APPENDIX G

Section 12

Outfall 010, October 14, 2009 Test America Analytical Laboratory Report

Americ

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project: Semi-Annual Outfall 010

Sampled: 10/14/09 Received: 10/14/09 Issued: 11/30/09 11:47

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:	Samples were received intact, at 4°C, on ice and with chain of custody documentation.	
HOLDING TIMES:	All samples were analyzed within prescribed holding times and/or in accordance with the Tes Sample Acceptance Policy unless otherwise noted in the report.	stAmerica
PRESERVATION:	Samples requiring preservation were verified prior to sample analysis.	
QA/QC CRITERIA:	All analyses met method criteria, except as noted in the report with data qualifiers.	
COMMENTS:	Results that fall between the MDL and RL are 'J' flagged.	
SUBCONTRACTED:	Refer to the last page for specific subcontract laboratory information included in this report.	
ADDITIONAL INFORMATION:	This is a Partial report pending RAD data from the subcontract laboratory.	
LABORATORY II	CLIENT ID	MATRIX
ISJ1376-01	Outfall 010	Water

ISJ1376-01

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1376-01 (Outfall 010 - V	Water)								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	9J19042	1.3	4.8	ND	1	DA	10/19/09	
Grease)									

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1376-01 (Outfall 010	- Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8	9J16097	0.30	2.0	0.55	1	NH	10/17/09	J
Cadmium	EPA 200.8	9J16097	0.10	1.0	0.17	1	NH	10/17/09	J
Copper	EPA 200.8	9J16097	0.50	2.0	4.3	1	NH	10/17/09	
Lead	EPA 200.8	9J16097	0.20	1.0	0.45	1	NH	10/17/09	J
Thallium	EPA 200.8	9J16097	0.20	1.0	ND	1	NH	10/17/09	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

DISSOLVED METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1376-01 (Outfall 010	- Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	9J20101	0.30	2.0	0.84	1	BR	10/20/09	J
Cadmium	EPA 200.8-Diss	9J20101	0.10	1.0	0.19	1	BR	10/20/09	J
Copper	EPA 200.8-Diss	9J20101	0.50	2.0	3.5	1	BR	10/20/09	В
Lead	EPA 200.8-Diss	9J20101	0.20	1.0	0.24	1	BR	10/20/09	J
Thallium	EPA 200.8-Diss	9J20101	0.20	1.0	ND	1	BR	10/20/09	

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1376-01 (Outfall 010) - Water) - cont.								
Reporting Units: mg/l									
Chloride	EPA 300.0	9J14063	0.25	0.50	22	1	NN	10/14/09	
Nitrate/Nitrite-N	EPA 300.0	9J14063	0.15	0.26	3.4	1	NN	10/14/09	
Sulfate	EPA 300.0	9J14063	0.20	0.50	21	1	NN	10/14/09	
Total Dissolved Solids	SM2540C	9J19008	1.0	10	170	1	MC	10/19/09	
Sample ID: ISJ1376-01 (Outfall 010) - Water)								
Reporting Units: ug/l									
Perchlorate	EPA 314.0	9J15071	0.90	4.0	ND	1	MN	10/15/09	

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

DIOXIN (EPA 1613)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1376-01 (Outfall 0	10 - Water) - cont.							
Reporting Units: ug/L								
2,3,7,8-TCDD	1613-Dioxin-HR Alta	2469	0.00000496	ND	1	JMH	10/22/09	
1,2,3,7,8-PeCDD	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,4,7,8-HxCDD	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,6,7,8-HxCDD	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,7,8,9-HxCDD	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,4,6,7,8-HpCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.0000114	1	JMH	10/22/09	Ja
OCDD	1613-Dioxin-HR Alta	2469	0.0000496	0.000141	1	JMH	10/22/09	
2,3,7,8-TCDF	1613-Dioxin-HR Alta	2469	0.00000496	ND	1	JMH	10/22/09	
1,2,3,7,8-PeCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
2,3,4,7,8-PeCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,4,7,8-HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,6,7,8-HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
2,3,4,6,7,8-HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,7,8,9-HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
1,2,3,4,6,7,8-HpCDF	1613-Dioxin-HR Alta	2469	0.0000248	0.00000173	1	JMH	10/22/09	Ja
1,2,3,4,7,8,9-HpCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
OCDF	1613-Dioxin-HR Alta	2469	0.0000496	0.0000103	1	JMH	10/22/09	Ja
Total TCDD	1613-Dioxin-HR Alta	2469	0.00000496	ND	1	JMH	10/22/09	
Total PeCDD	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
Total HxCDD	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
Total HpCDD	1613-Dioxin-HR Alta	2469	0.0000248	0.0000284	1	JMH	10/22/09	
Total TCDF	1613-Dioxin-HR Alta	2469	0.00000496	ND	1	JMH	10/22/09	
Total PeCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
Total HxCDF	1613-Dioxin-HR Alta	2469	0.0000248	ND	1	JMH	10/22/09	
Total HpCDF	1613-Dioxin-HR Alta	2469	0.0000248	0.00000575	5 1	JMH	10/22/09	
Surrogate: 13C-2,3,7,8-TCDD (25-	-164%)			79.3 %				
Surrogate: 13C-1,2,3,7,8-PeCDD ((25-181%)			88 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDI	D (32-141%)			70.4 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDI	D (28-130%)			61.6 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCl	DD (23-140%)			77.1 %				
Surrogate: 13C-OCDD (17-157%)				64.3 %				
Surrogate: 13C-2,3,7,8-TCDF (24-				82.3 %				
Surrogate: 13C-1,2,3,7,8-PeCDF ((24-185%)			76.7 %				
Surrogate: 13C-2,3,4,7,8-PeCDF ((21-178%)			81.2 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDI	F (26-152%)			74.4 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDI	F (26-123%)			69.3 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDI	F (28-136%)			71.6 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDI	F (29-147%)			76.2 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCl	DF (28-143%)			73.5 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCl	DF (26-138%)			76.8 %				
Surrogate: 13C-OCDF (17-157%)				65.8 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

DIOXIN (EPA 1613)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1376-01 (Outfall 010 - Wat	er) - cont.							
Reporting Units: ug/L Surrogate: 37Cl-2,3,7,8-TCDD (35-197%)				98.6 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing	Project ID:	Semi-Annual Outfall 010		
618 Michillinda Avenue, Suite 200			Sampled:	10/14/09
Arcadia, CA 91007	Report Number:	ISJ1376	Received:	10/14/09
Attention: Bronwyn Kelly				

MCAWW 245.1									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1376-01 (Outfall 010 - Water) - cont. Reporting Units: ug/L									
Mercury	MCAWW 245.1	9293508	0.027	0.2	ND	1	CG	10/21/09	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing	Project ID:	Semi-Annual Outfall 010		
618 Michillinda Avenue, Suite 200			Sampled:	10/14/09
Arcadia, CA 91007	Report Number:	ISJ1376	Received:	10/14/09
Attention: Bronwyn Kelly				

MCAWW 245.1-DISS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ISJ1376-01 (Outfall 010) - Water) - cont.								
Reporting Units: ug/L Mercury	MCAWW 245.1-DISS	9293522	0.027	0.2	ND	1	CG	10/21/09	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 010 (ISJ1376-01) - Water					
EPA 300.0	2	10/14/2009 08:00	10/14/2009 19:05	10/14/2009 20:50	10/14/2009 21:09
Filtration	1	10/14/2009 08:00	10/14/2009 19:05	10/14/2009 21:26	10/14/2009 21:28

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9J19042 Extracted: 10/19/09										
Blank Analyzed: 10/19/2009 (9J19042- Hexane Extractable Material (Oil & Grease)	BLK1) ND	5.0	mg/l							
LCS Analyzed: 10/19/2009 (9J19042-B Hexane Extractable Material (Oil & Grease)	3S1) 19.6	5.0	mg/l	20.0		98	78-114			MNR1
LCS Dup Analyzed: 10/19/2009 (9J190 Hexane Extractable Material (Oil & Grease))42-BSD1) 19.2	5.0	mg/l	20.0		96	78-114	2	11	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9J16097 Extracted: 10/16/09										
Blank Analyzed: 10/16/2009 (9J16097-B	LK1)									
Antimony	ND	2.0	ug/l							
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Thallium	ND	1.0	ug/l							
LCS Analyzed: 10/16/2009 (9J16097-BS	1)									
Antimony	88.6	2.0	ug/l	80.0		111	85-115			
Cadmium	86.0	1.0	ug/l	80.0		107	85-115			
Copper	79.0	2.0	ug/l	80.0		99	85-115			
Lead	79.2	1.0	ug/l	80.0		99	85-115			
Thallium	76.8	1.0	ug/l	80.0		96	85-115			
Matrix Spike Analyzed: 10/17/2009 (9J1	6097-MS1)				Source: I	SJ1191-01	l			
Antimony	87.4	2.0	ug/l	80.0	ND	109	70-130			
Cadmium	84.2	1.0	ug/l	80.0	ND	105	70-130			
Copper	94.5	2.0	ug/l	80.0	19.7	93	70-130			
Lead	77.5	1.0	ug/l	80.0	2.22	94	70-130			
Thallium	73.8	1.0	ug/l	80.0	ND	92	70-130			
Matrix Spike Analyzed: 10/17/2009 (9J1	6097-MS2)				Source: I	SJ1400-03	;			
Antimony	91.0	2.0	ug/l	80.0	ND	114	70-130			
Cadmium	85.8	1.0	ug/l	80.0	ND	107	70-130			
Copper	73.1	2.0	ug/l	80.0	0.808	90	70-130			
Lead	75.4	1.0	ug/l	80.0	ND	94	70-130			
Thallium	74.4	1.0	ug/l	80.0	ND	93	70-130			
Matrix Spike Dup Analyzed: 10/17/2009	(9J16097-M	(SD1)			Source: I	SJ1191-01	l			
Antimony	86.9	2.0	ug/l	80.0	ND	109	70-130	1	20	
Cadmium	84.1	1.0	ug/l	80.0	ND	105	70-130	0	20	
Copper	93.5	2.0	ug/l	80.0	19.7	92	70-130	1	20	
Lead	77.3	1.0	ug/l	80.0	2.22	94	70-130	0	20	
Thallium	73.4	1.0	ug/l	80.0	ND	92	70-130	1	20	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9J20101 Extracted: 10/20/09										
Blank Analyzed: 10/20/2009 (9J20101-B	LK1)									
Antimony	ND	2.0	ug/l							
Cadmium	ND	1.0	ug/l							
Copper	1.38	2.0	ug/l							J
Lead	ND	1.0	ug/l							
Thallium	ND	1.0	ug/l							
LCS Analyzed: 10/20/2009 (9J20101-BS	1)									
Antimony	85.5	2.0	ug/l	80.0		107	85-115			
Cadmium	84.7	1.0	ug/l	80.0		106	85-115			
Copper	79.4	2.0	ug/l	80.0		99	85-115			
Lead	80.6	1.0	ug/l	80.0		101	85-115			
Thallium	82.3	1.0	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 10/20/2009 (9J2	0101-MS1)				Source: I	SJ1373-01				
Antimony	86.1	2.0	ug/l	80.0	0.709	107	70-130			
Cadmium	84.0	1.0	ug/l	80.0	ND	105	70-130			
Copper	84.7	2.0	ug/l	80.0	5.64	99	70-130			
Lead	79.6	1.0	ug/l	80.0	0.780	99	70-130			
Thallium	80.9	1.0	ug/l	80.0	ND	101	70-130			
Matrix Spike Analyzed: 10/20/2009 (9J2	0101-MS2)				Source: I	SJ1376-01				
Antimony	84.4	2.0	ug/l	80.0	0.839	104	70-130			
Cadmium	81.8	1.0	ug/l	80.0	0.186	102	70-130			
Copper	80.5	2.0	ug/l	80.0	3.51	96	70-130			
Lead	77.5	1.0	ug/l	80.0	0.241	97	70-130			
Thallium	81.0	1.0	ug/l	80.0	ND	101	70-130			
Matrix Spike Dup Analyzed: 10/20/2009	(9J20101-M	(SD1)			Source: I	SJ1373-01				
Antimony	87.2	2.0	ug/l	80.0	0.709	108	70-130	1	20	
Cadmium	83.8	1.0	ug/l	80.0	ND	105	70-130	0	20	
Copper	84.6	2.0	ug/l	80.0	5.64	99	70-130	0	20	
Lead	79.3	1.0	ug/l	80.0	0.780	98	70-130	0	20	
Thallium	81.2	1.0	ug/l	80.0	ND	101	70-130	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9J14063 Extracted: 10/14/09										
Blank Analyzed: 10/14/2009 (9J14063-Bl	LK1)									
Chloride	ND	0.50	mg/l							
Nitrate/Nitrite-N	ND	0.26	mg/l							
Sulfate	ND	0.50	mg/l							
LCS Analyzed: 10/14/2009 (9J14063-BS)	l)									
Chloride	5.09	0.50	mg/l	5.00		102	90-110			
Sulfate	10.5	0.50	mg/l	10.0		105	90-110			
Matrix Spike Analyzed: 10/14/2009 (9J1	4063-MS1)				Source: I	SJ1211-01	l			
Chloride	104	5.0	mg/l	50.0	55.0	98	80-120			
Sulfate	201	5.0	mg/l	100	97.8	103	80-120			
Matrix Spike Analyzed: 10/14/2009 (9J1	4063-MS2)				Source: I	SJ1341-01	l			
Chloride	19.4	0.50	mg/l	5.00	14.6	96	80-120			
Sulfate	34.7	0.50	mg/l	10.0	24.2	105	80-120			
Matrix Spike Dup Analyzed: 10/14/2009	(9J14063-MS	SD1)			Source: I	SJ1211-01	l			
Chloride	103	5.0	mg/l	50.0	55.0	95	80-120	1	20	
Sulfate	200	5.0	mg/l	100	97.8	102	80-120	0	20	
Batch: 9J15071 Extracted: 10/15/09										
Blank Analyzed: 10/15/2009 (9J15071-Bl Perchlorate	L K1) ND	4.0	ug/l							
LCS Analyzed: 10/15/2009 (9J15071-BS) Perchlorate	1) 26.3	4.0	ug/l	25.0		105	85-115			

TestAmerica Irvine

Joseph Doak Project Manager

ISJ1376 <Page 14 of 24> NPDES Page 631 of 1088

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9J15071 Extracted: 10/15/09										
Matrix Spike Analyzed: 10/15/2009 (9J1	5071-MS1)				Source: I	SJ1491-01				
Perchlorate	45.3	4.0	ug/l	25.0	18.4	108	80-120			
Matrix Spike Dup Analyzed: 10/15/2009	(9J15071-MS	D1)			Source: I	SJ1491-01				
Perchlorate	45.8	4.0	ug/l	25.0	18.4	109	80-120	1	20	
Batch: 9J19008 Extracted: 10/19/09										
Blank Analyzed: 10/19/2009 (9J19008-B	LK1)									
Total Dissolved Solids	ND	10	mg/l							
LCS Analyzed: 10/19/2009 (9J19008-BS	1)									
Total Dissolved Solids	1000	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 10/19/2009 (9J1900	8-DUP1)				Source: I	SJ1307-01				
Total Dissolved Solids	1520	10	mg/l		1500			1	10	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

4	D14	Reporting	T	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 2469 Extracted: 10/19/09										
Blank Analyzed: 10/22/2009 (MB001)					Source:					
2,3,7,8-TCDD	ND	0.00000500	ug/L				50-150		25	
1,2,3,7,8-PeCDD	ND	0.0000250	ug/L				50-150		25	
1,2,3,4,7,8-HxCDD	ND	0.0000250	ug/L				50-150		25	
1,2,3,6,7,8-HxCDD	ND	0.0000250	ug/L				50-150		25	
1,2,3,7,8,9-HxCDD	ND	0.0000250	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDD	ND	0.0000250	ug/L				50-150		25	
OCDD	ND	0.0000500	ug/L				50-150		25	
2,3,7,8-TCDF	ND	0.00000500	ug/L				50-150		25	
1,2,3,7,8-PeCDF	ND	0.0000250	ug/L				50-150		25	
2,3,4,7,8-PeCDF	ND	0.0000250	ug/L				50-150		25	
1,2,3,4,7,8-HxCDF	ND	0.0000250	ug/L				50-150		25	
1,2,3,6,7,8-HxCDF	ND	0.0000250	ug/L				50-150		25	
2,3,4,6,7,8-HxCDF	ND	0.0000250	ug/L				50-150		25	
1,2,3,7,8,9-HxCDF	ND	0.0000250	ug/L				50-150		25	
1,2,3,4,6,7,8-HpCDF	ND	0.0000250	ug/L				50-150		25	
1,2,3,4,7,8,9-HpCDF	ND	0.0000250	ug/L				50-150		25	
OCDF	ND	0.0000500	ug/L				50-150		25	
Total TCDD	ND	0.00000500	ug/L				50-150		25	
Total PeCDD	ND	0.0000250	ug/L				50-150		25	
Total HxCDD	ND	0.0000250	ug/L				50-150		25	
Total HpCDD	ND	0.0000250	ug/L				50-150		25	
Total TCDF	ND	0.00000500	ug/L				50-150		25	
Total PeCDF	ND	0.0000250	ug/L				50-150		25	
Total HxCDF	ND	0.0000250	ug/L				50-150		25	
Total HpCDF	ND	0.0000250	ug/L				50-150		25	
Surrogate: 13C-2,3,7,8-TCDD	0.00188		ug/L	2000		94	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00192		ug/L	2000		96	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00182		ug/L	2000		91	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00165		ug/L	2000		83	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00194		ug/L	2000		97	50-150			
Surrogate: 13C-OCDD	0.00333		ug/L	4000		83	50-150			
Surrogate: 13C-2,3,7,8-TCDF	0.00186		ug/L	2000		93	50-150			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00193		ug/L	2000		96	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00193		ug/L	2000		97	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00185		ug/L	2000		92	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00175		ug/L	2000		87	50-150			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

