
APPENDIX G

Section 65

Outfall 018 - BMP Effectiveness February 7 - 11, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/07/10-02/11/10

Received: 02/11/10 Issued: 02/22/10 21:49

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 2°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: No analyses were subcontracted to an outside laboratory.

LABORATORY ID	CLIENT ID	MATRIX
ITB1559-01	018 EFF-1	Water
ITB1559-02	018 EFF-2	Water
ITB1559-03	018 EFF-3	Water
ITB1559-04	018 EFF-4	Water
ITB1559-05	018 EFF-5	Water

Reviewed By:

TestAmerica Irvine

Debby Wilson For Joseph Doak Project Manager

Debby Wilson

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: BMP Effectiveness

Monitoring Program

Report Number: ITB1559

Sampled: 02/07/10-02/11/10

Received: 02/11/10

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB1559-01 (018 EFF-1 - Wa	ter)				Sample	ed: 02/07/	10		
Reporting Units: g/cc Density	Displacement	10B2266	N/A	NA	1.0	1	02/18/10	02/18/10	
Sample ID: ITB1559-02 (018 EFF-2 - Wa	ter)				Sample	ed: 02/08/	10		
Reporting Units: g/cc Density	Displacement	10B2266	N/A	NA	0.99	1	02/18/10	02/18/10	
Sample ID: ITB1559-03 (018 EFF-3 - Wa	ter)				Sample	ed: 02/09/	10		
Reporting Units: g/cc Density	Displacement	10B2266	N/A	NA	1.0	1	02/18/10	02/18/10	
Sample ID: ITB1559-04 (018 EFF-4 - Wa	ter)				Sample	ed: 02/10/	10		
Reporting Units: g/cc Density	Displacement	10B2266	N/A	NA	1.0	1	02/18/10	02/18/10	
Sample ID: ITB1559-05 (018 EFF-5 - Wa	ter)				Sample	ed: 02/11/	10		
Reporting Units: g/cc Density	Displacement	10B2266	N/A	NA	1.0	1	02/18/10	02/18/10	
Sample ID: ITB1559-01 (018 EFF-1 - Wa	ter)				Sample	ed: 02/07/	10		
Reporting Units: mg/l Sediment	ASTM D3977	10B2268	10	10	ND	1	02/18/10	02/18/10	
Sample ID: ITB1559-02 (018 EFF-2 - Water)					Sample	ed: 02/08/	10		
Reporting Units: mg/l Sediment	ASTM D3977	10B2268	10	10	ND	1	02/18/10	02/18/10	
Sample ID: ITB1559-03 (018 EFF-3 - Wa	ter)				Sample	ed: 02/09/	10		
Reporting Units: mg/l Sediment	ASTM D3977	10B2268	10	10	ND	1	02/18/10	02/18/10	
Sample ID: ITB1559-04 (018 EFF-4 - Wa	ter)				Sample	ed: 02/10/	10		
Reporting Units: mg/l Sediment	ASTM D3977	10B2268	10	10	ND	1	02/18/10	02/18/10	
Sample ID: ITB1559-05 (018 EFF-5 - Wa	ter)				Sample	ed: 02/11/	10		
Reporting Units: mg/l Sediment	ASTM D3977	10B2268	10	10	ND	1	02/18/10	02/18/10	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: ITB1559

Sampled: 02/07/10-02/11/10

Received: 02/11/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B2266 Extracted: 02/18/	<u>/10</u>										
Duplicate Analyzed: 02/18/2010 (10B2	2266-DUP1)				Sou	rce: ITB1	1559-01				
Density	1.00	NA	N/A	g/cc		1.00			0.06	20	

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness
618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 02/07/10-02/11/10

Arcadia, CA 91007 Report Number: ITB1559 Received: 02/11/10

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 02/07/10-02/11/10

Arcadia, CA 91007 Report Number: ITB1559 Received: 02/11/10

Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Displacement

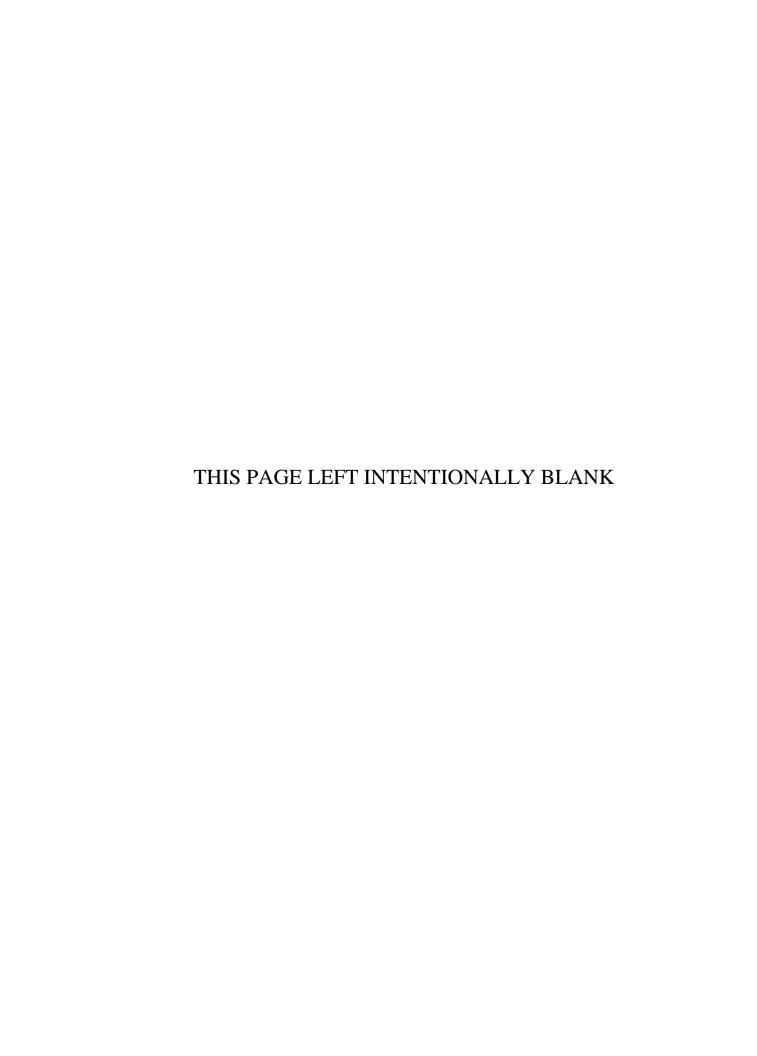
Method	Matrix	Nelac	California
ΔSTM D3977	Water		

Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Test America	₃rica		•	CHAIN	CHAIN OF CUSTODY FORM	STOL	Y FC)RM			H	12	2/18	>	Page	1 of	Τ,
Client Name/Address:	Address:			Project: Boeing BMP	ing BMP						ANA	ANALYSIS	REQUIRED	RED			
MWH-Pasadena 618 Michillinda Ave, Suite 200 Pasadena, CA 91007	Idena Ave, Suit 91007	.e 200		Effectivenes Program	Effectiveness Monitoring Program	D	-MT		· ·								
Test America Contact: Joe Doak	ontact: Jk	oe Doak		,						· · · · · ·							
Project Manager: Bronwyn Kelly	ger: Bro	nwyn Kelly		Phone Number: (626) 568-6691	oer:) (2S(Comments		
Sampler:EW/SD	ξ ČS		,	Fax Number: (626) 568-6515	15	•	S bebned loitsitne: (Teet-T			. ~					* • •		
Sample Description	Sample Matrix	Container Type	Cont.	Sampling Date/Time	Preservative	Bottle *	Conc						*****				
018 EFF-1		\$4	 * 	2/7/10-1046	None	- 1	×	-									-
018 EFF-2	3	1 L Poly	2 6	2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	None	2 6	××							-			1
018 EFF-4	: ≥	1 L Poly	1 2	قاح	None	4	×										. Т
018 EFF-5	W	1 L Poly	2	10	None	5	×										
	, , .			-													. 1
						•		•									
,		*						1									
										-					-		÷
								-									1
													-			,	\top
																	Т
-								-									T -
																	· T
																	П
								1	1								Т
	,		-		1			+			-						T
Relinguished By	1/2		Date/Time:	ne: 10:14:30	Received By	7	N.	gate	Bate/Time:	e	7.7			Turn around Ti 24 Hours	Turn around Time: (check) 24 Hours 5 Days		· T
Relinquished By	\$ 6	0	Date/Time:	o i	Begeived By			Date	Date/Time:					48 Hours	10 Days		•.
Marall	I start	11 2-	2-11-10	Sh:41	· .	٦ /	\							72 Hours	Normal Normal	×	
Relinquished By	t	· .	Date/Time:	ne:	Received By			Date	Date/Time: フィンハト		(443		<u> </u>	Perchlorate Only 72 Hours Metals Only 72 Hgurs	ily 72 Hours		
· · · · · · · · · · · · · · · · · · ·		`.	•									. /		Sample Integral	Sample Integrity: (Check) Intact On Ice:	×	
7-										1	14:45	1					·]


2. (

MZII

APPENDIX G

Section 66

Outfall 018 – March 2 & 3, 2010 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITC0215 and ITC0421

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITC0215 and ITC0421

Project Manager: B. Kelly Matrix: Water

QC Level: IV

No. of Samples: 2
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub- Laboratory ID	Matrix	Collected	Method
Outfall 018	ITC0421-01	G0C020512- 001, F0C050563- 001	Water	3/2/2010 14:50	ASTM 5174-91, 180.1, 245.1, 245.1 (Diss), 1613B, 900.0 MOD, 901.1 MOD, 903.0 MOD, 904 MOD, 905 MOD, EA 906.0 MOD
Outfall 018	ITC0215-01		Water	3/2/2010 14:50	120.1

II. Sample Management

No anomalies were observed regarding sample management. The sample was received at ambient temperature at TestAmerica-St. Louis; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at TA-West Sacramento and TestAmerica-St. Louis. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORTProject:SSFL NPDESDATA VALIDATION REPORTSDG:ITC0215/0421

Data Qualifier Reference Table

Qualifie	er Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORTProject:SSFL NPDESDATA VALIDATION REPORTSDG:ITC0215/0421

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORTProject:SSFL NPDESDATA VALIDATION REPORTSDG:ITC0215/0421

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 8, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - o Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for most target compounds, and detects above the RL for a few target compounds. A few method blank results were reported as EMPCs; however, due to the extent of the method blank contamination, it was the reviewer's professional opinion that the EMPC results also be utilized to qualify sample results. The sample result for total PeCDD did not contain the

same peak as the method blank and was therefore not qualified. Total HpCDF was qualified as estimated, "J," as only a portion of the total was considered method blank contamination. Remaining sample results were qualified as nondetected, "U," at the level of contamination.

- Blank Spikes and Laboratory Control Samples: The LCS/LCSD recoveries were within the acceptance criteria listed in Table 6 of Method 1613. All RPDs were within the laboratoryestablished control limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any EMPC qualified as nondetected for method blank contamination was not further qualified as an EMPC. The result for 1,2,3,4,6,7,8-HpCDF was reported as an EMPC and was therefore qualified as an estimated nondetect, "UJ," at the level of the EMPC. The result for total PeCDD was comprised of a single peak not meeting ratio criteria and was qualified as an estimated nondetect, "UJ." Any detects reported below the EDL, or between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks Date Reviewed: April 6, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. The CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

o Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: April 14, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: Aliquots for gross alpha and gross beta and total uranium were prepared beyond the five-day holding time for unpreserved aqueous samples; therefore, the results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. The tritium sample was analyzed within 180 days of collection. Aliquots for the remaining analytes were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, the results for these analytes were qualified as estimated, "UJ," for nondetects and, "J," for detects. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Total Uranium was detected in the method blank at 0.315 pCi/L; therefore, total
 uranium detected in the sample was qualified as nondetected, "U," at the reporting limit.
 There were no other analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs (radium-226, radium-228, strontium-90) were within laboratory-established control limits.
- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for cesium-137 and potassium-40. The analytes were not detected in either sample.

 Matrix Spike/Matrix Spike Duplicate: No MS/MSD or matrix spike analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.

Sample Result Verification: An EPA Level IV review was performed for the sample in this
data package. The sample results and MDAs reported on the sample result form were
verified against the raw data and no calculation or transcription errors were noted. Any
detects between the MDA and the reporting limit were qualified as estimated, "J," and
coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
valid to the MDA.

The reviewer noted that the total uranium preparation log was not signed as having been reviewed.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 9, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^x Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1 and 180.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times were met.
- Calibration: Calibration criteria were met. The specific conductivity initial calibration r² value was ≥0.995 and all specific conductivity and turbidity continuing calibration recoveries were within 90-110%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.

 Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.

- Matrix Spike/Matrix Spike Duplicate: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITC0215/ITC0421

Analysis Metho	od ASTM	1 5174-	91					
Sample Name	Outfall 018		Matri	х Туре:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Total Uranium	7440-61-1	ND	0.693	0.21	pCi/L	Jb	UJ	H, B
Analysis Metho	od EPA	120.1						
Sample Name	Outfall 018		Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITC0215-01	Sam	ple Date:	3/2/2010	2:50:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Specific Conductance	NA	490	1.0	1.0	uS/cm			
Analysis Metho	od EPA	180.1						
Sample Name	Outfall 018		Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Turbidity	Turb	0.29	1.0	0.040	NTU	J	J	DNQ
Analysis Metho	od EPA	245.1						
Sample Name	Outfall 018		Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l	С	U	
Analysis Metho	od EPA	245.1-L	<i>Diss</i>					
Sample Name	Outfall 018		Matri	х Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	

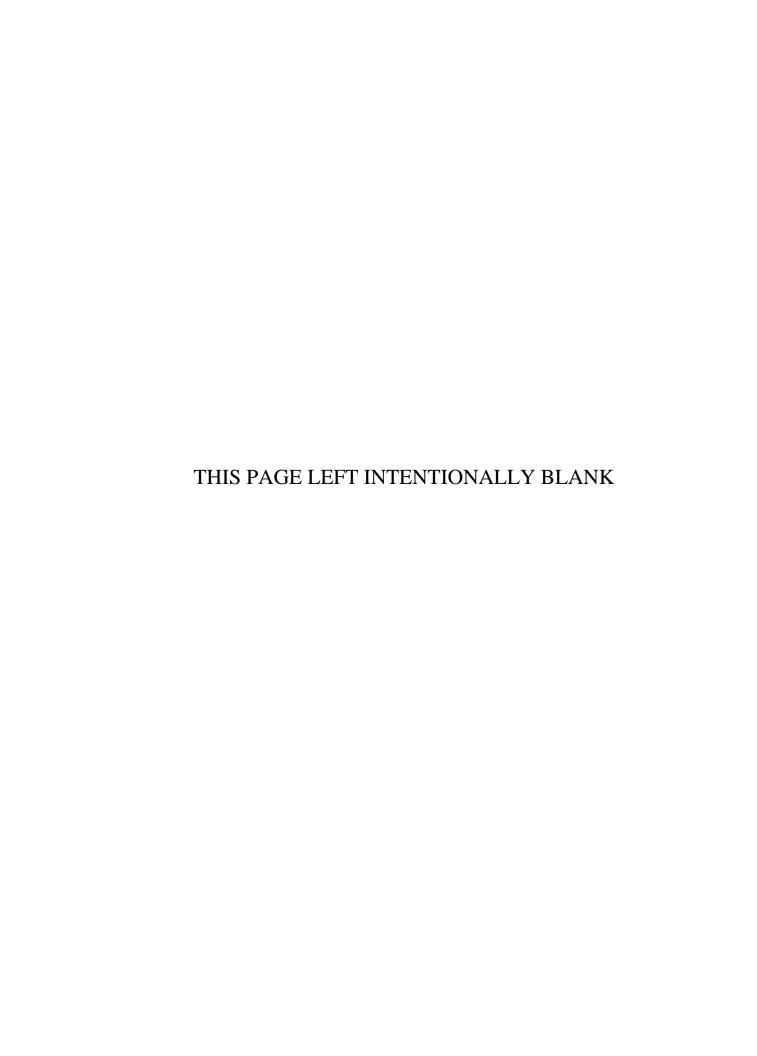
Friday, April 16, 2010 Page 1 of 3

Analysis Method EPA 900.0 MOD

Sample Name	Outfall 018		Matri	x Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587-46-1	2.6	3	2.7	pCi/L	U	UJ	H, C
Gross Beta	12587-47-2	3.6	4	1.2	pCi/L	Jb	J	H, DNQ
Analysis Metho	od EPA 9	901.1 N	10D					
Sample Name	Outfall 018		Matri	х Туре:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium 137	10045-97-3	0	20	22	pCi/L	U	U	
Potassium 40	13966-00-2	-80	0	200	pCi/L	U	U	
Analysis Metho	od EPA 9	903.0 N	10D					
Sample Name	Outfall 018		Matri	x Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium (226)	13982-63-3	0.075	1	0.051	pCi/L	Jb	J	C, DNQ
Analysis Metho	od EPA 9	004 MC	DD					
Sample Name	Outfall 018		Matri	х Туре:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium 228	15262-20-1	0.05	1	0.65	pCi/L	U	U	
Analysis Metho	od EPA 9	905 MC)D					
Sample Name	Outfall 018		Matri	х Туре:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010	2:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium 90	10098-97-2	-0.06	3	0.38	pCi/L	U	U	

