II, III, IV, Other (specify)					Special	Instruction	ns/QC Re	Special Instructions/QC Requirements:	Disposar by ents:	א רמו		ACCINA TO		Months	7
Empty K/Relinquis/red by:		Date:			Time:				Metho	Method of Shipment:	Ę				_
/ /mm/DX	つとまたかっ	0:2		Company	Rece	Received by:		1/2		Date/Time:	ime	2 12	\$5, 50,	Company	Т
Refinquished by:	Date/Time:		Ŏ	Company	86 80	Receivedow		1		. Date/Time	ime:		Š	Company	Т
	Date/Time:		<u>ŏ</u>	Company	Rec	Received by:		•		Date/Time	ime:		Ö	Company	Т
Custody Seals Intact: Custody Seal No.:					Cool	er Temperat	ure(s) °C an	Cooler Temperature(s) °C and Other Remarks:	narks:	CO	7	0	1		$\overline{}$

REFERENCE TOXICANT DATA

FATHEAD MINNOW ACUTE Reference Toxicant - SDS

QA/QC Batch No.: RT-120403

TEST SUMMARY

Species: Pimephales promelas.

Age: 14 days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers.

Aeration: None.

Number of organisms per chamber: 10. Photoperiod: 16/8 hrs light/dark.

TEST DATA

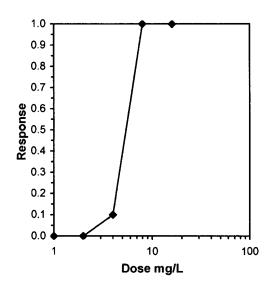
		INITIA	L			24 Hr					48 Hr		
Date/Time:	4-2-	12	1170	4-4	-1)		[17]	30	4-5-	12		1130	
Analyst:			r				1				7	-	
-	°C	DO	pН	°C	DO	pH	# D	ead	°C	DO	pН	# D	ead
			pri		DO	pm	Α	В		DO	рп	Α	В
Control	20.1	8.4	8.0	19.8	8.2	7.9	U	U	19.7	8.⊋	7.9	0	0
1.0 mg/l	19.9	8.5	7.9	19.8	8.2	7.9	\circ	6	14.6	8.1	7.7	0	0
2.0 mg/l	19.8	8.6	8.0	19.8	8.1	7.9	U	0	19. >	7. 9	7.9	0	0
4.0 mg/l	19.7	8.8	8.0	19.8	8.2	7.9	\mathcal{O}	0	19.7	7. 8	7.7	1	O
8.0 mg/l	(4.7	8.7	8.0	14.8	8.1	7.8	(0	10	/	_	/	_	,
16.0 mg/l	19.8	8.8	8.1	19.8	7.2	76	lo	10)	-	_	-	_

	R	ENEWA	\ L			72 Hr					96 Hr		
Date/Time:	4-5	-12	1132	4-6-	12		טר//		4-7	-/2		(1	130
Analyst:		1	7				2				7		
	°C	DO	pН	°C	DO	рН	# D	ead	°C	DO	nu nu	# D	ead
			PII			pri	Α	В		ЪО	pН	A	В
Control	19.2	6.5	8.2	19.6	7.5	8.0	\bigcap	0	19.5	7.6	7.8	0	0
1.0 mg/l	19.6	6.8	8.1	17. 6	18	7. 9	\mathcal{B}	0	19.4	7.8	7.8	0	C
2.0 mg/l	19.7	6.9	8.0	14.5	8.0	8.0	0	0	19.4	7. 7	7.8	U	0
4.0 mg/l	19.7	6.9	8.0	146	8.1	7.9	0	0	19.4	8.0	7.8	0	1
8.0 mg/l	_	,	`	1	_	-	_	,	,	,	1	1	-
16.0 mg/l	-	-	1	-	_	-	_	1	-	_	1	_	~

Comments: Control: Alkalinity: 68 mg/l; Hardness: 9 mg/l; Conductivity: 327 umho. SDS: Alkalinity: 61 mg/l; Hardness: 93 mg/l; Conductivity: 33/ umho.