AnalyteResultLimitUnitsLevelResult%RECLimitRPDLimitQualifiersBarke. 2469Extracted: 10/1909Blank Analyzet: 10/22/2009 (MB001)Source:	Analyta	Result	Reporting Limit	Units	Spike Level	Source	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Bank Analyzed: 10/22/2009 (MB001) source: Source::::::::::::::::::::::::::::::::::::	·	Kesult	Limit	Units	Level	Result	70KEU	Limits	KPD	Limit	Quanners
Surrogui: 13C-2,3,4,6,7,8-14sCDF 0,00182 ug/l. 2000 9/l 50-150 Surrogui: 13C-1,2,3,4,7,8-14pCDF 0,00187 ug/l. 2000 9/l 50-150 Surrogui: 13C-1,2,3,4,7,8-14pCDF 0,00187 ug/l. 2000 9/l 50-150 Surrogui: 13C-1,2,3,4,7,8-14pCDF 0,00187 ug/l. 2000 9/l 50-150 Surrogui: 3CL-2,3,4,7,8-14pCDF 0,00073 ug/l. 10 8/l 50-150 CS AnalyzedI: 107222009 (OPR001) Surrogui: Surrogui: 50 9/l 50-150 25 1,2,3,7,8-1CDD 45.4 25.0 ug/l. 50 9/l 50-150 25 1,2,3,4,7,8-1KDD 48.1 25.0 ug/l. 50 9/l 50-150 25 1,2,3,4,7,8-1KDD 48.2 25.0 ug/l. 50 9/l 50-150 25 1,2,3,4,7,8-1KDD 48.2 25.0 ug/l. 50 9/l 50-150 25 1,2,3,4,7,8-14pCDF 8.55 50.0 ug/l. 50	Batch: 2469 Extracted: 10/19/09										
Surrogene: 13C-1.2.3.7.8.9-HACDF0.00187ug/L20009450-150Surrogene: 13C-1.2.3.4.7.8.9-HACDF0.00193ug/L20009750-150Surrogene: 13C-OCDF0.00138ug/L40008750-150Surrogene: 37C-1.2.3.7.8.3-PACDD0.0077vg/L8009750-150LCS Analyzed: 1022/2009 (OPR001)starstarstar500ug/L509150-1502.5,7.8-TCDD8.785.00ug/L509150-150251.2.3.5,8-HACDD45.42.50ug/L509650-150251.2.3.5,8-HACDD45.12.50ug/L509650-150251.2.3.5,7.8-HACDD45.22.50ug/L509650-150251.2.3.5,7.8-HACDD45.22.50ug/L509650-150251.2.3.5,7.8-HACDD45.55.00ug/L1009750-150251.2.3.4,7.8-HACDF45.55.00ug/L108650-150252.3.4,7.8-HACDF46.52.50ug/L509350-150251.3.4,7.8-HACDF46.52.50ug/L509350-150251.3.4,7.8-HACDF46.42.50ug/L509650-150251.3.4,7.8-HACDF46.82.50ug/L509650-150251.3.4,7.8-HACDF46.82.50ug/L509650-150 <td>Blank Analyzed: 10/22/2009 (MB001)</td> <td></td> <td></td> <td></td> <td></td> <td>Source:</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Blank Analyzed: 10/22/2009 (MB001)					Source:					
Surrogue: ISC-1,2,3,4,6,7,8-HpCDF 0,00187 ng/L 2000 94 50-150 Surrogue: ISC-1,2,3,4,7,8,9-HpCDF 0,00073 ug/L 2000 87 50-150 Surrogue: ISC-2,3,7,8-TCDD 0,000773 ug/L 800 97 50-150 Surrogue: ISC-2,3,7,8-TCDD 0,000773 ug/L 10 88 50-150 25 1,2,3,7,8-TCDD 8,78 5.00 ug/L 10 88 50-150 25 1,2,3,7,8-TCDD 47.1 25.0 ug/L 50 94 50-150 25 1,2,3,7,8-TCDD 45.1 25.0 ug/L 50 96 50-150 25 1,2,3,6,7,8-HpCDD 45.2 25.0 ug/L 50 96 50-150 25 1,2,3,6,7,8-HpCDD 45.2 50.0 ug/L 100 97 50-150 25 1,2,3,7,8-TCDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,7,8-TCDF 46.5 25.0 <	Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00182		ug/L	2000		91	50-150			
Surrogate: ISC-1.2.3.4.7.8.9-IpCDF 0.00193 ug/L 2000 97 50-150 Surrogate: ISC-OCDF 0.00073 ug/L 4000 87 50-150 Surrogate:: ISC-OCDF 0.00073 ug/L 800 97 50-150 LCS Analyzed: IO222009 (OPR001)	Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00188		ug/L	2000		94	50-150			
Surrogate: 13C-OCDF 0.00348 ug/L 4000 87 50-150 Surrogate: 37C2-3,3,8-TCDD 0.000773 ug/L 800 97 50-150 LCS Analyzed: 10/22/009 (OPR001) surrogate: 37.8-TCDD 87.8 500 ug/L 10 88 501.0 25 1,2,3,7,8-PcCDD 45.4 25.0 ug/L 50 94 50-150 25 1,2,3,7,8-PcCDD 48.1 25.0 ug/L 50 96 50-150 25 1,2,3,6,7,8-HpCDD 48.2 25.0 ug/L 50 96 50-150 25 1,2,3,7,8-PcCDF 48.2 25.0 ug/L 50 95 50-150 25 0CDD 96.5 5.00 ug/L 50 93 50-150 25 1,2,3,7,8-HcDF 46.3 25.0 ug/L 50 93 50-150 25 1,2,3,7,8-HcDF 46.8 25.0 ug/L 50 94 50-150 25 1,	Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00187		ug/L	2000		94	50-150			
Surrogate: 37.02-3,3,7,8-TCDD0.00073ug/L8009750-150LCS Analyzet: 10/22/2009 (OPR00)87.85.00ug/L1088.850-150252,3,7,8-FCCDD45.425.0ug/L509450-150251,2,3,7,8-HCCDD48.125.0ug/L509650-150251,2,3,6,7,8-HSCDD48.125.0ug/L509650-150251,2,3,6,7,8-HSCDD48.225.0ug/L509650-150251,2,3,4,6,7,8-HSCDD48.225.0ug/L1009750-150250CDD96.550.0ug/L1009650-150251,2,3,4,7,8-HSCDF46.325.0ug/L509350-150251,2,3,4,7,8-HSCDF46.525.0ug/L509350-150251,2,3,4,7,8-HSCDF46.825.0ug/L509650-150251,2,3,4,7,8-HSCDF48.425.0ug/L509650-150251,2,3,4,7,8-HSCDF48.425.0ug/L509650-150251,2,3,4,7,8-HSCDF48.425.0ug/L509650-150251,2,3,4,7,8-HSCDF48.425.0ug/L509650-150251,2,3,4,7,8-HSCDF48.425.0ug/L509650-150251,2,3,4,7,8-HSCDF48.425.0ug/L10093	Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00193		ug/L	2000		97	50-150			
Joint Constraint of the second seco	Surrogate: 13C-OCDF	0.00348		ug/L	4000		87	50-150			
2,3,7,8-TCDD 8,78 5,00 ug/L 10 88 50-150 25 1,2,3,7,8-PCDD 45,4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDD 47,1 25.0 ug/L 50 96 50-150 25 1,2,3,7,8-HxCDD 48.1 25.0 ug/L 50 96 50-150 25 1,2,3,7,8-HxCDD 48.2 25.0 ug/L 50 95 50-150 25 1,2,3,7,8-HxCDD 48.2 25.0 ug/L 50 95 50-150 25 2,3,7,8-TCDF 8.55 5.00 ug/L 100 86 50-150 25 2,3,4,7.8-PACDF 46.3 25.0 ug/L 50 93 50-150 25 1,2,3,4,7.8-HxCDF 46.3 25.0 ug/L 50 94 50-150 25 1,2,3,4,7.8-HxCDF 49.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7.8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 </td <td>Surrogate: 37Cl-2,3,7,8-TCDD</td> <td>0.000773</td> <td></td> <td>ug/L</td> <td>800</td> <td></td> <td>97</td> <td>50-150</td> <td></td> <td></td> <td></td>	Surrogate: 37Cl-2,3,7,8-TCDD	0.000773		ug/L	800		97	50-150			
2,3,7,8-TCDD 8,78 5,00 ug/L 10 88 50-150 25 1,2,3,7,8-PCDD 45,4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDD 47,1 25.0 ug/L 50 96 50-150 25 1,2,3,7,8-HxCDD 48.1 25.0 ug/L 50 96 50-150 25 1,2,3,7,8-HxCDD 48.2 25.0 ug/L 50 96 50-150 25 1,2,3,7,8-HxCDD 48.2 25.0 ug/L 50 97 50-150 25 2,3,7,8-TCDF 8.55 5.00 ug/L 100 86 50-150 25 2,3,4,7.8-PACDF 46.3 25.0 ug/L 50 93 50-150 25 1,2,3,4,7.8-HxCDF 46.3 25.0 ug/L 50 98 50-150 25 1,2,3,4,7.8-HxCDF 49.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7.8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 </td <td>LCS Analyzed: 10/22/2009 (OPR001)</td> <td></td> <td></td> <td></td> <td></td> <td>Source:</td> <td></td> <td></td> <td></td> <td></td> <td></td>	LCS Analyzed: 10/22/2009 (OPR001)					Source:					
1,2,3,7,8-PeCDD 45.4 25.0 ug/L 50 91 50-150 25 1,2,3,4,7,8-HxCDD 47.1 25.0 ug/L 50 96 50-150 25 1,2,3,6,7,8-HxCDD 48.1 25.0 ug/L 50 96 50-150 25 1,2,3,7,8-HxCDD 48.1 25.0 ug/L 50 95 50-150 25 1,2,3,4,6,7,8-HxCDD 47.4 25.0 ug/L 100 97 50-150 25 2,3,7,8-TCDF 8.55 5.00 ug/L 50 93 50-150 25 2,3,7,8-PCDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,4,7,8-HxCDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,4,7,8-HxCDF 49.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,6,7,8-HxCDF 48.8 25.0 ug/L 50 97 50-150 25 1,2,3,4,6,7,8-HxCDF 48.0 25.0 ug/L 50 96 50-150		8.78	5.00	ug/L	10		88	50-150		25	
1,2,3,4,7,8-HxCDD 47.1 25.0 ug/L 50 94 50-150 25 1,2,3,6,7,8-HxCDD 48.1 25.0 ug/L 50 96 50-150 25 1,2,3,4,7,8-HxCDD 48.2 25.0 ug/L 50 96 50-150 25 0.2,3,4,6,7,8-HpCDD 47.4 25.0 ug/L 100 97 50-150 25 0.2,3,7,8-PacDF 8.55 5.00 ug/L 10 86 50-150 25 2,3,4,7,8-PacDF 46.3 25.0 ug/L 50 93 50-150 25 2,3,4,7,8-PacDF 46.3 25.0 ug/L 50 93 50-150 25 1,2,3,4,7,8-HxCDF 49.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.8 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 <td>1,2,3,7,8-PeCDD</td> <td></td> <td>25.0</td> <td></td> <td>50</td> <td></td> <td></td> <td>50-150</td> <td></td> <td>25</td> <td></td>	1,2,3,7,8-PeCDD		25.0		50			50-150		25	
1,2,3,6,7,8-HxCDD 48.1 25.0 ug/L 50 96 50-150 25 1,2,3,7,8,9-HxCDD 48.2 25.0 ug/L 50 95 50-150 25 1,2,3,4,6,7,8-HpCDD 96.5 50.0 ug/L 100 97 50-150 25 2,3,4,6,7,8-HpCDF 8.5 5.00 ug/L 100 97 50-150 25 2,3,7,8-FCDF 46.3 25.0 ug/L 50 93 50-150 25 2,3,4,7,8-HxCDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,4,7,8-HxCDF 49.4 25.0 ug/L 50 94 50-150 25 2,3,4,6,7,8-HxCDF 48.8 25.0 ug/L 50 94 50-150 25 1,2,3,4,6,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.4 25.0 ug/L 100 93 50-150<	1,2,3,4,7,8-HxCDD	47.1			50		94	50-150		25	
1,2,3,7,8,9-HxCDD 48.2 25.0 ug/L 50 96 50-150 25 1,2,3,4,6,7,8-HpCDD 96.5 50.0 ug/L 100 97 50-150 25 2,3,7,8-TCDF 8.55 5.00 ug/L 10 86 50-150 25 2,3,7,8-PCDF 46.5 25.0 ug/L 50 93 50-150 25 2,3,4,7,8-PcDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,4,7,8-HxCDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,6,7,8-HxCDF 48.8 25.0 ug/L 50 98 50-150 25 1,2,3,6,7,8-HxCDF 48.8 25.0 ug/L 50 97 50-150 25 1,2,3,4,7,8-HxCDF 48.0 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.0 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.0 25.0 ug/L 100 102 50-150	1,2,3,6,7,8-HxCDD	48.1	25.0		50		96	50-150		25	
1,2,3,4,6,7,8-HpCDD 47.4 25.0 ug/L 50 95 50.150 25 OCDD 96.5 50.0 ug/L 100 97 50-150 25 2,3,7,8-TCDF 8.55 5.00 ug/L 10 86 50-150 25 1,2,3,7,8-PcCDF 46.3 25.0 ug/L 50 93 50-150 25 1,2,3,4,7,8-HxCDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,6,7,8-HxCDF 49.4 25.0 ug/L 50 94 50-150 25 1,2,3,6,7,8-HxCDF 48.8 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 46.8 25.0 ug/L 100 102 50-150 25 1,2,3,4,7,8-HxCDF 46.8 25.0 ug/L 100 83 50-150 <td>1,2,3,7,8,9-HxCDD</td> <td>48.2</td> <td>25.0</td> <td></td> <td>50</td> <td></td> <td>96</td> <td>50-150</td> <td></td> <td>25</td> <td></td>	1,2,3,7,8,9-HxCDD	48.2	25.0		50		96	50-150		25	
OCDD 96.5 50.0 ug/L 100 97 50-150 25 2,3,7,8-TCDF 8.55 5.00 ug/L 50 93 50-150 25 2,3,7,8-PcDF 46.3 25.0 ug/L 50 93 50-150 25 2,3,7,8-PcDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,7,8-PcDF 49.4 25.0 ug/L 50 98 50-150 25 1,2,3,7,8-HxCDF 49.4 25.0 ug/L 50 98 50-150 25 2,3,4,6,7,8-HxCDF 47.2 25.0 ug/L 50 94 50-150 25 1,2,3,4,6,7,8-HxCDF 48.4 25.0 ug/L 50 97 50-150 25 1,2,3,4,6,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,6,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 Surrogat: 13C-1,2,3,7,8-TCDD 93.1 ug/L 100 93 50-150 25	1,2,3,4,6,7,8-HpCDD	47.4	25.0		50		95	50-150		25	
2,3,7,8-TCDF 8,55 5.00 ug/L 10 86 50-150 25 1,2,3,7,8-PCDF 46.3 25.0 ug/L 50 93 50-150 25 2,3,4,7,8-PCDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,4,7,8-P4CDF 46.5 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-P4CDF 48.8 25.0 ug/L 50 94 50-150 25 1,2,3,4,5,8-HxCDF 48.8 25.0 ug/L 50 94 50-150 25 1,2,3,4,6,7,8-HxCDF 48.4 25.0 ug/L 50 97 50-150 25 1,2,3,4,6,7,8-HxCDF 48.4 25.0 ug/L 50 94 50-150 25 1,2,3,4,6,7,8-HxCDF 46.8 25.0 ug/L 100 102 50-150 25 Surrogate: 13C-1,2,3,7,8-PcCDD 93.1 ug/L 100 94 50-150 25 Surrogate: 13C-1,2,3,4,7,8-HxCDD 93.1 ug/L 100 94 50-150 <	OCDD	96.5	50.0		100		97	50-150		25	
1,2,3,7,8-PeCDF 46.3 25.0 ug/L 50 93 50-150 25 2,3,4,7,8-PeCDF 46.5 25.0 ug/L 50 93 50-150 25 1,2,3,4,7,8-HxCDF 49.4 25.0 ug/L 50 98 50-150 25 2,3,4,6,7,8-HxCDF 48.8 25.0 ug/L 50 94 50-150 25 2,3,4,6,7,8-HxCDF 47.2 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.4 25.0 ug/L 50 97 50-150 25 1,2,3,4,7,8-HxCDF 48.0 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 48.0 25.0 ug/L 50 94 50-150 25 1,2,3,4,7,8-HxCDF 46.8 25.0 ug/L 100 94 50-150 25 Surrogate: 13C-1,2,3,7,8-PeCDD 46.8 25.0 ug/L 100 84 50-150 Surrogate: 13C-1,2,3,7,8-PeCDD 84.1 ug/L 100 84 50-150 <td>2,3,7,8-TCDF</td> <td>8.55</td> <td>5.00</td> <td></td> <td>10</td> <td></td> <td>86</td> <td>50-150</td> <td></td> <td>25</td> <td></td>	2,3,7,8-TCDF	8.55	5.00		10		86	50-150		25	
2,3,4,7,8-PeCDF46.525.0ug/L509350-150251,2,3,4,7,8-HxCDF49.425.0ug/L509950-150252,3,4,6,7,8-HxCDF48.825.0ug/L509450-150252,3,4,6,7,8-HxCDF47.225.0ug/L509450-150251,2,3,7,8,9-HxCDF48.425.0ug/L509650-150251,2,3,4,6,7,8-HpCDF48.025.0ug/L509450-150251,2,3,4,7,8,9-HpCDF46.825.0ug/L509450-15025OCDF10250.0ug/L10010250-15025Surrogate: 13C-1,2,3,7,8-PeCDD84.1ug/L1009350-150Surrogate: 13C-1,2,3,4,7,8-HxCDD89.9ug/L1008450-150Surrogate: 13C-1,2,3,4,7,8-HxCDD82.6ug/L1008350-150Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009050-150Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009050-150Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009050-150Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009050-150Surrogate: 13C-2,3,7,8-TCDF96.0ug/L1009050-150Surrogate: 13C-1,2,3,7,8-PeCDF90.0ug/L1009050-150Surrogate: 13C-1,2,3,7,8-PeCDF91.0ug/L10	1,2,3,7,8-PeCDF	46.3	25.0		50		93	50-150		25	
1,2,3,4,7,8-HxCDF 49.4 25.0 ug/L 50 99 50-150 25 1,2,3,6,7,8-HxCDF 48.8 25.0 ug/L 50 94 50-150 25 2,3,4,6,7,8-HxCDF 47.2 25.0 ug/L 50 94 50-150 25 1,2,3,7,8,9-HxCDF 48.4 25.0 ug/L 50 96 50-150 25 1,2,3,4,6,7,8-HpCDF 48.0 25.0 ug/L 50 96 50-150 25 1,2,3,4,7,8,9-HpCDF 46.8 25.0 ug/L 50 94 50-150 25 OCDF 102 50.0 ug/L 100 102 50-150 25 Surrogate: 13C-1,2,3,7,8-PcDD 93.1 ug/L 100 93 50-150 25 Surrogate: 13C-1,2,3,4,7,8-HxCDD 89.9 ug/L 100 90 50-150 25 Surrogate: 13C-2,3,4,7,8-HpCDD 82.6 ug/L 100 83 50-150 25 Surrogate: 13C-2,3,4,7,8-HpCDD 90.3 ug/L 100 90 50-150 25 <td>2,3,4,7,8-PeCDF</td> <td>46.5</td> <td>25.0</td> <td></td> <td>50</td> <td></td> <td>93</td> <td>50-150</td> <td></td> <td>25</td> <td></td>	2,3,4,7,8-PeCDF	46.5	25.0		50		93	50-150		25	
1,2,3,6,7,8-HxCDF48.825.0ug/L509850-150252,3,4,6,7,8-HxCDF47.225.0ug/L509450-150251,2,3,7,8,9-HxCDF48.425.0ug/L509650-150251,2,3,4,7,8,9-HpCDF46.825.0ug/L509450-150250CDF10250.0ug/L10010250-15025Surrogate: 13C-2,3,7,8-TCDD93.1ug/L1009350-15025Surrogate: 13C-1,2,3,4,7,8-HxCDD84.1ug/L1008450-15050Surrogate: 13C-1,2,3,4,7,8-HxCDD82.6ug/L1008350-15050Surrogate: 13C-2,3,7,8-TCDF90.3ug/L1009050-15050Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009050-15050Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009050-15050Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009050-15050Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009050-15050Surrogate: 13C-2,3,4,7,8-PeCDF91.0ug/L1009150-15050Surrogate: 13C-2,3,4,7,8-PeCDF91.0ug/L1009150-15050Surrogate: 13C-2,3,4,7,8-PeCDF91.0ug/L1008750-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1008750-150<	1,2,3,4,7,8-HxCDF	49.4	25.0		50		99	50-150		25	
2,3,4,6,7,8-HxCDF47.225.0ug/L509450-150251,2,3,7,8,9-HxCDF48.425.0ug/L509750-150251,2,3,4,6,7,8-HpCDF48.025.0ug/L509450-150251,2,3,4,7,8,9-HpCDF46.825.0ug/L509450-15025OCDF10250.0ug/L10010250-15025Surrogate: 13C-1,2,3,7,8-PcCDD84.1ug/L1008450-150Surrogate: 13C-1,2,3,4,7,8-HxCDD89.9ug/L1008350-150Surrogate: 13C-1,2,3,4,6,7,8-HpCDD90.3ug/L1009050-150Surrogate: 13C-0CDD158ug/L1009050-150Surrogate: 13C-2,3,7,8-PcCDF96.2ug/L1009050-150Surrogate: 13C-2,3,7,8-PcCDF96.2ug/L1009050-150Surrogate: 13C-2,3,7,8-PcCDF96.2ug/L1009050-150Surrogate: 13C-2,3,7,8-PcCDF96.0ug/L1009050-150Surrogate: 13C-2,3,7,8-PcCDF91.0ug/L1009150-150Surrogate: 13C-2,3,4,7,8-PcCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PcCDF87.1ug/L1008750-150	1,2,3,6,7,8-HxCDF	48.8	25.0		50		98	50-150		25	
1,2,3,4,6,7,8-HpCDF 48.0 25.0 ug/L 50 96 50-150 25 1,2,3,4,7,8,9-HpCDF 46.8 25.0 ug/L 50 94 50-150 25 OCDF 102 50.0 ug/L 100 102 50-150 25 Surrogate: 13C-2,3,7,8-TCDD 93.1 ug/L 100 93 50-150 25 Surrogate: 13C-1,2,3,7,8-PeCDD 84.1 ug/L 100 84 50-150 50 Surrogate: 13C-1,2,3,4,7,8-HxCDD 89.9 ug/L 100 83 50-150 Surrogate: 13C-1,2,3,6,7,8-HxCDD 82.6 ug/L 100 90 50-150 Surrogate: 13C-2,3,7,8-TPCDD 90.3 ug/L 100 90 50-150 Surrogate: 13C-2,3,7,8-TPCDD 90.3 ug/L 100 90 50-150 Surrogate: 13C-2,3,7,8-TPCDF 96.2 ug/L 100 96 50-150 Surrogate: 13C-2,3,7,8-PeCDF 90.0 ug/L 100 96 50-150 Surrogate: 13C-2,3,4,7,8-PeCDF 91.0 ug/L 100 91	2,3,4,6,7,8-HxCDF	47.2	25.0	ug/L	50		94	50-150		25	
1,2,3,4,7,8,9-HpCDF46.825.0ug/L509450-15025OCDF10250.0ug/L10010250-15025Surrogate: 13C-2,3,7,8-TCDD93.1ug/L1009350-150Surrogate: 13C-1,2,3,7,8-PeCDD84.1ug/L1008450-150Surrogate: 13C-1,2,3,4,7,8-HxCDD89.9ug/L1008350-150Surrogate: 13C-1,2,3,4,6,7,8-HxCDD82.6ug/L1008350-150Surrogate: 13C-1,2,3,4,6,7,8-HxCDD90.3ug/L1009050-150Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009650-150Surrogate: 13C-1,2,3,4,7,8-PeCDF90.0ug/L1009050-150Surrogate: 13C-2,3,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1008750-150Surrogate: 13C-1,2,3,4,7,8-PeCDF87.1ug/L1008750-150	1,2,3,7,8,9-HxCDF	48.4	25.0	ug/L	50		97	50-150		25	
1,2,3,4,7,8,9-HpCDF46.825.0ug/L509450-15025OCDF10250.0ug/L10010250-15025Surrogate: 13C-2,3,7,8-TCDD93.1ug/L1009350-150Surrogate: 13C-1,2,3,7,8-PeCDD84.1ug/L1008450-150Surrogate: 13C-1,2,3,4,7,8-HxCDD89.9ug/L1008350-150Surrogate: 13C-1,2,3,4,6,7,8-HxCDD82.6ug/L1008350-150Surrogate: 13C-1,2,3,4,6,7,8-HxCDD90.3ug/L1009050-150Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009650-150Surrogate: 13C-1,2,3,4,7,8-PeCDF90.0ug/L1009050-150Surrogate: 13C-2,3,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-PeCDF91.0ug/L1008750-150Surrogate: 13C-1,2,3,4,7,8-PeCDF87.1ug/L1008750-150	1,2,3,4,6,7,8-HpCDF	48.0	25.0	ug/L	50		96	50-150		25	
Surrogate:13C-2,3,7,8-TCDD93.1ug/L1009350-150Surrogate:13C-1,2,3,7,8-PeCDD84.1ug/L1008450-150Surrogate:13C-1,2,3,4,7,8-HxCDD89.9ug/L1009050-150Surrogate:13C-1,2,3,6,7,8-HxCDD82.6ug/L1008350-150Surrogate:13C-1,2,3,4,6,7,8-HpCDD90.3ug/L1009050-150Surrogate:13C-0CDD158ug/L2007950-150Surrogate:13C-1,2,3,7,8-TCDF96.2ug/L1009650-150Surrogate:13C-2,3,7,8-PeCDF90.0ug/L1009050-150Surrogate:13C-2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate:13C-1,2,3,4,7,8-HxCDF87.1ug/L1008750-150	1,2,3,4,7,8,9-HpCDF	46.8	25.0	ug/L	50		94	50-150		25	
Surrogate:13C-1,2,3,7,8-PeCDD84.1ug/L1008450-150Surrogate:13C-1,2,3,4,7,8-HxCDD89.9ug/L1009050-150Surrogate:13C-1,2,3,6,7,8-HxCDD82.6ug/L1008350-150Surrogate:13C-1,2,3,4,6,7,8-HpCDD90.3ug/L1009050-150Surrogate:13C-0CDD158ug/L2007950-150Surrogate:13C-2,3,7,8-TCDF96.2ug/L1009650-150Surrogate:13C-1,2,3,7,8-PeCDF90.0ug/L1009050-150Surrogate:13C-2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate:13C-1,2,3,4,7,8-HxCDF87.1ug/L1008750-150	OCDF	102	50.0	ug/L	100		102	50-150		25	
Surrogate:13C-1,2,3,4,7,8-HxCDD89.9ug/L1009050-150Surrogate:13C-1,2,3,6,7,8-HxCDD82.6ug/L1008350-150Surrogate:13C-1,2,3,4,6,7,8-HpCDD90.3ug/L1009050-150Surrogate:13C-0CDD158ug/L2007950-150Surrogate:13C-2,3,7,8-TCDF96.2ug/L1009650-150Surrogate:13C-1,2,3,7,8-PeCDF90.0ug/L1009050-150Surrogate:13C-2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate:13C-1,2,3,4,7,8-HxCDF87.1ug/L1008750-150	Surrogate: 13C-2,3,7,8-TCDD	93.1		ug/L	100		93	50-150			
Surrogate: 13C-1,2,3,6,7,8-HxCDD 82.6 ug/L 100 83 50-150 Surrogate: 13C-1,2,3,4,6,7,8-HpCDD 90.3 ug/L 100 90 50-150 Surrogate: 13C-0CDD 158 ug/L 200 79 50-150 Surrogate: 13C-2,3,7,8-TCDF 96.2 ug/L 100 96 50-150 Surrogate: 13C-1,2,3,7,8-PeCDF 90.0 ug/L 100 90 50-150 Surrogate: 13C-2,3,4,7,8-PeCDF 91.0 ug/L 100 91 50-150 Surrogate: 13C-1,2,3,4,7,8-HxCDF 87.1 ug/L 100 87 50-150	Surrogate: 13C-1,2,3,7,8-PeCDD	84.1		ug/L	100		84	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD 90.3 ug/L 100 90 50-150 Surrogate: 13C-0CDD 158 ug/L 200 79 50-150 Surrogate: 13C-2,3,7,8-TCDF 96.2 ug/L 100 96 50-150 Surrogate: 13C-1,2,3,7,8-PeCDF 90.0 ug/L 100 90 50-150 Surrogate: 13C-2,3,4,7,8-PeCDF 91.0 ug/L 100 91 50-150 Surrogate: 13C-1,2,3,4,7,8-PeCDF 87.1 ug/L 100 87 50-150	Surrogate: 13C-1,2,3,4,7,8-HxCDD	89.9		ug/L	100		90	50-150			
Surrogate: 13C-OCDD 158 ug/L 200 79 50-150 Surrogate: 13C-2,3,7,8-TCDF 96.2 ug/L 100 96 50-150 Surrogate: 13C-1,2,3,7,8-PeCDF 90.0 ug/L 100 90 50-150 Surrogate: 13C-2,3,4,7,8-PeCDF 91.0 ug/L 100 91 50-150 Surrogate: 13C-1,2,3,4,7,8-HxCDF 87.1 ug/L 100 87 50-150	Surrogate: 13C-1,2,3,6,7,8-HxCDD	82.6		ug/L	100		83	50-150			
Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009650-150Surrogate: 13C-1,2,3,7,8-PeCDF90.0ug/L1009050-150Surrogate: 13C-2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-HxCDF87.1ug/L1008750-150	Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	90.3		ug/L	100		90	50-150			
Surrogate: 13C-2,3,7,8-TCDF96.2ug/L1009650-150Surrogate: 13C-1,2,3,7,8-PeCDF90.0ug/L1009050-150Surrogate: 13C-2,3,4,7,8-PeCDF91.0ug/L1009150-150Surrogate: 13C-1,2,3,4,7,8-HxCDF87.1ug/L1008750-150	Surrogate: 13C-OCDD	158		ug/L	200		79	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF 91.0 ug/L 100 91 50-150 Surrogate: 13C-1,2,3,4,7,8-HxCDF 87.1 ug/L 100 87 50-150	Surrogate: 13C-2,3,7,8-TCDF	96.2			100		96	50-150			
Surrogate: 13C-2,3,4,7,8-PeCDF 91.0 ug/L 100 91 50-150 Surrogate: 13C-1,2,3,4,7,8-HxCDF 87.1 ug/L 100 87 50-150	Surrogate: 13C-1,2,3,7,8-PeCDF	90.0		ug/L	100		90	50-150			
Surrogate: 13C-1,2,3,4,7,8-HxCDF 87.1 ug/L 100 87 50-150	Surrogate: 13C-2,3,4,7,8-PeCDF	91.0			100		91	50-150			
	Surrogate: 13C-1,2,3,4,7,8-HxCDF	87.1			100		87	50-150			
	Surrogate: 13C-1,2,3,6,7,8-HxCDF	83.3			100		83	50-150			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

DIOXIN (EPA 1613)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 2469 Extracted: 10/19/09										
LCS Analyzed: 10/22/2009 (OPR001)					Source:					
Surrogate: 13C-2,3,4,6,7,8-HxCDF	88.8		ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	91.9		ug/L	100		92	50-150			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	88.6		ug/L	100		89	50-150			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	90.7		ug/L	100		91	50-150			
Surrogate: 13C-OCDF	159		ug/L	200		79	50-150			
Surrogate: 37Cl-2,3,7,8-TCDD	38.7		ug/L	40		97	50-150			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

MCAWW 245.1

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9293508 Extracted: 10/21/09										
Matrix Spike Dup Analyzed: 10/21/2009	(D9J1603350	01D)			Source: I	SJ1376-01				
Mercury	2.04	0.2	ug/L	5	ND	40	90-110	25	10	N, *
Matrix Spike Analyzed: 10/21/2009 (D9.	J160335001S)				Source: I	SJ1376-01				
Mercury	1.59	0.2	ug/L	5	ND	31	90-110			N
Blank Analyzed: 10/21/2009 (D9J200000	508B)				Source:					
Mercury	ND	0.2	ug/L				-			
LCS Analyzed: 10/21/2009 (D9J2000005	08C)				Source:					
Mercury	4.89	0.2	ug/L	5		98	90-110			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

METHOD BLANK/QC DATA

MCAWW 245.1-DISS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9293522 Extracted: 10/21/09										
Matrix Spike Dup Analyzed: 10/21/2009	(D9J1603350	01D)			Source: I	SJ1376-01				
Mercury	2.97	0.2	ug/L	5	ND	59	90-110	5	10	Ν
Matrix Spike Analyzed: 10/21/2009 (D9.	J160335001S)				Source: I	SJ1376-01				
Mercury	3.13	0.2	ug/L	5	ND	62	90-110			N
Blank Analyzed: 10/21/2009 (D9J200000)522B)				Source:					
Mercury	ND	0.2	ug/L				-			
LCS Analyzed: 10/21/2009 (D9J2000005	522C)				Source:					
Mercury	5.17	0.2	ug/L	5		103	90-110			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
ISJ1376-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.19	4.8	15
ISJ1376-01	Antimony-200.8	Antimony	ug/l	0.55	2.0	6
ISJ1376-01	Cadmium-200.8	Cadmium	ug/l	0.17	1.0	4
ISJ1376-01	Chloride - 300.0	Chloride	mg/l	22	0.50	150
ISJ1376-01	Copper-200.8	Copper	ug/l	4.29	2.0	14
ISJ1376-01	Lead-200.8	Lead	ug/l	0.45	1.0	5.2
ISJ1376-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	3.39	0.26	10
ISJ1376-01	Perchlorate 314.0 - Default	Perchlorate	ug/l	0	4.0	6
ISJ1376-01	Sulfate-300.0	Sulfate	mg/l	21	0.50	250
ISJ1376-01	TDS - SM2540C	Total Dissolved Solids	mg/l	169	10	850
ISJ1376-01	Thallium-200.8	Thallium	ug/l	0.026	1.0	2

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

DATA QUALIFIERS AND DEFINITIONS

- * Relative percent difference (RPD) is outside stated control limits.
- **B** Analyte was detected in the associated Method Blank.
- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Ja The amount detected is below the Lower CalibrationLimit of the instrument
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- N Spike sample recovery is outside control limits.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
Filtration	Water	N/A	N/A
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Alta Analytical Perspectives

2714 Exchange Drive - Wilmington, NC 28405

Method Performed: 1613-Dioxin-HR Alta Samples: ISJ1376-01

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic Samples: ISJ1376-01

TestAmerica Denver

4955 Yarrow Street - Arvada, CO 80002 Method Performed: MCAWW 245.1 Samples: ISJ1376-01

Method Performed: MCAWW 245.1-DISS Samples: ISJ1376-01

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Semi-Annual Outfall 010

Report Number: ISJ1376

Sampled: 10/14/09 Received: 10/14/09

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Analysis Performed: Gamma Spec Samples: ISJ1376-01

- Analysis Performed: Gross Alpha Samples: ISJ1376-01
- Analysis Performed: Gross Beta Samples: ISJ1376-01
- Analysis Performed: Radium, Combined Samples: ISJ1376-01
- Analysis Performed: Strontium 90 Samples: ISJ1376-01
- Analysis Performed: Tritium Samples: ISJ1376-01
- Analysis Performed: Uranium, Combined Samples: ISJ1376-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta Samples: ISJ1376-01

TestAmerica Irvine

Test America Version 6/29/09	CHAIN OF CUSTODY FORM	TODY FORM 255976	Page 1 of 2
Client Name/Address:	Project:	ANALYSIS REQUIRED	
MVVH-Arcadia 618 Michilinda Ave, Suite 200 Arcadia, CA 91007	Boeing-SSFL NPDES Semi-Annual Outfall 010 GRAB Stormwater at Building 203		Field readings:
Test America Contact: Joseph Doak			Temp ° = (b.3mc)
			FOLD LOG
Project Manager: Bronwyn Kelly	Phone Number: (626) 568-6691		5
sampler: Meyhann Chell	Fax Number: (626) 568-6515		0020
Sample Sample Container # of Description Matrix Type cont	Sampling Preservative Bottle #		Comments
Outfall 010 W 1L Amber 2	1014101/0800 HCI 1A, 18 🛒 X		
		and the second se	
		/	
	-		
	4		
Relinquished By Date/Time:		Turn-around time: (Check)	
14	101409/1422	24 Hour: 72 Hour: 72 Hour. 72 Hour. 5 Day:	10 Day: Normal:
Quard	Log 19:55	Date/Time: / sample Integrity: (Check) - LOLUH OP POS Intact: On Ice: On Ice:	
Relfinquished By C Date/Time:	ime:	Date/Time. Data Requirements: (Check)	
		No Level IV: All Level IV: NPDE	NPDES Level IV: X

CHAIN OF CUSTODY FORM

Page 2 of 2

ļ

Client Name/Address:			Project:								ANAL	ANAI YSIS REOUIRED	JIRED			
			Roeing-SSEL			Ì	ŀ									
è	Suite 200		Semi-Annual Outfall 010	Outfall 010		'' LP'	$\overline{}$	~	otal & (L	<u> </u>	ʻq,					
adia, CA 91007			Stormwater at Building 203	Building 20	ń	u, Cu	v		Т ,(0 503.		9 (JU)					
Test America Contact: Joseph Doak	ot: Joseph Do	oak)), d2 : slatel		1, Perchlorat	Gross Beta(, Sr-90 (905 26 (903.0 or , Uranina (9 , 101.1)	\sim	als: Sb, Cd, (
Project Manager: Bronwyn Kelly	onwyn Kelly		Phone Number:	 		M ə			(0.8 2 m (0.4		stelv					
			(626) 568-6691	-		Ider		>.)N+ ⁶	706) 10106 106)		v pə					
Sampler: Mugham Chull	nn Chell		Fax Number. (626) 568-6515	10			e pue)	on '*	הפל R: ined R: 822 m	xoT oi						
Sample Sample Description Matrix	e Container ¢ Type	# of Cont.	1	Preservative	Bottle #	Total I IT , ₉ H	<u> </u>	CL' 20	nuitinT dmoO NibeЯ		Total I Hg, TI					Comments
Outfall 010 W	1L Poly	-	0090/60/101	HNO3	2A 2	×										
Outfall 010 Dup W	1L Poly	+		HNO3	28	×										
Outfail 010 W	1L Amber	2		None	3A, 3B		×		- - -							
Outfail 010 W	500 mL Poly	5		None	4A, 4B			×								
Outfail 010 W	500 mL Poly	-		None	1			×								
	2.5 Gal Cube	-		None	6A 🖒				>							Unfiltered and unpreserved
	500 ml Amber	-		None	6B 1				<							analysis
Outfall 010 W	1 Gal Poly			None	7 -					×					0	Only test if first or second rain events of the year
Outfall 010 W	1L Poly	-	-7	None	* 8						×					Filter w/in 24hrs of receipt at lab
		Σ	Mulain								\uparrow	\downarrow				
	-	Ľ	Turner	hul	101409										T	
								1								
												The second se				
Relinquished A v		Date/Time	Time.		Received/BV				Mate/Time		Ī	Tum-arround time: (Check	(Check)			
My C) - Iohoghyizz	, indi	Not	L.	May	Ŵ	10-14-02	1/20	i.	24 Hour	-	72 Hour: 5 Day:	υ ž	10 Day: Normati
add the the	MM	Date/	Date/Time: 10-14-19 19-25	9:85	Received By	5			Date/Time:	\sim	Ŭ Ŭ	Sample Integrity: (Check) Intact:		On Ice:	I	
felinquished By		Date/Time:	Time:		Received By				Date/Time:			Data Requirements: (Check)	ls: (Check)			7
											Ž	No Level IV:	<	All Level IV:		NPDES Level IV:

.