Friday, April 16, 2010 Page 2 of 3

Analysis Method EPA 906.0 MOD


Sample Name	Outfall 018		Matri	ix Type:	WATER		Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010 2	:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028-17-8	85	500	130	pCi/L	U	U	
Analysis Metho	od EPA-S	5 16131	3					
Sample Name	Outfall 018		Matri	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0421-01	Sam	ple Date:	3/3/2010 2	:19:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000003	ug/L	J, B	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000006	ug/L	J, Q	UJ	*III
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000008	ug/L		U	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000000	ug/L		U	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000001	ug/L	J, B	U	В
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000000	ug/L		U	
1,2,3,6,7,8-HxCDF	57117-44-9	ND	1.8e-007	0.0000001	ug/L	J, Q, B	U	В
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000000	ug/L		U	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000001	ug/L	J, B	U	В
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000002	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000000	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	2e-007	0.0000001	ug/L	J, Q, B	U	В
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000000	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000000	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000000	ug/L		U	
OCDD	3268-87-9	ND	0.0001	0.0000001	ug/L	J, B	U	В
OCDF	39001-02-0	ND	0.0001	0.0000002	ug/L	J, B	U	В
Total HpCDD	37871-00-4	ND	0.00005	0.0000003	ug/L	J, B	U	В
Total HpCDF	38998-75-3	2.4e-006	2.4e-006	0.0000006	ug/L	J, Q, B	J	B, DNQ, *III
Total HxCDD	34465-46-8	ND	0.00005	0.0000000	ug/L		U	
Total HxCDF	55684-94-1	ND	0.00005	0.0000001	ug/L	J, B	U	В
Total PeCDD	36088-22-9	ND	1.5e-006	0.0000002	ug/L	J, Q, B	UJ	*III
Total PeCDF	30402-15-4	ND	0.00005	0.0000000	ug/L		U	
Total TCDD	41903-57-5	ND	0.00001	0.0000000	ug/L		U	
Total TCDF	55722-27-5	ND	0.00001	0.0000000	ug/L		U	

Friday, April 16, 2010 Page 3 of 3

APPENDIX G

Section 67

Outfall 018 – March 2 & 3, 2010
Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 03/02/10-03/03/10

Received: 03/02/10 Revised: 04/19/10 11:20

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 2°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

The method blank associated with this extraction batch has detected concentrations of several analytes above the lower calibration limit (LCL). These concentration of these analytes are below the LCL in the sample with the exception of OCDD. There is no negative impact on the data as a result of this anomaly.

Revised report to provide corrected units for Conductivity. Form 1 results have correct data.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 03/02/10-03/03/10

Arcadia, CA 91007 Report Number: ITC0215 Received: 03/02/10

Attention: Bronwyn Kelly

LABORATORY IDCLIENT IDMATRIXITC0215-01Outfall 018WaterITC0215-02Trip BlanksWaterITC0421-01Outfall 018Water

Reviewed By:

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 03/02/10-03/03/10

Arcadia, CA 91007

Report Number: ITC0215 Received: 03/02/10

PURGEABLES BY GC/MS (EPA 624)

Sampled: 03/02/10 Reporting Units: ug/l Benzene EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 Carbon tetrachloride EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 Chloroform EPA 624 10C1198 0.33 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethane EPA 624 10C1198 0.40 0.50 ND 1 03/10/10 03/10/10 1,2-Dichloroethane EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethene EPA 624 10C1198 0.42 0.50 ND 1 03/10/10 03/10/10	Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Reporting Units: ug/l Benzene EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 Carbon tetrachloride EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 Chloroform EPA 624 10C1198 0.33 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethane EPA 624 10C1198 0.40 0.50 ND 1 03/10/10 03/10/10 1,2-Dichloroethane EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethene EPA 624 10C1198 0.42 0.50 ND 1 03/10/10 03/10/10	Sample ID: ITC0215-01 (Outfall 018 - Wat	Sampled: 03/02/10								
Carbon tetrachloride EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 Chloroform EPA 624 10C1198 0.33 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethane EPA 624 10C1198 0.40 0.50 ND 1 03/10/10 03/10/10 1,2-Dichloroethane EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethene EPA 624 10C1198 0.42 0.50 ND 1 03/10/10 03/10/10	Reporting Units: ug/l					•				
Chloroform EPA 624 10C1198 0.33 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethane EPA 624 10C1198 0.40 0.50 ND 1 03/10/10 03/10/10 1,2-Dichloroethane EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethene EPA 624 10C1198 0.42 0.50 ND 1 03/10/10 03/10/10	Benzene	EPA 624	10C1198	0.28	0.50	ND	1	03/10/10	03/10/10	
1,1-Dichloroethane EPA 624 10C1198 0.40 0.50 ND 1 03/10/10 03/10/10 1,2-Dichloroethane EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethene EPA 624 10C1198 0.42 0.50 ND 1 03/10/10 03/10/10	Carbon tetrachloride	EPA 624	10C1198	0.28	0.50	ND	1	03/10/10	03/10/10	
1,2-Dichloroethane EPA 624 10C1198 0.28 0.50 ND 1 03/10/10 03/10/10 1,1-Dichloroethene EPA 624 10C1198 0.42 0.50 ND 1 03/10/10 03/10/10	Chloroform	EPA 624	10C1198	0.33	0.50	ND	1	03/10/10	03/10/10	
1,1-Dichloroethene EPA 624 10C1198 0.42 0.50 ND 1 03/10/10 03/10/10	1,1-Dichloroethane	EPA 624	10C1198	0.40	0.50	ND	1	03/10/10	03/10/10	
	1,2-Dichloroethane	EPA 624	10C1198	0.28	0.50	ND	1	03/10/10	03/10/10	
	1,1-Dichloroethene	EPA 624	10C1198	0.42	0.50	ND	1	03/10/10	03/10/10	
Ethylbenzene EPA 624 10C1198 0.25 0.50 ND 1 03/10/10 03/10/10		EPA 624	10C1198	0.25	0.50	ND	1	03/10/10	03/10/10	
Tetrachloroethene EPA 624 10C1198 0.32 0.50 ND 1 03/10/10 03/10/10	Tetrachloroethene	EPA 624	10C1198	0.32	0.50	ND	1	03/10/10	03/10/10	
Toluene EPA 624 10C1198 0.36 0.50 ND 1 03/10/10 03/10/10	Toluene	EPA 624	10C1198	0.36	0.50	ND	1	03/10/10	03/10/10	
1,1,1-Trichloroethane EPA 624 10C1198 0.30 0.50 ND 1 03/10/10 03/10/10	1,1,1-Trichloroethane	EPA 624	10C1198	0.30	0.50	ND	1	03/10/10	03/10/10	
1,1,2-Trichloroethane EPA 624 10C1198 0.30 0.50 ND 1 03/10/10 03/10/10	1,1,2-Trichloroethane	EPA 624	10C1198	0.30	0.50	ND	1	03/10/10	03/10/10	
Trichloroethene EPA 624 10C1198 0.26 0.50 ND 1 03/10/10 03/10/10		EPA 624	10C1198			ND	1	03/10/10	03/10/10	
Trichlorofluoromethane EPA 624 10C1198 0.34 0.50 ND 1 03/10/10 03/10/10	Trichlorofluoromethane	EPA 624	10C1198	0.34		ND	1	03/10/10	03/10/10	
Vinyl chloride EPA 624 10C1198 0.40 0.50 ND 1 03/10/10 03/10/10	Vinyl chloride	EPA 624		0.40		ND	1	03/10/10	03/10/10	
Xylenes, Total EPA 624 10C1198 0.90 1.5 ND 1 03/10/10 03/10/10	-	EPA 624		0.90		ND	1	03/10/10	03/10/10	
Surrogate: 4-Bromofluorobenzene (80-120%) 105 %	Surrogate: 4-Bromofluorobenzene (80-120%	6)				105 %				
Surrogate: Dibromofluoromethane (80-120%) 119 %	Surrogate: Dibromofluoromethane (80-120%)	6)				119 %				
Surrogate: Toluene-d8 (80-120%) 114 %						114 %				
Sample ID: ITC0215-02 (Trip Blanks - Water) Sampled: 03/02/10	Sample ID: ITC0215-02 (Trip Blanks - Wa	ter)				Sample	.d. 03/02/1	10		
Reporting Units: ug/l	• • • • • • • • • • • • • • • • • • • •					Sampic	u. 05/02/	10		
Benzene EPA 624 10C1026 0.28 0.50 ND 1 03/09/10 03/09/10		EPA 624	10C1026	0.28	0.50	ND	1	03/09/10	03/09/10	
Carbon tetrachloride EPA 624 10C1026 0.28 0.50 ND 1 03/09/10 03/09/10	Carbon tetrachloride	EPA 624	10C1026	0.28		ND	1	03/09/10	03/09/10	
Chloroform EPA 624 10C1026 0.33 0.50 ND 1 03/09/10 03/09/10	Chloroform	EPA 624	10C1026	0.33		ND	1	03/09/10	03/09/10	
1,1-Dichloroethane EPA 624 10C1026 0.40 0.50 ND 1 03/09/10 03/09/10	1,1-Dichloroethane	EPA 624	10C1026	0.40		ND	1	03/09/10	03/09/10	
1,2-Dichloroethane EPA 624 10C1026 0.28 0.50 ND 1 03/09/10 03/09/10		EPA 624	10C1026	0.28		ND	1	03/09/10	03/09/10	
1,1-Dichloroethene EPA 624 10C1026 0.42 0.50 ND 1 03/09/10 03/09/10		EPA 624	10C1026			ND	1	03/09/10	03/09/10	
Ethylbenzene EPA 624 10C1026 0.25 0.50 ND 1 03/09/10 03/09/10		EPA 624	10C1026	0.25		ND	1	03/09/10	03/09/10	
Tetrachloroethene EPA 624 10C1026 0.32 0.50 ND 1 03/09/10 03/09/10		EPA 624	10C1026	0.32		ND	1	03/09/10	03/09/10	
Toluene EPA 624 10C1026 0.36 0.50 ND 1 03/09/10 03/09/10	Toluene	EPA 624	10C1026	0.36		ND	1	03/09/10	03/09/10	
1,1,1-Trichloroethane EPA 624 10C1026 0.30 0.50 ND 1 03/09/10 03/09/10	1,1,1-Trichloroethane	EPA 624	10C1026	0.30		ND	1	03/09/10	03/09/10	
1,1,2-Trichloroethane EPA 624 10C1026 0.30 0.50 ND 1 03/09/10 03/09/10		EPA 624	10C1026	0.30		ND	1	03/09/10	03/09/10	
Trichloroethene EPA 624 10C1026 0.26 0.50 ND 1 03/09/10 03/09/10							1			
Trichlorofluoromethane EPA 624 10C1026 0.34 0.50 ND 1 03/09/10 03/09/10		EPA 624		0.34	0.50	ND	1	03/09/10	03/09/10	
Vinyl chloride EPA 624 10C1026 0.40 0.50 ND 1 03/09/10 03/09/10										
Xylenes, Total EPA 624 10C1026 0.90 1.5 ND 1 03/09/10 03/09/10	-									
Surrogate: 4-Bromofluorobenzene (80-120%) 106 %										
Surrogate: Dibromofluoromethane (80-120%) 118 %										
Surrogate: Toluene-d8 (80-120%) 110 %		•								

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/02/10-03/03/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0215 Received: 03/02/10

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITC0421-01 (Outfall 018 - Water)					Sample	ed: 03/03/1	10		
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	10C0555	1.6	4.8	ND	0.966	03/04/10	03/08/10	
2,4-Dinitrotoluene	EPA 625	10C0555	0.19	8.7	ND	0.966	03/04/10	03/08/10	
N-Nitrosodimethylamine	EPA 625	10C0555	0.097	7.7	ND	0.966	03/04/10	03/08/10	
Pentachlorophenol	EPA 625	10C0555	0.097	7.7	ND	0.966	03/04/10	03/08/10	
2,4,6-Trichlorophenol	EPA 625	10C0555	0.097	5.8	ND	0.966	03/04/10	03/08/10	
Surrogate: 2,4,6-Tribromophenol (40-120%)					89 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					83 %				
Surrogate: 2-Fluorophenol (30-120%)					71 %				
Surrogate: Nitrobenzene-d5 (45-120%)					76 %				
Surrogate: Phenol-d6 (35-120%)					76 %				
Surrogate: Terphenyl-d14 (50-125%)					88 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215

Received: 03/02/10

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018 - Water)					Sample	d: 03/03/1	10		
Reporting Units: ug/l									
alpha-BHC	EPA 608	10C0551	0.0024	0.0096	ND	0.962	03/04/10	03/05/10	
Surrogate: Decachlorobiphenyl (45-120%)					80 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					51 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: ITC0215

Sampled: 03/02/10-03/03/10

Received: 03/02/10

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0215-01 (Outfall 018 - Water)					Sample	d: 03/02/1	.0		
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	10C1221	1.3	4.7	ND	1	03/10/10	03/10/10	
Grease)									

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0215

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Received: 03/02/10

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: ITC0421-01 (Outfall 018 - Water)					Sample	ed: 03/03/1	10					
Reporting Units: mg/l												
Iron	EPA 200.7	10C0824	0.015	0.040	ND	1	03/06/10	03/06/10				
Sample ID: ITC0421-01 (Outfall 018 - Water)				Sampled: 03/03/10								
Reporting Units: ug/l												
Mercury	EPA 245.1	10C1290	0.10	0.20	ND	1	03/10/10	03/10/10	C			
Manganese	EPA 200.7	10C0824	7.0	20	8.8	1	03/06/10	03/06/10	J			
Cadmium	EPA 200.8	10C0660	0.10	1.0	ND	1	03/05/10	03/10/10				
Copper	EPA 200.8	10C0660	0.50	2.0	1.7	1	03/05/10	03/10/10	J			
Lead	EPA 200.8	10C0660	0.20	1.0	ND	1	03/05/10	03/10/10				
Selenium	EPA 200.8	10C0660	0.50	2.0	ND	1	03/05/10	03/10/10				
Zinc	EPA 200.8	10C0660	5.0	20	ND	1	03/05/10	03/10/10				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/02/10-03/03/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0215 Received: 03/02/10