Concentration-response relationship acceptable? (see attached computer analysis):

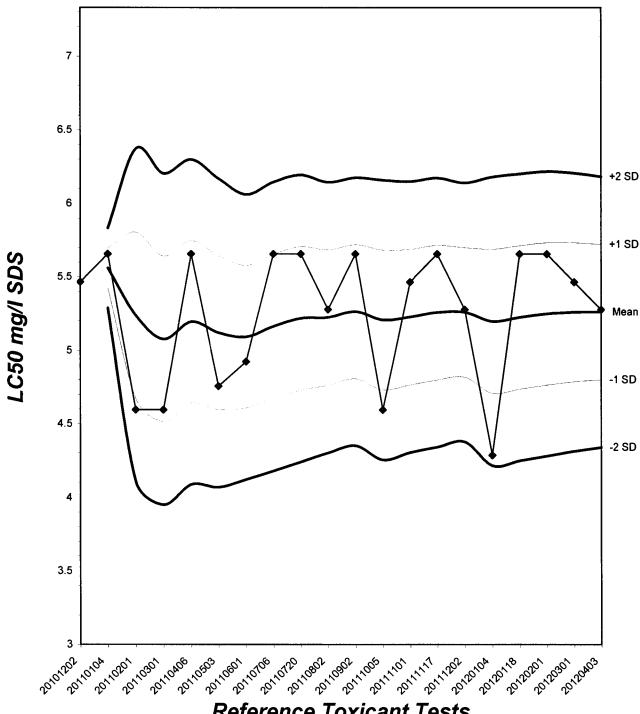
Yes (response curve normal)


No (dose interrupted indicated or non-normal)

				Acute Fish Test-96	Hr Survival	
Start Date:	4/3/2012	11:30	Test ID:	RT120403	Sample ID:	REF-Ref Toxicant
End Date:	4/7/2012	11:30	Lab ID:	CAATL-Aquatic Testing Labs	Sample Type:	SDS-Sodium dodecyl sulfate
Sample Date:	4/3/2012		Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas
Comments:					-	
Conc-mg/L	1	2				
D-Control	1.0000	1.0000				·
1	1.0000	1.0000				
2	1.0000	1.0000				
4	0.9000	0.9000				
8	0.0000	0.0000				
16	0.0000	0.0000				

		Transform: Arcsin Square Root			Number Total			
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0 20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0 20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0 20
4	0.9000	0.9000	1.2490	1.2490	1.2490	0.000	2	2 20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20 20
16	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20 20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Equality of variance cannot be confirmed				


				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	·
0.0%	5.2780	4.8093	5.7924	
5.0%	5.3968	4.8053	6.0611	
10.0%	5.4432	5.1395	5.7648	1.0 —
20.0%	5.4432	5.1395	5.7648	1
Auto-0.0%	5.2780	4.8093	5.7924	0.9

Reviewed by:

Fathead Minnow Acute Laboratory **Control Chart**

CV% = 8.75

Reference Toxicant Tests

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT 120463
SOURCE: In-Lab Culture
DATE HATCHED: 3-20-12
APPROXIMATE QUANTITY: $\underline{\mathcal{A}}$
GENERAL APPEARANCE:
MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:
DATE USED IN LAB: <u>4/3//2</u>
AVERAGE FISH WEIGHT: <u>0.00</u> gm
LOADING LIMITS: 0.65 gm/liter @ 20°C, 0.40 gm/liter @ 25°C
Approximately 1000 fish per 10 liters limit if held overnight for acclimation without filtration $@$ 20°C for fish with a mean weight of 0.006 gm.

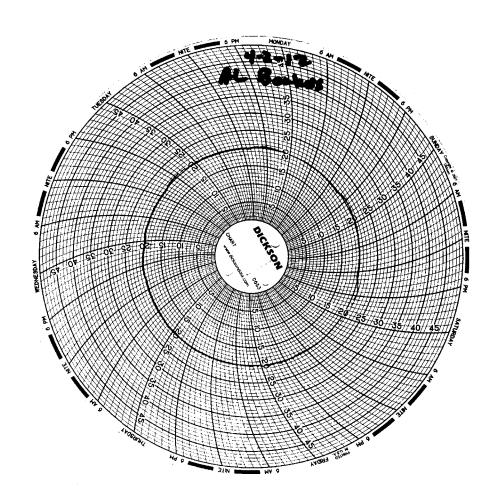
ACCLIMATION WATER QUALITY:

25°C for fish with a mean weight of 0.006 gm.