LABORATORY REPORT

Date: October 22, 2009

Client: TestAmerica, Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Joseph Doak "dedicated to providing quality aquatic toxicity testing "

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 *CA DOHS ELAP Cert. No.: 1775*

 Laboratory No.:
 A-09101506-001

 Sample I.D.:
 ISJ1376-01 (Outfall 010)

Sample Control: The sample was received by ATL within the recommended hold time, chilled and with the chain of custody record attached. Testing conducted on only one sample per client instruction (rain runoff sample).

Date Sampled:	10/14/09
Date Received:	10/15/09
Temp. Received:	3.9°C
Chlorine (TRC):	0.0 mg/l
Date Tested:	10/15/09 to 10/22/09

Sample Analysis: The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

	NOEC	TUc
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Joseph A. L .eMay Laboratory Director

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of the Laboratory's name for advertising or publicity purpose without authorization is prohibited NPDES Page 644 01 1088

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-09101506-001 Client/ID: Test America – ISJ1376-01 (Outfall 010) Date Tested: 10/15/09 to 10/22/09

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: < 24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). QA/QC Batch No.: RT-091006. Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	26.1
100% Sample	100%	30.9
* Sample not s	tatistically significantly le	ess than Control.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (26.1 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 10.4%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Cerioda	aphnia Sur	vival and	Reprodu	action Tes	t-7 Day S	Survival	
Start Date:	10/15/2009	9 14:00	Test ID:	9101506c			Sample ID	:	Outfall 010)
End Date:	10/22/2009	9 13:00	Lab ID:	CAATL-Aq	uatic Tes	ting Labs	Sample Ty	/pe:	SRW2-Ind	ustrial stormwater
Sample Date:	10/14/2009	9 08:00	Protocol:	FWCH EP	A		Test Spec	ies:	CD-Cerioc	laphnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1 0000	1 0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

				Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	ΤU			
Fisher's Exa	act Test		100	>100		1			
Treatments	vs D-Control								
				Line	ar Interpo	lation (20	0 Resamples)		
Point	%	SD	95%	6 CL	Skew				
IC05	>100	400-6413-494-4930-000-000		9992-4					
IC10	>100								
IC15	>100						1.0 T	1	
IC20	>100						0.9 -		
IC25	>100						0.9		
IC40	>100						0.8 -		
IC50	>100						0.7		
							1		
							9 0.6		
							ö 0.5 -		
							9.0.6 0.5 0.4		
							ž ^{0.4}]		
							0.0		

0.3 0.2 0.1

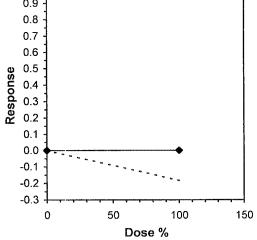
0

50

100

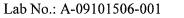
Dose %

150


l

			Cerioda	aphnia Su	rvival and	Reprod	uction Tes	st-Reproc	duction	
o contra a cator.	10/15/200		Test ID: Lab ID:				Sample ID Sample Ty	•	Outfall 010 SRW2-Ind) ustrial stormwater
Sample Date:					-	-	Test Speci	·	• • • • • • • • • • • • •	laphnia dubia
Comments:		ANNO 100 100 100 100 100 100 100 100 100 10								1.0
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	27.000	25.000	23.000	23.000	24.000	31.000	25.000	28.000	26.000	29.000
100	36.000	35.000	27.000	26.000	27.000	35.000	27.000	33.000	35.000	28.000

				Transform	n: Untran	sformed			1-Tailed		lsot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	26.100	1.0000	26.100	23.000	31.000	10.129	10				28.500	1.0000
100	30.900	1.1839	30.900	26.000	36.000	13.598	10	-3.058	1.734	2.722	28.500	1.0000


Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.90697		0.905		0.15659	-1.5498
F-Test indicates equal variances (p = 0.18)	2.52623		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	2.72223	0.1043	115.2	12.3222	0.00678	1, 18
Treatments vs D-Control						

	Linear Interpolation (200 Resamples)						
Point	%	SD	95% CL	Skew		·	
IC05	>100						
IC10	>100						
IC15	>100				1.0 		ר
IC20	>100				0.9 -		
IC25	>100				0.8		
IC40	>100				0.7 -		
IC50	>100				0.6 -		

Reviewed by: NPDES Page 647 of 1088

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Client ID: TestAmerica - ISJ1376-01Outfall 010

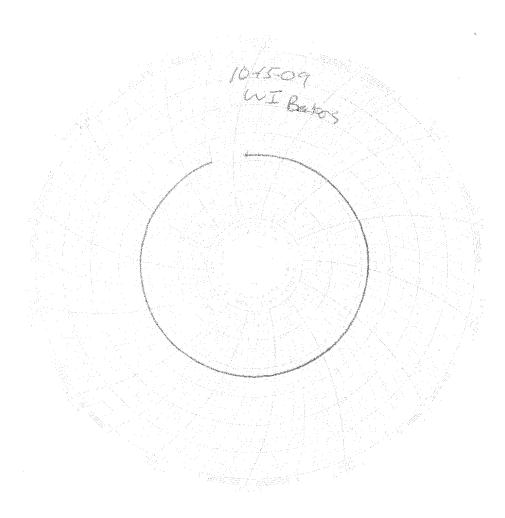
Start Date: 10/15/2009

Chem ID.								وجرادا فالتقريفية والمبخة بأرجي ويستثلهم						AND DESCRIPTION OF THE OWNER OF T
		DAY 1		DA	Y 2	E	DAY 3	DA	Y 4	DA	Y 5	DA	AY 6	DAY 7
		0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr 24hr
Analyst I	Initials:	R	hm	Br	k	R	2	C	N	2	- Ru	R	R	RM
Time of R	eadings:	1400	1500	1500	1330	1330	140	1400	1436	1430	1430	1430	1430 1	430 300
	DO	83	8.6	8.2	8.4	8.7	8.1	8.0	8-1	8:0	2.9	81	2.8	8.8 8.2
Control	pН	7.8	7.9	7-8	2.7	7.8	7	7.7	27	2.8	7.7	2.7		2.7 26
	Temp	24.8	24.2	24-4	24.4	25.0	24.2	. 24.1	24/2	24.5	243	24.4	249	25.3 2.4.1
	DO	B-1	8.0	8.6	5.0	69	6.6		8.2	8.1	7.9	10.1		10.3 8.4
100%	pН	6.0	2.1	6.4	6.7	10.0	7.0	6.0	7.2	6.4	7.1	5.9	2.1	6-1 72
	Temp	24.7	24.3	24.1	24.4	25.4	124.8	\$ 25.0	2.4.2	24.3	24.4	24.8		24.7 24.2
	Ac	dditional I	Paramete	rs				Cor	ntrol				100% Samp	le
	Со	nductivity	(umohm:	5)				30	v				260	or the above which introduce unarrow
	Al	kalinity (n	ng/l CaCO)3)				6	5				30	
	Ha	ardness (m	ig/l CaCC	93)			Analyses	91	2				36	a sa kata na sa kata n
	Ar	mmonia (n	1g/l NH ₃ -l	<u>(N</u>				60.	2				0.4	-
						S	ource of N	leonates						
Rej	plicate:		A	В	С		D	E	F		G	Н	I	J
Bro	ood ID:	J	ZA	1B	2	<u>C</u>	30	30	3,	<u>F 1</u>	G	2H	2 <u>7</u>	35
Sampl		Day				Number	ber of Young Produced Total Live No. Live Ana					Analyst		
Sampi	с		А	В	с	D	E I	G	н	<u> </u>	J	Young	Adults	Initials
		1		20	0	0	OC	D	0	OC	ン	0	10	R
				1		-			┢╩╧╼╾╂					
		2	-c	0	0	0	0 1	0	0	00	2	<u>ę</u>	-1U	Ky-
11		3		20	0	030		50	00	\mathcal{O}	2 2 1	8	10	- TE
Contro	1	3		20	002	030	30) U 5 U 7 4	0000			8	$\frac{10}{10}$	THE R
Contro		3 4 5		20	027	030	30) 0 5 0 7 4 8 8	8	000		0 8 27 80 74	$ \frac{10}{10} $	AT Ph
Contro		3		20 -13 77 0	027	0201		0 5 0 7 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	\mathcal{O}	2	<u> </u>	10 10 10 10 10	April Raph
Contro		3 4 5 6		20 -13 77 20	027	0201		0 5 0 7 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	000		80 74 72	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	App App App App
Contro		3 4 5 6 7		20 -13 77 20 15	02740	0701		0 0 0 0 0 0 0 0 0	8	C C 4 8 14 0 1 26 0	2 3	80 74 72	10 10 10 10 10 10 10	App App App App App App App App App App
Contro		3 4 5 6 7 Total		2 0 -1 3 7 7 5 0 5 1 5 7 25	02740	0701		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	C C 4 8 14 0 1 26 0	223	80 74 72	10 10 10 10 10 10 10 10 10	A A A A A A A A A A A A A A A A A A A
Contro		3 4 5 6 7 Total 1		2 0 -1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	02740	0 7 0 1 3 0 1 3 0 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	C C 4 8 14 0 1 26 0		80 74 72	10 10 10 10 10 10 10 10 10 10	A A A
		3 4 5 6 7 Total 1 2		201370515 725000 725000 725000 725000 725000 725000 725000 725000 725000 7250000 7250000 7250000 72500000 7250000000000	02740	0 701 130 230 00 00 00 4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	801728	C C 4 8 14 C 1 267 0 C C 3 C		80 74 72		AL AL
Contro		3 4 5 6 7 Total 1 2 3		2 0 -1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0271400000	0 7 0 1 3 0 1 3 0 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	801728	C C 4 8 14 C 1 267 0 C C 3 C		80 74 72 22 22 22 20 8 29 07		April
		3 4 5 6 7 Total 1 2 3 4		2 0 -1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	02740	0 701 230 00 4 80			801728	0 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0		80 74 72 22 20 8 29		App
		3 4 5 6 7 Total 1 2 3 4 5		201370515 725000 7250000 7250000 7250000 7250000 7250000 7250000 72500000 7250000000000	0271400000	0 701 130 230 00 00 00 4			801728	0 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0		80 74 72 22 22 22 20 8 29 07		And the

Circled fourth brood not used in statistical analysis.

 7^{th} day only used if <60% of the surviving control females have produced their third brood.

t


4 1

Aquatic Testing Laboratories

Test Temperature Chart

Test No: A-091015 Date Tested: 10/15/09 to 10/22/09 Acceptable Range: 25+/- 1°C

SUBCONTRACT ORDER

TestAmerica Irvine

ISJ1376

SENDING LABORATOR	<u>(:</u>	RECEIVING LAE	BORATORY:				
TestAmerica Irvine		Aquatic Testing	Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107 Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756				
17461 Derian Avenue.	Suite 100	4350 Transpor					
Irvine, CA 92614		Ventura, CA 93					
Phone: (949) 261-1022		Phone :(805) 6					
Fax: (949) 260-3297		Fax: (805) 650					
Project Manager: Josep	h Doak		n: CA - CALIFORNIA				
		Receipt Temper	Receipt Temperature: <u>3-6</u> C Ice: (Y) N				
Ben en e							
Standard TAT is reques	ted unless specific d Units	ue date is requested. => Due Date: Expires	Initials: Comments				
	-	Expires	Comments				
Analysis	Units	-	Comments				
Analysis Sample ID: ISJ1376-01	Units Water	Expires Sampled: 10/14/09 0	Comments 8:00 Cerio, EPA/821-R02-013, Sub to				

	, e	Λ.	10 10 710	
	10-1509 715	Yan	10-1501 115	
Released By	Date/Time	Received By	Date/Time	
10-15V	9 1022	And	-1/5C-1022	10-15-09
Released By	Date/Time	Received By	NPDES Page 650 o	Page 1 of 1 「 f 1088

REFERENCE TOXICANT DATA

NPDES Page 651 of 1088

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-091006

Date Tested: 10/06/09 to 10/13/09

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: <24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). Reference Toxicant: Sodium chloride (NaCl). Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

Sample Concentration	Percent Survival		Mean Num Young Per I	
Control	90%		24.2	
0.25 g/l	90%		24.7	
0.5 g/l	100%		24.2	
1.0 g/l	100%		17.5	*
2.0 g/l	80%		4.5	*
4.0 g/l	0%	*	0	**
* Statistically signif ** Reproduction data from	•	reater t	han survival NO	

RESULTS SUMMARY

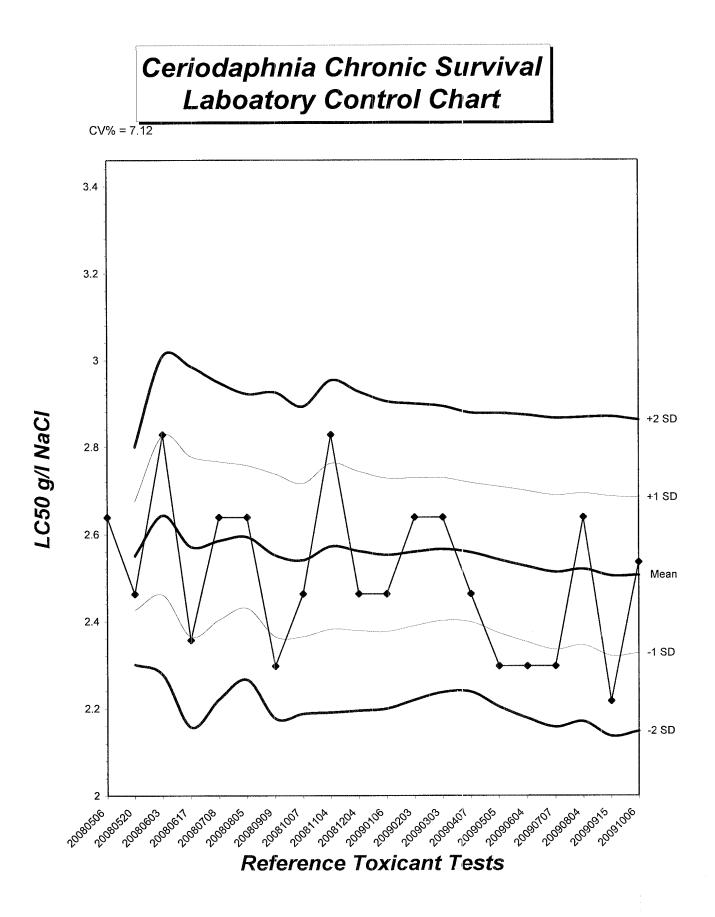
CHRONIC TOXICITY

Survival LC50	2.5 g/l
Reproduction IC25	0.94 g/l

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (90% Survival)
≥15 young per surviving control female	Pass (25.6 young)
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 18.2%)
Stat. sig. diff. conc. relative difference $> 13\%$	Pass (Stat. sig. diff. conc. Relative difference = 27.7%)
Concentration response relationship acceptable	Pass (Response curve normal)

			Cerioda	aphnia Sur	vival and	Reprodu	iction Tes	t-7 Day 🗄			
Start Date:	10/6/2009	14:00	Test ID:	RT-091006	3c		Sample ID	:	REF-Ref T		
End Date:	10/13/2009	9 13:30	Lab ID:	CAATL-Aq	uatic Test	ting Labs	Sample Ty	/pe:	NACL-Soc		
Sample Date:	10/6/2009		Protocol:	FWCH EP	A		Test Spec	ies:	CD-Cerioc	laphnia dubia	
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

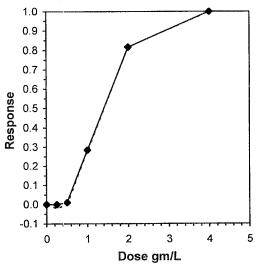

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	0.9000	1.0000	1	9	10	10			1	10
0.25	0.9000	1.0000	1	9	10	10	0.7632	0.0500	1	10
0.5	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0	10
1	1.0000	1.1111	0	10	10	10	0.5000	0.0500	0	10
2	0.8000	0.8889	2	8	10	10	0.5000	0.0500	2	10
4	0.0000	0.0000	10	0	10	10			10	10

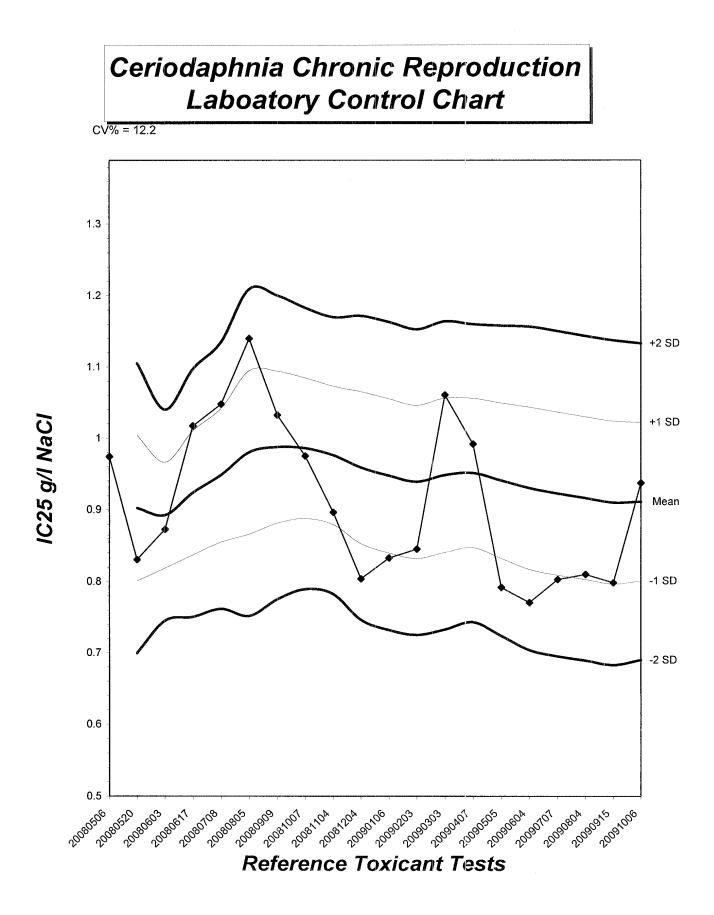
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control			····		
			Trimmed 9	Spearman-Karber	

Trim Level	EC50	95%	CL
0.0%	2.5352	2.1607	2.9747
5.0%	2.5900	2.1500	3.1201
10.0%	2.6307	2.0726	3.3393
20.0%	2.6505	2.3680	2.9667
Auto-0.0%	2.5352	2.1607	2.9747

1.0 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.2 0.1 0.0 -0.1	•	
-0.2 + 0.1	,	- 0
0.1	Dose gm/L	

Reviewed by:_




			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	st-Repro			
Start Date:	10/6/2009	14:00	Test ID:	RT-09100	6c		Sample ID	:	REF-Ref 1		
End Date:	10/13/2009	9 13:30	Lab ID:	CAATL-Aq	luatic Tes	ting Labs	Sample Ty	/pe:	NACL-Sodium chloride		
Sample Date:	10/6/2009		Protocol:	FWCH EP	A		Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:					·						
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	21.000	28.000	28.000	27.000	25.000	22.000	12.000	31.000	27.000	21.000	
0.25	23.000	29.000	25.000	24.000	21.000	27.000	27.000	27.000	14.000	30.000	
0.5	28.000	26.000	26.000	25.000	23.000	27.000	23.000	27.000	14.000	23.000	
1	19.000	19.000	18.000	10.000	10.000	23.000	22.000	17.000	18.000	19.000	
2	2.000	2.000	3.000	2.000	9.000	11.000	7.000	5.000	2.000	2.000	
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

				Transform	n: Untran	sformed	ale de la companya d	Rank	1-Tailed	Isoto	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
D-Control	24.200	1.0000	24.200	12.000	31.000	22.448	10			24.450	1.0000
0.25	24.700	1.0207	24.700	14.000	30.000	18.802	10	106.50	76.00	24.450	1.0000
0.5	24.200	1.0000	24.200	14.000	28.000	16.620	10	102.50	76.00	24.200	0.9898
*1	17.500	0.7231	17.500	10.000	23.000	24.872	10	68.50	76.00	17.500	0.7157
*2	4.500	0.1860	4.500	2.000	11.000	74.994	10	55.00	76.00	4.500	0.1840
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non	-normal dis	tribution	(p <= 0.05)	N Gerhûn wîsê sersen de serse	0.92101	0.947	-1.0283	1.17755
Bartlett's Test indicates equal var					2.09329	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711					
Treatments vs D-Control								

				Linea	ar Interpola	tion (200 Resamples)
Point	gm/L	SD	95%	CL	Skew	
IC05	0.5726	0.1620	0.1227	0.6251	-0.9888	
IC10	0.6638	0.1169	0.2454	0.7571	-1.4866	
IC15	0.7550	0.1041	0.4830	0.9101	-0.4781	1.0
1C20	0.8463	0.1061	0.6256	1.0370	0.2415	0.9 -
IC25	0.9375	0.1056	0.7388	1.1163	0.1779	
IC40	1.2177	0.1042	0.9509	1.3494	-0.3527	0.8
IC50	1.4058	0.0896	1.1682	1.5195	-0.4498	0.7 -
and the second						-1

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-091006

Start Date:10/06/2009

Samula				Nu	mbe	r of Y	oung	Prod	uced			Total	No.	Analyst
Sample	Day	Α	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	U	0	\mathcal{O}	0	0	0	0	0	10	0	0	10	2~
	2	0	0	õ	0	0	0	0	0	0	0	Ò	10	2
	3	5	3	5	4	0	4	0	0	\circ	0	21	10	R
Control	4	\Box	O	0	\mathcal{O}	5	\circ	3	3	4	3	18	10	h
Control	5	6	9	9	10	0	8	0	0	9	5	58	10	
	6	0	0	\mathcal{C}	\mathcal{O}	(50)	0	9	10	14	0	41	10	
	7	10	16	M	13	12	10	X	15	0	11	104	9	
	Total	21	28	28	わ	25	22	12	31	27	21	242	ġ	A
	1	\overline{O}	O	0	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	0	0	0	0	iU	R
	2	0	\mathcal{O}	0	0	0	0	0	0	0	0	0	10	R
	3	4	5	4	0	3	0	0	0	4	0	20	IU	6
0.25 g/l	4	O	\mathcal{O}	\mathcal{O}	4	O	Ц	3	4	\mathcal{O}	Y	19	10	h
	5	9	10	9	\mathcal{O}	8	\mathcal{O}	O	9	10	0	55	10	1
	6	0	\mathcal{O}	0	9	10	Σ	9	\mathcal{O}	0	10		IU	h
	7	10	M	12	11	0	16	15	14	X	16	108	9	6
	Total	23	29	25	24	21	ぴつ	27	27	14	30	247	4	12
	1	0	0	0	0	\mathcal{O}	0	\mathcal{O}	0	0	0	\mathcal{O}	10	R
	2	0	D	0	0	0	0	0	0	0	0	0	10	R
	3	5	4	4	0	O	\mathcal{O}	0	0	\mathcal{O}	\mathcal{O}	13	10	Ra
0.5 g/l	4	0	Ò	0	Y	3	21	3	3	5	Y	26	10	h
0.5 g/1	5	7	10	X	0	0	\mathcal{O}	0	\mathcal{O}	0	\mathcal{O}	25	10	CA
	6	0	0	0	9	>	8	8	10	9	9	60	10	m
	7	16	12	14	2	13	15	12	14	Ò	10	118	10	h
	Total	28	26	26	25	23	27	23	27	14	23	242	-10	1
Circled fourth 7 th day only us	brood not use ed if <60% o	d in sta f the su	atistic urvivi	al ana	ilysis. ntrol 1	female	es hav	/e pro	duced	their t	hird b	rood.		,

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

—

Aquatic Testing Laboratories

QA/QC No.: RT-091006

Start Date:10/06/2009

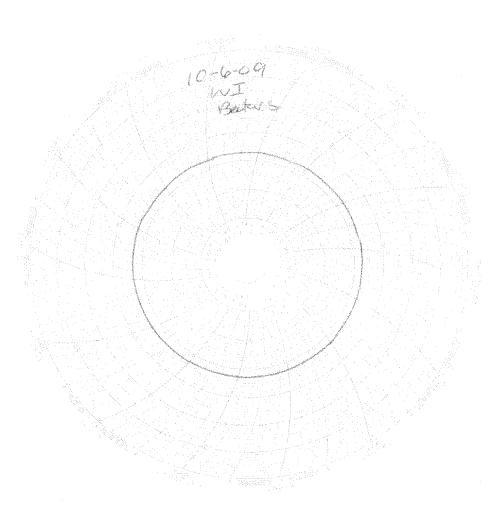
				Nı	ımbe	r of Y	oung	Produ	ced			Total	No.	Analyst
Sample	Day	Α	В	С	D	E	F	G	н	I	J	Live Young	Live Adults	Initials
	1	\cup	\mathcal{O}	0	12	\mathcal{O}	0	\mathcal{O}	\mathcal{D}	0	0	\Box	10	2-
	2	\mathcal{O}	0	0	Õ	0	0	0	\mathcal{O}	0	0	0	10	k
	3	4	4	2	0	0	0	0	2	0	\bigcirc	12	10	R
$1.0 \alpha/1$	4	\mathcal{O}	O	\mathcal{O}	2	3	3	L)	O	N	N	18	(1)	K
1.0 g/l	5	$\overline{2}$	6	$\overline{\mathcal{D}}$	C	\mathcal{O}	0	0	5	6	6	37	ίυ	P
	6	\bigcirc	\sim	\mathcal{O}	T	7	6	6	0	0	\mathcal{O}	27	11)	h
	7	8	9	9	0	\mathcal{O}	14	12	10	4	10	81	10	h
	Total	14	19	18	10	10	23	22	17	18	19	175	10	12-
	1	0	0	0	\mathcal{O}	O	0	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	0	10	R
	2	\square	0	\mathcal{O}	0	0	0	0	O	0	\mathcal{O}	\mathcal{O}	10	h-
	3	0	\mathcal{O}	\mathcal{O}	\cup	\mathcal{O}	0	\Box	2	0	\mathcal{O}	2	10	a
2.0 g/l	4	Z	2	0	0	3	2	\mathcal{O}	0	0	2		10	h
2.0 g/1	5	\bigcirc	\mathcal{O}	0	2	C	C	N	0	2	\mathcal{O}	7	10	m
	6	X	0	3	0	0	4	O_{i}	3	O	\mathcal{O}	10	9	m
	7	مستدى.	0	\mathcal{O}	0	6	5	Ц	X	O	\mathcal{O}	15	8	K
	Total	2	2	3	2	9	11	7	5	2	2	45	8	\square
	1	\mathbf{X}	<u>~</u> 丫	$ \leq $		-><	\nearrow		\times		\times	0	0	R
	2	567 Jane	مهانقادر	(1996aulitigener,	(Marin-Balan	President and the	and the second s	in the second	1.1.vs.mailer	,newser.			() Miler Wellington (1997)	
	3	anne 10	ي «Misson,	kronena ja	وسشيري			Tolkyanger, ord	-1000(01) and	NY VERMAN	****	diaman and a second second	Aldikorogen	and the second
1.0 ~/1	4	water	digentiquese	-212049844 ₀₀	-	1-200-00-00-00-00-00-00-00-00-00-00-00-00	hazayayati"	will be a .	<u> </u>	~	-	ii	4.00 percent of the test of test o	
4.0 g/l	5			anana e)	indexed and		Sauger-	in an	Smaar,		enteriorane estate e	and a start of the	upper 2001 initia
	6	ماند ا لونين	Masser	, presidente de la constance de	lunger	and and a second se		-raid-or		00000au		and the second sec	and the second s	
	7		same	(investing books)	~	etteren.	Auggert.	<u></u>	North	s and the	Mgrafff ^{iles}	"n/Wingstanyana-	S. Marting States	ninggyah ^d
	Total	0	\bigcirc	0	0	()	0	0	Ò	0	()	0	$\Box Q$	p
Circled fourth 7 th day only u	Total 1 brood not use 1 sed if <60% c	ed in s	tatisti	cal an	alysis alysis	s. femal	les hav		 luced 1	() their th	ird bi	rood.		