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: ITC0421-01 (Outfall 018 - Water)				Sampled: 03/03/10								
Reporting Units: mg/l Iron	EPA 200.7-Diss	10C1105	0.015	0.040	ND	1	03/09/10	03/14/10				
Sample ID: ITC0421-01 (Outfall 018 - Water)				Sampled: 03/03/10								
Reporting Units: ug/l												
Mercury	EPA 245.1-Diss	10C1471	0.10	0.20	ND	1	03/11/10	03/11/10				
Manganese	EPA 200.7-Diss	10C1105	7.0	20	ND	1	03/09/10	03/14/10				
Cadmium	EPA 200.8-Diss	10C0936	0.10	1.0	ND	1	03/08/10	03/09/10				
Copper	EPA 200.8-Diss	10C0936	0.50	2.0	1.4	1	03/08/10	03/09/10	J			
Lead	EPA 200.8-Diss	10C0936	0.20	1.0	ND	1	03/08/10	03/09/10				
Selenium	EPA 200.8-Diss	10C0936	0.50	2.0	ND	1	03/08/10	03/09/10				
Zinc	EPA 200.8-Diss	10C0936	5.0	20	ND	1	03/08/10	03/09/10				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018 - Water)					Sample	ed: 03/03/1	10		
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	10C1299	0.50	0.50	ND	1	03/10/10	03/10/10	
Biochemical Oxygen Demand	SM5210B	10C0531	0.50	2.0	1.0	1	03/04/10	03/09/10	J
Chloride	EPA 300.0	10C0489	0.25	0.50	20	1	03/04/10	03/04/10	
Nitrate-N	EPA 300.0	10C0489	0.060	0.11	ND	1	03/04/10	03/04/10	
Nitrite-N	EPA 300.0	10C0489	0.090	0.15	ND	1	03/04/10	03/04/10	
Nitrate/Nitrite-N	EPA 300.0	10C0489	0.15	0.26	ND	1	03/04/10	03/04/10	
Sulfate	EPA 300.0	10C0489	2.0	5.0	150	10	03/04/10	03/04/10	B-1
Surfactants (MBAS)	SM5540-C	10C0559	0.050	0.10	ND	1	03/04/10	03/04/10	
Total Dissolved Solids	SM2540C	10C1017	1.0	10	360	1	03/09/10	03/09/10	
Total Suspended Solids	SM 2540D	10C0998	1.0	10	8.0	1	03/08/10	03/08/10	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/02/10-03/03/10

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0215 Received: 03/02/10

Attention: Bronwyn Kelly

INORGANICS

Project ID: Routine Outfall 018

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITC0215-01 (Outfall 018 - Water)				Sampled: 03/02/10							
Reporting Units: ml/l Total Settleable Solids	SM2540F	10C0320	0.10	0.10	ND	1	03/03/10	03/03/10			
Sample ID: ITC0421-01 (Outfall 018 - Water)					Sample	ed: 03/03/1	10				
Reporting Units: NTU Turbidity	EPA 180.1	10C0518	0.040	1.0	0.29	1	03/04/10	03/04/10	J		
Sample ID: ITC0215-01 (Outfall 018 - Water)				Sampled: 03/02/10							
Reporting Units: ug/l Total Cyanide	SM4500CN-E	10C0428	2.2	5.0	ND	1	03/03/10	03/03/10			
Sample ID: ITC0421-01 (Outfall 018 - W	ater)				Sample	ed: 03/03/1	10				
Reporting Units: ug/l Perchlorate	EPA 314.0	10C0480	0.90	4.0	ND	1	03/04/10	03/04/10			
Sample ID: ITC0215-01 (Outfall 018 - W	ater)				Sample	ed: 03/02/1	10				
Reporting Units: umhos/cm @ 25C Specific Conductance	EPA 120.1	10C0448	1.0	1.0	490	1	03/04/10	03/04/10			

Sampled: 03/02/10-03/03/10

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0215 Received: 03/02/10

Attention: Bronwyn Kelly

EPA-5 1613B

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018	- Water)				Sample	d: 03/03/	10		
Reporting Units: ug/L	,				~p		- •		
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	68182	0.0000003	2 0.00005	2.8e-006	0.95	03/09/10	03/12/10	J, B
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	68182	0.00000006	0.00005	9.7e-007	0.95	03/09/10	03/12/10	J, Q
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	68182	0.0000000	0.00005	ND	0.95	03/09/10	03/12/10	
1,2,3,4,7,8-HxCDD	EPA-5 1613B	68182	0.0000000	2 0.00005	ND	0.95	03/09/10	03/12/10	
1,2,3,4,7,8-HxCDF	EPA-5 1613B	68182	0.0000001	4 0.00005	5.2e-007	0.95	03/09/10	03/12/10	J, B
1,2,3,6,7,8-HxCDD	EPA-5 1613B	68182	0.0000000	2 0.00005	ND	0.95	03/09/10	03/12/10	
1,2,3,6,7,8-HxCDF	EPA-5 1613B	68182	0.0000001	3 0.00005	1.8e-007	0.95	03/09/10	03/12/10	J, Q, B
1,2,3,7,8,9-HxCDD	EPA-5 1613B	68182	0.0000000	2 0.00005	ND	0.95	03/09/10	03/12/10	
1,2,3,7,8,9-HxCDF	EPA-5 1613B	68182	0.0000001	6 0.00005	4e-007	0.95	03/09/10	03/12/10	J, B
1,2,3,7,8-PeCDD	EPA-5 1613B	68182	0.0000002	6 0.00005	ND	0.95	03/09/10	03/12/10	
1,2,3,7,8-PeCDF	EPA-5 1613B	68182	0.0000000	1 0.00005	ND	0.95	03/09/10	03/12/10	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	68182	0.0000001	2 0.00005	2e-007	0.95	03/09/10	03/12/10	J, Q, B
2,3,4,7,8-PeCDF	EPA-5 1613B	68182	0.0000000	2 0.00005	ND	0.95	03/09/10	03/12/10	
2,3,7,8-TCDD	EPA-5 1613B	68182	0.0000000	1 0.00001	ND	0.95	03/09/10	03/12/10	
2,3,7,8-TCDF	EPA-5 1613B	68182	0.0000000	2 0.00001	ND	0.95	03/09/10	03/12/10	
OCDD	EPA-5 1613B	68182	0.0000001	8 0.0001	2.4e-005	0.95	03/09/10	03/12/10	J, B
OCDF	EPA-5 1613B	68182	0.0000002	5 0.0001	3.8e-006	0.95	03/09/10	03/12/10	J, B
Total HpCDD	EPA-5 1613B	68182	0.0000003	2 0.00005	5.2e-006	0.95	03/09/10	03/12/10	J, B
Total HpCDF	EPA-5 1613B	68182	0.0000006	0.00005	2.4e-006	0.95	03/09/10	03/12/10	J, Q, B
Total HxCDD	EPA-5 1613B	68182	0.0000000	2 0.00005	ND	0.95	03/09/10	03/12/10	
Total HxCDF	EPA-5 1613B	68182	0.0000001	2 0.00005	1.3e-006	0.95	03/09/10	03/12/10	J, B
Total PeCDD	EPA-5 1613B	68182	0.0000002	6 0.00005	1.5e-006	0.95	03/09/10	03/12/10	J, Q, B
Total PeCDF	EPA-5 1613B	68182	0.0000000	1 0.00005	ND	0.95	03/09/10	03/12/10	
Total TCDD	EPA-5 1613B	68182	0.0000000	1 0.00001	ND	0.95	03/09/10	03/12/10	
Total TCDF	EPA-5 1613B	68182	0.0000000	2 0.00001	ND	0.95	03/09/10	03/12/10	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	(23-140%)				81 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF ((28-143%)				72 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (72 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (3.	2-141%)				77 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (20					77 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (2					82 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (20	6-123%)				74 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29	9-147%)				69 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-	· · · · · · · · · · · · · · · · · · ·				69 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-1	185%)				61 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28	· · · · · · · · · · · · · · · · · · ·				74 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-					61 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164					74 %				
Surrogate: 13C-2,3,7,8-TCDF (24-169	9%)				66 %				
Surrogate: 13C-OCDD (17-157%)					77 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-1)	97%)				90 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Report Number: ITC0215

Sampled: 03/02/10-03/03/10

Received: 03/02/10

ASTM 5174-91

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018				Sample	ed: 03/03/1	10			
Reporting Units: pCi/L									
Total Uranium	ASTM 5174-91	67296	0.21	0.693	0.52	1	03/10/10	03/12/10	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

EPA 900.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 01				Sample	ed: 03/03/1	10			
Reporting Units: pCi/L									
Gross Alpha	EPA 900.0 MOD	68099	2.7	3	2.6	1	03/09/10	03/15/10	U
Gross Beta	EPA 900.0 MOD	68099	1.2	4	3.6	1	03/09/10	03/15/10	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

EPA 901.1 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018				Sample	ed: 03/03/1	10			
Reporting Units: pCi/L									
Cesium 137	EPA 901.1 MOD	67102	22	20	ND	1	03/08/10	03/18/10	U
Potassium 40	EPA 901.1 MOD	67102	200	NA	-80	1	03/08/10	03/18/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Report Number: ITC0215

Arcadia, CA 91007 Attention: Bronwyn Kelly Received: 03/02/10

Sampled: 03/02/10-03/03/10

EPA 903.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018				Sample	d: 03/03/1	10			
Reporting Units: pCi/L									
Radium (226)	EPA 903.0 MOD	67053	0.051	1	0.075	1	03/08/10	03/31/10	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 03/02/10-03/03/10 Received: 03/02/10

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: ITC0215 Rec

EPA 904 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018				Sample	ed: 03/03/1	10			
Reporting Units: pCi/L									
Radium 228	EPA 904 MOD	67054	0.65	1	0.05	1	03/08/10	03/19/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Report Number: ITC0215

Attention: Bronwyn Kelly

Arcadia, CA 91007

Sampled: 03/02/10-03/03/10 Received: 03/02/10

EPA 905 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018 -			Sample	ed: 03/03/1	10				
Reporting Units: pCi/L									
Strontium 90	EPA 905 MOD	67055	0.38	3	-0.06	1	03/08/10	03/17/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215

Received: 03/02/10

EPA 906.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0421-01 (Outfall 018				Sample	ed: 03/03/1	10			
Reporting Units: pCi/L									
Tritium	EPA 906.0 MOD	67136	130	500	85	1	03/08/10	03/09/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0215

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Received: 03/02/10

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 018 (ITC0215-01) - Water	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
SM2540F	2	03/02/2010 14:50	03/02/2010 17:55	03/03/2010 06:41	03/03/2010 09:15
Sample ID: Outfall 018 (ITC0421-01) - Water	•				
EPA 180.1	2	03/03/2010 14:19	03/03/2010 17:50	03/04/2010 10:30	03/04/2010 10:30
EPA 300.0	2	03/03/2010 14:19	03/03/2010 17:50	03/04/2010 11:15	03/04/2010 17:01
Filtration	1	03/03/2010 14:19	03/03/2010 17:50	03/03/2010 22:30	03/03/2010 22:30
SM5210B	2	03/03/2010 14:19	03/03/2010 17:50	03/04/2010 10:43	03/09/2010 10:30
SM5540-C	2	03/03/2010 14:19	03/03/2010 17:50	03/04/2010 13:15	03/04/2010 14:43