Approximately 650 fish per 10 liters limit if held overnight for acclimation without filtration @

200 ml test solution volume = 0.013 gm mean fish weight limit @ 20°C; 0.008 @ 25°C 250 ml test solution volume = 0.016 gm mean fish weight limit @ 20°C; 0.010 @ 25°C

READINGS RECORDED BY: DATE: 4-4-12



Test Temperature Chart

Test No: RT-120403

Date Tested: 04/03/12 to 04/07/06

Acceptable Range: 20+/- 1°C

APPENDIX G

Section 13

Outfall 018 – April 13, 2012 MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: 440-8616-1

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES SDG: 440-8616-1

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00
Sample Delivery Group: 440-8616-1

Project Manager: B. Kelly Matrix: Water

QC Level: IV No. of Samples: 3

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 018 Composite	440-8616-1	G2D170473-001, S204067-01	Water	4/13/2012 12:18:00 PM	IUNII UNI I UNIXII UNIXI UNIX UNIX
Outfall 018 Grab	440-8623-1	N/A	Water	4/13/2012 12:45:00 PM	120.1, 624
Trip Blanks	440-8623-2	N/A	Water	4/13/2012 12:45:00 PM	624

II. Sample Management

No anomalies were observed regarding sample management. Eberline did not note the temperature upon receipt; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. One cross-out on one of the COCs was not initialed or dated. Custody seals were intact upon receipt at Eberline and TestAmerica-West Sacramento. As the samples were delivered to TestAmerica-Irvine by courier, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Revision 0

DATA VALIDATION REPORT Project: SSFL NPDES SDG: 440-8616-1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: 440-8616-1

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

3 Revision 0

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: May 22, 2012

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects reported above the EDL for all target compounds and totals except 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, total PeCDD, 2,3,7,8-TCDF, and total TCDF. Some method blank results were reported as EMPCs; however, the reviewer deemed it appropriate to evaluate all method blank results for the purpose of qualifying sample results. Sample results for the individual isomer blank contaminants were qualified

as nondetected "U," at the level of contamination. Total HpCDF and total HxCDF were qualified as estimated, "J," as only a portion of the total was considered method blank contamination. Totals HpCDD, HxCDD, PeCDF, and TCDD were qualified as nondetected, "U," as all peaks comprising the totals were also present in the method blank at comparable concentrations.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The laboratory performed a confirmation analysis for the 2,3,7,8-TCDF detect. As the result was not confirmed, and the confirmation analysis is more isomer specific for the detection of 2,3,7,8-TCDF, the original result was rejected, "R," in favor of the confirmation result.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any reportable sample concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

Results reported as EMPCs for 1,2,3,7,8-PeCDD and total PeCDD were qualified as estimated nondetects, "UJ." Totals for HpCDF and HxCDF containing one or more isomers originally reported as EMPCs were qualified as estimated, "J."

B. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: May 29, 2012

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP metals and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Recoveries were within the method-established control limits. There were no target compounds present in the ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the total and dissolved analytes. Recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: May 29, 2012

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within the five-day holding time.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG for all analytes.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Any

detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks

Date Reviewed: May 29, 2012

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Calibration criteria were met. The initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. IPC recoveries were within the method-established control limit of 80-120%. The ICCS was recovered within 75-125%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recovery was within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on the LCS results.

• Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

E. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin

Date Reviewed: May 23, 2012

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 624, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: The preserved water samples were was analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. The samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs and the ICV and continuing calibration RRFs were≥0.05 for all target compounds. The initial calibration %RSDs were ≤35%, or r² values ≥0.995, with the exception of the r² value for bromoform in the initial calibration associated with sample Trip Blanks. The nondetected result for bromoform was qualified as estimated, "UJ," in sample Trip Blanks. The second source ICV and all applicable CCV recoveries were within the method control limits.
- Blanks: The method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the site sample in this SDG. Method accuracy was evaluated based on LCS results.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Trip Blanks: Sample Trip Blanks was the trip blank associated with the site sample in this SDG. The trip blank had no target compounds detected above the MDL.
- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: May 29, 2012

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1 and 180.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, 28 days for conductivity and 48 hours for turbidity, were met.
- Calibration: Calibration criteria were met. Hexavalent chromium initial calibration r² values

were ≥0.995. The turbidity ICV was recovered at 80%; therefore, turbidity detected in the sample was qualified as estimated, "J." The remaining ICV and CCV recoveries were within 90-110%.

- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: A laboratory duplicate analysis was performed for turbidity. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms 440-8616-1

Analysis Method 120.1

Sample Name Outfall 018 Grab Matrix Type: Water Validation Level: IV

Lab Sample Name: 440-8623-1 **Sample Date:** 4/13/2012 12:45:00 PM

Analyte CAS No Result RL MDL Result Lab Validation Value Units Qualifier Qualifier Notes

Specific Conductance STL00244 680 1.0 1.0 umhos/c

Analysis Method 1613B

Sample Name Outfall 018 Composite Matrix Type: Water Validation Level: IV

Lab Sample Name: 440-8616-1 **Sample Date:** 4/13/2012 12:18:00 PM

Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.000048	0.0000000	ug/L	JQB	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.000048	0.0000000	ug/L	J Q B	U	В
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.000048	0.0000000	ug/L	J Q B	U	В
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.000048	0.0000000	ug/L	J Q B	U	В
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.000048	0.0000000	ug/L	J B	U	В
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.000048	0.0000000	ug/L	JQB	U	В
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.000048	0.0000000	ug/L	J B	U	В
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.000048	0.0000000	ug/L	J B	U	В
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.000048	0.0000000	ug/L	JQB	U	В
1,2,3,7,8-PeCDD	40321-76-4	ND	0.000048	0.0000001	ug/L	J Q	UJ	*III
1,2,3,7,8-PeCDF	57117-41-6	ND	0.000048	0.0000003	ug/L	J B	U	В
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.000048	0.0000000	ug/L	J Q B	U	В
2,3,4,7,8-PeCDF	57117-31-4	ND	0.000048	0.0000004	ug/L	J Q B	U	В
2,3,7,8-TCDD	1746-01-6	ND	0.0000096	0.0000004	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.0000096	0.0000019	ug/L		U	
2,3,7,8-TCDF	51207-31-9	0.000001	0.0000096	0.0000003	ug/L	J	R	D
OCDD	3268-87-9	ND	0.000096	0.0000000	ug/L	J B	U	В
OCDF	39001-02-0	ND	0.000096	0.0000001	ug/L	J B	U	В
Total HpCDD	37871-00-4	ND	0.000048	0.0000000	ug/L	J Q B	U	В
Total HpCDF	38998-75-3	0.000015	0.000048	0.0000000	ug/L	J Q B	J	B, DNQ, *III
Total HxCDD	34465-46-8	ND	0.000048	0.0000000	ug/L	JQB	U	В
Total HxCDF	55684-94-1	0.000025	0.000048	0.0000000	ug/L	J Q B	J	B, DNQ, *III
Total PeCDD	36088-22-9	ND	0.000048	0.0000001	ug/L	J Q	UJ	*III
Total PeCDF	30402-15-4	ND	0.000048	0.0000004	ug/L	J Q B	U	В
Total TCDD	41903-57-5	ND	0.0000096	0.0000000	ug/L	J Q B	U	В
Total TCDF	55722-27-5	0.000001	0.0000096	0.0000003	ug/L	J	J	DNQ

Friday, June 01, 2012 Page 1 of 7

Analysis Method 180.1

Validation Lo Validation Qualifier J Validation Lo Validation U U U U	Validation Notes R
Validation Lovalidation Country U	Notes R evel: IV Validation
Validation Lovalidation Country U	Notes R evel: IV Validation
Validation Lo Validation Qualifier U U U	evel: IV Validation
Validation Qualifier U U U	Validation
Validation Qualifier U U U	Validation
U U U	
U U U	
U	
Ü	
U	
Validation L	evel: IV
	Validation Notes
U	
U	
Validation L	evel: IV
	Validation Notes
Quanner	
	U