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-091006

Start Date:10/06/2009

		DA	Y 1	DA	Y 2	DA	XY 3	D	AY 4	DA	AY 5	DA	AY 6	DA	AY 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	ã~	R	R	R	R	Rn	R	lan-	R			a		1
Time of R	eadings:	1400	1500	1500	1430	1430	1430	1430	1500	1500	lyn	14a	1330	330	133C
	DO	8.9	8.3	×8.5	8.4	9.1	8.0	8.4	7.9	8.3	8.1	8.4	8.0	8.2	29
Control	pН	7.7	7.9	7.7	2.8	7-8	7.9	7.7	7.8	7.7	7-8	7.4	7.8	7.8	7.8
	Temp	25.0	24.5	24.6	24.4	24.5	24.8	25.2	24.1	24.5	24.6	252	24.7	355	24.1
	DO	8.9	8.4	8.5	8.3	9.0	8.0	8.3	7.9	8.3	80	8.3	80	84	2.9
0.25 g/l	pН	7.7	2.9	7.7	7-8	7.8	7.9	7.8	2.8	7.7	25	7.8	2-8	7.8	28
	Temp	25.0	24.6	24.6	24.6	24.5	24.9	25.1	24.2	24.6	245	253	24.6	25.	24.4
	DO	8.9	8.4	8.5	8.3	9.0	2.9	8.3	8.0	8.3	80	8.3	8.1	8.4	5.0
0.5 g/l	pН	2.2	7.9	7.7	2.8	7.9	7.9	7-8	7.8	2.8	7-8	7-8	7.8	>.8	28
	Temp	24.9	24.6	24.7	24.7	246	25.0	25.1	24.3	24.6	24.)	253	250	253	24-2
	DO	8.9	8.3	8.5	8.2	8.9	29	8.3	8.0	8.4	2.5	8.2	7-9	8.4	8.2
1.0 g/l	pН	2.8	7.9	7.7	7.9	7.9	29	7.8	2-8	7.8	7-8	7.8	7.8	78	7-9
	Temp	24.8	24.6	24.8	24.7	24.8	25.0	25.0	24.3	24.7	243	23	<i>34.</i> 4	253	24-1
	DO	9.0	8.3	8.4	8.4	8.8	7.8	8.3	8.2	8.5	2-5	8.1	29	82	8.2
2.0 g/l	pН	2.8	2.8	7.8	7.9	8.0	29	7.9	7.8	2.8	7.8	7.9	7.8	2.5	7.8
	Temp	24.6	21.5	25.0	24.6	25.0	24.9	24.8	24.1	24.8	24.4	25-1	<u> </u>	25.4	24.3
	DO	9.0	8.4		426gr.com.	مەتتا <u>يى</u> تىنى			(1499) 	unigitidan.	g ^{ripter®00mm}	(atma _{lays} ,	-	gettingen.	Real
4.0 g/l	pН	7.9	7.8			- and the state of	The second s	r-dhaqq _{qqu}		Manager .	Contraction.	riinnaanna			
	Temp	24.2	24.5		-	-estimation	NEONEMALI.	anterestand.		30000 http:		white _{map} ,	Stationers, ,	galinine.	gertetataren arri
	Dis	solved	Oxygei	n (DO) 1	reading	s are in	mg/l (D ₂ ; Tem	perature	(Temp)	reading	gs are in	n ⁰C.		
A	Additional 1	Paramet	ers		<u></u>	1	Contr	ol				High Co	ncentrat	ion	
					Day 1		Day 3		Day 5		Day 1		Day 3	<u> </u>	ay 5
	Conductiv				_29,	0	300))	300	6	560	3	360	34	00
	Alkalinity (r				-62		65		65		13_		<u>e4</u>	6	, 1
	Hardness (n	ng/I CaCC	<i>J</i> ₃)		94		<u>97</u>		<u>78</u>		95		<u>76</u>	9	6
Renl	icate:		A	В	С	J	D	eonates E	E		<u> </u>	TT	,	T	
Broo			·B	<u>4</u> C	60	20		<u> </u>	F SF	. 6.		<u>н</u> 4 Н	56	2 1	J
	·		-4-e ²	1		- 7	Lover.	7 1		0	, <u> </u>	111	100	(0	J


NPDES Page 659 of 1088

Test Temperature Chart

Test No: RT-091006 Date Tested: 10/06/09 to 10/13/09 Acceptable Range: 25+/- 1°C

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. BOEING NPDES SSFL MWH-Pasadena/Boeing Lot #: F9J160247

Joseph Doak

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Kay//Clay

Project Manager

November 12, 2009

Case Narrative LOT NUMBER: F9J160247

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on October 16, 2009. This sample is associated with your SSFL MWH-Pasadena/Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

5

There are no observations or nonconformances associated with the analysis in this lot.

METHODS SUMMARY

F9J160247

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD		
Gamma Spectroscopy - Cesium-137 & Hits	EPA 901.1 MOD			
Gross Alpha/Beta EPA 900	EPA 900.0 MOD	EPA 900.0		
H-3 by Distillation & LSC	EPA 906.0 MOD			
Radium-226 by GFPC	EPA 903.0 MOD	EPA 903.0		
Radium-228 by GFPC	EPA 904 MOD	EPA 904		
Strontium 90 by GFPC	EPA 905 MOD			
Total Uranium By Laser Ph osphorimetry	ASTM 5174-91			

References:

ASTM Annual Book Of ASTM Standards.

EPA

"EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

,

SAMPLE SUMMARY

F9J160247

WO #_ SAMPLE# CLIENT SAMPLE ID	SAMPLED SAMP DATE TIME
LMP7V 001 ISJ1376-01	10/14/09 08:00
NOTE (S) :	
- The analytical results of the samples listed above are presented on the following pages.	
- All calculations are performed before rounding to avoid round-off errors in calculated results.	

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

TestAmerica Irvine

Client Sample ID: ISJ1376-01

Radiochemistry

Lab Sample ID Work Order: Matrix:	: F9J160247-00 LMP7V WATER)1		Date Collec Date Receiv		.4/09 0800 .6/09 0920	
Parameter	Result	Qual	Total Uncert. (2 ₀ +/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & H	Hits by EPA 901.	1 MOD		pCi/L	Batch #	9293262	Yld %
Cesium 137	0.0	U	7.0	20.0	14	10/20/09	10/20/09
Potassium 40	-100	U	4000		400	10/20/09	10/20/09
Gross Alpha/Beta	a EPA 900			pCi/L	Batch #	9293164	vld %
Gross Alpha	0.66	υ	0.73	3.00	1.1	10/20/09	10/23/09
Gross Beta	4.4		1.4	4.0	2.0	10/20/09	10/23/09
Radium 226 by H	EPA 903.0 MOD			pCi/L	Batch #	9290118	Yld % 73
Radium (226)	-0.005	U	0.091	1.00	0.19	10/17/09	11/10/09
Radium 228 by G	FPC EPA 904 MOD			pCi/L	Batch #	9290119	Y1d % 73
Radium 228	-0.13	U	0.29	1.00	0.53	10/17/09	11/10/09
TRITIUM (Distil)	L) by EPA 906.0	MOD		pCi/L	Batch #	9292238	vld %
Tritium	70	U	120	500	190	10/19/09	10/20/09
SR-90 BY GFPC I	PA-905 MOD			pCi/L	Batch #	9290126	¥ld % 72
Strontium 90	0.10	U	0.23	3.00	0.40	10/17/09	10/27/09
Total Uranium by	7 KPA ASTM 5174-	·91		pCi/L	Batch #	9292099	Yld %
Total Uranium	0.308	J	0.035	0.677	0.21	10/19/09	10/21/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID: F9J160247 Matrix: WATER

Parameter	Result	Qual	Total Uncert. (2 o+/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Radium 226 by	EPA 903.0 MOD		pCi/L	Batch #	9290118	¥ld %	102	F9J170000-118B
Radium (226)	0.010	υ	0.073	1.00	0.14		10/17/09	<pre>→ 11/10/09</pre>
Radium 228 by G	FPC EPA 904 MC	פנ	pCi/L	Batch #	9290119	¥ld %	107	F9J170000-119B
Radium 228	0.07	U	0.21	1.00	0.36		10/17/09	9 11/10/09
SR-90 BY GFPC	EPA-905 MOD		pCi/L	Batch #	9290126	Yld %	81	F9J170000-126B
Strontium 90	0.47	J	0.23	3.00	0.33		10/17/09	0 10/27/09
TRITIUM (Distil	.1) by EPA 906.	.0 MOD	pCi/L	Batch #	9292238	¥1đ %	:	F9J190000-238B
Tritium	20	υ	110	500	190		10/19/09	0 10/20/09
Total Uranium b	y KPA ASTM 517	74-91	pCi/L	Batch #	9292099	¥ld %	,	F9J190000-099B
Total Uranium	0.159	υ	0.018	0.677	0.21		10/19/09	0 10/21/09
Gross Alpha/Bet	a EPA 900		pCi/L	Batch #	9293164	¥ld %		F9J200000-164B
Gross Alpha	0.28	υ	0.42	3.00	0.71		10/20/09	9 10/23/09
Gross Beta	0.22	υ	0.91	4.00	1.5		10/20/09	9 10/23/09
Gamma Cs-137 &	Hits by EPA 9(01.1 MOD	pCi/L	Batch #	9293262	Yld %		F9J200000-262B
Cesium 137	5.4	υ	4.9	20.0	6.8		10/20/09	0 10/20/09
	-100		8900		200		10/20/09	10/20/09

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

Laboratory Control Sample Report

Radiochemistry

Client Lot ID: F9J160247 Matrix: WATER

			Total		Lab Sample ID		
Parameter	Spike Amount	Result	Uncert . (2 σ+/-)	MDC	% Yld % Rec	QC Control Limits	
Total Uranium by KP	A ASTM 5174-9	1	pCi/L	5174-91	F9J	190000-099C	
Total Uranium	27.1	29.0	3.5	0.2	107	(90 - 118)	
	Batch #:	9292099		Analysis Date	∎: 10/21/09		
Total Uranium by KP	A ASTM 5174-9	1	pCi/L	5174-91	F9J	190000-099C	
Total Uranium	5.42	5.98	0.62	0.21	110	(90 - 118)	
	Batch #:	9292099		Analysis Date	∋: 10/21/09		
TRITIUM (Distill) b	Y EPA 906.0 M	(OD	pCi/L	906.0 MOD	F9J	190000-238C	
Tritium	4610	4580	480	190	99	(72 - 107)	
	Batch #:	9292238		Analysis Date	a: 10/20/09		
Gross Alpha/Beta EP	A 900		pCi/L	900.0 MOD	F9J	200000-164C	
Gross Beta	68.6	70.4	6.0	1.8	103	(77 - 123)	
	Batch #:	9293164		Analysis Date	a: 10/23/09		
Gross Alpha/Beta EP	A 900		pCi/L	900.0 MOD	F9J	200000-164C	
Gross Alpha	49.4	47.8	5.2	1	97	(80 - 140)	
	Batch #:	9293164		Analysis Date	≥: 10/23/09		
Gamma Cs-137 & Hits	by EPA 901.1	MOD	pCi/L	901.1 MOD	F9J	200000-262C	
Americium 241	141000	142000	11000	600	100	(90 - 110)	
Cesium 137	53100	52200	3000	200	98	(90 - 110)	
Cobalt 60	87900	85200	4800	200	97	(90 - 110)	
	Batch #:	9293262		Analysis Date	≥: 10/20/09		

NOTE (S)

Laboratory Control Sample/LCS Duplicate Report

Radiochemistry

Client Lot	ID:	F9J160247
Matrix:		WATER

					Total			Lab	Sample ID
Parameter		Spike Amount	Result		Uncert. (2 g+/-)	% Yld	% Rec	QC Control Limits	Precision
Radium 226 by	EPA	903.0 MOD		pCi/L	903.0) MOD		F9J1	70000-118C
Radium (226)	Spk 2	11.3 11.3	11.5 11.7		1.1 1.1	103 105	102 104	(45 - 150) (45 - 150)	2 %RPD
		Batch #:	9290118			Analysis	3 Date:	11/10/09	
Radium 228 by	GFPC	EPA 904 MOD		pCi/L	904 N	10D		F9J1	70000-119C
Radium 228	Spk 2	6.65 6.65	5.24 5.44		0.62 0.64	108 109	79 82	(64 - 150) (64 - 150)	4 %RPD
		Batch #:	9290119			Analysis	Date:	11/10/09	
SR-90 BY GFPC	EPA-	-905 MOD		pCi/L	905 N	10D		F9J1	70000-126C
Strontium 90	Spk 2	6.85 6.85	7.21 6.76		0.80 0.75	81 86	105 99	(90 - 143) (90 - 143)	6 %RPD
		Batch #:	9290126			Analysis	Date:	10/27/09	

NOTE(S)

Calculations are performed before rounding to avoid round-off error in calculated results

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:	F9J160247	Date Sampled:	10/14/09
Matrix:	WATER	Date Received:	10/16/09

		Total			Total	Q	C Sample ID	
Parameter	SAMPLE Result	Uncert. (2 ₀ +/-)	% Yld	DUPLICATE Result	Uncert. (2 σ+/-)	% Yld	Precisi	on
TRITIUM (Distill) k	y EPA 906.	0 MOD	pCi/L	906.0 MO)	F9.	J160241-00	1
Tritium	-113	U 85		-34 U	95		107	%RPD
	Batc	h #: 9292238	(Sample)	9292238 (I	Duplicate)			
Gamma Cs-137 & Hits	by EPA 90	1.1 MOD	pCi/L	901.1 MOI	2	F9:	J160241-00	1
Cesium 137	0.0	U 8.9		-2.0 U	9.3		200	%RPD
Potassium 40	-100	U 9500		-100 U	4000		5	%RPD
	Batcl	n #: 9293262	(Sample)	9293262 (1	Duplicate)			
Gross Alpha/Beta EB	PA 900		pCi/L	900.0 MOI)	F93	1160150-00	1
Gross Alpha	-43	U 68		14 U	99		392	%RPD
Gross Beta	310	110		360	130		16	%RPD
	Batc	* #: 9293164	(Sample)	9293164 (1	Duplicate)			

NOTE(S)

Data are incomplete without the case narrative. Calculations are performed before rounding to avoid round-off error in calculated results

U Result is less than the sample detection limit.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

Radiochemistry

Client Lot ID:	F9J160241	Date Sampled:	10/14/09	0810
Matrix:	WATER	Date Received:	10/16/09	0920

				Total			Total	QC Sampl	le ID
Parameter		Spike Amount	SPIKE Result	Uncert. (2 ₀ +/-)	Spike SAMPLE Yld Result		Uncert. $(2\sigma +/-)$ % Yld	%Rec	QC Control Limits
Total Uraniu	n by KPA	ASTM 5		pCi/L	5174-91	_	F	9J16024	1-001
Total Uranium		27.1	28.8	3.5	0.412	J	0.049	105	(57 - 150)
	Spk2	27.1	28.5	3.4	0.412	J	0.049 Precision:	104 1	(57 - 150) %RPD
		Batc	h#: 9292099	Ana	alysis date:	10/2	1/09		

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

MATRIX SPIKE REPORT

Radiochemistry

Client Lot Id:	F9J160247	Date Sampled:	10/14/09
Matrix:	WATER	Date Received:	10/16/09

			Total		m 1	QC Sample	ID
Parameter	Spike Amount	Spike Result	Uncert. $(2\sigma +/-)$	Spike Sampl Yld. Resul	Uncert.	%YLD %REC	QC Control Limits
TRITIUM (Distill) by EP	A 906.0 M	מ	pCi/L	906.0 M	OD	F9J160247	-001
Tritium	4610	4460	480	70	120	95	(33 - 150)
	Batch #:	9292238	An	alysis Date:	10/20/09		
Gross Alpha/Beta EPA 90	0		pCi/L	900.0 M	OD	F9J160150	-001
Gross Beta	6860	7170	610	310	110	100	(71 - 146)
	Batch #:	9293164	An	alysis Date:	10/23/09		
Gross Alpha/Beta EPA 90	0		pCi/L	900.0 M	OD	F9J160150	-001
Gross Alpha	4940	5490	710	-43	68	112	(33 - 150)
	Batch #:	9293164	An	alysis Date:	10/23/09		

NOTE(S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off errors in calculated results.

,

SUBCONTRACT ORDER TestAmerica Irvine ISJ1376

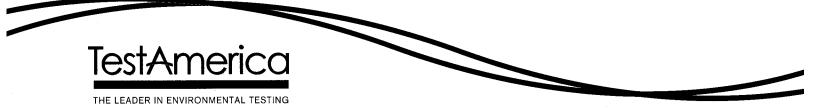
SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	TestAmerica St. Louis
17461 Derian Avenue. Suite 100	13715 Rider Trail North
Irvine, CA 92614	Earth ¢ity, MO 63045
Phone: (949) 261-1022	Phone :(314) 298-8566
Fax: (949) 260-3297	Fax: (314) 298-8757
Project Manager: Joseph Doak	Project Location: CA - CALIFORNIA
Client: MWH-Pasadena/Boeing	Receipt Temperature: <u>°C Ice: Y / N</u>

Analysis	Units	Due	Expires In	terlab Price S	Surch	Comments
Sample ID: ISJ1376-01	Water		Sampled: 1	10/14/09 08:00	D	
Gamma Spec-O .	mg/kg	10/23/09	10/14/10 08:00	\$250.00	0%	Out St Louis, K-40 and CS-137 only, DO NOT FILTER!
Gross Alpha-O	pCi/L	10/23/09	04/12/10 08:00	\$100.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	10/23/09	04/12/10 08:00	\$100.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Level 4 Data Package - Ou	t N/A	10/23/09	11/11/09 08:00	\$0.00	0%	
Radium, Combined-O	pCi/L	10/23/09	10/14/10 08:00	\$238.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Strontium 90-O	pCi/L	10/23/09	10/14/10 08:00	\$ <u>1</u> 55.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	10/23/09	10/14/10 08:00	\$80.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O*	pCi/L	10/23/09	10/14/10 08:00	\$120.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Containers Supplied:						
2.5 gal Poly (J)	500 mL Amb	er (K)				

917:00 10 Date/Time Received By Released By 1

10, 917:00 Date/Time

NPDES Page 672 of 1088 12 of 14


Date/Time: 101409/1422 Muse Date/Time: 101409/1422 Muse MUNA 10-14-17 1 2:55 Received By Date/Time: Received By	000-7-13	Mary union	Mulain	W 1L Poly 1	W 1 Gal Poly 1	500 ml Amber 1	2.5 Gal Cube	W 500 mL Poly	W 500 n	W 11	W	W	Sample Matrix	them	n Bron	ontact	1ve S	Client Name/Address MWH-Arcadia
101409/422 (17 19:35	000-7-13	LA	Mutau				2.5 Gal Cube	500 mL P	500 n	1	i						- C	••
101409/422 (17 19:35	000-7-13	LA	Mulan	-	1	<u> </u>	_	ŝ	500 mL Poly	1L Amber	1L Poly	1Ł Poly	Container Type	Sampler: Mushann Chul	Project Wanager: Bronwyn Kelly	lest America Contact: Joseph Doak	618 Michillinda Ave, Suite 200 Arcadia, CA 91007	
101409/1422 (19 19:85	000-7-13	LA	dau	ĺ		_		-	2	2		1	# of Conl.	<u> </u>				
	000-7-13	LA	1	E-		·····						101409/0000	Sampling Date/Time	Fax Number: (626) 568-65	626) 5	-	Stormw	Project: Boeing-
		2	5									10800	pling Time	Fax Number: (626) 568-6515	(626) 568-6691		ater at E	Project: Boeing-SSFL NPDES
Received By		$\left \right ^{\sim}$		None	None	None	None	None	None	None	HNO3	HNO3	Preservative				Semi-Annual Outfall 010	PDES
হা হা কে হা ক		101409		8	7	6B 1	6A C	UT	4A, 4B	3A, 3B	28 -	2A .	Bottle #				۵¢	
									J.J.,-		×	×	Total Hg, T		erable	Metals: Sb,	Cd, Cu, P	ь, /
										×			TCDI) (and	all con	geners)	<u>\</u>	
) 							×	_				04, NC) ₃ +NO ₂	-N, Perchlor	ate	
Date Date		-						×					TDS	Ainha	0.000), Gross Bet	a(900.0)	
Date/Time: $10 - 14 - 94$	0					>	¢						Tritiu Comi Radiu	n (H-3 bined F im 228) (906.) Radium (904.)	0), Sr-90 (90 226 (903.0 0), Uranium or 901.1)	15.0), Tota or 903.1) {	<u>s</u>
	r: 6 '				×								Chro	nic To	xicity	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
14.2				×									Total Hg, T		ved Me	etals: Sb, Cd	, Cu, Pb,	ANAL
Turn-around lime: (Check) 24 Hour: 5 Abgrour: 5 Sample Integrity: (Check) Intact: (Check) Data Requirements: (Check) No Level IV: /		 	\downarrow															ANALYSIS REQUIRED
d time: (C	4		 															
옷 ~ .																<u></u>		
72 Hour:																		
	3																•	
NPC Nor I		$\left + \right $		า	ç													
10 Day:			:	Filter w/in 24hrs of receipt at lab	Only test If first or second rain events of the year	analysis	Unfitterad and unpre						Comments					

Test America Version 6/29/09

CHAIN OF CUSTODY FORM

Page 2 of 2

Tallana	ľot t	4(a) A	Iq.	-160.	241		285
TestAmerica		/(d). <u>/</u>	_2~	140	247)		289
THE LEADER IN ENVIRONMENTAL TESTIN	NG			Ç	51		292
CONDITION UPON RI	ECEIPT FORM				279		294
Client: 14	Irvina				283		298
Quote No: 81594	1, 77435	-					· · .
COC/RFA No: See	below						
Initiated By:		Dat	211 e:	10/14	109	Time:	0920
~ ~ ~	<u>Shippi</u>	ing Info	ormati	<u>ao</u>			<u>^</u>
	JPS DHL Courier Clier	nt Oth	er:	· · · · ·		ultiple Pacl	
Shipping # (s):*					Sample Ten	•	-
1. 7970 2441 9226						<u>vim</u> t	6
2. 2448 0133					2	<u> </u>	7
3	8,				3		8
	9				4	·	9
5.	10				5		10
*Numbered shipping lines correspond							its below. Temperature Rad tests- Liquid or Solids
Condition (Circle "Y" for yes, "N"	for no and "N/A" for not applicable):	YAHAHO	e dues r		ne tonowing. men		tal tests- Eigend of bontes
	e custody seals present on the	8.	YG	2	Are there cust	ody seals p	resent on bottles?
	ody seals on cooler appear to be d with?	9.	YN	I AA	Do custody se tampered with		es appear to be
3 KA N Were con	ntents of cooler frisked after	10.	ΥN	NA	Was sample re	ceived with	n proper pH1? (If not,
4 KAN Sampler	but before unpacking? received with Chain of	11.	V N		make note bel Sample receiv		r containers?
$5 \left[M \right]_{N/A} Does the$	Chain of Custody match	12.	Y N	()	Headspace in '	VOA or TC	X liquid samples?
- V sample 1	D's on the container(s)?	13.	$(\gamma)_{N}$	N/A	(If Yes, note sam	and the second day of	hare received?
	e volume sufficient for		X				
7. UN analysis?	?		(Y) N		-	by original	TestAmerica lab?
	i) sites, pH of ALL containers received m 1373	nust be ve	rified, E	XCEPT VO	A, TOX and soils.		
Notes: 15J 1381. 1 1388	1315						
······							
1326	·					<u></u>	
1380							
1383						·····	
1382	·						
1400							
i347							·
1376						<u></u>	
Corrective Action:		Ī٣	nforme	d bv:			
□ Sample(s) processed "as is					· · · · · · · · · · · · · · · · · · ·		
Sample(s) on hold until Project Management Review:		If relea		otify: Date:	10-7	0.02	
							MEONE OTHER THAN
THE INITIATOR, THEN THAT FER.	D AT THE TIME THE ITEMS ARE BE SON IS REQUIRED TO APPLY THEIF ADMIN-(R INITIAI	L AND 1	THE DATE	NEXT TO THAT	ITEM.	ADMIN\Admin004 rev11.doc

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

MWH - Pasadena/Boeing

Lot D9J160335

Project ISJ1376

Joseph Doak 17461 Derian Avenue Suite 100 Irvine, CA 92614

TestAmerica Laboratories, Inc.

Dizahar

DiLea Griego Project Manager

October 26, 2009

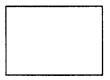
Table of Contents

Standard Deliverables with Supporting Documentation

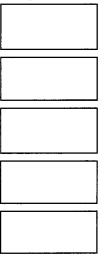
Report Contents

Standard Deliverables

(The **Report Cover** page is considered an integral part of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.)


- Table of Contents
- Case Narrative
- Executive Summary Detection Highlights
- Methods Summary
- Method/Analyst Summary
- Lot Sample Summary
- QC Data Association Summary
- CLP Forms by Method/Batch
- Sample Receiving Checklist
- Chain of Custody

Supporting Documentation


(Note: A one-page "Description of Supporting Documentation" is provided at the beginning of this section.).

- Volatile GC/MS
- Semivolatile GC/MS
- Volatile GC
- Semivolatile GC
- LC/MS or HPLC
- Metals
- General Chemistry
- Subcontracted Data

Number of Pages

Check below when supporting documentation is present.

Case Narrative

Enclosed is the report for one sample received at the TestAmerica Laboratory in Denver on October 16, 2009. The results included in this report relate only to the samples in this report and have been reviewed for compliance with the laboratory QA/QC plan and meet all requirements of NELAC. All data have been found to be compliant with laboratory protocol, with the exception of any items noted below.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limits. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Laboratories, Inc. utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot D9J160335

Sample Receiving

The cooler temperature upon receipt at the laboratory was acceptable at 0.3°C.

Total Metals- Method 245.1

The MS/MSD analyses associated with batch 9293508 were performed on sample ISJ1376-01. The MS/MSD exhibited spike compound recoveries and RPD values outside the QC control limits for mercury. The acceptable LCS analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

No other anomalies were observed.

Dissolved Metals- Method 245.1

The MS/MSD analyses associated with batch 9293522 were performed on sample ISJ1376-01. The MS/MSD exhibited spike compound recoveries outside the QC control limits for mercury. The acceptable LCS analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

No other anomalies were observed.

Quality Control Definitions of Qualifiers

Qualifier	Definition
U	Result is less than the method detection limit (MDL).
В	Organics: Method blank contamination. The associated method blank contains the target analyte at a reportable level. Inorganics: Estimated result. Result is less than the RL
J	Organics: Estimated result. Result is less than RL Inorganics: Method blank contamination. The associated method blank contains the target analyte at a reportable level.
E	Estimated result. Result concentrations exceed the calibration range.
р	Relative Percent Difference (RPD) is outside control limits.
*	Surrogate or Relative Percent Difference (RPD) is outside control limits.
DIL	The concentration is estimated or not reported due to dilution.
COL	More than 40% difference between the primary and confirmation detector results. The lower of the two results is reported.
СНІ	More than 40% difference between the primary and confirmation detector results. The higher of the two results is reported.
L	Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.
а	Spiked analyte recovery is outside stated control limits.
Ν	Spiked analyte recovery is outside stated control limits.
NC	The recovery and/or RPD were not calculated.
MSB	The recovery and/or RPD were not calculated because the sample amount was greater than four times the spike amount.