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Limit	MIDL	Cints	Level	Result	/ore	Limits	KI D	Limit	Quanners
Batch: 10C1026 Extracted: 03/09/10	<u>) </u>										
Blank Analyzed: 03/09/2010 (10C1026-E	BLK1)										
Benzene	ND	0.50	0.28	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
1,1-Dichloroethane	ND	0.50	0.40	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Vinyl chloride	ND	0.50	0.40	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: 4-Bromofluorobenzene	26.7			ug/l	25.0		107	80-120			
Surrogate: Dibromofluoromethane	28.4			ug/l	25.0		114	80-120			
Surrogate: Toluene-d8	26.9			ug/l	25.0		108	80-120			
LCS Analyzed: 03/09/2010 (10C1026-BS	51)										
Benzene	21.6	0.50	0.28	ug/l	25.0		86	70-120			
Carbon tetrachloride	31.5	0.50	0.28	ug/l	25.0		126	65-140			
Chloroform	26.6	0.50	0.33	ug/l	25.0		106	70-130			
1,1-Dichloroethane	25.8	0.50	0.40	ug/l	25.0		103	70-125			
1,2-Dichloroethane	26.4	0.50	0.28	ug/l	25.0		106	60-140			
1,1-Dichloroethene	24.6	0.50	0.42	ug/l	25.0		98	70-125			
Ethylbenzene	23.8	0.50	0.25	ug/l	25.0		95	75-125			
Tetrachloroethene	24.8	0.50	0.32	ug/l	25.0		99	70-125			
Toluene	21.8	0.50	0.36	ug/l	25.0		87	70-120			
1,1,1-Trichloroethane	29.1	0.50	0.30	ug/l	25.0		116	65-135			
1,1,2-Trichloroethane	25.6	0.50	0.30	ug/l	25.0		102	70-125			
Trichloroethene	24.8	0.50	0.26	ug/l	25.0		99	70-125			
Trichlorofluoromethane	29.4	0.50	0.34	ug/l	25.0		118	65-145			
Vinyl chloride	26.9	0.50	0.40	ug/l	25.0		108	55-135			
Xylenes, Total	70.9	1.5	0.90	ug/l	75.0		95	70-125			
Surrogate: 4-Bromofluorobenzene	28.0			ug/l	25.0		112	80-120			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		23		0 1110	20,01	1105411	,,,,,,	23111145	111 2	2	Quinition
Batch: 10C1026 Extracted: 03/09/10	<u>) </u>										
LCS Analyzed: 03/09/2010 (10C1026-BS	1)										
Surrogate: Dibromofluoromethane	29.7			ug/l	25.0		119	80-120			
Surrogate: Toluene-d8	27.1			ug/l	25.0		108	80-120			
Matrix Spike Analyzed: 03/09/2010 (10C	C1026-MS1)				Sou	rce: ITC	0249-01				
Benzene	20.9	0.50	0.28	ug/l	25.0	ND	84	65-125			
Carbon tetrachloride	30.6	0.50	0.28	ug/l	25.0	ND	123	65-140			
Chloroform	25.0	0.50	0.33	ug/l	25.0	0.630	97	65-135			
1,1-Dichloroethane	23.7	0.50	0.40	ug/l	25.0	ND	95	65-130			
1,2-Dichloroethane	25.7	0.50	0.28	ug/l	25.0	ND	103	60-140			
1,1-Dichloroethene	22.6	0.50	0.42	ug/l	25.0	ND	90	60-130			
Ethylbenzene	23.0	0.50	0.25	ug/l	25.0	ND	92	65-130			
Tetrachloroethene	26.2	0.50	0.32	ug/l	25.0	3.08	92	65-130			
Toluene	21.3	0.50	0.36	ug/l	25.0	ND	85	70-125			
1,1,1-Trichloroethane	26.8	0.50	0.30	ug/l	25.0	ND	107	65-140			
1,1,2-Trichloroethane	25.1	0.50	0.30	ug/l	25.0	ND	100	65-130			
Trichloroethene	24.6	0.50	0.26	ug/l	25.0	0.340	97	65-125			
Trichlorofluoromethane	27.5	0.50	0.34	ug/l	25.0	0.910	106	60-145			
Vinyl chloride	24.0	0.50	0.40	ug/l	25.0	ND	96	45-140			
Xylenes, Total	68.5	1.5	0.90	ug/l	75.0	ND	91	60-130			
Surrogate: 4-Bromofluorobenzene	28.0			ug/l	25.0		112	80-120			
Surrogate: Dibromofluoromethane	28.2			ug/l	25.0		113	80-120			
Surrogate: Toluene-d8	27.4			ug/l	25.0		110	80-120			
Matrix Spike Dup Analyzed: 03/09/2010	(10C1026-M	SD1)			Sou	rce: ITC	0249-01				
Benzene	22.1	0.50	0.28	ug/l	25.0	ND	89	65-125	6	20	
Carbon tetrachloride	32.8	0.50	0.28	ug/l	25.0	ND	131	65-140	7	25	
Chloroform	25.9	0.50	0.33	ug/l	25.0	0.630	101	65-135	4	20	
1,1-Dichloroethane	24.8	0.50	0.40	ug/l	25.0	ND	99	65-130	5	20	
1,2-Dichloroethane	26.3	0.50	0.28	ug/l	25.0	ND	105	60-140	2	20	
1,1-Dichloroethene	24.1	0.50	0.42	ug/l	25.0	ND	96	60-130	6	20	
Ethylbenzene	24.0	0.50	0.25	ug/l	25.0	ND	96	65-130	4	20	
Tetrachloroethene	27.5	0.50	0.32	ug/l	25.0	3.08	98	65-130	5	20	
Toluene	22.3	0.50	0.36	ug/l	25.0	ND	89	70-125	5	20	
1,1,1-Trichloroethane	28.0	0.50	0.30	ug/l	25.0	ND	112	65-140	4	20	
1,1,2-Trichloroethane	25.4	0.50	0.30	ug/l	25.0	ND	102	65-130	1	25	
Trichloroethene	25.7	0.50	0.26	ug/l	25.0	0.340	102	65-125	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Units	Levei	Result	/orec	Limits	KI D	Limit	Quanners
Batch: 10C1026 Extracted: 03/09/10	<u>) </u>										
Matrix Spike Dup Analyzed: 03/09/2010	(10C1026-N	MSD1)			Sou	rce: ITC	0249-01				
Trichlorofluoromethane	28.8	0.50	0.34	ug/l	25.0	0.910	112	60-145	4	25	
Vinyl chloride	26.5	0.50	0.40	ug/l	25.0	ND	106	45-140	10	30	
Xylenes, Total	71.8	1.5	0.90	ug/l	75.0	ND	96	60-130	5	20	
Surrogate: 4-Bromofluorobenzene	27.4			ug/l	25.0		110	80-120			
Surrogate: Dibromofluoromethane	27.4			ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	27.1			ug/l	25.0		108	80-120			
Batch: 10C1198 Extracted: 03/10/10	<u>)</u>										
Blank Analyzed: 03/10/2010 (10C1198-E	BLK1)										
Benzene	ND	0.50	0.28	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
1,1-Dichloroethane	ND	0.50	0.40	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Vinyl chloride	ND	0.50	0.40	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			
Surrogate: Dibromofluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	28.2			ug/l	25.0		113	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C1198 Extracted: 03/1	0/10										
Sweet 1001190 Environ 00 /1	0/10										
LCS Analyzed: 03/10/2010 (10C1198	B-BS1)										
Benzene	25.0	0.50	0.28	ug/l	25.0		100	70-120			
Carbon tetrachloride	27.7	0.50	0.28	ug/l	25.0		111	65-140			
Chloroform	26.2	0.50	0.33	ug/l	25.0		105	70-130			
1,1-Dichloroethane	26.0	0.50	0.40	ug/l	25.0		104	70-125			
1,2-Dichloroethane	26.2	0.50	0.28	ug/l	25.0		105	60-140			
1,1-Dichloroethene	26.5	0.50	0.42	ug/l	25.0		106	70-125			
Ethylbenzene	27.0	0.50	0.25	ug/l	25.0		108	75-125			
Tetrachloroethene	26.1	0.50	0.32	ug/l	25.0		104	70-125			
Toluene	26.4	0.50	0.36	ug/l	25.0		106	70-120			
1,1,1-Trichloroethane	26.4	0.50	0.30	ug/l	25.0		106	65-135			
1,1,2-Trichloroethane	28.1	0.50	0.30	ug/l	25.0		112	70-125			
Trichloroethene	27.0	0.50	0.26	ug/l	25.0		108	70-125			
Trichlorofluoromethane	27.2	0.50	0.34	ug/l	25.0		109	65-145			
Vinyl chloride	22.8	0.50	0.40	ug/l	25.0		91	55-135			
Xylenes, Total	80.4	1.5	0.90	ug/l	75.0		107	70-125			
Surrogate: 4-Bromofluorobenzene	28.5			ug/l	25.0		114	80-120			
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	28.5			ug/l	25.0		114	80-120			
Matrix Spike Analyzed: 03/10/2010 ((10C1198-MS1)				Son	rce: ITC	0221-02				
Benzene	23.5	0.50	0.28	ug/l	25.0	ND	94	65-125			
Carbon tetrachloride	26.1	0.50	0.28	ug/l	25.0	ND	104	65-140			
Chloroform	23.6	0.50	0.33	ug/l	25.0	ND	94	65-135			
1,1-Dichloroethane	22.6	0.50	0.40	ug/l	25.0	ND	91	65-130			
1,2-Dichloroethane	24.8	0.50	0.28	ug/l	25.0	ND	99	60-140			
1,1-Dichloroethene	23.5	0.50	0.42	ug/l	25.0	ND	94	60-130			
Ethylbenzene	25.5	0.50	0.25	ug/l	25.0	ND	102	65-130			
Tetrachloroethene	24.8	0.50	0.32	ug/l	25.0	ND	99	65-130			
Toluene	24.8	0.50	0.36	ug/l	25.0	ND	99	70-125			
1,1,1-Trichloroethane	24.0	0.50	0.30	ug/l	25.0	ND	96	65-140			
1,1,2-Trichloroethane	26.2	0.50	0.30	ug/l	25.0	ND	105	65-130			
Trichloroethene	25.2	0.50	0.26	ug/l	25.0	ND	101	65-125			
Trichlorofluoromethane	25.5	0.50	0.34	ug/l	25.0	ND	102	60-145			
Vinyl chloride	20.6	0.50	0.40	ug/l	25.0	ND	83	45-140			
Xylenes, Total	76.2	1.5	0.90	ug/l	75.0	ND	102	60-130			
Surrogate: 4-Bromofluorobenzene	28.5	1.5	0.70	ug/l	25.0	ND	114	80-120			
Sair ogaic. 7-Di omojiuoi ovenzene	20.3			ug/i	23.0		117	00-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C1198 Extracted: 03/10/10	<u>) </u>										
Matrix Spike Analyzed: 03/10/2010 (10C	C1198-MS1)				Sou	rce: ITC)221-02				
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	28.4			ug/l	25.0		113	80-120			
Matrix Spike Dup Analyzed: 03/10/2010	(10C1198-M	ISD1)			Sou	rce: ITC)221-02				
Benzene	24.9	0.50	0.28	ug/l	25.0	ND	100	65-125	6	20	
Carbon tetrachloride	28.5	0.50	0.28	ug/l	25.0	ND	114	65-140	9	25	
Chloroform	25.2	0.50	0.33	ug/l	25.0	ND	101	65-135	7	20	
1,1-Dichloroethane	24.6	0.50	0.40	ug/l	25.0	ND	98	65-130	8	20	
1,2-Dichloroethane	26.2	0.50	0.28	ug/l	25.0	ND	105	60-140	5	20	
1,1-Dichloroethene	24.8	0.50	0.42	ug/l	25.0	ND	99	60-130	6	20	
Ethylbenzene	27.6	0.50	0.25	ug/l	25.0	ND	111	65-130	8	20	
Tetrachloroethene	26.8	0.50	0.32	ug/l	25.0	ND	107	65-130	8	20	
Toluene	26.8	0.50	0.36	ug/l	25.0	ND	107	70-125	8	20	
1,1,1-Trichloroethane	26.3	0.50	0.30	ug/l	25.0	ND	105	65-140	9	20	
1,1,2-Trichloroethane	27.5	0.50	0.30	ug/l	25.0	ND	110	65-130	5	25	
Trichloroethene	27.0	0.50	0.26	ug/l	25.0	ND	108	65-125	7	20	
Trichlorofluoromethane	27.4	0.50	0.34	ug/l	25.0	ND	110	60-145	7	25	
Vinyl chloride	23.6	0.50	0.40	ug/l	25.0	ND	94	45-140	13	30	
Xylenes, Total	81.8	1.5	0.90	ug/l	75.0	ND	109	60-130	7	20	
Surrogate: 4-Bromofluorobenzene	28.8			ug/l	25.0		115	80-120			
Surrogate: Dibromofluoromethane	26.1			ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	28.1			ug/l	25.0		112	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10C0555 Extracted: 03/04/10	n										_
Daten: 1000333 Extracted: 03/04/19	<u> </u>										
Blank Analyzed: 03/08/2010 (10C0555-I	BLK1)										
Bis(2-ethylhexyl)phthalate	ND	5.0	1.7	ug/l							
2,4-Dinitrotoluene	ND	9.0	0.20	ug/l							
N-Nitrosodimethylamine	ND	8.0	0.10	ug/l							
Pentachlorophenol	ND	8.0	0.10	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2,4,6-Tribromophenol	19.3			ug/l	20.0		97	40-120			
Surrogate: 2-Fluorobiphenyl	9.74			ug/l	10.0		97	50-120			
Surrogate: 2-Fluorophenol	16.6			ug/l	20.0		83	30-120			
Surrogate: Nitrobenzene-d5	9.00			ug/l	10.0		90	45-120			
Surrogate: Phenol-d6	17.9			ug/l	20.0		90	35-120			
Surrogate: Terphenyl-d14	10.6			ug/l	10.0		106	50-125			
LCS Analyzed: 03/08/2010 (10C0555-BS	81)										MNR1
Bis(2-ethylhexyl)phthalate	12.9	5.0	1.7	ug/l	10.0		129	65-130			
2,4-Dinitrotoluene	8.92	9.0	0.20	ug/l	10.0		89	65-120			J
N-Nitrosodimethylamine	7.20	8.0	0.10	ug/l	10.0		72	45-120			J
Pentachlorophenol	7.40	8.0	0.10	ug/l	10.0		74	50-120			J
2,4,6-Trichlorophenol	8.36	6.0	0.10	ug/l	10.0		84	55-120			
Surrogate: 2,4,6-Tribromophenol	18.8			ug/l	20.0		94	40-120			
Surrogate: 2-Fluorobiphenyl	8.50			ug/l	10.0		85	50-120			
Surrogate: 2-Fluorophenol	14.1			ug/l	20.0		70	30-120			
Surrogate: Nitrobenzene-d5	7.76			ug/l	10.0		78	45-120			
Surrogate: Phenol-d6	15.4			ug/l	20.0		77	35-120			
Surrogate: Terphenyl-d14	8.92			ug/l	10.0		89	50-125			
LCS Dup Analyzed: 03/08/2010 (10C05	55-BSD1)										
Bis(2-ethylhexyl)phthalate	10.3	5.0	1.7	ug/l	10.0		103	65-130	23	20	R-7
2,4-Dinitrotoluene	9.20	9.0	0.20	ug/l	10.0		92	65-120	3	20	
N-Nitrosodimethylamine	8.26	8.0	0.10	ug/l	10.0		83	45-120	14	20	
Pentachlorophenol	8.14	8.0	0.10	ug/l	10.0		81	50-120	10	25	
2,4,6-Trichlorophenol	8.48	6.0	0.10	ug/l	10.0		85	55-120	1	30	
Surrogate: 2,4,6-Tribromophenol	19.4			ug/l	20.0		97	40-120			
Surrogate: 2-Fluorobiphenyl	8.66			ug/l	10.0		87	50-120			
Surrogate: 2-Fluorophenol	15.1			ug/l	20.0		76	30-120			
Surrogate: Nitrobenzene-d5	8.00			ug/l	10.0		80	45-120			
Surrogate: Phenol-d6	16.2			ug/l	20.0		81	35-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C0555 Extracted: 03/04/10	_										
LCS Dup Analyzed: 03/08/2010 (10C0555	5-BSD1)										
Surrogate: Terphenyl-d14	9.50			ug/l	10.0		95	50-125			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C0551 Extracted: 03/04/10	<u>) </u>										
Blank Analyzed: 03/05/2010 (10C0551-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.433			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.369			ug/l	0.500		74	35-115			
LCS Analyzed: 03/05/2010 (10C0551-BS	1)										MNR1
alpha-BHC	0.348	0.010	0.0025	ug/l	0.500		70	45-115			
Surrogate: Decachlorobiphenyl	0.432			ug/l	0.500		86	45-120			
Surrogate: Tetrachloro-m-xylene	0.353			ug/l	0.500		71	35-115			
LCS Dup Analyzed: 03/05/2010 (10C055	1-BSD1)										
alpha-BHC	0.385	0.010	0.0025	ug/l	0.500		77	45-115	10	30	
Surrogate: Decachlorobiphenyl	0.435			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.390			ug/l	0.500		78	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C1221 Extracted: 03/10/10	_										
Blank Analyzed: 03/10/2010 (10C1221-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 03/10/2010 (10C1221-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	19.3	5.0	1.4	mg/l	20.0		96	78-114			
LCS Dup Analyzed: 03/10/2010 (10C122	1-BSD1)										
Hexane Extractable Material (Oil & Grease)	19.6	5.0	1.4	mg/l	20.0		98	78-114	2	11	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C0660 Extracted: 03/05/10											
Blank Analyzed: 03/08/2010 (10C0660-B	LK1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
Zinc	ND	20	5.0	ug/l							
LCS Analyzed: 03/08/2010 (10C0660-BS	1)										
Cadmium	87.2	1.0	0.10	ug/l	80.0		109	85-115			
Copper	81.3	2.0	0.50	ug/l	80.0		102	85-115			
Lead	84.8	1.0	0.20	ug/l	80.0		106	85-115			
Selenium	86.7	2.0	0.50	ug/l	80.0		108	85-115			
Zinc	85.8	20	5.0	ug/l	80.0		107	85-115			
Matrix Spike Analyzed: 03/08/2010 (10C	0660-MS1)				Sou	rce: ITC)544-01				
Cadmium	88.2	1.0	0.10	ug/l	80.0	ND	110	70-130			
Copper	79.4	2.0	0.50	ug/l	80.0	0.694	98	70-130			
Lead	83.3	1.0	0.20	ug/l	80.0	0.631	103	70-130			
Selenium	86.0	2.0	0.50	ug/l	80.0	1.08	106	70-130			
Zinc	82.4	20	5.0	ug/l	80.0	ND	103	70-130			
Matrix Spike Analyzed: 03/08/2010 (10C	0660-MS2)				Sou	rce: ITC	0407-01				
Cadmium	79.2	1.0	0.10	ug/l	80.0	ND	99	70-130			
Copper	107	2.0	0.50	ug/l	80.0	33.8	91	70-130			
Lead	80.6	1.0	0.20	ug/l	80.0	2.23	98	70-130			
Selenium	84.8	2.0	0.50	ug/l	80.0	6.40	98	70-130			
Zinc	122	20	5.0	ug/l	80.0	35.1	108	70-130			
Matrix Spike Dup Analyzed: 03/08/2010	(10C0660-M	SD1)			Sou	rce: ITC)544-01				
Cadmium	88.4	1.0	0.10	ug/l	80.0	ND	110	70-130	0.2	20	
Copper	77.9	2.0	0.50	ug/l	80.0	0.694	96	70-130	2	20	
Lead	81.4	1.0	0.20	ug/l	80.0	0.631	101	70-130	2	20	
Selenium	86.7	2.0	0.50	ug/l	80.0	1.08	107	70-130	0.8	20	
Zinc	79.5	20	5.0	ug/l	80.0	ND	99	70-130	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C0824 Extracted: 03/06/10	_										
Blank Analyzed: 03/06/2010 (10C0824-B	LK1)										
Iron	ND	0.040	0.015	mg/l							
Manganese	ND	20	7.0	ug/l							
LCS Analyzed: 03/06/2010 (10C0824-BS	1)										
Iron	0.535	0.040	0.015	mg/l	0.500		107	85-115			
Manganese	517	20	7.0	ug/l	500		103	85-115			
Matrix Spike Analyzed: 03/06/2010 (10C	0824-MS1)				Sou	rce: ITC	0421-01				
Iron	0.516	0.040	0.015	mg/l	0.500	ND	103	70-130			
Manganese	507	20	7.0	ug/l	500	8.79	100	70-130			
Matrix Spike Analyzed: 03/06/2010 (10C	0824-MS2)				Sou	rce: ITC	362-01				
Iron	0.937	0.040	0.015	mg/l	0.500	0.412	105	70-130			
Manganese	565	20	7.0	ug/l	500	57.8	101	70-130			
Matrix Spike Dup Analyzed: 03/06/2010	(10C0824-MS	SD1)			Sou	rce: ITC	0421-01				
Iron	0.522	0.040	0.015	mg/l	0.500	ND	104	70-130	1	20	
Manganese	513	20	7.0	ug/l	500	8.79	101	70-130	1	20	
Batch: 10C1290 Extracted: 03/10/10	<u>_</u>										
Blank Analyzed: 03/10/2010 (10C1290-B	,										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 03/10/2010 (10C1290-BS	1)										
Mercury	8.33	0.20	0.10	ug/l	8.00		104	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC	RPD	RPD Limit	Data Oualifiers
Batch: 10C1290 Extracted: 03/10/10		Limit	MDL	Cints	Lever	Result	70ILLC	Limits	III D	Limit	Quanners
Butch. 10C1270 Extructed. 00/10/10	_										
Matrix Spike Analyzed: 03/10/2010 (10C	1290-MS1)		Source: ITC0758-01								
Mercury	8.35	0.20	0.10	ug/l	8.00	ND	104	70-130			
Matrix Spike Dup Analyzed: 03/10/2010	(10C1290-MS	D 1)	Source: ITC0758-01								
Mercury	8.50	0.20	0.10	ug/l	8.00	ND	106	70-130	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•							, , , , , , ,				C
Batch: 10C0936 Extracted: 03/08/10	_										
Blank Analyzed: 03/09/2010 (10C0936-B	LK1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
Zinc	ND	20	5.0	ug/l							
LCS Analyzed: 03/09/2010 (10C0936-BS)	1)										
Cadmium	84.0	1.0	0.10	ug/l	80.0		105	85-115			
Copper	85.0	2.0	0.50	ug/l	80.0		106	85-115			
Lead	76.7	1.0	0.20	ug/l	80.0		96	85-115			
Selenium	81.8	2.0	0.50	ug/l	80.0		102	85-115			
Zinc	82.6	20	5.0	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 03/09/2010 (10C	0936-MS1)				Sou	rce: ITC()421-01				
Cadmium	83.3	1.0	0.10	ug/l	80.0	ND	104	70-130			
Copper	86.6	2.0	0.50	ug/l	80.0	1.38	107	70-130			
Lead	73.5	1.0	0.20	ug/l	80.0	ND	92	70-130			
Selenium	85.1	2.0	0.50	ug/l	80.0	ND	106	70-130			
Zinc	81.1	20	5.0	ug/l	80.0	ND	101	70-130			
Matrix Spike Dup Analyzed: 03/09/2010	(10C0936-M	SD1)			Sou	rce: ITC	0421-01				
Cadmium	84.2	1.0	0.10	ug/l	80.0	ND	105	70-130	1	20	
Copper	85.5	2.0	0.50	ug/l	80.0	1.38	105	70-130	1	20	
Lead	73.9	1.0	0.20	ug/l	80.0	ND	92	70-130	0.5	20	
Selenium	83.8	2.0	0.50	ug/l	80.0	ND	105	70-130	2	20	
Zinc	89.2	20	5.0	ug/l	80.0	ND	111	70-130	9	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C1105 Extracted: 03/09/10											
Blank Analyzed: 03/14/2010 (10C1105-B	LK1)										
Iron	0.0373	0.040	0.015	mg/l							J
Manganese	ND	20	7.0	ug/l							
LCS Analyzed: 03/14/2010 (10C1105-BS	1)										
Iron	0.529	0.040	0.015	mg/l	0.500		106	85-115			
Manganese	504	20	7.0	ug/l	500		101	85-115			
Matrix Spike Analyzed: 03/14/2010 (10C	1105-MS1)				Sou	rce: ITC(0323-01				
Iron	0.627	0.040	0.015	mg/l	0.500	0.103	105	70-130			
Manganese	560	20	7.0	ug/l	500	60.6	100	70-130			
Matrix Spike Dup Analyzed: 03/14/2010	(10C1105-M	SD1)			Sou	rce: ITC(0323-01				
Iron	0.628	0.040	0.015	mg/l	0.500	0.103	105	70-130	0.1	20	
Manganese	558	20	7.0	ug/l	500	60.6	99	70-130	0.4	20	
Batch: 10C1471 Extracted: 03/11/10	_										
Plank Analyzad. 02/11/2010 (10/21471 B)	I IZ1)										
Blank Analyzed: 03/11/2010 (10C1471-B) Mercury	ND	0.20	0.10	ug/l							
Welcury	ND	0.20	0.10	ug/1							
LCS Analyzed: 03/11/2010 (10C1471-BS	1)										
Mercury	8.46	0.20	0.10	ug/l	8.00		106	85-115			
Matrix Spike Analyzed: 03/11/2010 (10C	1471-MS1)				Sou	rce: ITC(0421-01				
Mercury	8.67	0.20	0.10	ug/l	8.00	ND	108	70-130			
Matrix Spike Dup Analyzed: 03/11/2010	(10C1471-M	SD1)			Sou	rce: ITC(0421-01				
Mercury	8.62	0.20	0.10	ug/l	8.00	ND	108	70-130	0.5	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215