Friday, June 01, 2012 Page 2 of 7

Sample Name	Outfall 018 G	rab	Matr	іх Туре:	Water	Validation Level: IV		
Lab Sample Name:	440-8623-1	Sam	ple Date:	4/13/2012	2 12:45:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,1,1-Trichloroethane	71-55-6	ND	0.50	0.30	ug/L		U	
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.50	0.30	ug/L		U	
1,1,2-Trichloroethane	79-00-5	ND	0.50	0.30	ug/L		U	
1,1-Dichloroethane	75-34-3	ND	0.50	0.40	ug/L		U	
1,1-Dichloroethene	75-35-4	ND	0.50	0.42	ug/L		U	
1,2,3-Trichloropropane	96-18-4	ND	0.50	0.40	ug/L		U	
1,2-Dibromoethane (EDB)	106-93-4	ND	0.50	0.40	ug/L		U	
1,2-Dichlorobenzene	95-50-1	ND	0.50	0.32	ug/L		U	
1,2-Dichloroethane	107-06-2	ND	0.50	0.28	ug/L		U	
1,2-Dichloropropane	78-87-5	ND	0.50	0.35	ug/L		U	
1,3-Dichlorobenzene	541-73-1	ND	0.50	0.35	ug/L		U	
1,4-Dichlorobenzene	106-46-7	ND	0.50	0.37	ug/L		U	
Benzene	71-43-2	ND	0.50	0.28	ug/L		U	
Bromodichloromethane	75-27-4	ND	0.50	0.30	ug/L		U	
Bromoform	75-25-2	ND	0.50	0.40	ug/L		U	
Bromomethane	74-83-9	ND	0.50	0.42	ug/L		U	
Carbon tetrachloride	56-23-5	ND	0.50	0.28	ug/L		U	
Chlorobenzene	108-90-7	ND	0.50	0.36	ug/L		U	
Chloroethane	75-00-3	ND	0.50	0.40	ug/L		U	
Chloroform	67-66-3	ND	0.50	0.33	ug/L		U	
Chloromethane	74-87-3	ND	0.50	0.40	ug/L		U	
cis-1,2-Dichloroethene	156-59-2	ND	0.50	0.32	ug/L		U	
cis-1,3-Dichloropropene	10061-01-5	ND	0.50	0.22	ug/L		U	
Dibromochloromethane	124-48-1	ND	0.50	0.40	ug/L		U	
Diisopropyl ether	108-20-3	ND	0.50	0.25	ug/L		U	
Ethyl tert-butyl ether	637-92-3	ND	0.50	0.28	ug/L		U	
Ethylbenzene	100-41-4	ND	0.50	0.25	ug/L		U	
Methyl tert-butyl ether	1634-04-4	ND	0.50	0.32	ug/L		U	
Methylene Chloride	75-09-2	0.97	1.0	0.95	ug/L	J,DX	J	DNQ
Naphthalene	91-20-3	ND	0.50	0.41	ug/L		U	
Tert-amyl methyl ether	994-05-8	ND	0.50	0.33	ug/L		U	
tert-Butanol	75-65-0	ND	10	6.5	ug/L		U	
Tetrachloroethene	127-18-4	ND	0.50	0.32	ug/L		U	
Toluene	108-88-3	ND	0.50	0.36	ug/L		U	
trans-1,2-Dichloroethene	156-60-5	ND	0.50	0.30	ug/L		U	
trans-1,3-Dichloropropene	10061-02-6	ND	0.50	0.32	ug/L		U	
Friday, June 01, 2012								Page 3 of 7

Analysis Method 624

Trichloroethene	79-01-6	ND	0.50	0.26	ug/L	U
Trichlorofluoromethane	75-69-4	ND	0.50	0.34	ug/L	U
Vinyl chloride	75-01-4	ND	0.50	0.40	ug/L	U
Xylenes, Total	1330-20-7	ND	1.0	0.90	ug/L	U