3

EXECUTIVE SUMMARY - Detection Highlights

D9J160335

SULT	LIMIT	UNITS	METHOD

4

METHODS SUMMARY

D9J160335

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Dissolved Mercury (CVAA)	MCAWW 245.1	MCAWW 245.1
Mercury (Manual Cold Vapor Technique)	MCAWW 245.1	MCAWW 245.1

References:

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

METHOD / ANALYST SUMMARY

D9J160335

ANALYTICAL METHOD	ANALYST	ANALYST ID
MCAWW 245.1	Christopher Grisdale	9582
Deferrer		

References:

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

SAMPLE SUMMARY

D9J160335

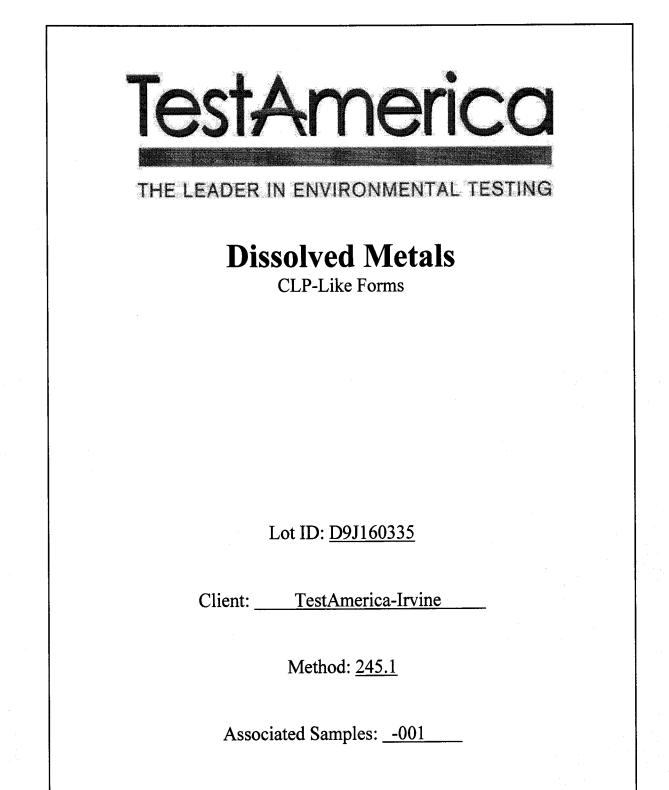
WO # SAMPLE# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LMQ24 001 ISJ1376-01	10/14/09	08:00
NOTE (S) : - The analytical results of the samples listed above are presented on the following pages.		

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,


paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

QC DATA ASSOCIATION SUMMARY

D9J160335

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	WATER WATER	MCAWW 245.1 MCAWW 245.1		9293508 9293522	9293301 9293314

Batch: <u>9293522</u>

9

TestAmerica

Dissolved Metals Analysis
COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

Contract:	TestAmerica Irvine		SDG No.:	D9J160335
Lab Code:	Case No.	:	SAS No.:	
SOW No.:				
	Sample ID.	Lab Sample No.		
	ISJ1376-01	D9J160335-001		
	ISJ1376-01 MS	D9J160335-001	S	

D9J160335-001SD

Were	ICP interelement corrections applied?	Yes/No	YES
Were	ICP background corrections applied?	Yes/No	YES
	If yes-were raw data generated before application of background corrections?	Yes/No	NO

Comments:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Janice Collins

Metals Analyst

Signature:	James	Collin	Name:
	0	-	

ISJ1376-01 MSD

Date:

TestAmerica

10(23/09

COVER PAGE - IN

Title:

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:	TESTAMERICA DENVER	Client Sample ID:	<u>ISJ1376-01</u>
Lot/SDG Number:	<u>D9J160335</u>	Lab Sample ID:	D9J160335-001
Matrix:	WATER	Lab WorkOrder:	<u>LMQ24</u>
% Moisture:	<u>N/A</u>	Date/Time Collected:	<u>10/14/09 08:00</u>
Basis:	Wet	Date/Time Received:	10/16/09_09:00
Analysis Method:	<u>245.1</u>	Date Leached:	
Unit:	<u>ug/L</u>	Date/Time Extracted:	<u>10/21/09 08:30</u>
QC Batch ID:	<u>9293522</u>	Date/Time Analyzed:	10/21/09 12:37
Sample Aliquot:	<u>10 mL</u>	Instrument ID:	<u>023</u>
Dilution Factor:	1		
CASNo	Analyta	Cono MDI	RI

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

Dissolved Metals Analysis -2A-INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Code: Initial Cali	TestAmerica Irvin	e					
	Case	No.:	SAS No.:		SDG NO.:	D9J160335	
Initial Cal	ibration Source:	Inorganic	Ventures				
Continuing	Calibration Source:	Ultra	Scientific				
<u></u>		Concentrat	ion Units: ug/L				

		Initial Calibration			Continuing Calibration					
	Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
I	Mercury	7.000	6.648	95.0	5.000	5.179	103.6	5.16	56 103.3	CV

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

TestAmerica

Dissolved Metals Analysis -2A-INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Code: Initial Cali	TestAmerica Irvin	e				
Lab Code:	Case	No.:	SAS No.:	 SDG NO.:	D9J160335	
Initial Ca	libration Source:	Inorganic V	entures	 <u></u>		
Continuing	Calibration Source:	Ultra	Scientific	 		
		Concentrati	on Units: ug/L			
[····			 		

		Initial	Calibration		Contin	uing Calib	ration			
Anal	yte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	Y				5.000	5.46	3 109.3			CV

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

TestAmerica

Mercury

0.200

Dissolved Metals Analysis -2B-CRDL STANDARD FOR AA AND ICP

Contract: TestA	merica Irvin	e			-			
Lab Code:	Case	No.:	SAS	No.:		SDG 1	No.: D9J1	60335
AA CRDL Standard	Source:	Ultra Scient	ific					
ICP CRDL Standard	l Source:							
		Conc	entration	Units:	ug/L			
		andard for AA		1	CRDL Standa	rd for I	CP	
	CRDL Sta	indard for AA			Initial		Final	
Analyte	True	Found	%R	Traine	Found	%P	Found	%R

True

92.5

0.18500

Comments:

Found

%R

Found

%R

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:	TESTAME	ERICA DENVER	Client Sampl	e ID:		
Lot/SDG Nu	mber: <u>D9J16033</u>	<u>5</u>	Lab Sample	ID: <u> </u>	D9J200000-522B	
Matrix:	WATER		Lab WorkOr	der: <u>l</u>	<u>LMXWE</u>	
% Moisture:	:		Date/Time C	ollected:		
Basis:	Wet		Date/Time R	eceived:		
Analysis Me	thod: <u>245.1</u>		Date Leached	1:		
Unit:	<u>ug/L</u>		Date/Time E	xtracted:	0/21/09 08:30	
QC Batch II): <u>9293522</u>		Date/Time A	nalyzed:	0/21/09 12:33	
Sample Aliq	uot: <u>10 mL</u>		Instrument I	D: <u>(</u>)23	
Dilution Fac	tor: <u>1</u>					_
CAS No.	· · · · · · · · · · · · · · · · · · ·	Analyte	Conc.	MDL	RL	

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

<u>TestAmerica</u>

Dissolved Metals Analysis

-3-

BLANKS

Contract:	TestAmerica Irvine				
Lab Code:	Case No.:	SAS No.:		SDG NO.:	D9J160335
Preparation	Blank Matrix (soil/water):	WATER	······		
Preparation	Blank Concentration Units (us	g/L or mg/kg):	UG/L		

	Initial Calib. Blank		Continuing Calibration Blank (ug/L)					Preparation Blank				
Analyte	(ug/L)	с	1	с	2	с	3	с		С	M	м
Mercury	0.02	7 ט	0.02	27 ט	0.0	27 ד	0.02	7 ד	0.027	ש	01	v

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:	<u>TESTAME</u>	RICA DENVER		Client Sample II	D:	<u>ISJ1376-</u>	<u>01</u>	
Lot/SDG Number:	D9J160335			MS Lab Sample	ID:	D9J1603	<u>35-001S</u>	
Matrix:	<u>WATER</u>			MS Lab WorkO	rder:	<u>LMQ24</u>		
% Moisture:	<u>N/A</u>			Date/Time Colle	cted:	<u>10/14/09</u>	08:00	
Basis:	Wet			Date/Time Rece	ived:	10/16/09	09:00	
Analysis Method:	<u>245.1</u>			Date Leached:				
Unit:	<u>ug/L</u>			Date/Time Extra	acted:	<u>10/21/09</u>	08:30	
QC Batch ID:	<u>9293522</u>			Date/Time Anal	yzed:	<u>10/21/09</u>	12:46	
MS Sample Aliquot:	<u>10 mL</u>			Instrument ID:		<u>023</u>		
MS Dilution Factor:	<u>1</u>							
······		Spike	Sample	MS	C	%	0	

Analyte	Spike Amount	Sample Result	С	MS Result	С	% Rec	Q	QC Limit
Mercury	5.00	0.027	U	3.13		62	N	90 - 110

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Amalata	Spike	Sample	C	MSD	I C	% Rec	0	RPD	0	l	
										QC Limits	
MSD Dilution Fact	or: <u>1</u>										
MSD Sample Aliqu	ot: <u>10 mL</u>				1	Instrument ID):	<u>02</u>	<u>23</u>		
QC Batch ID:	<u>9293522</u>				1	Date/Time An	alyzed:	<u>1(</u>)/21/09_1	12:48	
Unit:	<u>ug/L</u>				1	Date/Time Ex	tracted:	<u>10</u>)/21/09_(<u>)8:30</u>	
Analysis Method:	<u>245.1</u>]	Date Leached	:				
Basis:	Wet				1	Date/Time Re	ceived:	<u>10</u>)/16/09 (<u>)9:00</u>	
% Moisture:	<u>N/A</u>				1	Date/Time Co	llected:	<u>10</u>)/14/09 (08:00	
Matrix:	<u>WATER</u>				ľ	MSD Lab Wo	rkOrder	:: <u>Lì</u>	<u>MQ24</u>		
Lot/SDG Number:	<u>D9J1603.</u>	<u>35</u>			Γ	MSD Lab San	nple ID:	<u>D</u>	D9J160335-001D		
Lab Name:	TESTAM	IERICA DEN	VER		C	Client Sample	ID:	<u>IS</u>	<u>J1376-01</u>	<u>l</u>	

	Contine	oike Sample		MSD					•	e	
Analyte	Spike Amount	Result	C	Result	С	% Rec	Q	RPD	Q	% Rec	RPD
Mercury	5.00	0.027	U	2.97		59	N	5.3		90 - 110	10

Γ

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:	TESTAMERICA D	<u>ENVER</u>	C	Client Sample ID:		
Lot/SDG Number:	D9J160335		L	ab Sample ID:	<u>D9J20000</u>	00-522C
Matrix:	WATER		I	ab WorkOrder:	<u>LMXWE</u>	
% Moisture:	<u>N/A</u>		Γ	Date/Time Collected:		
Basis:	Wet		Γ	Date/Time Received:		
Analysis Method:	<u>245.1</u>		Γ	Date Leached:		
Unit:	ug/L		ľ	Date/Time Extracted:	10/21/09	08:30
QC Batch ID:	<u>9293522</u>		r	Date/Time Analyzed:	10/21/09	12:35
Sample Aliquot:	<u>10 mL</u>		I	nstrument ID:	<u>023</u>	
Dilution Factor:	<u>1</u>					
Analyte		True	Found	%Rec	Q	Limits

Analyte	True	Found	%Rec	Q	Limits
Mercury	5.00	5.17	103		90 - 110

Dissolved Metals Analysis -10-DETECTION LIMITS

Contract:	TestAmerica	Irvine						
Lab Code:		Case No.:		SAS No.	:	SDG NO.:	D9J160335	
ICP ID Numb	ber:			Date:	12/26/2008			
Flame AA ID	Number:	Cetac M7500	Hg					
Furnace AA	ID Number:							

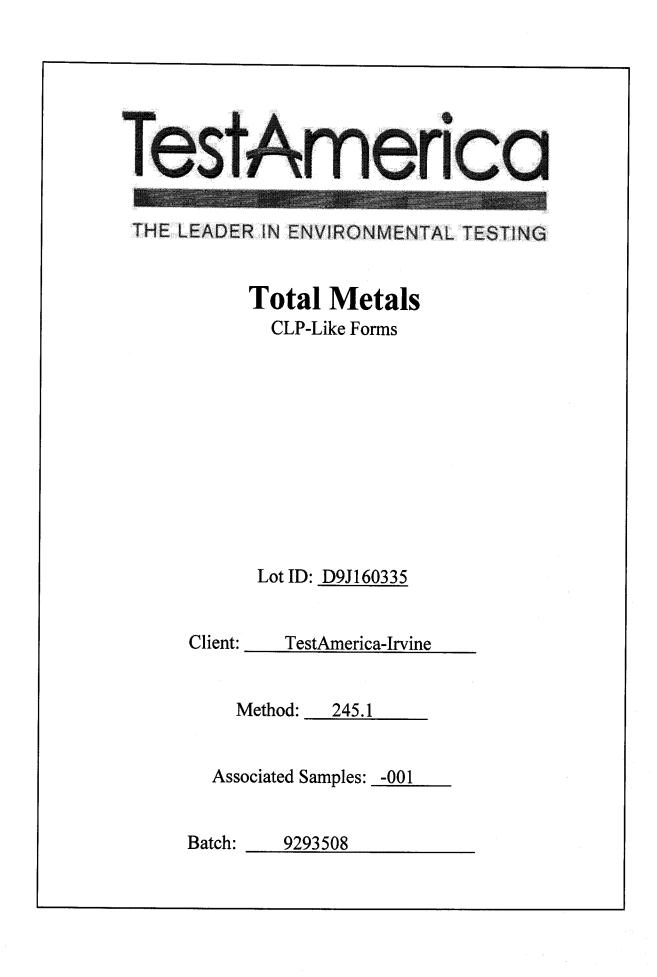
Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	MDL (ug/L)	м
Mercury	253.70		0.20	0.027	CV

Dissolved Metals Analysis

-13-

PREPARATION LOG

Contract: TestAmerica Irvine


Code:	Case No.: 9	SAS No.: SDG NO	.: D9J160335
nod: <u>CV</u>	Prep Method:		
Sample ID	Preparation Date	Initial Volume	Final Volume(mL)
ISJ1376-01	10/21/2009	10.0	10.0
ISJ1376-01 MS	10/21/2009	10.0	10.0
ISJ1376-01 MSD	10/21/2009	10.0	10.0
MB9293522	10/21/2009	10.0	10.0
Check Sample	10/21/2009	10.0	10.0

Dissolved Metals Analysis -14-

ANALYSIS RUN LOG

Contract: <u>TestAmer</u>	ica Irvi	ne					_																		
Lab Code:		Case	No.:			_	SA	s I	No.	:					-	ន	DG	No	•••	D	9J	160	333	35	 -
Instrument ID Number:	Cetac	M7500	Hg			_	Me	th	ođ:		¢	cv		-											
Start Date: 10/21/2	009						En	d I	Dat	e:		10	/2:	1/2	00	9			_						
				T					_			2	Ana	lyt	:es	3									
Sample ID.	D/F	Time	% R	A L	A S	B A	B E	C D	C A	C R	C O	C บ		P B	M G		н G	N I	ĸ	S E	A G	N A	T L	v	 C N
Cal Blank	1.00	10:37															х								
Std1	1.00	10:39															х								
Std2	1.00	10:41															Х								
Std3	1.00	10:43															x								
Std4	1.00	10:46															x								
Std5	1.00	10:48															X								<u> </u>
Std6	1.00	10:50															х								
ICB	1.00	10:53															X								
ICV	1.00	10:55															x								
RL	1.00	10:58															X								
CCV	1.00	11:00															X								
ССВ	1.00	11:02															X								
CCV	1.00	12:29		Τ													X								
ССВ	1.00	12:31															x								
MB9293522	1.00	12:33															x								
Check Sample	1.00	12:35															X								
ISJ1376-01	1.00	12:37														ł	X								
ISJ1376-01 MS	1.00	12:46			Ι												X								
ISJ1376-01 MSD	1.00	12:48							Ι								X								
CCV	1.00	12:57						Γ									X								
ССВ	1.00	13:00							Ι								X								

* - Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

TestAmerica

Total Metals Analysis COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

Contract:	TestAmerica Irvine		SDG No.:	D9J160335
Lab Code:	Case No.:	······	SAS No.:	<u></u>
SOW No.:				
	Sample ID.	Lab Sample No.		
	ISJ1376-01	D9J160335-001	_	
	ISJ1376-01 MS	D9J160335-001S	_	
	ISJ1376-01 MSD	D9J160335-001SD	-	

Were ICP interelement corrections applied?	Yes/No	YES
Were ICP background corrections applied?	Yes/No	YES
If yes-were raw data generated before application of background corrections?	Yes/No	NO

Commen	t	s	:
--------	---	---	---

I certify that this data package is in compliance with the terms and conditions of the
contract, both technically and for completeness, for other than the conditions detailed
above. Release of the data contained in this hardcopy data package and in the computer-readable data
submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as
verified by the following signature.

Signature:	Jamies Collin	Name:	Janice Collins
Date:	10123/09	Title:	Metals Analyst

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:		TESTAMERICA DE	Client Sample	e ID:	<u>ISJ1376-01</u>			
Lot/SDG Nu	umber:	<u>D9J160335</u>		Lab Sample I	D:	D9J160335-001		
Matrix:		WATER	Lab WorkOr	der:	<u>LMQ24</u>			
% Moisture:		<u>N/A</u>	Date/Time Co	ollected:	<u>10/14/09 08:00</u>			
Basis:		Wet	Date/Time Re	eceived:	10/16/09 09:00			
Analysis Method:		<u>245.1</u>	Date Leached	Date Leached:				
Unit:		ug/L	Date/Time Ex	tracted:	10/21/09 08:30			
QC Batch H	D:	<u>9293508</u>		Date/Time A	nalyzed:	10/21/09_11:09		
Sample Aliq	uot:	<u>10 mL</u>	Instrument II):	023			
Dilution Fac	ctor:	1						
CAS No.		Analyte		Conc.	MDL	RL	Q	
7439-97-6	Mercury			0.027	0.02	7 0.20	U	

Total Metals Analysis -2A-INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	TestAmerica Irvine			
Lab Code:	Case No.:	SAS No	.: SDG NO.	: D9J160335
Initial Ca	libration Source: Inorga	nic Ventures		
Continuing	Calibration Source: U	ltra Scientific		
	Concer	tration Units: ug/L		
	Initial Calibra	tion	Continuing Calibration	

	Initial Ca	libration	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	7.000	6.648	95.0	5.000	5.179	103.6	5.335	106.7	CV

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

TestAmerica

Total Metals Analysis -2B-CRDL STANDARD FOR AA AND ICP

Contract:	TestAmerica	Irvine					
Lab Code:	······	Case No.:		SAS No.:		SDG No.:	D9J160335
AA CRDL Sta	ndard Source:	Ultra	Scientific				
ICP CRDL St	andard Source:						
			Concentra	tion Units:	ug/L		

CRDL Standard for AA				In	ICP Final	L		
Analyte	True	Found	%R	True	Found	%R	Found	%R
Mercury	0.200	0.18500	92.5					

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:	TESTAMERICA DENVER	Client Sample	ID:			
Lot/SDG Nu	mber: <u>D9J160335</u>	Lab Sample ID	Lab Sample ID: <u> </u>			
Matrix:	WATER	Lab WorkOrde	Lab WorkOrder: <u>LMXVC</u>			
% Moisture:		Date/Time Col	lected:			
Basis:	Wet	Date/Time Rec	eived:			
Analysis Me	thod: <u>245.1</u>	Date Leached:				
Unit:	<u>ug/L</u>	Date/Time Ext	racted:	<u>10/21/09 08:30</u>		
QC Batch ID	9293508	Date/Time Ana	lyzed:	10/21/09 11:04		
Sample Aliqu	uot: <u>10 mL</u>	Instrument ID:	:	023		
Dilution Fact	tor: <u>1</u>					
CAS No.	Analyte	Conc.	MDL	RL		

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

<u>TestAmerica</u>

Total Metals Analysis

-3-

BLANKS

Contract:	TestAmerica Irvine				
Lab Code:	Case No.:	SAS No.:		SDG NO.:	D9J160335
Preparation	Blank Matrix (soil/water)	WATER			
Preparation	Blank Concentration Units	(ug/L or mg/kg):	UG/L		

	Initial Calib. Blank		Continuing Calibration Blank (ug/L)						Preparation Blank		
Analyte	(ug/L)	с	1	с	2	с	3	с		с	м
Mercury	0.02	27 0	0.02	27 ט	-0.0	28 B			0.027	σ	C1

TestAmerica Irvine

Total Metals Analysis Data Sheet

		Snike	Sample	MS		%		
MS Dilution Factor:	<u>1</u>							
MS Sample Aliquot:	<u>10 mL</u>			Instrument ID:		<u>023</u>		
QC Batch ID:	<u>9293508</u>			Date/Time Anal	yzed:	<u>10/21/09</u>	<u>) 11:11</u>	
Unit:	<u>ug/L</u>			Date/Time Extr	acted:	10/21/09	08:30	
Analysis Method:	<u>245.1</u>			Date Leached:				
Basis:	Wet			Date/Time Rece	ived:	<u>10/16/09</u>	09:00	
% Moisture:	<u>N/A</u>			Date/Time Colle	cted:	<u>10/14/09</u>	08:00	
Matrix:	WATER			MS Lab WorkC	rder:	LMQ24		
Lot/SDG Number:	<u>D9J160335</u>			MS Lab Sample	ID:	D9J1603	<u>335-001S</u>	
Lab Name:	TESTAMER	RICA DENVER	2	Client Sample I	D:	<u>ISJ1376</u>	<u>-01</u>	

Analyte	Spike Amount	Sample Result	С	MS Result	С	% Rec	Q	QC Limit	
Mercury	5.00	0.027	U	1.59		31	N	90 - 110	

٦

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:	TESTAN	IERICA DENV	/ <u>ER</u>		(Client Sample	e ID:	IS	<u>J1376-0</u>	<u>1</u>
Lot/SDG Number:	<u>D9J1603</u>	<u>35</u>			Γ	MSD Lab Sar	nple ID:	<u>D</u>	9J16033	<u>5-001D</u>
Matrix:	WATER				Γ	MSD Lab Wo	rkOrder	: <u>L</u>	MQ24	
% Moisture:	<u>N/A</u>				I	Date/Time Co	llected:	<u>1(</u>)/14/09	08:00
Basis:	Wet				I	Date/Time Re	ceived:	<u>1(</u>)/16/09	09:00
Analysis Method:	<u>245.1</u>				I	Date Leached	:			
Unit:	<u>ug/L</u>				1	Date/Time Ex	tracted:	<u>1(</u>)/21/09	<u>08:30</u>
QC Batch ID:	<u>9293508</u>				I	Date/Time Ar	alyzed:	<u>1(</u>	0/21/09	<u>11:13</u>
MSD Sample Aliquo	t: <u>10 mL</u>				ļ	Instrument II):	<u>0</u> 2	<u>23</u>	
MSD Dilution Facto	r: <u>1</u>									
								{		QC Lin
A 1. 4.	Spike	Sample		MSD		0/ Doo		DDD		

		Spike	Sampla		MSD					~	QC Lin	nits
	Analyte	Amount	Sample Result	С	Result	C	% Rec	Q	RPD	Q	% Rec	RPD
М	ercury	5.00	0.027	U	2.04		40	N	25	*	90 - 110	10

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:	TESTAMERICA DENVER	Client Sample ID:
Lot/SDG Number:	<u>D9J160335</u>	Lab Sample ID: D9J200000-508C
Matrix:	WATER	Lab WorkOrder: <u>LMXVC</u>
% Moisture:	<u>N/A</u>	Date/Time Collected:
Basis:	Wet	Date/Time Received:
Analysis Method:	<u>245.1</u>	Date Leached:
Unit:	<u>ug/L</u>	Date/Time Extracted: <u>10/21/09 08:30</u>
QC Batch ID:	<u>9293508</u>	Date/Time Analyzed: <u>10/21/09_11:06</u>
Sample Aliquot:	<u>10 mL</u>	Instrument ID: 023
Dilution Factor:	1	

Analyte	yte True		%Rec	Q	Limits
Mercury	5.00	4.89	98		90 - 110

Total Metals Analysis -10-DETECTION LIMITS

Contract: <u>TestAmeric</u>	a Irvine				
Lab Code:	Case No.:	SAS NO	.:	SDG NO.:	D9J160335
ICP ID Number:		Date:	12/26/2008		
Flame AA ID Number:	Cetac M7500 Hg				
Furnace AA ID Number:					

Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	MDL (ug/L)	М
Mercury	253.70		0.20	0.027	CV

Total Metals Analysis

-13-

PREPARATION LOG

Contract: TestAmerica Irvine

Code:	Case No.: SAS	S No.: SDG NO	.: D9J160335
hod: <u>CV</u>	Prep Method:		
Sample ID	Preparation Date	Initial Volume	Final Volume(mL)
ISJ1376-01	10/21/2009	10.0	10.0
ISJ1376-01 MS	10/21/2009	10.0	10.0
ISJ1376-01 MSD	10/21/2009	10.0	10.0
MB9293508	10/21/2009	10.0	10.0
Check Sample	10/21/2009	10.0	10.0

		•
10	est A m	erica
	Der Hane	cricu

Total Metals Analysis -14-

ANALYSIS RUN LOG

Contract: TestAmer:	ica Irvi	ne					_																			
Lab Code:		Case	No.:				SA	s	No.	:					_	S	DG	No	.:	D	9J	16	033	35		_
Instrument ID Number:	Cetac	M7500	Hg				Me	th	ođ:		(cv		_												
Start Date: 10/21/2	009					_	En	d I	Dat	e:	_	10	/2	1/2	200)9			_							
		1		Τ						-			Ana	ly	tes	3										
Sample ID.	D/F	Time	% R	A L	A S	B A	B E	C D	C A	C R	с 0	С Ф	f E	P B		M N	н G	N I	ĸ	S E	A G	N A	T L	v		C N
Cal Blank	1.00	10:37															x									
Std1	1.00	10:39															X									
Std2	1.00	10:41															X									
Std3	1.00	10:43															x									
Std4	1.00	10:46															X									
Std5	1.00	10:48															X									
Std6	1.00	10:50															x									
ICB	1.00	10:53															x									
ICV	1.00	10:55											-				x			Γ						
RL	1.00	10:58															x									
CCV	1.00	11:00															X									
ССВ	1.00	11:02															x									
MB9293508	1.00	11:04															x									
Check Sample	1.00	11:06															X									
ISJ1376-01	1.00	11:09															X									
ISJ1376-01 MS	1.00	11:11															X			Γ						
ISJ1376-01 MSD	1.00	11:13						Γ				T					X								Γ	
CCV	1.00	11:26															X								Γ	
ССВ	1.00	11:29		T													x			Γ					Γ	

* - Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

TestAmerica Denver Sample Receiving Checklist										
Lot #:	95160335	Date/Time Received: 10-16-09 0900								
	Name & Sampling Site:7	A IRVINE- BOEING - ISJ1376	2							
	Iete This Section: YesNorine check required:X	YesNoQuarantined : \Box	<u></u>							
Quote #: 7	12743									
Special Instruc	ctions:									
	- Log total + - normal +	biss as appropriate								
Time Zone: • EDT/EST • (CDT/CST • MDT/MST • PDT/PST • OT	HER								
Unpacking	Checks:									
-	r #(s):	· · · · · · · · · · · · · · · · · · ·	· .							
Temperatures (<u> </u>							
N/A Yes No			Initials							
	1. Cooler seals intact? (N/A if hand del		1							
	2. Coolers scanned for radiation. Is the	reading \leq to background levels? Yes: No:								
	3. Chain of custody present? If no, docu	ment on CUR.								
	4. Bottles broken and/or are leaking? If	yes, document on CUR.								
	5. Multiphasic samples obvious? If yes,									
	6. Proper container & preservatives use	d? (ref. Attachment D of SOP# DV-QA-0003) If no, document of	n CUR.							
	7. pH of all samples checked and meet a	requirements? If no, document on CUR.								
	document on CUR, and contact PM b	efore proceeding.	f no,							
Ø	9. Did chain of custody agree with label	s ID and samples received? If no, document on CUR.								
of o o	10. Were VOA samples without headspa									
h o o	11. Were VOA vials preserved? Preserv	ative 🛛 HCl 🖓 4±2°C 🖓 Sodium Thiosulfate 🖓 Ascorbic Acid								
	12. Did samples require preservation with	1 sodium thiosulfate?								
φοο	13. If yes to #11, did the samples contain	residual chlorine? If yes, document on CUR.								
) 14. Sediment present in dissolved/filtered	bottles? If yes, document on CUR.								
	15. Is sufficient volume provided for clie contact PM before proceeding.	nt requested MS, MSD or matrix duplicates? If no, document on (CUR, and							
αþ	16. Receipt date(s) > 48 hours past the co	ellection date(s)? If yes, notify PA/PM.								
	17. Are analyses with short holding times									
o f	18. Was a quick Turn Around (TAT) req									

TestAmerica Denver Sample Receiving Checklist

Lot #_____9 3160 335

Lo	gin (Chec	cks:	nitials
N/A	Yes	No		4
	ø	Ū	 Sufficient volume provided for all analysis requested? (ref. Attachment D of SOP# DV-QA-0003) If document on CUR, and contact PM before proceeding. 	no,
ø	Í 🗋		20. Is sufficient volume provided for client requested MS, MSD or matrix duplicates? If no, document on C contact PM before proceeding.	CUR, and
	P		21. Did the chain of custody includes "received by" and "relinquished" by signatures, dates, and times?	
	5		22. Were special log in instructions read and followed?	
5			23. Were AFCEE metals logged for refrigerated storage?	
	ø		24. Were tests logged checked against the COC? Which samples were confirmed?	
þ		Q	25. Was a Rush form completed for quick TAT?	
ф			26. Was a Short Hold form completed for any short holds?	
t		Q⁄	27. Were special archiving instructions indicated in the General Comments? If so, what were they?	