Received: 03/02/10

METHOD BLANK/QC DATA

INORGANICS

Amalista	Dogult	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD	Data Oualifiers
Analyte	Result	Limit	MDL	Units	Levei	Result	70KEC	Limits	KPD	Limit	Quanners
Batch: 10C0428 Extracted: 03/03/10	_										
Blank Analyzed: 03/03/2010 (10C0428-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 03/03/2010 (10C0428-BS)	1)										
Total Cyanide	197	5.0	2.2	ug/l	200		98	90-110			
Matrix Spike Analyzed: 03/03/2010 (10C	0428-MS1)				Sou	rce: ITC(0215-01				
Total Cyanide	202	5.0	2.2	ug/l	200	ND	101	70-115			
Matrix Spike Dup Analyzed: 03/03/2010	(10C0428-M	SD1)			Sou	rce: ITC	0215-01				
Total Cyanide	200	5.0	2.2	ug/l	200	ND	100	70-115	0.9	15	
Batch: 10C0448 Extracted: 03/04/10	_										
Blank Analyzed: 03/04/2010 (10C0448-B	LK1)										
Specific Conductance	ND	1.0	1.0umh	os/cm @	25C						
LCS Analyzed: 03/04/2010 (10C0448-BS	1)										
Specific Conductance	1400	1.0	1.0umh	os/cm @	25 C 410		99	90-110			
Duplicate Analyzed: 03/04/2010 (10C044	8-DUP1)				Sou	rce: ITC	0042-04				
Specific Conductance	32500	1.0	1.0umh	os/cm @	25C	32400			0.3	5	
Batch: 10C0480 Extracted: 03/04/10	_										
Blank Analyzed: 03/04/2010 (10C0480-B	LK1)										
Perchlorate	ND	4.0	0.90	ug/l							

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C0480 Extracted: 03/04/10	_										
LCS Analyzed: 03/04/2010 (10C0480-BS	n										
Perchlorate Perchlorate	25.7	4.0	0.90	ug/l	25.0		103	85-115			
Matrix Spike Analyzed: 03/04/2010 (10C	0480-MS1)				Sou	rce: ITB2	2837-02				
Perchlorate	27.3	4.0	0.90	ug/l	25.0	1.62	103	80-120			
Matrix Spike Dup Analyzed: 03/04/2010	(10C0480-M	SD1)			Sou	rce: ITB2	2837-02				
Perchlorate	28.8	4.0	0.90	ug/l	25.0	1.62	109	80-120	5	20	
Batch: 10C0489 Extracted: 03/04/10											
	_										
Blank Analyzed: 03/04/2010 (10C0489-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	0.357	0.50	0.20	mg/l							B4, J
LCS Analyzed: 03/04/2010 (10C0489-BS	1)										
Chloride	4.97	0.50	0.25	mg/l	5.00		99	90-110			
Nitrate-N	1.11	0.11	0.060	mg/l	1.13		98	90-110			
Nitrite-N	1.55	0.15	0.090	mg/l	1.52		102	90-110			
Sulfate	10.5	0.50	0.20	mg/l	10.0		105	90-110			
Matrix Spike Analyzed: 03/04/2010 (10C	0489-MS1)				Sou	rce: ITC	0453-07				
Chloride	5.59	0.50	0.25	mg/l	5.00	0.274	106	80-120			
Nitrate-N	2.68	0.11	0.060	mg/l	1.13	1.43	111	80-120			
Nitrite-N	1.63	0.15	0.090	mg/l	1.52	ND	107	80-120			
Sulfate	13.1	0.50	0.20	mg/l	10.0	1.73	113	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C0489 Extracted: 03/04/10	_										
Matrix Spike Analyzed: 03/04/2010 (10C	0489-MS2)				Sou	rce: ITC(0453_10				
Chloride	68.8	5.0	2.5	mg/l	50.0	20.1	97	80-120			
Nitrate-N	11.0	1.1	0.60	mg/l	11.3	0.305	95	80-120			
Nitrite-N	15.3	1.5	0.90	mg/l	15.2	0.303 ND	101	80-120			
Sulfate	220	5.0	2.0	mg/l	100	122	98	80-120			
				0							
Matrix Spike Dup Analyzed: 03/04/2010						rce: ITC					
Chloride	5.46	0.50	0.25	mg/l	5.00	0.274	104	80-120	2	20	
Nitrate-N	2.63	0.11	0.060	mg/l	1.13	1.43	107	80-120	2	20	
Nitrite-N	1.61	0.15	0.090	mg/l	1.52	ND	106	80-120	1	20	
Sulfate	12.9	0.50	0.20	mg/l	10.0	1.73	112	80-120	1	20	
Batch: 10C0518 Extracted: 03/04/10	<u> </u>										
	_										
Blank Analyzed: 03/04/2010 (10C0518-B	LK1)										
Turbidity	ND	1.0	0.040	NTU							
Duplicate Analyzed: 03/04/2010 (10C051	8-DUP1)				Sou	rce: ITC	0417-01				
Turbidity	ND	1.0	0.040	NTU		ND				20	
Batch: 10C0531 Extracted: 03/04/10	_										
Blank Analyzed: 03/09/2010 (10C0531-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.50	mg/l							
LCS Analyzed: 03/09/2010 (10C0531-BS	1)										
Biochemical Oxygen Demand	206	100	25	mg/l	198		104	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Oualifiers
Batch: 10C0531 Extracted: 03/04/10		Limit	NIDL	Cints	Ecver	resurt	70KLC	Linnes	III D	Limit	Quanners
Batch: 10C0551 Extracted: 05/04/10	-										
LCS Dup Analyzed: 03/09/2010 (10C053)	I-BSD1)										
Biochemical Oxygen Demand	202	100	25	mg/l	198		102	85-115	2	20	
Batch: 10C0559 Extracted: 03/04/10	-										
Blank Analyzed: 03/04/2010 (10C0559-Bl	LK1)										
Surfactants (MBAS)	ND	0.10	0.050	mg/l							
LCS Analyzed: 03/04/2010 (10C0559-BS)	1)										
Surfactants (MBAS)	0.245	0.10	0.050	mg/l	0.250		98	90-110			
Matrix Spike Analyzed: 03/04/2010 (10C	0559-MS1)				Sour	rce: ITC()464-02				
Surfactants (MBAS)	0.209	0.10	0.050	mg/l	0.250	ND	83	50-125			
Matrix Spike Dup Analyzed: 03/04/2010	(10C0559-MS	D1)			Soui	rce: ITC()464-02				
Surfactants (MBAS)	0.210	0.10	0.050	mg/l	0.250	ND	84	50-125	0.6	20	
Batch: 10C0998 Extracted: 03/08/10	_										
Blank Analyzed: 03/08/2010 (10C0998-Bl	LK1)										
Total Suspended Solids	ND	10	1.0	mg/l							
LCS Analyzed: 03/08/2010 (10C0998-BS)	1)										
Total Suspended Solids	990	10	1.0	mg/l	1000		99	85-115			
Duplicate Analyzed: 03/08/2010 (10C0998	8-DUP1)				Sour	rce: ITC()468-01				
Total Suspended Solids	20.0	10	1.0	mg/l		20.0			0	10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215

Received: 03/02/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C0998 Extracted: 03/08/10	_										
Duplicate Analyzed: 03/08/2010 (10C099	8-DUP2)				Sou	rce: ITC	0416-03				
Total Suspended Solids	1790	100	10	mg/l		1780			0.6	10	
Batch: 10C1017 Extracted: 03/09/10	-										
Blank Analyzed: 03/09/2010 (10C1017-B	LK1)										
Total Dissolved Solids	ND	10	1.0	mg/l							
LCS Analyzed: 03/09/2010 (10C1017-BS	1)										
Total Dissolved Solids	994	10	1.0	mg/l	1000		99	90-110			
Duplicate Analyzed: 03/09/2010 (10C101	7-DUP1)				Sou	rce: ITC(0415-01				
Total Dissolved Solids	2100	20	2.0	mg/l		2160			3	10	
Batch: 10C1299 Extracted: 03/10/10	_										
Blank Analyzed: 03/10/2010 (10C1299-B	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.50	mg/l							
LCS Analyzed: 03/10/2010 (10C1299-BS	1)										
Ammonia-N (Distilled)	9.80	0.50	0.50	mg/l	10.0		98	80-115			
Matrix Spike Analyzed: 03/10/2010 (10C	1299-MS1)				Sou	rce: ITC(0421-01				
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0	ND	101	70-120			
Matrix Spike Dup Analyzed: 03/10/2010	(10C1299-M	ISD1)			Sou	rce: ITC(0421-01				
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0	ND	101	70-120	0	15	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

INORGANICS

	j	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: T000049 Extracted: 03/04/10	_										
High Cal Check Analyzed: 03/04/2010 (T	000049-HCV1)									
Chloride	26.0	NA	N/A	mg/l	25.0		104	0-200			
Nitrate-N	5.67	NA	N/A	mg/l	5.65		100	0-200			
Nitrite-N	7.96	NA	N/A	mg/l	7.60		105	0-200			
Sulfate	52.8	NA	N/A	mg/l	50.0		106	0-200			