Friday, June 01, 2012 Page 4 of 7

Sample Name	Trip Blanks		Matr	іх Туре:	Water	Validation Level: IV		
Lab Sample Name:	440-8623-2	Sam	ple Date:	4/13/201	2 12:45:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,1,1-Trichloroethane	71-55-6	ND	0.50	0.30	ug/L		U	
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.50	0.30	ug/L		U	
1,1,2-Trichloroethane	79-00-5	ND	0.50	0.30	ug/L		U	
1,1-Dichloroethane	75-34-3	ND	0.50	0.40	ug/L		U	
1,1-Dichloroethene	75-35-4	ND	0.50	0.42	ug/L		U	
1,2,3-Trichloropropane	96-18-4	ND	0.50	0.40	ug/L		U	
1,2-Dibromoethane (EDB)	106-93-4	ND	0.50	0.40	ug/L		U	
1,2-Dichlorobenzene	95-50-1	ND	0.50	0.32	ug/L		U	
1,2-Dichloroethane	107-06-2	ND	0.50	0.28	ug/L		U	
1,2-Dichloropropane	78-87-5	ND	0.50	0.35	ug/L		U	
1,3-Dichlorobenzene	541-73-1	ND	0.50	0.35	ug/L		U	
1,4-Dichlorobenzene	106-46-7	ND	0.50	0.37	ug/L		U	
Benzene	71-43-2	ND	0.50	0.28	ug/L		U	
Bromodichloromethane	75-27-4	ND	0.50	0.30	ug/L		U	
Bromoform	75-25-2	ND	0.50	0.40	ug/L		UJ	С
Bromomethane	74-83-9	ND	0.50	0.42	ug/L		U	
Carbon tetrachloride	56-23-5	ND	0.50	0.28	ug/L		U	
Chlorobenzene	108-90-7	ND	0.50	0.36	ug/L		U	
Chloroethane	75-00-3	ND	0.50	0.40	ug/L		U	
Chloroform	67-66-3	ND	0.50	0.33	ug/L		U	
Chloromethane	74-87-3	ND	0.50	0.40	ug/L		U	
cis-1,2-Dichloroethene	156-59-2	ND	0.50	0.32	ug/L		U	
cis-1,3-Dichloropropene	10061-01-5	ND	0.50	0.22	ug/L		U	
Dibromochloromethane	124-48-1	ND	0.50	0.40	ug/L		U	
Diisopropyl ether	108-20-3	ND	0.50	0.25	ug/L		U	
Ethyl tert-butyl ether	637-92-3	ND	0.50	0.28	ug/L		U	
Ethylbenzene	100-41-4	ND	0.50	0.25	ug/L		U	
Methyl tert-butyl ether	1634-04-4	ND	0.50	0.32	ug/L		U	
Methylene Chloride	75-09-2	ND	1.0	0.95	ug/L		U	
Naphthalene	91-20-3	ND	0.50	0.41	ug/L		U	
Tert-amyl methyl ether	994-05-8	ND	0.50	0.33	ug/L		U	
tert-Butanol	75-65-0	ND	10	6.5	ug/L		U	
Tetrachloroethene	127-18-4	ND	0.50	0.32	ug/L		U	
Toluene	108-88-3	ND	0.50	0.36	ug/L		U	
trans-1,2-Dichloroethene	156-60-5	ND	0.50	0.30	ug/L		U	
trans-1,3-Dichloropropene	10061-02-6	ND	0.50	0.32	ug/L		U	
Friday, June 01, 2012								Page 5 of 7

Anai	lveic	Method	624
Anai	vsis	memoa	024

79-01-6

ND

Value

-0.184

4

0.50

Trichloroethene

Gross Alpha

Gross Beta

Sample Name

Sample Name

Trichlorofluoromethane	75-69-4	ND	0.50	0.34	ug/L		<u>U</u>	
Vinyl chloride	75-01-4	ND	0.50	0.40	ug/L		U	
Xylenes, Total	1330-20-7	ND	1.0	0.90	ug/L		U	
Analysis Metho	od Gami	na Spec	: K-40	CS-13	7			
Sample Name	Outfall 018 C	Composite	Matri	х Туре:	Water	7	Validation Le	evel: IV
Lab Sample Name:	440-8616-1	Sam	ple Date:	4/13/201	2 12:18:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	-2.11	20	6.06	pCi/L	U	U	
Potassium-40	13966002	19	25	65.8	pCi/L	U	U	
Analysis Metho	od Gross	s Alpha	and B	eta				
Sample Name	Outfall 018 C	Composite	Matri	х Туре:	Water	7	Validation Le	evel: IV
Lab Sample Name:	440-8616-1	Sam	ple Date:	4/13/201	2 12:18:00 PM	М		
Analyte	CAS No		RL	MDL				

0.26

ug/L

Units

pCi/L

pCi/L

Qualifier

U

Qualifier

Notes

DNQ

C

Validation Level: IV

Validation Level: IV

 \mathbf{U}

Analysis Method Radium 228

12587461

12587472

Outfall 018 Composite

Outfall 018 Composite

Lab Sample Name:	440-8616-1	Sample Date: 4/13/2012 12:18:00 PM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.141	1	0.564	pCi/L	U	U	
Radium-228	15262201	0.034	1	0.394	pCi/L	U	U	

1.12

1.58

Matrix Type: Water

Matrix Type: Water

Analysis Method Strontium 90

Lab Sample Name:	440-8616-1	6-1 Sample Date: 4/13/2012 12:18:00 PM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	0.061	2	0.781	pCi/L	U	U	

Friday, June 01, 2012 Page 6 of 7

Analysis Method Tritium

Sample Name	Outfall 018 C	Composite	Matri	x Type:	Water	7	Validation Le	evel: IV
Lab Sample Name:	440-8616-1	Sam	ple Date:	4/13/201	2 12:18:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028178	32.2	500	152	pCi/L	U	U	
Analysis Metho	od Uran	ium, Co	ombine	d				
Sample Name	Outfall 018 C	Composite	Matri	х Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	440-8616-1	Sam	ple Date:	4/13/201	2 12:18:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total		0.022	1	0.018	pCi/L	J	J	DNQ

Friday, June 01, 2012 Page 7 of 7