Labeling and Storage Checks:

A		28. Was the subcontract COC signed and sent with samples to bottle prep?
		29. Were sample labels double-checked by a second person?
	Ø	30. Were sample bottles and COC double checked for dissolved/filtered metals by a second person?
	Ø	31. Did the sample ID, Date, and Time from label match what was logged?
Ø		32. Were stickers for special archiving instructions affixed to each box? See #27
	ÍD	33. Were AFCEE metals stored refrigerated?

Document any problems or discrepancies and the actions taken to resolve them on a Condition Upon Receipt Anomaly Report (CUR).

Initials

SUBCONTRACT ORDER

0,3

TestAmerica Irvine ISJ1376

SENDING LABORATOR	<u>Y:</u>		RECEIV	ING LABORA	TOR	<u>Y:</u>				
TestAmerica Irvine			TestAmerica Denver							
17461 Derian Avenue.	Suite 100		4955 Yarrow Street							
Irvine, CA 92614										
Phone: (949) 261-1022)		Arvada, CO 80002 Phone :(303) 736-0100							
Fax: (949) 260-3297	-			.(303)730-0 03)431-7171						
Project Manager: Josep	h Doak		•	•		ALIFORNIA				
Client: MWH-Pasadena/B			Project Location: CA - CALIFORNIA Receipt Temperature:°C Ice: Y / N							
	Units	Due	Expires Inte	erlab Price Su	ırch	Comments				
		Due			ırch	Comments				
Sample ID: ISJ1376-01	Water		Sampled: 10)/14/09 08:00						
Sample ID: ISJ1376-01 Level 4 + EDD-OUT	Water N/A	10/23/09	Sampled: 10 11/11/09 08:00		urch 0%	Comments Sub to Denver, transfer file EDD				
Level 4 + EDD-OUT Mercury - 245.1, Diss -O	Water N/A UT ug/l		Sampled: 10)/14/09 08:00						
Sample ID: ISJ1376-01 Level 4 + EDD-OUT	Water N/A	10/23/09	Sampled: 10 11/11/09 08:00	0/ 14/09 08:00 \$0.00	0%	Sub to Denver, transfer file EDD				
Sample ID: ISJ1376-01 Level 4 + EDD-OUT Mercury - 245.1, Diss -O	Water N/A UT ug/l	10/23/09 10/23/09	Sampled: 10 11/11/09 08:00 11/11/09 08:00) <mark>/14/09 08:00</mark> \$0.00 \$36.00	0% 0%	Sub to Denver, transfer file EDD Denver, Boeing, J flags				

	19/15/09 17:00	Edth	10/15/09 17:00
Released By	Date/Time	Received By	Date/fime 18.16.89 8620
Released By TestAmerica	Date/Time	Received By	Referringer 713 of 1088 1 of 1

Reference in the second second

	Metals
	Supporting Documentation
	Sample Sequence, Instrument Printouts
	TestAmerica
	THE LEADER IN ENVIRONMENTAL TESTING
	ot ID:
C	lient: <u>TA-Irvine</u>
Β	atch(es) #: 9293508 + 9293522
	G anna 1
Associated	Samples:
	certify that, to the best of my knowledge, the attached package presents a complete and accurate copy of the original data.

Metals Raw Data RoadMap

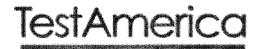
LotID	otID		WorkOrder	Anal Dat	te TestDesc	Batch	File Id	Instr
D9J160335	1 D	HG	LMQ241AH	20091021	M2451DS	9293522	091021AA	023
D9J160335	1 S	HG	LMQ241AG	20091021	M2451DS	9293522	091021AA	023
D9J160335	1	HG	LMQ241AC	20091021	M2451DS	9293522	091021AA	023
D9J160335	1 D	HG	LMQ241AF	20091021	M2451_L	9293508	091021AA	023
D9J160335	1 S	HG	LMQ241AE	20091021	M2451_L	9293508	091021AA	023
D9J160335	1	HG	LMQ241AA	20091021	M2451_L	9293508	091021AA	023

Wednesday, October 21, 2009

Page 1 of 1

METALS PREPARATION LOGS ICP

THE LEADER IN ENVIRONMENTAL TESTING


SUPPLEMENTAL METALS PREP SHEET

(Used in conjunction with METALS PREP LOG/BATCH SUMMARY)

Hg PREP & ANALYSIS - WATERS

SOP: DEN-MT-0015 QC Batch #:

h#: 9293508

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Denver

Prep Date: 10/21/09	Prep By: CGG	Date:10/21/09 Analyst: CGG								
Balance ID:				nometer ID: MT 4025						
Digestion Cycles	Start Time	Temp		End Time	Terr	np ⁰C				
Digestion Cycles	8:30		<u> </u>			95				
		95		10:30						
Purple color persists or	··· ·	X Yes		No If "No", exp	lain in Comm	ents below.				
Digestion Tube Lo	······································									
For dissolved mercury	only, were samples fill	ered in the la	ab?	Yes	\mathbf{X}	No				
One or more samples v	were filtered prior to ar	nalysis at the	instrum	ent. 🔀 Yes		No				
If "yes", then the metho	od blank and the LCS v	were also filt	ered in th	ne same manner using th	e same type o	of filter.				
				Analyst(s) Initials:						
Reagents Used										
Reagent	Manufacturer	Lot	#	Standards Log #	Vol	(mL)				
HNO ₃	JT Baker	H120	22		0.	25				
H_2SO_4	Fisher	G300	47		0	.5				
HCI	JT Baker	H190	31		used by i	nstrument				
10% SnCl ₂	Fisher	G456	29	STD-6425-09	added by	instrument				
NaCl / NH ₂ OH	Fisher	G286	21	STD-6077-09		6				
_	Fisher	G426	10	310-0077-09	0.6					
KMnO₄	Fisher	G456		STD-6424-09	1.5					
K ₂ S ₂ O ₈	Fisher	G456	29	STD-5798-09	0.8					
Parent Calibration St	· · · · · · · · · · · · · · · · · · ·									
	Lot #			Verification #	Exp.	Date				
Second Source	B2-HG0206	54		STD-1957-09		02/10				
Primary Calibration	K00200			STD-1955-09	04/02/10					
Standards Preparatio		· · · · · · · · · · · · · · · · · · ·		Final digestate	volume = 10) mis				
Standards	Final Conc	Parent Sta		Standards Log #	Vol (mL)	Pipette				
Cal Working	10 mg/L	Primary			1.00	7				
Daily Cal Working	100 ug/L	Cal Wo			1.00	7				
ICAL 0.2	0.2 ug/L	Daily Cal V			0.2	7				
ICAL 0.5	0.5 ug/L	Daily Cal V	0		0.5	7				
ICAL 1	1.0 ug/L	Daily Cal V		See	1.0	7				
ICAL 2	2.0 ug/L	Daily Cal V		Attached	2.0	7				
ICAL 5	5.0 ug/L	Daily Cal V		Standards Log	5.0	24				
ICAL 10	10 ug/L	Daily Cal V		Printouts	10.0	24				
	5 ug/L	Daily Cal V			5.0	7				
ICV Intermed	700 ug/L	ICV St			0.70	7				
ICV Daily Working LCS	7.0 ug/L	ICV Inte			1.00	7				
MS/MSD	5 ug/L	Daily Cal V			0.5	7				
RL	5 ug/L 0.2 ug/L	Daily Cal V			0.5	7				
		Daily Cal V			0.2	7				
Second Source ICV Ir				Standards Log #:						
			ted in the	attached Standards Preparation	n Logbook Recor	d.				
Comments Total										
I certify that all inform		ct and com	plete.							
Signature: Dividalu Date: 0/2//09 REVIEWED BY: Date: \mathcal{W} \mathcal{U}										
REVIEWED BY:	Y/			Date: 10 /2	1/09					

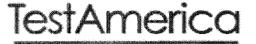
TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

27

			Prep Date:	10/20/09 UN 10/21/09	
Lot	Work Order		Due Date:	10/20/09	eight/Volume
D9J200000 Water	LMXVC	в /	Due Date: SDG:	<u>10 mL</u>	
D9J200000 Water	LMXVC	с 2	Due Date: SDG:	<u>10 mL</u>	
D9J160335 Water	LMQ24 Total	3	Due Date: 10/26/09 SDG:	<u>10 mL</u>	
D9J160335 Water	LMQ24 Total	s Ч	Due Date: 10/26/09 SDG:	<u>10 mL</u>	
D9J160335 Water	LMQ24 Total	D 5	Due Date: 10/26/09 SDG:	<u>10 mL</u>	
D9J160338 Water	LMQ3G Total	6	Due Date: 10/26/09 SDG:	<u>10 mL</u>	
D9J160339 Water	LMQ3R Total	7	" Due Date: 10/26/09 SDG:	<u>10 mL</u>	
D9J160341 Water	LMQ30 Total	8	Due Date: 10/26/09 SDG:	<u>10 mL</u>	

Comments:


B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

5 10/21/09 Start 8:30 952 End 10:30 950

SUPPLEMENTAL METALS PREP SHEET

(Used in conjunction with METALS PREP LOG/BATCH SUMMARY)

Hg∣	PREP	&	ANAL	YSIS -	WATERS
-----	------	---	------	--------	--------

SOP: DEN-MT-0015 QC Batch #: 9293522 THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Denver

Prep Date: 10/21/09	Prep By: CGG / Analysis		Date:10/21/09	Analyst: CGG			
Balance ID:	ometer ID: MT 4025						
Digestion Cycles	Start Time	Temp °C		End Time /	Temp ⁰C		
	8:30	95		10:30	95		
Purple color persists or				· / /	I		
Digestion Tube Lo		in the line in the second					
For dissolved mercury					=	No	
One or more samples were filtered prior to analysis at the instrument.							
It "yes", then the metho	od blank and the LCS v	were also filt	ered in th	he same manner using th	-	of filter.	
				Analyst(s) Initials:		:	
Reagents Used							
Reagent	Manufacturer	Lot	#	Standards Log #	Vol	(mL)	
HNO ₃	JT Baker	H120	22	Conception of the second		.25	
H ₂ SO ₄	Fisher	G300			0.5		
HCI	JT Baker	H190		in the second second	used by i	nstrument	
10% SnCl ₂	Fisher	G456		STD-6425-09	added by	added by instrument	
NaCl / NH ₂ OH	Fisher	G286		STD-6077-09		0.6	
_	Fisher	G426					
KMnO ₄	Fisher	G456		STD-6424-09	1.5		
K ₂ S ₂ O ₈	Fisher	G456	29	STD-5798-09	0.8		
Parent Calibration St					<u> </u>		
	Lot #			Verification # Exp. Date		· · · · · ·	
Second Source	B2-HG0206	64		STD-1957-09	04/02/10		
Primary Calibration	K00200			STD-1955-09 04/02/10			
Standards Preparatio				Final digestate	volume = 10) mls	
Standards	Final Conc	Parent St	andard	Standards Log #	Vol (mL)	Pipette	
Cal Working	10 mg/L	Primary	-		1.00	7	
Daily Cal Working	100 ug/L	Cal Wo			1.00	7	
ICAL 0.2	0.2 ug/L	Daily Cal V			0.2	7	
ICAL 0.5	0.5 ug/L	Daily Cal V			0.5	7	
ICAL 1	1.0 ug/L	Daily Cal V		See	1.0	7	
ICAL 2	2.0 ug/L	Daily Cal V		Attached	2.0	- 7	
ICAL 5	5.0 ug/L	Daily Cal V	<u> </u>	Standards Log	5.0	24	
ICAL 10	10 ug/L	Daily Cal V		Printouts	10.0	24	
CCV	5 ug/L	Daily Cal V			5.0	7	
ICV Intermed	700 ug/L	ICV St			0.70	7	
ICV Daily Working	7.0 ug/L	ICV Inte			1.00	7	
LCS	5 ug/L	Daily Cal Working			0.5	7	
MS/MSD	5 ug/L	Daily Cal V			0.5	7	
RL	0.2 ug/L	Daily Cal V			0.2	7	
Second Source ICV Intermediate Stock Standard Prep Standards Log #: STD-6414-09							
NOTE: Details for each reagent & standard prep are documented in the attached Standards Preparation Logbook Record.							
Comments Dissolved - Boeing							
I certify that all inform			plete.		1		
Signature: (1)	Drodah	/		<i>Date: │^D / z</i> Date: <u>↓∪ / ∠</u>	:1/09		
REVIEWED BY:				Date: 10 / 2	1/09		

Batch Number: 9293522

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:

5

			Prep Date:	10/20/09 00	10/21/09
Lot	Work Order		Due Date:	10/26/09	Initial Weight/Volume
D9J200000 Water	LMXWE	в	Due Date: SDG:		<u>10 mL</u>
D9J200000 Water	LMXWE	с 2	Due Date: SDG:		<u>10 mL</u>
D9J160335 Water	LMQ24 Dissolved	5	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160335 Water	LMQ24 Dissolved	s 1	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160335 Water	LMQ24 Dissolved	р ў	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160338 Water	LMQ3G Dissolved	6	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160339 Water	LMQ3R Dissolved	8	Due Date: 10/26/09 SDG:		<u>10 mL</u>
D9J160341 Water	LMQ30 Dissolved	U	Due Date: 10/26/09 SDG:		<u>10 mL</u>

Comments:

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

METALS SAMPLE DATA CVAA

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Denver

Standards Preparation Logbook Record

Oct-21-2009

Logbook: \\Densvr06\StdsLog\metals.std STD1955-09, 1000 mg/L HG Calibration Stock Standard (ULTRA Analyst: GRISDALEC Vendor: Ultra (Metals) Lot No.: K00200 Vendor's Expiration Date: 04-02-2010 Solvent: 2% HNO3 Date Prep./Opened: 04-02-2009 Date Received: 04-02-2009 Date Expires(1): 04-02-2010 (1 Year) Date Expires(2): 04-02-2010 (None) (METALS)-Inventory ID: 842 Component Initial Conc (ug/ml) Final Conc (ug/ml) HG 1.000.0 1.000.0 STD1957-09, Hg Inorganic Ventures ICV 100PPM std Analyst: GRISDALEC Vendor: Inorganic Ventures Lot No.: B2-HG02064 Vendor's Expiration Date: 04-02-2010 Solvent: Neat Date Prep./Opened: 04-02-2009 Date Received: 04-02-2009 Date Expires(1): 04-02-2010 (1 Year) Date Expires(2): 04-02-2010 (None) (METALS)-Inventory ID: 843 Component Initial Conc (%) Final Conc (%) HG 100.00 100.00 STD6413-09, 10 mg/L Hg Calibration Std Analyst: grisdalec Solvent: 1% HN03 Lot No.: H12022 Volume (ml): 100.00 Date Prep./Opened: 10-20-2009 Date Expires(1): 11-20-2009 (1 Month) Date Expires(2): 04-02-2010 (1 Month) Date Verified: 12-31--4714 by - (Verification ID: 0) Parent Std No.: STD1955-09, 1000 mg/L HG Calibration Stock Standard (ULTRAJiquot Amount (ml): 1.0000 Parent Date Expires(1): 04-02-2010 Parent Date Expires(2): 04-02-2010 Component Initial Conc (ug/ml) Final Conc (mg/L) HG

Page 1 of 4

10.000

1.000.0

STD6414-09, Hg Inorganic Ventures ICV 700ppb	P	Analyst: grisdalec
Solvent: 1% HNO3 Lot No.: H12022 Date Prep./Opened: 10-20-2009	,	Volume (ml): 100.00
Date Expires(1): 11-03-2009 (2 Weeks) Date Expires(2): 04-02-2010 (None) Date Verified: 12-314714 by - (Verification ID: 0)		
Parent Std No.: STD1957-09, Hg Inorganic Ventures ICV 100 Parent Date Expires(1): 04-02-2010 Parent Date Expires(2):	: 04-02-2010	Amount (ml): 0.7000
Component	Initial Conc (%)	Final Conc (ug/L)
HG	100.00	7,000,000
STD6415-09, 100 ppb Hg Calibration Std	I	Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022 Date Prep./Opened: 10-21-2009 0		Volume (ml): 100.00
Date Verified: 12-314714 by - (Verification ID: 0)		
Parent Std No.: STD6413-09, 10 mg/L Hg Calibration Std Parent Date Expires(1): 11-20-2009 Parent Date Expires(2):		Amount (ml): 1.0000
Component	Initial Conc (mg/L)	Final Conc (ug/ml)
HG	10.000	0.1000
STD6416-09, Blank Daily Hg Calibration Std	F	Analyst: grisdalec
Vendor: Baker Lot No.: H12022 Solvent: 1% HN03		
Date Prep./Opened: 10-21-2009 Date Expires(1): 04-21-2010 (6 Months)		
Date Expires(2): 10-21-2010 (1 Year) Date Verified: 12-314714 by 0 (Verification ID: -)		
Component	Initial Conc (%)	Final Conc (%)
Nitric Acid	1.0000	1.0000
STD6418-09, 0.5 ppb Daily Hg Calibration Std	A	Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022 Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None)	N. Contraction of the second se	/olume (ml): 100.00
Date Verified: 12-314714 by - (Verification ID: 0)		

Page 2 of 4

Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 10-22-2009 Parent Date Expires(2)		tot Amount (ml): 0.5000
Component	Initial Conc (ug/ml)	Final Conc (ug/ml)
HG	0.1000	0.0005
STD6419-09, 1.0 ppb Daily Hg Calibration Std		Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022 Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None) Date Verified: 12-314714 by - (Verification ID: 0)		Volume (ml): 100.00
Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 10-22-2009 Parent Date Expires(2)	: 04-02-2010	ot Amount (ml): 1.0000
Component HG	Initial Conc (ug/ml) 0.1000	Final Conc (ug/ml) 0.0010
STD6420-09, 2.0 ppb Daily Hg Calibration Std		Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022 Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None) Date Verified: 12-314714 by - (Verification ID: 0)		Volume (ml): 100.00
Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 10-22-2009 Parent Date Expires(2)	: 04-02-2010	tot Amount (ml): 2.0000
Component HG	Initial Conc (ug/ml) 0.1000	Final Conc (ug/ml) 0.0020
STD6421-09, 5.0 ppb Daily Hg Calibration Std		Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022 Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day) Date Expires(2): 04-02-2010 (None) Date Verified: 12-314714 by - (Verification ID: 0)		Volume (ml): 100.00
Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 10-22-2009 Parent Date Expires(2) Component		ot Amount (ml): 5.0000 Final Conc (ug/ml)
HG	0.1000	0.0050

Page 3 of 4

STD6422-09, 10.0 ppb Daily Hg Calibration Std		Analyst: grisdalec
Solvent: 1% HN03 Lot No.: H12022		Volume (ml): 100.00
Date Prep./Opened: 10-21-2009 Date Expires(1): 10-22-2009 (1 Day)	Date	Consumed: 12-06-2006
Date Expires(2): 04-02-2010 (None)		
Date Verified: 12-314714 by - (Verification ID: 0)		
Parent Std No.: STD6415-09, 100 ppb Hg Calibration Std	Aliqu	ot Amount (ml): 10.000
Parent Date Expires(1): 10-22-2009 Parent Date Expires(2):	04-02-2010	
Component	Initial Conc (ug/ml)	Final Conc (ug/ml)
HG	0.1000	0.0100
STD6423-09, Hg Daily ICV 7ppb Calibration Std		Analyst: grisdalec
Solvent: 1% HNO3 Lot No.: H12022		Volume (ml): 100.00
Date Prep./Opened: 10-21-2009		
Date Expires(1): 10-22-2009 (1 Day)		
Date Expires(2): 04-02-2010 (None)		
Date Verified: 12-314714 by - (Verification ID: 0)		
Parent Std No.: STD6414-09, Hg Inorganic Ventures ICV 700p	* *	ot Amount (ml): 1.0000
Parent Date Expires(1): 11-03-2009 Parent Date Expires(2):		
Component	Initial Conc (ug/L)	Final Conc (ug/L)
HG	7,000,000	70,000

Reviewed By: Chatephin Andalu 10/21/09

Page 4 of 4

Sequence: Denver Method: CVHG - Mercury (Cold Vapor Mercury) 34 ЗЗ 32 <u>3</u> 30 29 28 27 26 25 24 ß 22 2 80 4 3 12 1 16 5 17 LMQ24D 10 19_LMO24D 18-LM024S ø ccv ССВ **LMQ3R** LMXVCC CCB 200 LMQ30 LMQ24S LMXVCB 믿 Std6 Std3 Std2 Sample ID LENDARI LMQ24 Ś ЮB Std5 Std4 Std1 LMX0CCT LMQ3G Cal Blank LMNHJT LMNHET LMNHAT LININGVIDT LMNGVDT LMNGVST LMNGVT LMTKEBT 091021AA = 5.00 = 0.200 = 5.00 = 1.00 D9J150315-6 B9J150315-2 = 5.00 D9J200000 = 5.00D9J160339-1 D9J160338-1 П H = 2.00 = 0.500 D9J150315-7 -00460315-2 = 5.00D9J150315-2 = 5.00 D9J150315-2 = 5.00 D9J150315-2 D9J160341-1 D9J160335-1 = 5.00D9J160335-1 = 5.00 D9J160335-1 II D9J150315-5 D9J180000 D9J160335-1 - 5.00 D9J200000 =D9J200000 = 0.2005.00 7.00 10.0 Lot No. 5.00 Date: 10/21/09 10:37 9293533 9293533 9293533 9293533 0203508 9293508 9293533 9293508 9293508 9293508 9293508 9293533 9293508 9293508 9293508 9293533 9293533 9200503 9293533 9293508 Batch LEACHATE AQUEOUS LEACHATE LEACHATE LEACHATE LEACHATE AQUEOUS AQUEOUS LEACHATE AQUEOUS LEACHATE AQUEOUS AQUEOUS AQUEOUS AQUEOUS LEACHATE Matrix Raw -0.01 -0.02 10.00 -0.01 -0.02 -0.02 -0.02 -0.03 -0.06 -0.01 -0.02 -0.02 5.45 -0.02 6:38 5.54 5.34 5.18 6.65 2.00 0.50 0.20 0.00 4. 5 5.12 2.04 1.59 0.02 4.89 0.19 5.00 1.00 2 Analyst: CGG P 1.0 1.0 1.0 1.0 1.0 1.0 .1 .0 1.0 -1 -0 .1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ŧ 1.0 1.0 1.0 1.0 1.0 1.0 \$ 4 G Instrument: A (023) Result Units -0.02 ppb -0.02 ppb -0.01 ppb 10.00 ppb 5.00 ppb 2.19 ppb 2.04 ppb 4.89 ppb -0.02 ppb -0.02 ppb 5.12 ppb -0.03 ppb -0.01 ppb -0.02 ppb -0.06 ppb -0.02 ppb 1.00 ppb -0.01 ppb -0.02 ppb 6.98|ppb 5.54 ppb 5.45 ppb 5.34 ppb 0.02 ppb 5.18 ppb 0.19 ppb 6.65 ppb 2.00 ppb 0.50 ppb 0.20 ppb 0.00 ppb <u>3.43 ppo</u> 1.59 ppb 1.71 ppb 106.7% 100.0% 100.0% 100.0% 103.6% 95.0% 100.0% 100.0% 100.0% 102.4% 97.7% %R 10/21/09 10:48 10/21/09 11:33 10/21/09 11:26 10/21/09 11:00 10/21/09 10:55 10/21/09 10:50 10/21/09 10:46 10/21/09 11:42 10/21/09 11:40 10/21/09 11:38 10/21/09 11:06 10/21/09 11:02 Analyzed Date 10/21/09 10/21/09 10:39 10/21/09 11:51 10/21/09 11:49 10/21/09 11:46 10/21/09 11:44 10/21/09 11:35 10/21/09 11:29 10/21/09 11:24 10/21/09 11:22 10/21/09 11:20 10/21/09-11:17 10/21/09 44:45 10/21/09 11:13 10/21/09 11:11 10/21/09 11:09 10/21/09 10:58 10/21/09 10:53 10/21/09 10:37 10/21/09 11:31 10/21/09 11:04 10/21/09 10:41 2 10:43 K A NA confirms CONTIMS above Reported: 10/21/09 15:58:20 CAL/CCV: 001210120 polizion co Comment RUN SUMMARY CJ (0/21/09 00000 00000 00000 00000 above Ø

 View Page 1 of 4

Sequence: Denver Method: CVHG - Mercury (Cold Vapor Mercury) 67 66 65 64 ഒ 62 <u>6</u> ള 59 58 57 56 ទួ 52 ũ 50 48 47 4 39 38 37 83 54 - LMO24DE 5 49 46 5 4 43 42 6 36 35 # Sample ID LMO24SE ccv ССВ 200 LMXE1DF 200 000 LMXWPBF CCB CCB LMQ24DF LMXWECF CCB LMXECF LMXE1F LMQ3RF LMQ3GF LMQ24SF LMXE6F LMXE9F LMXE1SF LMXWPCF LMXFA LMXE7 LMXE3S LMXE3 LMXV3C LMXV3B LMQ30F LMQ24F LMXWEBF LMXE5F LMXE3D 091021AA = 5.00 D9J200249-6 D9J200249-2 D9J160335-1 = D9J160335-1 = 5.00D9J160335-1-D9J200000 = D9J200246-1 D9J200249-5 D9J200249-4 D9J200000 =D9J200000 D9J160341-1 D9J160339-1 D9J160338-1 D0J160335-1 = 5.00 D9J160335-1 11 D9J200246-5 11 D9J200000 D9J200249-3 D9J200249-1 D9J200000 =D9J200000 5.00 5.00 5.00 Lot No. 5.00 5.00 5.00 5.00 ę. B Date: 10/21/09 10:37 9293522 9293528 9293520 9293522 9293522 9293528 9293520 9293520 9293520 9293522 9293522 0203522 9293522 9293528 9293528 9293520 9293522 9293522 9293522 9293528 9293528 9293528 Batch AQUEOUS AQUEOUS UNKNOWN UNKNOWN UNKNOWN AQUEOUS AQUEOUS UNKNOWN AQUEOUS Matrix Raw -0.02 8.79 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 5.46 -0.02 -0.02 -0.01 -0.00 -0.01 -0.02 -0.03 -0.01 4.91 4.86 5.15 2.97 3.13 3.40 0.01 5.17 5.17 5.60 9.96 5.36 5.09 5.02 5.64 9.6 Analyst: CGG P 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 **1**.0 1.0 1.0 1.0 . . 1.0 1.0 1.0 1.0 1.0 .0 .0 . 0 .0 1.0 1.0 1.0 \$ đ 1.0 <u>.</u> 0 Instrument: A (023) Result -0.01 ppb -0.02 ppb 8.79 ppb -0.01 ppb -0.02 ppb -0.01 ppb -0.01 ppb -0.01 ppb -0.02 ppb -0.01 ppb -0.00 ppb -0.01 ppb -0.01 ppb -0.01 ppb 5.15 ppb 5.46 ppb 2.97 ppb 3.13 ppb 5.17 ppb 5.17 ppb -0.02 ppb 5.60 ppb 9.96 ppb 5.36 ppb 5.09 ppb -0.02 ppb -0.03 ppb 5.64 ppb 4.86 ppb 3.48 ppb 0.01 ppb 5.02 ppb 4.91 ppb 5.43 ppb Units 100.4% 112.9% 111.9% 109.3% 103.5% 103.0% 03.3% %R 10/21/09 11:53 10/21/09 10/21/09 10/21/09 12:57 10/21/09 13:02 10/21/09 13:00 10/21/09 12:51 10/21/09 12:48 10/21/09 12:42 10/21/09 12:37 10/21/09 12:35 10/21/09 12:29 10/21/09 10/21/09 10/21/09 12:11 10/21/09 10/21/09 12:06 10/21/09 10/21/09 12:02 10/21/09 11:58 10/21/09 11:55 Analyzed Date 10/21/09 10/21/09 13:11 10/21/09 10/21/09 12:53 10/21/09 12:46 10/21/09 12:44 10/21/09 12:31 10/21/09 12:17 0/21/09 13:06 10/21/09 12:55 10/21/09 12:33 0/21/09 13:15 0/21/09 12:23 <u>c</u>?: 13:13 13:08 13:04 12:00 12:21 12:09 12:04 12:13 ×× ₽ るろ Reported: 10/21/09 15:58:20 CAL/CCV: Comment C RUN SUMMARY VD 10/2/10 TestAmerica 6clew 60/12/09 Q П