RPD

Data

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

Source

Spike

METHOD BLANK/QC DATA

EPA-5 1613B

Reporting

		Keporung	5		Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 68182 Extracted: 03/09/10	0_										
Blank Analyzed: 03/12/2010 (G0C09	0000182B)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.000057	0.00005	0.00000074	ug/L				-			
1,2,3,4,6,7,8-HpCDF	0.000059	0.00005	0.0000014	ug/L				-			
1,2,3,4,7,8,9-HpCDF	0.000061	0.00005	0.0000018	ug/L				-			
1,2,3,4,7,8-HxCDD	0.000042	0.00005	0.00000056	ug/L				-			Q, J
1,2,3,4,7,8-HxCDF	0.000048	0.00005	0.00000054	ug/L				-			J
1,2,3,6,7,8-HxCDD	0.000051	0.00005	0.00000052	ug/L				-			
1,2,3,6,7,8-HxCDF	0.000046	0.00005	0.00000052	ug/L				-			J
1,2,3,7,8,9-HxCDD	0.000048	0.00005	0.00000049	ug/L				-			J
1,2,3,7,8,9-HxCDF	0.00005	0.00005	0.00000058	ug/L				-			J
1,2,3,7,8-PeCDD	0.000032	0.00005	0.0000006	ug/L				-			J
1,2,3,7,8-PeCDF	0.00003	0.00005	0.00000033	ug/L				-			J
2,3,4,6,7,8-HxCDF	0.000051	0.00005	0.00000048	ug/L				-			
2,3,4,7,8-PeCDF	0.000038	0.00005	0.00000035	ug/L				-			J
2,3,7,8-TCDD	0.000005	0.00001	0.00000002	ug/L				-			J, Q
2,3,7,8-TCDF	0.000005	0.00001	0.00000002	ug/L				-			J
OCDD	0.00012	0.0001	0.00000044	ug/L				-			
OCDF	0.00011	0.0001	0.00000046	ug/L				-			
Total HpCDD	0.00006	0.00005	0.000057	ug/L				-			J
Total HpCDF	0.00012	0.00005	0.0000014	ug/L				-			
Total HxCDD	0.00014	0.00005	0.00000005	ug/L				-			J, Q
Total HxCDF	0.00019	0.00005	0.00000052	ug/L				-			J
Total PeCDD	0.000032	0.00005	0.0000006	ug/L				-			J
Total PeCDF	0.000069	0.00005	0.00000003	ug/L				-			J
Total TCDD	0.000005	0.00001	0.00000002	ug/L				-			J
Total TCDF	0.000005	0.00001	0.00000002	ug/L				-			J
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0017			ug/L	0.00200		83	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0014			ug/L	0.00200		72	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0015			ug/L	0.00200		75	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0016			ug/L	0.00200		81	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0014			ug/L	0.00200		72	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0015			ug/L	0.00200		73	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0014			ug/L	0.00200		71	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0015			ug/L	0.00200		73	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0013			ug/L	0.00200		66	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0011			ug/L	0.00200		57	24-185			

TestAmerica Irvine

RPD

Data

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

Source

Spike

METHOD BLANK/QC DATA

EPA-5 1613B

Reporting

Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 68182 Extracted: 03/09/10	<u>)</u>										
Blank Analyzed: 03/12/2010 (G0C09)	0000182B)				Sou	rce:					
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0015			ug/L	0.00200		74	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0012			ug/L	0.00200		58	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0012			ug/L	0.00200		62	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0011			ug/L	0.00200		56	24-169			
Surrogate: 13C-OCDD	0.0033			ug/L	0.00400		82	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00074			ug/L	0.000800		92	35-197			
LCS Analyzed: 03/12/2010 (G0C0900	000182C)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00103	0.00005	0.0000016	ug/L	0.00200		51	70-140			a, B
1,2,3,4,6,7,8-HpCDF	0.00108	0.00005	0.0000036	ug/L	0.00200		54	82-122			a, B
1,2,3,4,7,8,9-HpCDF	0.00108	0.00005	0.0000047	ug/L	0.00100		108	78-138			B
1,2,3,4,7,8-HxCDD	0.000922	0.00005	0.00000022	ug/L	0.00200		46	70-164			a, B
1,2,3,4,7,8-HxCDF	0.00109	0.00005	0.0000004	ug/L	0.00200		55	72-134			a, B
1,2,3,6,7,8-HxCDD	0.0011	0.00005	0.00000019	ug/L	0.00100		110	76-134			B
1,2,3,6,7,8-HxCDF	0.00106	0.00005	0.00000038	ug/L	0.00200		53	84-130			a, B
1,2,3,7,8,9-HxCDD	0.00101	0.00005	0.00000018	ug/L	0.00200		50	64-162			a, B
1,2,3,7,8,9-HxCDF	0.00105	0.00005	0.00000042	ug/L	0.00200		52	78-130			a, B
1,2,3,7,8-PeCDD	0.000949	0.00005	0.0000016	ug/L	0.00200		47	70-142			a, B
1,2,3,7,8-PeCDF	0.00106	0.00005	0.0000023	ug/L	0.00200		53	80-134			a, B
2,3,4,6,7,8-HxCDF	0.00106	0.00005	0.00000035	ug/L	0.00200		53	70-156			a, B
2,3,4,7,8-PeCDF	0.00106	0.00005	0.0000026	ug/L	0.00200		53	68-160			a, B
2,3,7,8-TCDD	0.000198	0.00001	0.0000002	ug/L	0.00200		10	67-158			a, B
2,3,7,8-TCDF	0.000196	0.00001	0.00000016	ug/L	0.00200		10	75-158			a, B
OCDD	0.00195	0.0001	0.0000017	ug/L	0.00200		98	78-144			B
OCDF	0.00188	0.0001	0.0000014	ug/L	0.00200		94	63-170			B
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00179			ug/L	0.00200		90	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00157			ug/L	0.00200		79	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00164			ug/L	0.00200		82	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0016			ug/L	0.00200		80	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00166			ug/L	0.00200		83	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00168			ug/L	0.00200		84	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00158			ug/L	0.00200		79	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00165			ug/L	0.00200		82	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00159			ug/L	0.00200		80	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00136			ug/L	0.00200		68	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00162			ug/L	0.00200		81	22-176			

TestAmerica Irvine

RPD

Data

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

Source

Spike

METHOD BLANK/QC DATA

EPA-5 1613B

Reporting

		Keporung	g		Spike	Source		/OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 68182 Extracted: 03/09/1	.0										
LCS Analyzed: 03/12/2010 (G0C090	0000182C)				Sou	rce:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00135			ug/L	0.00200		68	13-328			
Surrogate: 13C-2,3,7,8-TCDD	0.00157			ug/L	0.00200		78	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00145			ug/L	0.00200		73	22-152			
Surrogate: 13C-OCDD	0.00348			ug/L	0.00400		87	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000759			ug/L	0.000800		95	31-191			
LCS Dup Analyzed: 03/12/2010 (G0	C090000182L)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00102	0.00005	0.0000025	ug/L	0.00200		51	70-140	0.97	50	<i>a</i> , <i>B</i>
1,2,3,4,6,7,8-HpCDF	0.00107	0.00005	0.0000027	ug/L	0.00200		53	82-122	0.84	50	<i>a</i> , <i>B</i>
1,2,3,4,7,8,9-HpCDF	0.00107	0.00005	0.0000035	ug/L	0.00200		53	78-138	0.93	50	<i>a, B</i>
1,2,3,4,7,8-HxCDD	0.00102	0.00005	0.00000015	ug/L	0.00200		51	70-164	10	50	<i>a, B</i>
1,2,3,4,7,8-HxCDF	0.00107	0.00005	0.00000042	ug/L	0.00200		53	72-134	2.1	50	<i>a, B</i>
1,2,3,6,7,8-HxCDD	0.000962	0.00005	0.00000013	ug/L	0.00200		48	76-134	13	50	<i>a, B</i>
1,2,3,6,7,8-HxCDF	0.00105	0.00005	0.0000004	ug/L	0.00200		53	84-130	1	50	<i>a, B</i>
1,2,3,7,8,9-HxCDD	0.000978	0.00005	0.00000013	ug/L	0.00200		49	64-162	2.8	50	<i>a, B</i>
1,2,3,7,8,9-HxCDF	0.00104	0.00005	0.00000046	ug/L	0.00200		52	78-130	0.57	50	<i>a, B</i>
1,2,3,7,8-PeCDD	0.000938	0.00005	0.0000012	ug/L	0.00200		47	70-142	1.2	50	<i>a, B</i>
1,2,3,7,8-PeCDF	0.00103	0.00005	0.0000019	ug/L	0.00200		51	80-134	2.9	50	<i>a, B</i>
2,3,4,6,7,8-HxCDF	0.00103	0.00005	0.00000038	ug/L	0.00200		51	70-156	3.5	50	<i>a, B</i>
2,3,4,7,8-PeCDF	0.00104	0.00005	0.000002	ug/L	0.00200		52	68-160	2.3	50	<i>a</i> , <i>B</i>
2,3,7,8-TCDD	0.00019	0.00001	0.00000002	ug/L	0.00200		10	67-158	4.1	50	a, B
2,3,7,8-TCDF	0.000189	0.00001	0.00000028	ug/L	0.00200		9	75-158	3.6	50	<i>a, B</i>
OCDD	0.00198	0.0001	0.0000013	ug/L	0.00200		99	78-144	1.5	50	B
OCDF	0.00187	0.0001	0.0000012	ug/L	0.00200		94	63-170	0.53	50	B
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00177			ug/L	0.00200		89	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00151			ug/L	0.00200		76	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0016			ug/L	0.00200		80	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00176			ug/L	0.00200		88	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0016			ug/L	0.00200		80	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00161			ug/L	0.00200		81	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00156			ug/L	0.00200		78	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00155			ug/L	0.00200		78	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0014			ug/L	0.00200		70	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00124			ug/L	0.00200		62	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00162			ug/L	0.00200		81	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00124			ug/L	0.00200		62	13-328			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

EPA-5 1613B

Analyte	Result	Reporting Limit	g MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 68182 Extracted: 03/09/10											
LCS Dup Analyzed: 03/12/2010 (G0C0)	90000182L)				Sour	rce:					
Surrogate: 13C-2,3,7,8-TCDD	0.00135			ug/L	0.00200		68	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00123			ug/L	0.00200		61	22-152			
Surrogate: 13C-OCDD	0.00347			ug/L	0.00400		87	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000708			ug/L	0.000800		89	31-191			
Blank Analyzed: 03/19/2010 (G0C0900	082RE1)				Sour	rce:					
2,3,7,8-TCDF	0.0000059	0.00001	0.0000018	ug/L				-			J
Surrogate: 13C-2,3,7,8-TCDF	0.0014			ug/L	0.00200		68	24-169			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00078			ug/L	0.000800		97	35-197			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

ASTM 5174-91

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 67296 Extracted: 03/10/10											
Matrix Spike Dup Analyzed: 03/12/2010	(F0B23045200	1D)			Sou	rce: F0B2	23045200	1			
Total Uranium	26.9	0.7	0.2	pCi/L	27.7	0.677	95	62-150	4	20	
Matrix Spike Analyzed: 03/12/2010 (F0B	230452001S)				Sou	rce: F0B2	23045200	1			
Total Uranium	28.1	0.7	0.2	pCi/L	27.7	0.677	99	62-150			
Blank Analyzed: 03/12/2010 (F0C080000	296B)				Sou	rce:					
Total Uranium	0.315	0.693	0.21	pCi/L				-			Jb
LCS Analyzed: 03/12/2010 (F0C0800002	96C)				Sou	rce:					
Total Uranium	5.62	0.69	0.21	pCi/L	5.54		101	90-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Received: 03/02/10

Report Number: ITC0215

METHOD BLANK/QC DATA

EPA 900.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 68099 Extracted: 03/09/10											
Matrix Spike Analyzed: 03/14/2010 (F0C	(020462001S)				Sou	rce: F0C	2046200	1			
Gross Alpha	47.1	3	1.1	pCi/L	49.4	2.1	91	35-150			
Gross Beta	74.2	4	1	pCi/L	68.0	1.5	107	54-150			
Duplicate Analyzed: 03/18/2010 (F0C020	462001X)				Sou	rce: F0C	2046200	1			
Gross Alpha	1.89	3	1.1	pCi/L		2.1		-			Jb
Gross Beta	1.52	4	0.94	pCi/L		1.5		-			Jb
Blank Analyzed: 03/15/2010 (F0C090000	099B)				Sou	rce:					
Gross Alpha	0.66	2	0.85	pCi/L				-			U
Gross Beta	0.69	4	1	pCi/L				-			U
LCS Analyzed: 03/15/2010 (F0C0900000	99C)				Sou	rce:					
Gross Alpha	51.5	3	1	pCi/L	49.4		104	62-134			
Gross Beta	63.9	4	0.8	pCi/L	68.0		94	58-133			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

EPA 901.1 MOD

Analyte Batch: 67102 Extracted: 03/08/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 03/18/2010 (F0C05	0563001X)				Sou	rce: ITC	0421-01				
Cesium 137	2.7	20	14	pCi/L		0		-			U
Potassium 40	-90	NA	200	pCi/L		-80		-			U
Blank Analyzed: 03/18/2010 (F0C08000)	0102B)				Sou	rce:					
Cesium 137	-2	20	17	pCi/L				-			U
Potassium 40	-60	NA	220	pCi/L				-			U
LCS Analyzed: 03/18/2010 (F0C080000)	102C)				Sou	rce:					
Americium 241	149000	NA	500	pCi/L	141000		105	87-110			
Cobalt 60	88300	NA	200	pCi/L	87900		100	89-110			
Cesium 137	53600	20	200	pCi/L	53100		101	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

METHOD BLANK/QC DATA

EPA 903.0 MOD

Analyte Batch: 67053 Extracted: 03/08/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 03/31/2010 (F0C080000 Radium (226)	0 53B) 0.012	1	0.048	pCi/L	Sour	rce:		-			U
LCS Analyzed: 03/31/2010 (F0C0800000) Radium (226)	53C) 10.8	1	0.05	pCi/L	Sou : 11.3	rce:	96	68-136			
LCS Dup Analyzed: 03/31/2010 (F0C080 Radium (226)	000053L) 11.2	1	0.05	pCi/L	Sou 11.3	rce:	100	68-136	4	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215

Received: 03/02/10

METHOD BLANK/QC DATA

EPA 904 MOD

Analyte Batch: 67054 Extracted: 03/08/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 03/19/2010 (F0C080000) Radium 228	0 054B) 0.13	1	0.54	pCi/L	Sour	rce:		-			U
LCS Analyzed: 03/19/2010 (F0C0800000) Radium 228	54C) 6.86	1	0.55	pCi/L	Sou 1 6.37	rce:	108	60-142			
LCS Dup Analyzed: 03/19/2010 (F0C080) Radium 228	0000054L) 7.48	1	0.59	pCi/L	Sou 1 6.37	rce:	117	60-142	9	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215

Received: 03/02/10

METHOD BLANK/QC DATA

EPA 905 MOD

Analyte Batch: 67055 Extracted: 03/08/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 03/17/2010 (F0C080000 Strontium 90	055B) -0.13	3	0.34	pCi/L	Sour	rce:		-			U
LCS Analyzed: 03/17/2010 (F0C0800000 Strontium 90	55C) 7.67	3	0.32	pCi/L	Sou : 6.79	rce:	113	80-130			
LCS Dup Analyzed: 03/17/2010 (F0C080 Strontium 90	000055L) 6.68	3	0.33	pCi/L	Sou : 6.79	rce:	98	80-130	14	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215

Received: 03/02/10

METHOD BLANK/QC DATA

EPA 906.0 MOD

Analyte Batch: 67136 Extracted: 03/08/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 03/09/2010 (F0C020	462001X)				Sou	rce: F0C(02046200	1			
Tritium	86	500	130	pCi/L		49		-			U
Matrix Spike Analyzed: 03/09/2010 (F00	(020465001S)				Sou	rce: F0C(02046500	1			
Tritium	4260	500	130	pCi/L	4520	130	92	62-147			
Blank Analyzed: 03/09/2010 (F0C080000	136B)				Sou	rce:					
Tritium	163	500	130	pCi/L				-			Jb
LCS Analyzed: 03/09/2010 (F0C0800001	36C)				Sour	rce:					
Tritium	4700	500	130	pCi/L	4520		104	85-112			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Report Number: ITC0215 Received: 03/02/10

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITC0215-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.76	4.7	15
ITC0215-01	624-Boeing 001/002Q (Fr113+X+I	Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITC0215-01	624-Boeing 001/002Q (Fr113+X+I	FrTrichloroethene	ug/l	0	0.50	5
ITC0215-01	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	0.68	5.0	8.5
ITC0215-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.3

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITC0215-02	624-Boeing 001/002	2Q (Fr113+X+Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITC0215-02	624-Boeing 001/002	2Q (Fr113+X+FrTrichloroethene	ug/l	0	0.50	5

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

I abNasabas	A I	A a lauta	TT:4-	D14	MDI	Compliance
<u>LabNumber</u>	Analysis	Analyte	Units	Result	MRL	Limit
ITC0421-01	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0096	0.03
ITC0421-01	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.8	13
ITC0421-01	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	8.7	18
ITC0421-01	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.64	4.8	4
ITC0421-01	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	7.7	16
ITC0421-01	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	7.7	16
ITC0421-01	Ammonia-N, Titr 4500NH3-C (w/o	di:Ammonia-N (Distilled)	mg/l	0	0.50	10
ITC0421-01	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	1.00	2.0	30
ITC0421-01	Cadmium-200.8	Cadmium	ug/l	0	1.0	3.1
ITC0421-01	Chloride - 300.0	Chloride	mg/l	20	0.50	150
ITC0421-01	Copper-200.8	Copper	ug/l	1.66	2.0	14
ITC0421-01	Iron-200.7, Diss	Iron	mg/l	0.0028	0.040	0.3
ITC0421-01	Lead-200.8	Lead	ug/l	0.0050	1.0	5.2
ITC0421-01	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0.038	0.10	0.5
ITC0421-01	Nitrate-N, 300.0	Nitrate-N	mg/l	0.048	0.11	8

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasader	na/Boeing	Project ID:	Routine Outfall 018						
618 Michillind Arcadia, CA 9 Attention: Bro		Report Number:	ITC0215	Sampled: 03/02/10-03/03/10 Received: 03/02/10					
ITC0421-01	Nitrite-N, 300.0	Nitrite-N		mg/l	0	0.15	1		
ITC0421-01	Nitrogen, NO3+NO2 -N EPA 30	0.0 Nitrate/Nitrite-N		mg/l	0.048	0.26	8		
ITC0421-01	Perchlorate 314.0 - Default	Perchlorate		ug/l	0	4.0	6		
ITC0421-01	Selenium-200.8	Selenium		ug/l	0.45	2.0	5		
ITC0421-01	Sulfate-300.0	Sulfate		mg/l	153	5.0	300		
ITC0421-01	TDS - SM2540C	Total Dissolved S	Solids	mg/l	358	10	950		
ITC0421-01	TSS - SM2540D	Total Suspended	Solids	mg/l	8.00	10	45		
ITC0421-01	Zinc-200.8	Zinc		ug/l	0	20	120		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/02/10-03/03/10

Project ID: Routine Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0215 Received: 03/02/10

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

a	Spiked ana	lyte recovery	is outside	stated	control limits	3.
---	------------	---------------	------------	--------	----------------	----

- В Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- B-1 Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.
- **B4** Target analyte detected in blank at/above method acceptance criteria.
- \mathbf{C} Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not
 - impacted.
- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Jb Result is greater than sample detection limit but less than stated reporting limit.
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

- Q Estimated maximum possible concentration (EMPC).
- R-7 LCS/LCSD RPD exceeded the acceptance limit. Recovery met acceptance criteria.
- U Result is less than the sample detection limit.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Sampled: 03/02/10-03/03/10

Received: 03/02/10

Report Number: ITC0215

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 120.1	Water	X	X
EPA 1664A	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1-Diss	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500CN-E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 03/02/10-03/03/10

Arcadia, CA 91007 Report Number: ITC0215 Received: 03/02/10

Attention: Bronwyn Kelly

TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045 Method Performed: ASTM 5174-91

Samples: ITC0421-01

Method Performed: EPA 900.0 MOD

Samples: ITC0421-01

Method Performed: EPA 901.1 MOD

Samples: ITC0421-01

Method Performed: EPA 903.0 MOD

Samples: ITC0421-01

Method Performed: EPA 904 MOD

Samples: ITC0421-01

Method Performed: EPA 905 MOD

Samples: ITC0421-01

Method Performed: EPA 906.0 MOD

Samples: ITC0421-01

TestAmerica West Sacramento

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B

Samples: ITC0421-01

ITC0215

Client Name/		:		Proj				ANALYSIS REQUIRED														
MWH-Arca					ing-SSFL					T T						Т			-		Γ	
618 Michillino	da Ave, S	Suite 200			utine Outfa	all 018																Field readings:
Arcadia, CA	91007			GR	AB]														(Log in and include in
Test America	Contact	: Joseph De	oak											and a second								report Temp and pH)
											(e)											Temp °F = 57.7
										Grease (1664-HEM)	Cyanide (total recoverable)		Total Residual Chlerine									
Project Mana	ger: Bro	nwyn Kelly		Pho	ne Numbe	er:		VOCs 624 + xylenes		64-1	cove		2				- 1					pH = 7,5
				(626	6) 568-669	1		χŽ	Settleable Solids	(16	l re		4					1				Time of readings =
Sampler: 5	Dunisi) .1		Fax	Number:			+	SS	sse	tota	ιţ	- ₹	1 1								I - I
7	Colors	•		(626	6) 568-651	5		624	pje	re) e	Conductivity	ş					I				1450
Sample	Sample	Container	# of		Sampling			ပ်	tes	∞ರ	anic	ηqn	4					1				
Description	Matrix	Туре	Cont.		Date/Time	Preservative	Bottle #	8	Set	ō	Cye	Cor	<u> </u>									Comments
Outfall 018	W	VOAs	5	3/2/	ा ।५४०	HCI	1A, 1B, 1C, 1D, 1E	Х														
Outfall 018	W	1L Poly	1	Ľ	1	None	2		Х				T									
Outfall 018	W	1L Amber	2		5D	HCI	3A, 3B			Х												
Outfall 018	w	500 mL Poly	1	,	Ψ	NaOH	4				Х											
Outfall 018	w	500 mL Poly	2	3/2	10 (49°C	None	5A, 5B					х										
Trip Blanks	W	VOAs	3	3/2	10 0400	HCI	6A, 6B, 6C	Х													***************************************	
Outfall 018	w	150 mL Poly	1	' '		None	7						_*									
																						1 20:00
																						1 3/2/10/
																						1,61
	ļ																					
					···																	,
				<u> </u>							1]				<u> </u>		\bot				
Relinquished By	The	se Samples	are Date/	the (Time:	Grab Porti	on of Outfa	all 018 for the Received By	his st	orm (event		npos te/Time		amples v	vill fo	Ilow and	are to	be a	added	to this	s work	c order.
11.	/	12 -			*-			7	A							04 ! ! =			70.11-			10 Days
GUU	TV			3	216	BUU	Μ	V			5	3.2	n	/5	00	24 Hour: 48 Hour:		5	72 Hour:			Normal:
Relinquished By	7			Time:			Received By	***************************************				te/Time) :									
M	1	(32	10	17	59	7	-			•	٦ ا		122	·	Sample inte	grity: (Che			×		
Relinquished By	,		Date/	Timo:	1 }		Deceived Br				Da	ro/Ti		. , ,		Intact:	/	C	On ice: _			
			⊔ate/	mie.		ļ	Received By				υa	te/Time				Data Comi		^hoak\				
																Data Require No Level IV:				V:		NPDES Level IV:
L.,,,																						/ 1

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

REVISED

PROJECT NO. ITC0421

MWH-Pasadena Boeing

Lot #: F0C050563

Kathleen Robb

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Lynn FussnerProject Manager

April 1, 2010

Case Narrative LOT NUMBER: F0C050563 Revised 04-01-10

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on March 5, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements, except as noted below.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Report revised to report Radium 226 with 21 day ingrowth.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

Radium-226 by GFPC (EPA 903.0 MOD)

There was insufficient sample volume to perform MS/MSD analysis. A LCS/LCSD was performed to demonstrate accuracy and replicate precision.

Affected Samples:

F0C050563 (1): ITC0421-01

Radium-228 by GFPC (EPA 904 MOD)

There was insufficient sample volume to perform MS/MSD analysis. A LCS/LCSD was performed to demonstrate accuracy and replicate precision.

Affected Samples:

F0C050563 (1): ITC0421-01

METHODS SUMMARY

F0C050563

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Gamma Spectroscopy - Cesium-137 & Hits	EPA 901.1 MOD	
Gross Alpha/Beta EPA 900	EPA 900.0 MOD	EPA 900.0
H-3 by Distillation & LSC	EPA 906.0 MOD	
Radium-226 by GFPC	EPA 903.0 MOD	
Radium-228 by GFPC	EPA 904 MOD	
Strontium 90 by GFPC	EPA 905 MOD	
Total Uranium By Laser Ph osphorimetry	ASTM 5174-91	
References:		

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY

PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

SAMPLE SUMMARY

F0C050563

<u>WO # 5</u>	AMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LWC98	001	TTC0421-01	03/03/10	13:05

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

TestAmerica Irvine

Client Sample ID: ITC0421-01

Radiochemistry

Matrix:

Lab Sample ID: F0C050563-001

Work Order:

LWC98 WATER Date Collected:

03/03/10 1305

Date Received:

03/05/10 0845

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & H:	its by EPA 901	.1 MOD	p(Ci/L	Batch #	0067102	Yld %
Cesium 137	0.0	υ	12	20	22	03/08/10	03/18/10
Potassium 40	-80	Ü	3300		200	03/08/10	03/18/10
Gross Alpha/Beta	EPA 900		p	Ci/L	Batch #	0068099	Yld %
Gross Alpha	2.6	U	1.9	3.0	2.7	03/09/10	03/15/10
Gross Beta	3.6	J	1.0	4.0	1.2	03/09/10	03/15/10
SR-90 BY GFPC E	PA-905 MOD		po	Ci/L	Batch #	0067055	Yld % 81
Strontium 90	~0.06	υ	0.21	3.00	0.38	03/08/10	03/17/10
TRITIUM (Distill)) by EPA 906.0	MOD	pq	Ci/L	Batch #	0067136	Yld %
Tritium	85	υ	86	500	130	03/08/10	03/09/10
Total Uranium by	KPA ASTM 5174	-91	p	Ci/L	Batch #	0067296	Yld %
Total Uranium	0.520	J	0.061	0.693	0.21	03/10/10	03/12/10
Radium 226 by El	PA 903.0 MOD		p	Ci/L	Batch #	0067053	Yld % 98
Radium (226)	0.075	J	0.042	1.00	0.051	03/08/10	03/31/10
Radium 228 by GF	PC EPA 904 MOD		pı	Ci/L	Batch #	0067054	Y1d % 88
Radium 228	0.05	U	0.38	1.00	0.65	03/08/10	03/19/10

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID:

F0C050563

Matrix:

WATER

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC			Prep Date	Lab Sample ID Analysis Date
Radium 226 by	EPA 903.0 MOD	•	pCi/L	Batch #	0067053	Yld	ૠ	108 F	0C080000-053B
Radium (226)	0.012	υ	0.027	1.00	0.048			03/08/10	03/31/10
Radium 228 by (GFPC EPA 904 MC)D	pCi/L	Batch #	0067054	Yld	%	100 F	0C080000-054B
Radium 228	0.13	ñ	0.32	1.00	0.54			03/08/10	03/19/10
SR-90 BY GFPC	EPA-905 MOD		pCi/L	Batch #	0067055	Yld	%	84 F	0C080000-055B
Strontium 90	-0.13	Ū	0,18	3,00	0.34			03/08/10	03/17/10
TRITIUM (Distil	ll) by EPA 906.	0 MOD	pCi/L	Batch #	0067136	Yld	%	F	0C080000-136B
Tritium	163	J	99	500	130			03/08/10	03/09/10
Gamma Cs-137 &	Hits by EPA 90	01.1 MOD	pCi/L	Batch #	0067102	Yld	%	F	0C080000-102B
Cesium 137	-2.0	U	9.2	20.0	1.7			03/08/10	03/18/10
Potassium 40	-60	U	270		220			03/08/10	03/18/10
Gross Alpha/Bet	a EPA 900		pCi/L	Batch #	0068099	Yld	ૠ	F	0C090000-099B
Gross Alpha	0.66	ប	0.59	2.00	0.85			03/09/10	03/15/10
Gross Beta	0.69	υ	0.65	4.00	1.0			03/09/10	
Total Uranium k	oy KPA ASTM 517	4-91	pCi/L	Batch #	0067296	Yld	 %	F	OC080000-296B
Total Uranium	0.315	J	0.039	0.693	0.21			03/10/10	03/12/10

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

Laboratory Control Sample Report

Radiochemistry

Client Lot ID:

F0C050563

Matrix:

WATER

			Total				Lab	Sample ID
Parameter	Spike Amount	Result	Uncert (2 g+/		MDC	% Yld	% Rec	QC Control Limits
Gamma Cs-137 & Hits	by EPA 901.1	MOD	pCi/L	901.1	. MOD		F0C0	80000-102C
Americium 241	141000	149000	12000		500		105	(87 - 110)
Cesium 137	53100	53600	3100		200		101	(90 - 110)
Cobalt 60	87900	88300	5000		200		100	(89 - 110)
	Batch #:	0067102			Analysis Date:	03/18	3/10	
TRITIUM (Distill) b	у ЕРА 906.0 М	OD	pCi/L	906.0	MOD		F0C0	80000-136C
Tritium	4520	4700	480		130		104	(85 ~ 112)
	Batch #:	0067136			Analysis Date:	03/09	9/10	
Total Uranium by KF	A ASTM 5174-9	1	pCi/L	5174-	91	•	FOCO	80000-296C
Total Uranium	27.7	28.6	3.5		0.2		103	(90 ~ 120)
	Batch #:	0067296			Analysis Date:	03/12	2/10	
Total Uranium by KF	PA ASTM 5174-9	1	pCi/L	5174-	91		F0C(080000-296C
Total Uranium	5.54	5.62	0.58		0.21		101	(90 ~ 120)
	Batch #:	0067296			Analysis Date:	03/12	2/10	
Gross Alpha/Beta EF	A 900		pCi/L	900.0	MOD		F0C(90000-099C
Gross Beta	68.0	63.9	5.4		0.8		94	(58 - 133)
	Batch #:	0068099			Analysis Date:	03/1	5/10	
Gross Alpha/Beta EF	A 900		pCi/L	900.0	MOD		FOC	90000-099C
Gross Alpha	49,4	51.5	5.8		1.0		104	(62 - 134)
	Batch #:	0068099			Analysis Date:	03/19	5/10	

Laboratory Control Sample/LCS Duplicate Report

Radiochemistry

Client Lot ID:

F0C050563

Matrix:

WATER

					Total			Lab	Sample ID
Parameter		Spike Amount	Result		Uncert. (2 σ+/-)	% Yld	% Rec	QC Control Limits	Precision
Radium 226 by	EPA	903.0 MOD		pCi/L	903.0	MOD		F0C0	80000-053C
Radium (226)	Spk 2	11.3 11.3	10.8 11.2		0.92 0.96	107 103	96 100	(68 - 136) (68 - 136)	4 %RPD
•		Batch #:	0067053			Analysi:	s Date:	03/31/10	
Radium 228 by	GFPC	EPA 904 MOD		pCi/L	904 M	1OD		F0C0	80000-054C
Radium 228	Spk 2	6.37 6.37	6.86 7.48		0.82 0.88	100 94	108 117	(60 - 142) (60 - 142)	9 %RPD
		Batch #:	0067054			Analysi	s Date:	03/19/10	
SR-90 BY GFPC	EPA	-905 MOD		pCi/L	905 M	1OD		F0C0	80000-055C
Strontium 90	Spk 2	6.79 6.79	7.67 6.68		0.85 0.76	80 84	113 98	(80 - 130) (80 - 130)	14 %RPD
		Batch #:	0067055			Analysi	a Date:	03/17/10	

MATRIX SPIKE REPORT

Radiochemistry

Client Lot Id:

F0C020462

Matrix:

WATER

Date Sampled:

02/26/10

Date Received:

03/02/10

			m-+-1		m . (. 1	QC Sample	ı ID
Parameter	Spike Amount	Spike Result	Total Uncert. (2 ₀ +/-)	Spike Sample Yld. Result	OHCETC.	%YLD %REC	QC Control Limits
Gross Alpha/Beta EPA 900)		pCi/L	900.0 M)D	F0C020462	-001
Gross Alpha	49.4	47.1	5.5	2.1	1.2	91	(35 - 150)
	Batch #:	0068099	An	alysis Date:	03/14/10		
Gross Alpha/Beta EPA 900)		pCi/L	900.0 M	סס	F0C020462	-001
Gross Beta	68.0	74.2	6.2	1.50	0.79	107	(54 - 150)
	Batch #:	0068099	An	alysis Date:	03/14/10		
TRITIUM (Distill) by EPA	A 906.0 MO	D	pCi/L	906.0 M	ac	F0C020465	5-001
Tritium	4520	4260	450	130	92	92	(62 ~ 147)
	Batch #:	0067136	An	alysis Date:	03/09/10		

NOTE(S)

Calculations are performed before rounding to avoid round-off errors in calculated results.