View Page 2 of 4

OPICIAN Date: 102/109 10.37 Analyst: CG ICV: CAU Sei ID Lof No. Batch Mainx Raw DF Result Units %A Analyzet CG Control 100 95.00 Sei 10X DeJ2002246-3 2293220 ACUECUS 1.03 1.0 95.500 1002109 13.37 10.0 95.500 1002109 13.32 10.0 95.500 1002109 13.32 10.0 10.35 10.0 10.35 10.0 10.35 10.0 10.32 10.0 10.0 10.0 10.0 10.0		102	101	100	99	86	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83						3 3			73	72	7	70	- 69	#	Sequence:
Date: 1021/09 10:37 Analyst: CG ICV: CALL Lot No. Batch Marix Raw DF Result Units %A Analyzed Date Common Analyzed Date <td< td=""><td>Date: 1021/09 10:37 Analyst: CG IC: CAL Lot No. Batch Mainx Raw DF Result Units %A Analyzed Date Common Analyzed Date</td><td>LMGL2</td><td>LMGLO</td><td>ССВ</td><td>CCV</td><td>LMGLVD</td><td>LMGLVS</td><td>LMGLV</td><td>LMGLV</td><td>LME26</td><td>LME24</td><td>ССВ</td><td>CCV</td><td>LME2X</td><td>LME2W 100X</td><td></td><td>LMEOW</td><td>LME2T 10X</td><td>LME2T</td><td>LME2P</td><td>ССВ</td><td>CCV</td><td>LME2M</td><td>LME2L</td><td>LME16</td><td></td><td></td><td></td><td>LMXE6 10X</td><td></td><td>LMXE0 10X</td><td></td><td>LMXEC 10X</td><td></td><td>Sample ID</td><td></td></td<>	Date: 1021/09 10:37 Analyst: CG IC: CAL Lot No. Batch Mainx Raw DF Result Units %A Analyzed Date Common Analyzed Date	LMGL2	LMGLO	ССВ	CCV	LMGLVD	LMGLVS	LMGLV	LMGLV	LME26	LME24	ССВ	CCV	LME2X	LME2W 100X		LMEOW	LME2T 10X	LME2T	LME2P	ССВ	CCV	LME2M	LME2L	LME16				LMXE6 10X		LMXE0 10X		LMXEC 10X		Sample ID	
Analyst: CGC ICY	ICV: CAU Faw DF Result Units %R Analyzed Date Com JS 11.0 10.33 ppb 10.37 ppb 10.27/19 13.37 10 10.27/19 13.37 10 10.37/19 ppb 10.27/19 13.37 10 10.37/19 ppb 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 2 2 \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2}	D9J130167-3	D9J130167-2				Ш	D9J130167-1	D9J130167-1	D9J120128-9	D9J120128-8		= 5.00	D9J120128-7	D9J120128-6	D9J120128-6	D9J120128 6	D9J120128-5	D9J120128-5	D9J120128-4		= 5.00	D9J120128-3	D9J120128-2	∸ ,	ല ഗ	D9.1150000	= 5.00	D9J200246-5	D9J200246-5	D9J200246-3	D9J2U0246-S	D9J200246-1	D0J200240-1	Lot No.	1021AA
ICV: CAU Faw DF Result Units %R Analyzed Date Com JS 11.0 10.33 ppb 10.37 ppb 10.27/19 13.37 10 10.27/19 13.37 10 10.37/19 ppb 10.27/19 13.37 10 10.37/19 ppb 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 2 2 \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2}	ICV: CAU Faw DF Result Units %R Analyzed Date Com JS 11.0 10.33 ppb 10.37 ppb 10.27/19 13.37 10 10.27/19 13.37 10 10.37/19 ppb 10.27/19 13.37 10 10.37/19 ppb 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 10.27/19 13.37 2 2 \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2} \mathcal{C}_{2}	9288328	9288328			9288328	9288328	9288328	9200020	9288328	9288328			9288328	9288328	9266328	9288328	9288328	0288328	9288328			9288328	9288328	9288328	9288328	ACERRCD		9293520	9293520	9293520	9290520	9293520	9293520	Batch	Date: 10/21
Analyst: CGG ICV: CALC DF Result Units %R Analyzed Date Composition 95 1.0 9.53 ppb 10/21/09 13/21 Gate Composition 96 1.0 10.33 ppb 10/21/09 13/32 Gate Composition 97 1.0 10.32 ppb 10/21/09 13/32 Gate Composition 98 1.0 10.32 ppb 10/21/09 13/32 Gate Complex 92 1.0 5.22 ppb 10/21/09 13/32 Gate Gate 92 1.0 5.22 ppb 10/21/09 13/32 Gate Gate 92 1.0 5.22 ppb 10/21/09 13/46 Gate Gate 93 1.0 5.22 ppb 10/21/09 13/46 Gate Gat 94 1.0 7.70 ppb 10/21/09 13/48 Gat Gat Gat Gat 95 10/2 10/21/09 13/48	Analyst: CGG ICV: CAL DF Result Units %R Analyzed Date Com 95 1.0 9.53 ppb 10/21/09 13:23 Com Com 95 1.0 10.33 ppb 10/21/09 13:23 Com Com 96 1.0 10.32 ppb 10/21/09 13:39 Com Com 97 1.0 5.22 ppb 10/21/09 13:39 Com Scarples Com 92 1.0 5.22 ppb 10/21/09 13:39 Comples Comples 92 1.0 5.22 ppb 10/21/09 13:48 Comples Comples 92 1.0 5.22 ppb 10/21/09 13:48 Comples Comples 92 1.0 5.22 ppb 10/21/09 13:48 Comples Comples 92 1.0 5.21 ppb 10/21/09 13:55 Com Com 92 1.0 5.51 ppb 10/21/09 14:07 Com	AQUEOUS	AQUEOUS			AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS			AQUEOUS	AQUEOUS	AQUEOUS	AQUEQUS	AQUEOUS	VOLEONS	AQUEOUS			AQUEOUS	AQUEOUS	AQUEOUS				AQUEOUS	AOUEOUS	AQUEOUS	AQUEOUS	AQUEOUS	AQUEOUS	Matrix	1/09 10:37
ICV: CAUC 0137 ppb $10/27/09$ 13:17 953 ppb $10/27/09$ 13:23 0.77 ppb $10/27/09$ 13:37 0.82 ppb $10/27/09$ 13:44 0.82 ppb $10/27/09$ 13:45 0.82 ppb $10/27/09$ 13:55 0.82 ppb $10/27/09$ 13:55 0.82 ppb $10/27/09$ 13:55 0.85 ppb $10/27/09$ 14:36 0.86 ppb $10/27/09$ 14:20 0.75 ppb $10/27/09$ 14:20 0.75 ppb $10/27/09$ 14:24 0.76 ppb $10/27/09$ 14:24 0.76 ppb $10/27/09$ 14:24 0.76 ppb $10/27/09$ 14:36 $0.77/09$ 14:45<	ICV: CAUC $0:33$ ppb $10/271/09$ $1:3:17$ $0:35$ ppb $10/271/09$ $1:3:23$ $0:71$ ppb $10/271/09$ $1:3:23$ $0:71$ ppb $10/271/09$ $1:3:37$ $0:35$ ppb $10/271/09$ $1:3:37$ $0:37$ ppb $10/271/09$ $1:3:37$ $0:32$ ppb $10/271/09$ $1:3:37$ $0:35$ ppb $10/271/09$ $1:3:55$ $0:36$ ppb $10/271/09$ $1:3:57$ 1.77 ppb $10/271/09$ $1:4:07$ 1.77 ppb $10/271/09$ $1:4:37$ 0.30 ppb $10/271/09$ $1:4:27$ 0.30 ppb $10/271/09$ $1:4:26$ 0.31 ppb $10/271/09$ $1:4:26$ 0.32 ppb $10/271/09$ $1:4:47$ 0.3	0.01	-0.02	0.00	4.23	5.16	5.20	-0.14	1.58	0.68	3.18	-0.04	5.51	0.56	3.53	24.74		8.42	61.70	1.72	-0.08	5.22	1.77	0.51	0.27	5.16	-0.0	5.22	1.08	10.37	1.10		0.95	10.93	Raw	Þ
ICV: CAUC NIT NIT TOT33 ppb TOT21/09 13:27 Com 9.53 ppb 10/21/09 13:23 Com 9.53 ppb 10/21/09 13:23 Com 9.54 ppb 10/21/09 13:30 13:30 Com 0.82 ppb 10/21/09 13:30 13:30 13:30 13:30 0.82 ppb 10/21/09 13:30 13:30 13:30 13:30 13:30 0.72 ppb 10/21/09 13:42 See ap 10/21/09 13:43 See ap 0.52 ppb 10/21/09 13:43 10/21/09 13:43 See ap 1.77 ppb 10/21/09 13:53 See ap See ap 1.72 ppb 10/21/09 13:53 See ap See ap 1.72 ppb 10/21/09 13:53 See ap See ap 1.72 ppb 10/21/09 14:53 Col See ap 1.73 ppb 10/21/09 14:53 Co See ap	ICV: CAUC NIT NIT TOT33 ppb TOT21/09 13:27 Com 9.53 ppb 10/21/09 13:23 Com 9.53 ppb 10/21/09 13:23 Com 9.54 ppb 10/21/09 13:30 13:30 Com 0.82 ppb 10/21/09 13:30 13:30 13:30 13:30 0.82 ppb 10/21/09 13:30 13:30 13:30 13:30 13:30 0.72 ppb 10/21/09 13:42 See ap 10/21/09 13:43 See ap 0.52 ppb 10/21/09 13:43 10/21/09 13:43 See ap 1.77 ppb 10/21/09 13:53 See ap See ap 1.72 ppb 10/21/09 13:53 See ap See ap 1.72 ppb 10/21/09 13:53 See ap See ap 1.72 ppb 10/21/09 14:53 Col See ap 1.73 ppb 10/21/09 14:53 Co See ap	1.0	1.0	1.0	1.0	1.0	1.0	1.0	 - -	1.0	1.0	1.0	1.0	1.0	100			10.0	10	1.0	1.0	1.0	1.0	1.0	1.0	1.0			10.0	Ŀ	10.0	.	10.0	- 	무	nalyst:
ICV: CALC III: % R Analyzed Date Com 10/21/09 13:23 10/21/09 13:23 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:44 10/21/09 13:44 Junch Junch 10/21/09 13:44 Junch Junch 10/21/09 13:44 Junch Junch 10/21/09 13:45 Junch Junch 10/21/09 13:55 Junch Junch 10/21/09 13:55 Junch Junch 10/21/09 14:20 Junch Junch 10/21/09 14:20 Junch Junch 10/21/09 14:20 Junch Junch 10/21/09 14:45 Junch Junch 10/21/09 14:45 Junch Junch 10/21/	ICV: CALC III: % R Analyzed Date Com 10/21/09 13:23 10/21/09 13:23 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:44 10/21/09 13:44 Junch Junch 10/21/09 13:44 Junch Junch 10/21/09 13:44 Junch Junch 10/21/09 13:45 Junch Junch 10/21/09 13:55 Junch Junch 10/21/09 13:55 Junch Junch 10/21/09 14:55 Junch Junch 10/21/09 14:20 Junch Junch Junch 10/21/09 14:20 Junch Junch Junch Junch 10/21/09 14:45 Junch Junch Junch Junch Junch	0.02	-0.02	0.00	4.23	5.16	5.20	-0.14	-1.58	0.68	3.18	-0.04	5.51 j	0.56	353.00	247.39	72.17	84.24 j	01.70	1.72 J	-0.08	5.22	1.77	0.52	0.27	5.16	-0 00	5.22	10.82	10.37	10.95		9.53	10.93		CGG
ICV: CALC Analyzed Date Com 10/21/09 13:23 10/21/09 13:23 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:42 10/21/09 13:43 10/21/09 13:44 10/21/09 13:55 10/21/09 13:53 10/21/09 13:53 10/21/09 13:53 10/21/09 13:53 10/21/09 14:07 10/21/09 14:22 10/21/09 14:21 10/21/09 14:32 10/21/09 14:22 10/21/09 14:24 10/21/09 14:34 10/21/09 14:45 10/21/09 14:45 10/21/09 14:45 10/21/09 14:52 <	ICV: CALC Analyzed Date Com 10/21/09 13:23 10/21/09 13:23 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:30 10/21/09 13:42 10/21/09 13:43 10/21/09 13:44 10/21/09 13:55 10/21/09 13:53 10/21/09 13:53 10/21/09 13:53 10/21/09 13:53 10/21/09 14:07 10/21/09 14:22 10/21/09 14:21 10/21/09 14:32 10/21/09 14:22 10/21/09 14:24 10/21/09 14:34 10/21/09 14:45 10/21/09 14:45 10/21/09 14:45 10/21/09 14:52 <	bb	절	bb	5g	dqc	р Б	5 B	opp	bb	bb	ddc		Ե	ad	opo	ba	gg	JDD	bp	Ե		Ե	B.					_	PB-	dqc	90	dqc	odo	Units	
Com Com Serptes See ap See ap See ap CD CD	Com Com Serptes See ap See ap See ap CD CD				84.6%								110.3%									104.5%,				103.2%		104.4%							%R	
Com Com Serptis See ap See ap See ap CD CD CD	Com Com Serptis See ap See ap See ap CD CD CD	10/21/09 14:5	10/21/09 14:50	10/21/09 14:5	10/21/09 14:5;	10/21/09 14:49	10/21/09 14:4:	10/21/09 14:4!	10/21/09 14:4	10/21/09 14:39	10/21/09 14:30	10/21/09 14:34	10/21/09 14:24	10/21/09 14:2:	10/21/09 14:20	10/21/09 14.1	10/21/09 14.0	10/21/09 14:0	10/21/09 14:0	10/21/09 13:59	10/21/09 13:5	/ 10/21/09 13:5	10/21/09 13:5:	10/21/09 13:5			10/21/09 13.4.	10/21/09 13:3	10/21/09 13:3	10/21/00 13:9	10/21/09 13:3	10/21/03 13:2	10/21/09 13:2:	10/21/09 13:1	Analyzed Date	ICV:
Com See 12 See 12	Com See 12 See 12		0,	+		•	7				0,	4	4		0	0	4				~ 			-	-	-				1	0	φ.	3	1	Û	
	1/2/109 ofz1/09 ofz1/09 ofz1/09	management and an and an and the second second					~~~~		see													S		each.	< VOLTN'P	1		Jun har							Commer	CAL/CCV

Me	Method: CVHG	Method: CVHG - Mercury (Cold Vapor Mercury)	Mercury)			-	Instrument: A (023)	A (02)	3		Reported: 10/21/09 15:58:20
Sequ	Sequence: 0	091021AA	Date: 10/21/09 10:37	/09 10:37	Ą	Analyst: CGG	CGG			ICV:	CAL/CCV:
#	# Sample ID	Lot No.	Batch	Matrix	Raw	P	DF Result Units	Units	%R	Analyzed Date	Comment
103	LMGL5	D9J130167-4	9288328	AQUEOUS	-0.04	1.0	-0.04 ppb	ğ		10/21/09 15:01	
104	LMGL6	D9J130167-5	9288328	AQUEOUS	-0.01	1.0	-0.01 ppb	b		10/21/09 15:03	
105	LMGL8	D9J130167-6	9288328	AQUEOUS	-0.05	1.0	-0.05 ppb	bpp		10/21/09 15:05	
106	LMGDE	D9J130135-1	9288328	AQUEOUS	-0.06	1.0	-0.06 ppb	ğ		10/21/09 15:07	
107	LMJF2	D9J140137-1	9288328	AQUEOUS	4.27	1.0	4.27 ppb	Ър	,	10/21/09 15:10	
108	CCV	= 5.00			5.41	1.0	5.41 ppb	dde	108.1%	10/21/09 15:12	
109	ССВ				0.00	1.0	0.00 ppb	ğ		10/21/09 15:14	

V 10/2100 StAmerica Report Generated By CETAC QuickTrace Analyst: grisdalec Worksheet file: C:\Program Files\QuickTrace\Worksheets\091021AA.wsz Date Started: 10/21/2009 9:53:06 AM Comment:

Results

Sample Name	Туре	Date/Time	Conc (ppb)	µAbs	%RSD F	lags Wt. ODF	Vol.
Cal Blank	STD	10/21/09 10:37:13 am	0.000	/ 16	19.07	1.00 1.00	1.00
Std1	STD	10/21/09 10:39:26 am	0.200	/ ₃₀₂₇	0.19	1.00 1.00	1.00
Std2	STD	10/21/09 10:41:39 am	0.500	/ 7416	0.23	1.00 1.00	1.00
Std3	STD	10/21/09 10:43:53 am	1.000 '	15047	0.24	1.00 1.00	1.00
Std4	STD	10/21/09 10:46:08 am	2.000	29584	0.27	1.00 1.00	1.00
Std5	STD	10/21/09 10:48:24 am	5.000	72999	0.32	1.00 1.00	1.00
Std6	STD	10/21/09 10:50:40 am	10.000	145092	0.40	1.00 1.00	1.00
Calibration Equation: $A = 296.279 + 14497.680C$ R2: 0.99998 SEE: 264.9720 Flags: $1000000000000000000000000000000000000$			4 6 Concentration (p	8 ppb)	10		
ICB	ICB	10/21/09 10:53:33 am	-0.023 🗸	-40	3.59	1.00 1.00	1.00
ICV % Recovery 94.97	ICV	10/21/09 10:55:49 am	6.648	96677	0.47	1.00 1.00	1.00
RL / / / / / / / / / / / / / / / / / / /	CRDL	10/21/09 10:58:01 am	0.185	2979	0.21	1.00 1.00	1.00

10/21/2009 3:22:04 PM

091021AA.wsz

Page 1

TestAmerica

NPDES Page 739 05 10890 21 509

Sample Name	Туре	Date/Time	Conc µAbs (ppb)	%RSD Fla	igs Wt. Vol. ODF
CCV % Recovery 103.58	CCV	10/21/09 11:00:17 am	5.179 /7538	2 0.30	1.00 1.00 1.00
ССВ	CCB	10/21/09 11:02:29 am	-0.022 🌙 -2	9 11.08	1.00 1.00 1.00
LMXVCB	UNK	10/21/09 11:04:41 am	-0.012 / 11	9 2.19	1.00 1.00 1.00
LMXVCC	UNK	10/21/09 11:06:54 am	4.886 7113	4 0.27	1.00 1.00 1.00
LMQ24	UNK	10/21/09 11:09:07 am	0.019 57	0 0.77	1.00 1.00 1.00
LMQ24S	UNK	10/21/09 11:11:19 am	1.588 2332	2 0.22	1.00 1.00 1.00
LMQ24D	UNK	10/21/09 11:13:33 am	2.044 2992	3 0.17	1.00 1.00 1.00
MO24S NA Confirm		10/21/09 11:15:46 am	1.710 2508	7 0.73	1.00 1.00 1.00
LMQ24D		10/21/09 11:17:59 am	2.180 3202	70.12	<u> </u>
LMQ3G	UNK	10/21/09 11:20:13 am	-0.058 -54	6 2.01	1.00 1.00 1.00
LMQ3R	UNK	10/21/09 11:22:26 am	-0.019 1	9 29.84	1.00 1.00 1.00
LMQ30	UNK	10/21/09 11:24:41 am	-0.011 13	9 2.46	1.00 1.00 1.00
CCV % Recovery 106.71	CCV	10/21/09 11:26:56 am	5.335 / 7764	8 0.37	1.00 1.00 1.00
ССВ	ССВ	10/21/09 11:29:08 am	-0.028 -11	4 1.50	1.00 1.00 1.00
LMTKEB	UNK	10/21/09 11:31:22 am	-0.018 🖌 4	1 1.90	1.00 1.00 1.00
LMX0CC	UNK	10/21/09 11:33:37 am	5.120 74520	0 0.52	1.00 1.00 1.00
LMNGV	UNK	10/21/09 11:35:52 am	-0.017 50	0 5.37	1.00 1.00 1.00

091021AA.wsz

Sample Name	Туре	Date/Time	Conc (ppb)	µAbs	%RSD Flags	Wt. ODF	Vol.
LMNGVS	UNK	10/21/09 11:38:07 am	5.446	79251	0.40	1.00 1.00	1.0
LMNGVD	UNK	10/21/09 11:40:19 am	5.539	80596	0.08	1.00 1.00	1.0
LMNGVS	UNK	- 10/21/09 11:42:34 am	5.383	78330	0.27	1.00	1.0
LMNGVD MA VER	UNK-	07 10/21/09 -10/21/00 11:44:46 am	5.447	79258	0.24	1.00	1.0
LMNHA	UNK	10/21/09 11:46:58 am	-0.017	46	13.65	1.00 1.00	1.0
LMNHE	UNK	10/21/09 11:49:11 am	-0.016	65	5.01	1.00 1.00	1.0
LMNHJ	UNK	10/21/09 11:51:23 am	-0.012	124	2.67	1.00 1.00	1.0
CCV % Recovery 112.86	CCV	10/21/09 11:53:39 am	5.643 🌈	82110	0.11	1.00 1.00	1.00
ССВ	ССВ	10/21/09 11:55:51 am	-0.028	-111	1.34	1.00 1.00	1.00
LMXWPB	UNK	10/21/09 11:58:04 am	-0.017	55	3.49	1.00 1.00	1.00
LMXWPC	UNK	10/21/09 12:00:17 pm	5.019 🖊	73058	0.22	1.00 1.00	1.00
LMXE1	UNK	10/21/09 12:02:30 pm	-0.014	92	2.00	1.00 1.00	1.00
LMXE1S	UNK	10/21/09 12:04:44 pm	5.093 /	74130	0.03	1.00 1.00	1.00
LMXE1D	UNK	10/21/09 12:06:58 pm	5.360 🗸	78004	0.17	1.00 1.00	1.00
_MXE5	UNK	10/21/09 12:09:13 pm	-0.005	230	1.18	1.00 1.00	1.00
MXE9	UNK	10/21/09 12:11:27 pm	-0.012	123	0.81	1.00 1.00	1.00
MXEC	UNK	10/21/09 12:13:42 pm	9.964 ·	144756	1.18	1.00 1.00	1.00

091021AA.wsz

Page 3

TestAmerica

Sample Name	Туре	Date/Time	Conc µAbs (ppb)	%RSD Flags	Wt. Vo ODF	ol.
LMXE6	UNK	10/21/09 12:17:32 pm	8.794 127786	0.28	1.00 ⁻ 1.00	1.00
CCV % Recovery 111.92	ссv	10/21/09 12:21:38 pm	5.596 / 81426	0.03	1.00 1 1.00	1.00
ССВ	CCB	10/21/09 12:23:50 pm	-0.024 -48	5.54	1.00 1 1.00	1.00
CCV % Recovery 103.33	CCV	10/21/09 12:29:09 pm	5.166 🖌 75196	0.41	1.00 1 1.00	1.00
ССВ	ССВ	10/21/09 12:31:21 pm	-0.024 🖌 -59	2.16	1.00 1 1.00	1.00
LMXWEB	UNK	10/21/09 12:33:33 pm	-0.013 🖊 104	2.91	1.00 1 1.00	1.00
LMXWEC	UNK	10/21/09 12:35:46 pm	5.174 75314	0.02	1.00 1 1.00	1.00
LMQ24	UNK	10/21/09 12:37:58 pm	0.007 394	6.34 s	1.00 1 1.00	1.00
NA USC FERM	UNK	10/21/09 12:42:13 pm	3.477 750698	1.10	<u> </u>	1.00
	UNK	10/21/09 12:44:26 pm	5.435 79096	0.07	1.00 1	1.00
LMQ24S CS 10/2109	UNK	10/21/09 12:46:39 pm	3.131 45693	1.16	1.00 1 1.00	1.00
LMQ24D	UNK	10/21/09 12:48:52 pm	2.970 43349	1.06	1.00 1 1.00	1.00
LMQ3G	UNK	10/21/09 12:51:06 pm	-0.008 181	0.48	1.00 1 1.00	1.00
LMQ3R	UNK	10/21/09 12:53:20 pm	-0.015 86	3.68	1.00 1 1.00	1.00
LMQ30	UNK	10/21/09 12:55:34 pm	-0.008 180	1.29	1.00 1 1.00	1.00
CCV % Recovery 109.27	ccv	10/21/09 12:57:49 pm	5.463 / 79503	0.25	1.00 1 1.00	1.00
ССВ	CCB	10/21/09 01:00:02 pm	-0.024 🦯 -54	8.11	1.00 1 1.00	1.00

091021AA.wsz

Sample Name		Туре	Date/Time	Conc (ppb)	µAbs	%RSD Flag	s Wt. V ODF	Vol.
LMXV3B		UNK	10/21/09 01:02:16 pm	-0.016 🗸	65	6.58	1.00 1.00	1.00
LMXV3C		UNK	10/21/09 01:04:31 pm	5.149 /	74940	0.21	1.00 1.00	1.00
LMXE3		UNK	10/21/09 01:06:46 pm	-0.013	106	2.91	1.00 1.00	1.00
LMXE3S		UNK	10/21/09 01:08:58 pm	4.857 🖌	70710	0.21	1.00 1.00	1.00
LMXE3D		UNK	10/21/09 01:11:10 pm	4.912	71513	0.19	1.00 1.00	1.00
LMXE7		UNK	10/21/09 01:13:22 pm	-0.010	156	4.37	1.00 1.00	1.00
			10/21/09 01:15:35 pm	-0.015	78	1.73	1.00 1.00	1.00
LMXEC		LS 7 LA UNK 10x d 11, 4	10/21/09 01.17.40 pm -		158701	<u></u>	1.00 1.00	1.00
LMXEC* (OX d).	vs	10/2/109	10/21/09 01:23:04 pm	0.953	14120	6.57 s	1.00	1.00
LMXEO		UNK	10/21/0 9 01:25:18 pm	10.713	155607	0.09 O	1.00 <u>1.</u> 00	1.00
LMXEO* 10x 211.		UNK	10/21/09 01:30:19 pm	1.095	16168	0.33	1.00 10.00	1.00
LMXE6			<u>10/21/00 01:32:33 pm</u>	10.366	150586			00. ئ
$LMXE6^* (O \times d!).$	Ý	UNK	10/21/09 01:37:34 pm	1.082	15986	0.68	1.00 10.00	1.00
CCV % Recovery 104.42	/	CCV	10/21/09 01:39:50 pm	5.221 /	75987	0.93	1.00 1.00	1.00
ССВ		ССВ	10/21/09 01:42:02 pm	0.011	451	27.21 s	1.00 1.00	1.00
LML8NB		UNK	10/21/09 01:44:16 pm	-0.020 🖌	7	171.04	1.00 1.00	1.00
LML8NC		UNK	10/21/09 01:46:30 pm	5.161	75118	0.33	1.00 1.00	1.00

091021AA.wsz

Page 5

TestAmerica

Sample Name	Туре	Date/Time	Conc µAbs (ppb)	%RSD Fla	igs Wt. V ODF	Vol.
LME16	UNK	10/21/09 01:48:44 pm	0.266 414	17 3.82	1.00 1.00	1.0
LME2L	UNK	10/21/09 01:50:59 pm	0.515 776	67 0.30	1.00 1.00	1.00
LME2M	UNK	10/21/09 01:53:14 pm	1.768 2593	32 0.68	1.00 1.00	1.00
CCV % Recovery 104.49	CCV	10/21/09 01:55:29 pm	5.224 / 7603	6 0.62	1.00 1.00	1.00
ССВ	CCB	10/21/09 01:57:41 pm	-0.077 , -81	5 32.76	1.00 1.00	1.00
LME2P	UNK	10/21/09 01:59:54 pm	1.723 2527	4 0.89	1.00 1.00	1.00
LMEZT NA, Sample	5 ZINK	₽ 10/21/09 02:02:06 pm	61.697 89476	6 1.26 S	1.00 1.00	1.00
LME2T* (0 × d:). US 10	υνκ [2] [0 γ	10/21/09 02:07:08 pm	8.424 12242	5 1.61	1.00 10.00	1.00
É ME2W	UNK		72.173 104664	<u>3 0.00 S</u>	<u> </u>	1.00
LME2W*	UNK			9 <u>1.61 O</u>	<u> </u>	1.00
LME2W** 100×d;).	UNK	10/21/09 02:20:06 pm	3.530 51469	9 3.91	1.00 100.00	1.00
LME2X	UNK	10/21/09 02:22:19 pm	0.557 837	7 7.03 s	1.00 1.00	1.00
CCV % Recovery 110.31	CCV	10/21/09 02:24:35 pm	5.515 2 80255	5 0.43	1.00 1.00	1.00
ССВ	ССВ	10/21/09 02:34:39 pm	-0.037 -240	0 2.07	1.00 1.00	1.00
LME24	UNK	10/21/09 02:36:52 pm	3.179 46386	6 1.37	1.00 ⁻ 1.00	1.00
LME26	UNK	10/21/09 02:39:05 pm	0.679 10147	7 2.43	1.00 1.00	1.00
MA, see rerun		10/2/109			******	

091021AA.wsz

Page 6

NPDE6 Page 735 of 1089 2/10960

TestAmerica

Sample Name	Туре	Date/Time	Conc (ppb)	µAbs	%RSD Flags	Wt. ODF	Vol.
LMGLV	UNK	10/21/09 02:45:29 pm	-0.139	-1719	1.67	1.00 1.00	1.00
LMGLVS	UNK	10/21/09 02:47:43 pm	5.198 🖌	75656	0.09	1.00 1.00	1.00
LMGLVD	UNK	10/21/09 02:49:57 pm	5.163	/ 75142	0.40	1.00 1.00	1.00
CCV % Recovery 84.64	CCV	10/21/09 02:52:13 pm	4.232 🏒	61647	10.83 s	1.00 1.00	1.00
ССВ	ССВ	10/21/09 02:54:25 pm	0.000	295	137.12 s	1.00 1.00	1.00
LMGL0	UNK	10/21/09 02:56:39 pm	-0.021	-8	175.22	1.00 1.00	1.00
LMGL2	UNK	10/21/09 02:58:54 pm	0.015	516	3.92	1.00 1.00	1.00
LMGL5	UNK	10/21/09 03:01:09 pm	-0.037	-247	3.01	1.00 1.00	1.00
LMGL6	UNK	10/21/09 03:03:22 pm	-0.009	160	13.07 s	1.00 1.00	1.00
LMGL8	UNK	10/21/09 03:05:35 pm	-0.045	-351	2.59	1.00 1.00	1.00
LMGDE	UNK	10/21/09 03:07:48 pm	-0.064	-625	0.57	1.00 1.00	1.00
LMJF2	UNK	10/21/09 03:10:01 pm	4.273	62239	0.44	1.00 1.00	1.00
CCV % Recovery 108.14	CCV	10/21/09 03:12:16 pm	5.407 🖊	78684	1.16	1.00 1.00	1.00
ССВ	CCB	10/21/09 03:14:28 pm	0.004	353	21.85 s	1.00 1.00	1.00

Analysis Parameters

Instrument M-7500 Mercury Analyzer

Conditions

Gas flow (mL/min)	Sample Uptake (s)	Rinse (s)	Read delay (s)	Replicates (#)	Replicate time (s)	Pump speed (%)	Wavelength (nm)
100	35.00	90.00	66.00	4	1.50	50	253.65
Instrumental Ze	ero						
Zero before first san	nple: No						
Zero periodically:	No						
Baseline Correc	ction						
#1 Start time (s) #	#1 End time (s) #2 S	Start time (s)	#2 End time	(s)			
26.00	30.00						
Standby Mode							
Enabled: Yes							
Standby Options: p	oump slow						
Autodilution							
Enabled: Yes							
Condition: Saturate							
Tube # range: 4:1 -	4:60						
If no autodilution tub	es remaining continu	ue undiluted					
Calibration							
Settings							

Settings

Algorithm	Through blank	Weighted	fit Cal. Type	Racalibration rate	Reslope rate	Reslope standard	
Linear	No	No	Normal	0	0	N/A	
Limits							
Calibratio	n slope	Resi	ope	Coeff. of			
Lower (%)	Upper (%)	Lower (%)	Upper (%)	Determination			
20	150	75	125	0.99500			
Error action:	Flag and continue						
QC							
GLP Overric	le: Yes						

QC Tests

NPDES Page 737 of 1088

ССВ

Concentration (ppb) 0.2000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

ICB

Concentration (ppb) 0.2000

Failure flag: Z

Error action for manually inserted QC: Stop analysis

CCV

Concentration	Low Limit	High Limit
(ppb)	%	%
5.0000	80.0000	120.0000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

ICV

Concentration	Low Limit	High Limit
(ppb)	%	%
7.0000	90.0000	110.0000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

CRDL

Concentration	Low Limit	High Limit
(ppb)	%	%
0.2000	70.0000	130.0000

Failure flag: Y

Error action for manually inserted QC: Stop analysis

10/21/2009 3:22:04 PM

NPDES Fage 738 of 1088

October 27, 2009

Vista Project I.D.: 32137

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on October 16, 2009 under your Project Name "ISJ1376". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Coarte

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 10/16/2009

<u>Vista Lab. ID</u>

Client Sample ID

32137-001

ISJ1376-01

SECTION II

Method Blank							EPA Method 1613
Matrix: Aque	eous	QC Batch No.:	2469	Lab Sample:	0-MB001		
Sample Size: 1.0	00 L	Date Extracted:	19-Oct-09	Date Analyzed	DB-5: 22-Oct-09	Date A	nalyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a	EMPC ^b Qualifiers	Labeled	Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000514		IS 13C-2,3,	7,8-TCDD	94.1	25 - 164
1,2,3,7,8-PeCDD	ND	0.00000109			3,7,8-PeCDD	95.8	25 - 181
1,2,3,4,7,8-HxCDD	ND	0.000000974			3,4,7,8-HxCDD	90.9	32 - 141
1,2,3,6,7,8-HxCDD	ND	0.00000104			3,6,7,8-HxCDD	82.6	28 - 130
1,2,3,7,8,9-HxCDD	ND	0.000000950			3,4,6,7,8-HpCDD	97.0	23 - 140
1,2,3,4,6,7,8-HpCDD) ND	0.000000565		13C-OC	-	83.3	17 - 157
OCDD	ND	0.00000249			7,8-TCDF	92.8	24 - 169
2,3,7,8-TCDF	ND	0.000000382			3,7,8-PeCDF	96.3	24 - 185
1,2,3,7,8-PeCDF	ND	0.000000739			4,7,8-PeCDF	96.6	21 - 178
2,3,4,7,8-PeCDF	ND	0.000000741			3,4,7,8-HxCDF	92.4	26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000210		13C-1,2,	3,6,7,8-HxCDF	87.4	26 - 123
1,2,3,6,7,8-HxCDF	ND	0.000000213		13C-2,3,	4,6,7,8-HxCDF	90.9	28 - 136
2,3,4,6,7,8-HxCDF	ND	0.00000239		13C-1,2,	3,7,8,9-HxCDF	93.8	29 - 147
1,2,3,7,8,9-HxCDF	ND	0.000000291		13C-1,2,	3,4,6,7,8-HpCDF	93.5	28 - 143
1,2,3,4,6,7,8-HpCDF	ND	0.000000518		13C-1,2,	3,4,7,8,9-HpCDF	96.7	26 - 138
1,2,3,4,7,8,9-HpCDF		0.000000626		13C-OC	DF	87.0	17 - 157
OCDF	ND	0.00000165		<u>CRS</u> 37Cl-2,3	,7,8-TCDD	96.6	35 - 197
Totals				Footnotes			
Total TCDD	ND	0.000000514		a. Sample specific of	estimated detection limit.		
Total PeCDD	ND	0.00000109			num possible concentration.		
Total HxCDD	ND	0.000000988		c. Method detection	ı limit.		
Total HpCDD	ND		0.000000786	d. Lower control lin	nit - upper control limit.		
Total TCDF	ND	0.000000382					
Total PeCDF	ND	0.000000740					
Total HxCDF	ND	0.000000237					
Total HpCDF	ND	0.000000569					

Analyst: JMH

Approved By: Martha M. Maier 27-Oct-2009 10:47

OPR Results					EP	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	2469 19-Oct-09	Lab Sample:0-OPR001Date Analyzed DB-5:22-Oct-09	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	8.78	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	93.1	25 - 164	
1,2,3,7,8-PeCDD	50.0	45.4	35 - 71	13C-1,2,3,7,8-PeCDD	84.1	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	47.1	35 - 82	13C-1,2,3,4,7,8-HxCDD	89.9	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	48.1	38 - 67	13C-1,2,3,6,7,8-HxCDD	82.6	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	48.2	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	90.3	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	47.4	35 - 70	13C-OCDD	78.8	17 - 157	
OCDD	100	96.5	78 - 144	13C-2,3,7,8-TCDF	96.2	24 - 169	
2,3,7,8-TCDF	10.0	8.55	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	90.0	24 - 185	
1,2,3,7,8-PeCDF	50.0	46.3	40 - 67	13C-2,3,4,7,8-PeCDF	91.0	21 - 178	
2,3,4,7,8-PeCDF	50.0	46.5	34 - 80	13C-1,2,3,4,7,8-HxCDF	87.1	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	49.4	36 - 67	13C-1,2,3,6,7,8-HxCDF	83.3	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	48.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	88.8	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	47.2	35 - 78	13C-1,2,3,7,8,9-HxCDF	91.9	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	48.4	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	88.6	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	48.0	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	90.7	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	46.8	39 - 69	13C-OCDF	79.4	17 - 157	
OCDF	100	102	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	96.7	35 - 197	

Analyst: JMH

Approved By: Martha M. Maier 27-Oct-2009 10:47

Sample ID: ISJ13	376-01								EPA N	Aethod 1613
Client Data Name: Test A Project: ISJ13 Date Collected: 14-Oc Time Collected: 0800			Sample Data Matrix: Sample Size:	Aqueous 1.01 L	Lab QC	oratory Data Sample: Batch No.: Analyzed DB-5:	32137-001 2469 22-Oct-09	Date Re Date Ex Date An		16-Oct-09 19-Oct-09 NA
Analyte C	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	626		<u>IS</u>	13C-2,3,7,8-TCD	D	79.3	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000	775			13C-1,2,3,7,8-Pe	CDD	88.0	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	79			13С-1,2,3,4,7,8-Н	IxCDD	70.4	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000001	95			13С-1,2,3,6,7,8-Н	IxCDD	61.6	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	92			13C-1,2,3,4,6,7,8	-HpCDD	77.1	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000114			J		13C-OCDD		64.3	17 - 157	
OCDD	0.000141					13C-2,3,7,8-TCD	F	82.3	24 - 169	
2,3,7,8-TCDF	ND	0.000000	397			13C-1,2,3,7,8-Pe0	CDF	76.7	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	05			13C-2,3,4,7,8-Pe	CDF	81.2	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000001	03			13С-1,2,3,4,7,8-Н	IxCDF	74.4	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	350			13С-1,2,3,6,7,8-Н	IxCDF	69.3	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000	358			13С-2,3,4,6,7,8-Н	IxCDF	71.6	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	396			13С-1,2,3,7,8,9-Н	IxCDF	76.2	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	481			13C-1,2,3,4,6,7,8	-HpCDF	73.5	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000173			J		13C-1,2,3,4,7,8,9	-HpCDF	76.8	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000000	471			13C-OCDF		65.8	17 - 157	
OCDF	0.0000103			J	CRS	37Cl-2,3,7,8-TCL	DD	98.6	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000000	626		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000000	775		b. Es	timated maximum possi	ible concentration.			
Total HxCDD	ND	0.000001	89		c. M	ethod detection limit.				
Total HpCDD	0.0000284				d. Le	ower control limit - uppe	er control limit.			
Total TCDF	ND	0.000000	397							
Total PeCDF	ND	0.000001	04							
Total HxCDF	ND	0.000000								
Total HpCDF	0.00000575									

Analyst: JMH

Approved By: Martha M. Maier 27-Oct-2009 10:47

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
н	The signal-to-noise ratio is greater than 10:1.
I	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-2008
State of Arizona	AZ0639
State of Arkansas, DEQ	08-043-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	N/A
State of Connecticut	PH-0182
State of Florida, DEP	E87777
State of Indiana Department of Health	C-CA-02
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA08000
State of Louisiana, DEQ	01977
State of Maine	2008024
State of Michigan	9932
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	NFESC413
State of Nevada	CA004132007A
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-006
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	TN02996
State of Texas	T104704189-08-TX
U.S. Army Corps of Engineers	N/A
State of Utah	CA16400
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine ISJ1376

32137 1.3°C

RECEIVING LABORATORY:
Vista Analytical Laboratory- SUB
1104 Windfield Way
El Dorado Hills, CA 95762
Phone :(916) 673-1520
Fax: (916) 673-0106
Project Location: CA - CALIFORNIA
Receipt Temperature: <u>°C</u> Ice: Y / N

Analysis	Units	Expires	Comments
Sample ID: ISJ1376-01	Water	Sampled: 10/14/09 08:0	00
1613-Dioxin-HR-Alta	ug/l	10/21/09 08:00	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 Data Package	N/A	11/11/09 08:00	
Containers Supplied:			
1 L Amber (C)	1 L Amber (D)		

10/109 17:0 Released By

Fedge10/15/09 12-00Received ByDate/TimeHada Burrell10/16/09 1026Received ByDate/TimePage Page 1 of 1

Released By

Date/Time

SAMPLE LOG-IN CHECKLIST

		SAMF	PLE LO	G-IN CHE	CKLIS	Г		Ķ.	Vista Analytical Laboratory
Vista Project #:	321	37				т	AT	-	ndard
	Date/Time			Initials:	_	Loc	ation	WR	2-2
Samples Arrival:	19/16/09	9 0907 B		B	Shelf/Rack: N/A			JA	
	Date/Time		nul	Initials:			ation		R-2
Logged In:	10/16/04	9 /	034	P	3	She	lf/Rac	:k:	12
Delivered By:	edEx	U	PS	Cal	DHL	L Hand Delivere			Other
Preservation:	Lce)	Bl		lce Dr		ry Ice		None
Temp °C ノ,ろ	°C	Time	:	0925	5	The	rmom	eter I	D: IR-2

三二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	YES	NO	NA					
Adequate Sample Volume Recei		\checkmark						
Holding Time Acceptable?		\checkmark						
Shipping Container(s) Intact?						\mathcal{V}		
Shipping Custody Seals Intact?						V		
Shipping Documentation Presen	t?					V		
Airbill Trk # 7970 2452 9090								
Sample Container Intact?								
Sample Custody Seals Intact?								\checkmark
Chain of Custody / Sample Documentation Present?								
COC Anomaly/Sample Acceptance Form completed?								\checkmark
If Chlorinated or Drinking Water Samples, Acceptable Preservation?								\checkmark
$Na_2S_2O_3$ Preservation Documen	ted?	coc		Sample Container		(None	
Shipping Container	Vista	Client	R	etain	Re	turn	Disp	ose
Commenter								

Comments:

APPENDIX G

Section 13

Outfall 010, BMP Effectiveness, October 14, 2009 Test America Analytical Laboratory Report

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: BMP Effectiveness Monitoring Program

Sampled: 10/14/09 Received: 10/14/09 Issued: 10/23/09 17:27

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID

ISJ1394-01

CLIENT ID 010 EFF-1

MATRIX Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/BoeingProject ID:BMP Effectiveness618 Michillinda Avenue, Suite 200Monitoring ProgramSampled:10/14/09Arcadia, CA 91007Report Number:ISJ1394Received:10/14/09Attention: Bronwyn KellyKellyKellyKellyKelly

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISJ1394-01 (010 EFF-1 - Wa Reporting Units: g/cc	iter)								
Density	Displacement	9J22149	N/A	NA	1.0	1	10/22/09	10/22/09	
Sample ID: ISJ1394-01 (010 EFF-1 - Wa Reporting Units: mg/l	iter)								
Sediment	ASTM D3977	9J23089	10	10	ND	1	10/23/09	10/23/09	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: ISJ1394

Sampled: 10/14/09 Received: 10/14/09

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9J22149 Extracted: 10/22/09	<u>)</u>									
Duplicate Analyzed: 10/22/2009 (9J22149-DUP1) Source: ISJ1394-01										
Density	0.999	NA	N/A	g/cc		0.999		0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: ISJ1394

Sampled: 10/14/09 Received: 10/14/09

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: ISJ1394

Sampled: 10/14/09 Received: 10/14/09

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Test America Version 06/29/09	J Version 06/29/0:	6	CHAIN OF	OF CUS	CUSTODY	NY FORM	L V	551390	1 Page 1	of 1
Client Name/Address:	SS:		Project: Boeing BMP	ng BMP			ANALY	ANALYSIS REQUIRED		5
MWH-Pasadena 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101	ı .e, Suite 1200		Effectiveness Monitoring Program	s Monitorinç		TM-				
Test America Contact: Joe Doak	: Joe Doak							·		
Project Manager: Bronwyn Kelly	ronwyn Kelly		Phone Number:	er:					Commente	
Sampler: E. WALKER	LKEN		(o2o)	15 11		es babea entration (7991-7				
Sample Sample Description Matrix	ile Container x Type	# of Cont.	Sampling Date/Time	Preservative	Bottle * #	SuoConc		· .		
010 EFF-1 W	Poly-500 mL	-	10.14-1/0800	None	-	×				
									-	
		/								
		1								
	-							-		
									(
						<u>/</u>				
					Ī					
							mo			
				`						
-					4	0		2		
Relinquished By	_ .	Date/Time:		Received By	10.	Date/Time:			Turn around Time: (check) 24 Hours 5 Davs	
2/4/10-	10/00	- 60/ 4/0/	0<:11-	W/WA		11-01/10-14	1. ag 1 / 4: 30			
C-Renfquished By		Date/Tim	С.	Reserved By	// 	Date/Time				
MIN Deal / MAR	1 60-11-01	\$	(4:0[Y	1/0/	110411707		72 Hours Normal	×
Relinquished By		Date/Tim	ë	Received By-		Detertime			Perchlorate Only 72 Hours	
2									Metals Only 72 Hours	
									Sample Integrity: (Check)	42
									_	

 \sum

APPENDIX G

Section 14

Outfall 010, December 7, 2009 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ISL0775

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	ISL0775
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 010	ISL0775-01	G9l100506-001, F9J100525-001, D9L100594-001	Water	12/7/2009 12:25:00 AM	1613, 245.1, 900, 901.1, 903.0, 904, 905, 906.0, EMLA-01-R, ASTM 5174-91

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Irvine within the temperature limits of 4°C ±2°C. The sample for the Method 1613 analysis was received below the temperature limits at TestAmerica-West Sacramento; however, the sample was not noted to be frozen or damaged. The sample receipt temperature was not noted by TestAmerica-St. Louis; however, due to the nonvolatile nature of the analytes, no qualifications were required. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were transported by courier to TestAmerica-Irvine, custody seals were not required. Custody seals were not present upon receipt at TestAmerica-West Sacramento. Custody seals were present and intact at TestAmerica-Denver and TestAmerica-St. Louis.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more	ר t
	technically sound analysis is available.	t a
Ρ	Instrument performance for	F
	pesticides was poor.	r

- DNQ The reported result is above the method detection limit but is less than the reporting limit.
- *II, *III Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

The analysis with this flag should not be used because another more technically sound analysis is available.

Post Digestion Spike recovery was not within control limits.

The reported result is above the method detection limit but is less than the reporting limit.

Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: January 17, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for all compounds except 2,3,7,8-TCDF. Any sample detects for individual target compound isomers present at concentrations less than five times the method blank concentrations were qualified as nondetected, "U," at the RL. Results for totals were qualified as nondetected, "U," if all peaks comprising the total were present in the method blank at less than five times the

5

blank concentrations. In some instances, one or more peaks in the method blank did not meet ratio criteria; however, due to the extent of contamination present in the method blank, it was the reviewer's professional opinion that the sample total be qualified as nondetected due to method blank contamination if all peaks in the sample total were also present in the method blank.

Sample results for total HxCDD, total PeCDF, and total HxCDF included peaks meeting ratio criteria that were not present in the method blank; therefore, results for both totals were qualified as estimated, "J," as only a portion of the total was considered method blank contamination. The concentration for one peak in total HpCDD was significantly greater than five times the concentration of the same peak in the method blank; therefore, the sample result for total HpCDD was qualified as estimated, "J." The sample concentration for OCDD exceeded five times the blank concentration and required no qualification.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any reportable sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Several results for individual isomers were reported as EMPCs by the laboratory; however, the results were previously qualified as nondetects for method blank contamination and were not further qualified as EMPCs. Any reported totals not qualified as nondetects for method blank contamination that included EMPCs were qualified as estimated, "J." Any detects between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks Date Reviewed: January 14, 2009

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. The mercury initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. The CRA was within the control limit of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

• Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: January 14, 2008

The sample listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, and ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for radium-226, radium-228, and strontium-90 were prepared within the five-day holding time for unpreserved aqueous samples. The aliquots for gross alpha and gross beta and gamma spectroscopy were prepared beyond the five-day analytical holding time for unpreserved samples; therefore, the results were qualified as estimated, "UJ," for nondetects and, "J," for detects. The aliquot for total uranium was prepared more than 3x beyond the five-day analytical holding time for unpreserved samples; therefore, the results were qualified as estimated, "UJ," for nondetects and, "J," for detects. The aliquot for total uranium was prepared more than 3x beyond the five-day analytical holding time for unpreserved samples; therefore, the
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J," and nondetected radium-226 was qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The strontium carrier recovery was less than the laboratory control limit of 40%; therefore, nondetected strontium in the sample was qualified as estimated, UJ." The radium-226, and radium-228 chemical yields were at least 65% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. The opening KPA Low-CCV was recovered at 124%; however, as total uranium was not detected in the sample (see Blanks section), no qualification was required. All remaining KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

• Blanks: Total uranium was detected in the method blank at 0.496 pCi/L; therefore, total uranium detected in the sample was qualified as nondetected, "U." There were no other analytes detected in the method blanks.

- Blank Spikes and Laboratory Control Samples: The recoveries and isotopic uranium uranium, strontium, radium-226, and radium-228 RPDs were within laboratory-established control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for tritium, gross alpha and gross beta, and the gamma spectroscopy analytes. The RPDs were either within the laboratory-established control limit or within the measurement error.
- Matrix Spike/Matrix Spike Duplicate: Matrix spike analyses were performed on the sample in this SDG for gross alpha and gross beta. All recoveries were within the laboratoryestablished control limits. Please note that although laboratory reported in the summary that the sample in this SDG had a tritium matrix spike performed, the matrix spike was performed on another sample.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

The laboratory originally analyzed for isotopic uranium instead of total uranium as required by the NPDES permit. The isotopic uranium results were, therefore, rejected, "R," in favor of the total uranium result.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms: ISL0775

Analysis Method ASTM 5174-91

Sample Name	Outfall 010 (C	omp)	Matr	ix Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ISL0775-02	Sam	ple Date:	12/7/2009	9 12:25:00 PM	А		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Total Uranium	7440-61-1	0.577	0.677	0.21	pCi/L	Jc	R	H,B
Analysis Metho	od EPA 9	00.0 M	lOD					
Sample Name	Outfall 010 (C	omp)	Matr	ix Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ISL0775-02	Samj	ple Date:	12/7/2009	9 12:25:00 PM	А		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587-46-1	2.4	3	2	pCi/L	Jc	J	H,C,DNQ
Gross Beta	12587-47-2	8.9	4	1.2	pCi/L		J	Н
Analysis Metho	od EPA 9	01.1 M	IOD					
Sample Name	Outfall 010 (C	omp)	Matr	ix Type:	WATER	١	alidation Le	vel: IV
Lab Sample Name:	ISL0775-02	Samj	ple Date:	12/7/2009	9 12:25:00 PM	А		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium 137	10045-97-3	0.06	20	20	pCi/L	U	UJ	Н
Potassium 40	13966-00-2	-60	0	250	pCi/L	U	UJ	Н
Analysis Metho	od EPA 9	03.0 M	IOD					
Sample Name	Outfall 010 (C	omp)	Matr	ix Type:	WATER	Validation Level: IV		
Lab Sample Name:	ISL0775-02	Sam	ple Date:	12/7/2009	9 12:25:00 PM	А		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium (226)	13982-63-3	0.12	1	0.17	pCi/L	U	UJ	С
Analysis Metho	od EPA 9	04 MC	D					
Sample Name	Outfall 010 (C	omp)	Matr	ix Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ISL0775-02	Sam	ple Date:	12/7/2009	9 12:25:00 PM	А		
Analyte	CAS No	Result	RL	MDL	Result	Lab		Validation
		Value			Units	Qualifier	Qualifier	Notes

Thursday, January 21, 2010

Page 1 of 4

Sample Name	Outfall 010 (C	omp)	Matri	ix Type:	WATER	۷	alidation Le	vel: IV
Lab Sample Name:	ISL0775-02	Sam	ple Date:	12/7/200	9 12:25:00 PN	Л		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium 90	10098-97-2	-1.29	3	1.7	pCi/L	U	UJ	*III
Analysis Metho	od EPA 9	06.0 M	lOD					
Sample Name	Outfall 010 (C	omp)	Matri	ix Type:	WATER	۲	alidation Le	vel: IV
Lab Sample Name:	ISL0775-02	Sam	ple Date:	12/7/200	9 12:25:00 PN	Л		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Oualifier	Validation Oualifier	Validation Notes
		value			Cinto	C	Quanner	10005

Analysis Method EPA 905 MOD

Sample Name	Outfall 010 (C	omp)	Matr	ix Type: 🕚	WATER	V	Validation Level: IV		
Lab Sample Name:	ISL0775-02RE1	Sam	ple Date:	12/7/2009	12:25:00 PI	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00008	0.0000012	ug/L	В	U	В	
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.000049	0.0000086	ug/L	J, B	U	В	
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.000049	0.0000013	ug/L	J, B	U	В	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.000049	0.00000076	ug/L	J, B	U	В	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.000049	0.00000064	ug/L	J, B	U	В	
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.000049	0.0000007	ug/L	J, B	U	В	
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.000049	0.00000062	ug/L	J, Q, B	U	В	
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.000049	0.00000066	ug/L	J, Q, B	U	В	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.000049	0.00000068	ug/L	J, Q, B	U	В	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.000049	0.0000083	ug/L		U		
1,2,3,7,8-PeCDF	57117-41-6	ND	0.000049	0.0000011	ug/L	J, Q, B	U	В	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.000049	0.00000058	ug/L	J, Q, B	U	В	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.000049	0.0000013	ug/L		U		
2,3,7,8-TCDD	1746-01-6	ND	0.0000097	0.00000056	ug/L		U		
2,3,7,8-TCDF	51207-31-9	ND	0.0000097	0.0000028	ug/L	CON	U		
OCDD	3268-87-9	0.00089	0.000097	0.0000013	ug/L	В			
OCDF	39001-02-0	ND	0.000097	0.00000077	ug/L	J, B	U	В	
Total HpCDD	37871-00-4	0.00024	0.000049	0.0000012	ug/L	В	J	В	
Total HpCDF	38998-75-3	ND	0.000049	0.0000086	ug/L	J, B	U	В	
Total HxCDD	34465-46-8	0.000026	0.000049	0.00000066	ug/L	J, Q, B	J	B,*III,DNQ	
Total HxCDF	55684-94-1	0.000017	0.000049	0.0000058	ug/L	J, Q, B	1	B,*III,DNQ	
Total PeCDD	36088-22-9	ND	0.000049	0.0000083	ug/L		U		
Total PeCDF	30402-15-4	0.000004	0.000049	0.0000011	ug/L	J, Q, B	J	B,*III,DNQ	
Total TCDD	41903-57-5	ND	0.0000097	0.00000056	ug/L		U		
Total TCDF	55722-27-5	ND	0.0000097	0.00000077	ug/L	J, B	U	В	

Analysis Method EPA-5 1613B

Sample Name	Outfall 010 (Comp)		Matr	Matrix Type: WATER		Validation Level: IV		
Lab Sample Name:	ISL0775-02	Sam	ple Date:	12/7/2009	9 12:25:00 PN	4		
Analyte	CAS No	Result Value		MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes

Sample Name	Outfall 010 (Comp)		Matri	Matrix Type:		Validation Level: IV		
Lab Sample Name:	ISL0775-02	Sam	ple Date:	12/7/2009	0 12:25:00 PM	4		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury, dissolved	7439-97-6	ND	0.2	0.027	ug/L		U	

Analysis Method MCAWW 245.1-DISS