Data are incomplete without the case narrative.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

Radiochemistry

Client Lot ID: F0B230452

Matrix:

WATER

Date Sampled:

02/20/10 1349

Date Received: 02/23/10 0910

				Total				Total	1	QC Samp	le ID
Parameter		Spike Amount	SPIKE Result	Uncert. (2 o+/-)	Spike Yld	SAMPLE Result		Uncert. (2 ₀ +/-)	% Yld	%Rec	QC Control Limits
Total Uranium	by KPA	ASTM 5		pCi/L		174-91			FC	B2304	52-001
Total Uranium		27.7	28.1	3.4		0.677	J	0,074		99	(62 ~ 150)
÷	Spk2	27.7	26.9	3.3		0.677	J	0.074 Precis	ion:	95 4	(62 - 150) %RPD
		Batc	h #: 0067296	Ana	alysis d	ate:	03/1	2/10			

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:

F0C050563

Matrix:

WATER

Date Sampled:

02/26/10

Date Received: 03/02/10

			Total				Total	Q	C Sample ID	
Parameter	SAMPL Resul	_	Uncert. (2 o +/-)	% Yld	DUPLICA Result	TE	Uncert. (2 g +/-)	% Yld	Precisi	lon
TRITIUM (Distill) by	y EPA	906.0 MC)D	pCi/L	906	0 MOD	•	F0	C020462-0)1
Tritium	49	υ	79		86	υ	84		55	%RPD
		Batch #:	0067136	(Sample)	0067	13 6 (Du	plicate)			
Gross Alpha/Beta EP	A 900			pCi/L	900	0 MOD		F0	C020462-0)1
Gross Alpha	2.1	J	1.2		1.89	J	0.97		9	%RPD
Gross Beta	1.50	J	0.79		1.52	J	0.70		1	%RPD
		Batch #:	0068099	(Sample)	0068	099 (Du	plicate)			
Gamma Cs-137 & Hits	by EP	A 901.1	MOD	pCi/L	901	1 MOD		F0	C050563-00)1
Cesium 137	0.0	υ	12		2.7	ซ	8.0		200	*RPD
Potassium 40	-80	U	3300		-90	U	3600		8	%RPD
		Batch #:	0067102	(Sample)	0067	10 2 (Du	plicate)			

NOTE(S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit. FOC050563

TestAme	erico Lot#	#(s): <u>F</u> C	ocoso	563	TestAmerica St.	Louis
THE LEADER IN ENVIRONM					-	
	JPON RECEIPT FORM					
Quote No:	85644					
COC/RFA No:	TTC0421	357				
Initiated By:	W	Date:	3.5	10	Time: 0845	
·	Shipp	ing Informa				
Shipper: (Fe	edEx UPS DHL Courier Clien	nt Other:		M	ultiple Packages: Y N	
Shipping # (s):*		•		Sample Ten	perature (s):**	
1. 4289	2133 5 18/p 6.	*		_ 1. <u>an</u>	chen 16.	
2.					7	
3.	8.	-M			8	
4	9,			4		
5	. 10,	<u> </u>		5	10	
: -	s correspond to Numbered Sample Temp lines	**Sample m variance doe	ust be receive s NOT affect	d at 4°C ± 2°C- If no the following: Meta	ot, note contents below. Temperature als-Liquid or Radiosts- Liquid or Solids	
	for yes, "N" for no and "N/A" for not applicable): Are there custody seals present on the	1 1	$\overline{}$			
1. (Y) N	cooler?	8. Y	(h)		ody seals present on bottles?	
2. Y N/A	Do custody seals on cooler appear to be tampered with?	9: Y	N N/A	tampered with		•
3. Y N	Were contents of cooler frisked after opening, but before unpacking?	10. Y	N (N/A)	Was sample re make note bel	eceived with proper pH'? (If not, ow)	
4. Y N	Sample received with Chain of Custody?	11.03	N	Sample receiv	ed in proper containers?	
5. (Y) N N/A	Does the Chain of Custody match sample ID's on the container(s)?	12. Y	N N/A	Headspace in (If Yes, note sam	VOA or TOX liquid samples? ple ID's below)	
6. YN	Was sample received broken?	13. (Y)-	N N/A	Was Internal	COC/Workshare received?	
7. (Y) N	Is sample volume sufficient for analysis?	14. Y	N N/A	· -	by original TestAmerica lab?	
For DOE-AL (Pantex, L. Notes:	ANL, Sandia) sites, pH of ALL containers received n	nust be verified	I, EXCEPT V	OA, TOX and soils.		
		<u> </u>				
			· · · · · · · · · · · · · · · · · · ·			
Corrective Action:	_			F'		
☐ Client Contact N☐ Sample(s) proce		Infor	med by:			
☐ Sample(s) on ho	ld until:	If released,	, notify:			
Project Management	They was			3-9-10		
THIS FORM MUST BE C THE INITIATOR, THEN	COMPLETED AT THE TIME THE ITEMS ARE BE THAT PERSON IS REQUIRED TO APPLY THEIR ADMIN-	R INITIAL AN	ID THE DAT	E NEXT TO THAT	LETED BY SOMEONE OTHER THAN ITEM. 4S\ST-LOUIS\ADMIN\Admin004 rev11.doc	

F0C050563

SUBCONTRACT ORDER TestAmerica Irvine

ITC0421

SENDING LABORATORY:

17461 Derian Avenue, Suite 100

Irvine, CA 92614

TestAmerica Irvine

Phone: (949) 261-1022 Fax: (949) 260-3297

500 mL Amber (R)

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

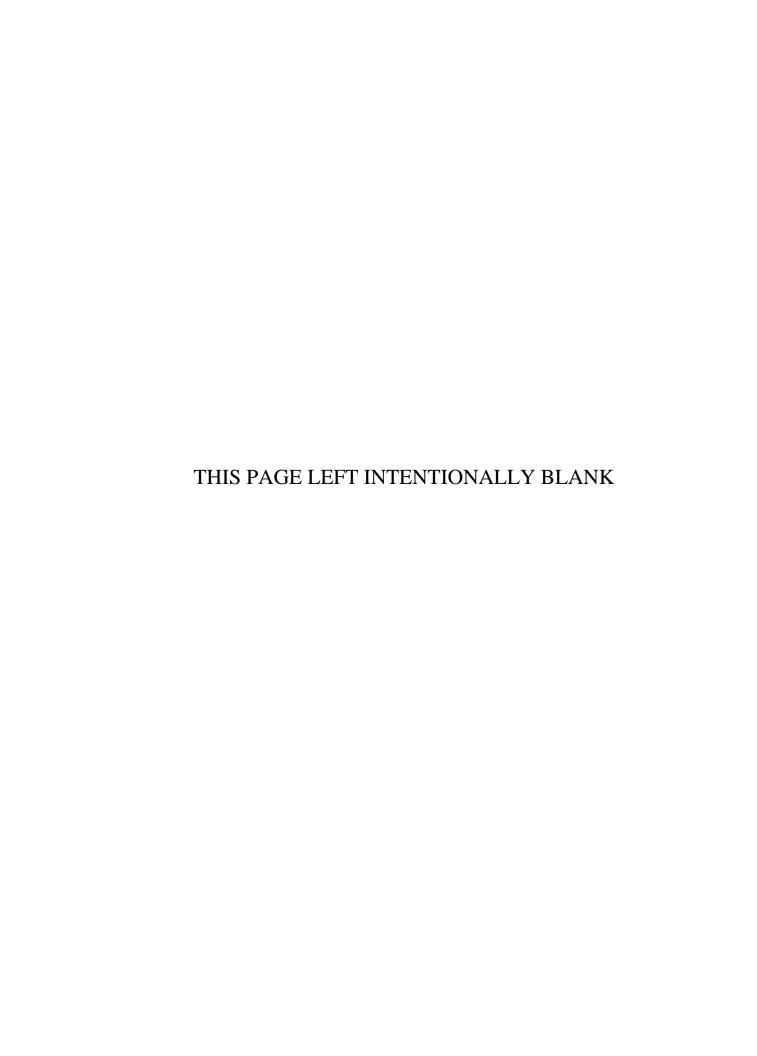
TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045 Phone :(314) 298-8566

Fax: (314) 298-8757

Project Location: CA - CALIFORNIA

Receipt Temperature: Ice: Y / N

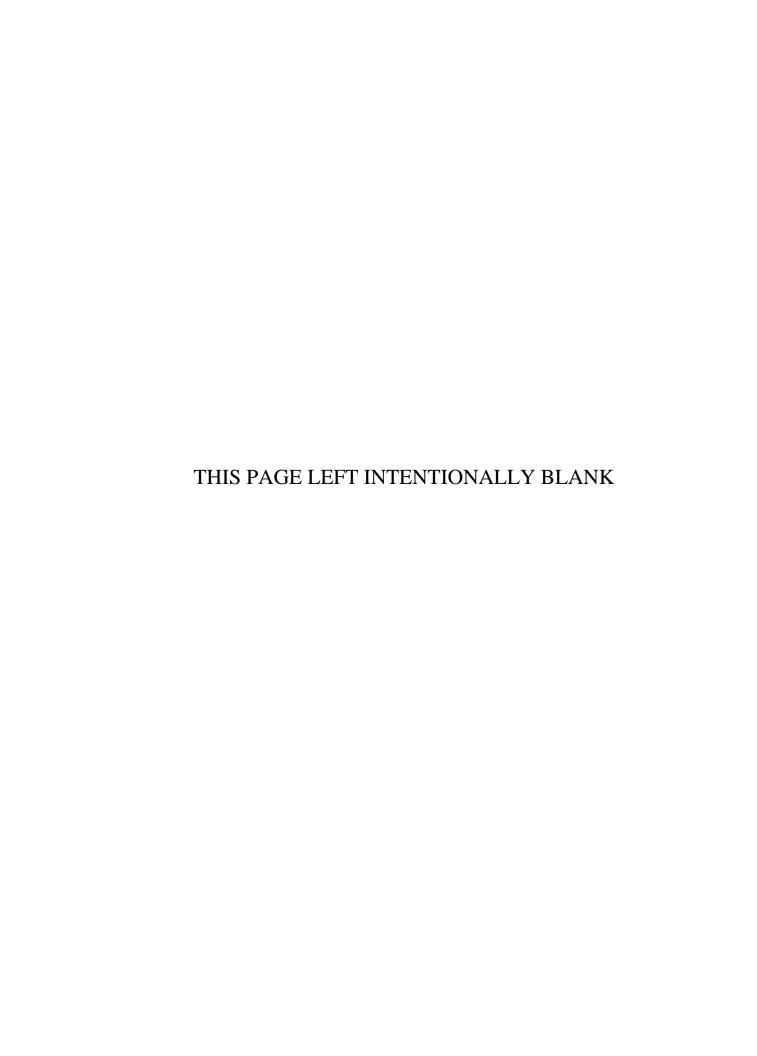
Analysis	Units	Due	Expires	Interlab Price Sur	ch	Comments
Sample ID: ITC0421-01 (Out	fall 018 - Wate	er)	Sampled	i: 03/03/10 13:05		
Gamma Spec-O	mg/kg	03/12/10	03/03/11 13:0		0%	Out St Louis, K-40 and CS-137 only, DO NOT FILTER!
Gross Alpha-O	pCi/L	03/12/10	08/30/10 13:08	5 \$90.00 50	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	03/12/10	08/30/10 13:0	5 \$90.00 50	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Level 4 Data Package - Out	N/A	03/12/10	03/31/10 13:08	5 \$0.00 0)%	Boeing, J flags
. Radium 226-O	pCi/L	03/12/10	03/03/11 13:06	5 \$88.00 0)%	Out St Louis, Boeing permit, DO NOT FILTER!
Radium 228-O	pCi/L	03/12/10	03/03/11 13:06	5 \$84.00 0)%	Out St Louis, Boeing permit, DO NOT FILTER!
Strontium 90-O	pCi/L	03/12/10	03/03/11 13:06	5 \$140.00 50	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	03/12/10	03/03/11 13:05	5 \$80.00 50	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	03/12/10	03/03/11 13:05	\$100.00 50	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Containers Supplied:						


Released By

2.5 gal Poly (S)

Date/Time

Received By


Page 1 of 1 13 of 13

APPENDIX G

Section 68

Outfall 018 - BMP Effectiveness March 2 - 4, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: BMP Effectiveness 2009

618 Michillinda Avenue, Suite 200 Effectiveness Monitoring Program

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 03/02/10-03/04/10

Received: 03/04/10 Issued: 03/17/10 07:34

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
ITC0584-01	018 EFF-1	Water
ITC0584-02	018 EFF-2	Water
ITC0584-03	018 EFF-3	Water

Reviewed By:

TestAmerica Irvine

Debby Wilson For Heather Clark Project Manager

Debby Wilson

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness 2009

Effectiveness Monitoring Program Sampled: 03/02/10-03/04/10

Report Number: ITC0584 Received: 03/04/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0584-01 (018 EFF-1 - W	ater)				Sample	ed: 03/02/	10		
Reporting Units: g/cc Density	Displacement	10C1826	N/A	NA	0.99	1	03/15/10	03/15/10	
Sample ID: ITC0584-02 (018 EFF-2 - W Reporting Units: g/cc	ater)				Sample	ed: 03/03/	10		
Density	Displacement	10C1826	N/A	NA	1.0	1	03/15/10	03/15/10	
Sample ID: ITC0584-03 (018 EFF-3 - W	ater)				Sample	ed: 03/04/	10		
Reporting Units: g/cc Density	Displacement	10C1826	N/A	NA	1.0	1	03/15/10	03/15/10	
Sample ID: ITC0584-01 (018 EFF-1 - W	ater)				Sample	ed: 03/02/	10		
Reporting Units: mg/l Sediment	ASTM D3977	10C1828	10	10	ND	1	03/15/10	03/15/10	
Sample ID: ITC0584-02 (018 EFF-2 - W	ater)				Sample	ed: 03/03/	10		
Reporting Units: mg/l Sediment	ASTM D3977	10C1828	10	10	ND	1	03/15/10	03/15/10	
Sample ID: ITC0584-03 (018 EFF-3 - W	ater)				Sample	ed: 03/04/	10		
Reporting Units: mg/l Sediment	ASTM D3977	10C1828	10	10	ND	1	03/15/10	03/15/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness 2009

Effectiveness Monitoring Program

Report Number: ITC0584

Sampled: 03/02/10-03/04/10

Received: 03/04/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C1826 Extracted: 03/1	5/10										
Duplicate Analyzed: 03/15/2010 (10C1826-DUP1)					Sou	rce: ITC	0583-01				
Density	0.996	NA	N/A	g/cc		0.996			0.05	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness 2009

Effectiveness Monitoring Program Sampled: 03/02/10-03/04/10

Report Number: ITC0584 Received: 03/04/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/02/10-03/04/10

MWH-Pasadena/Boeing Project ID: BMP Effectiveness 2009

618 Michillinda Avenue, Suite 200 Effectiveness Monitoring Program

Arcadia, CA 91007 Report Number: ITC0584 Received: 03/04/10

Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

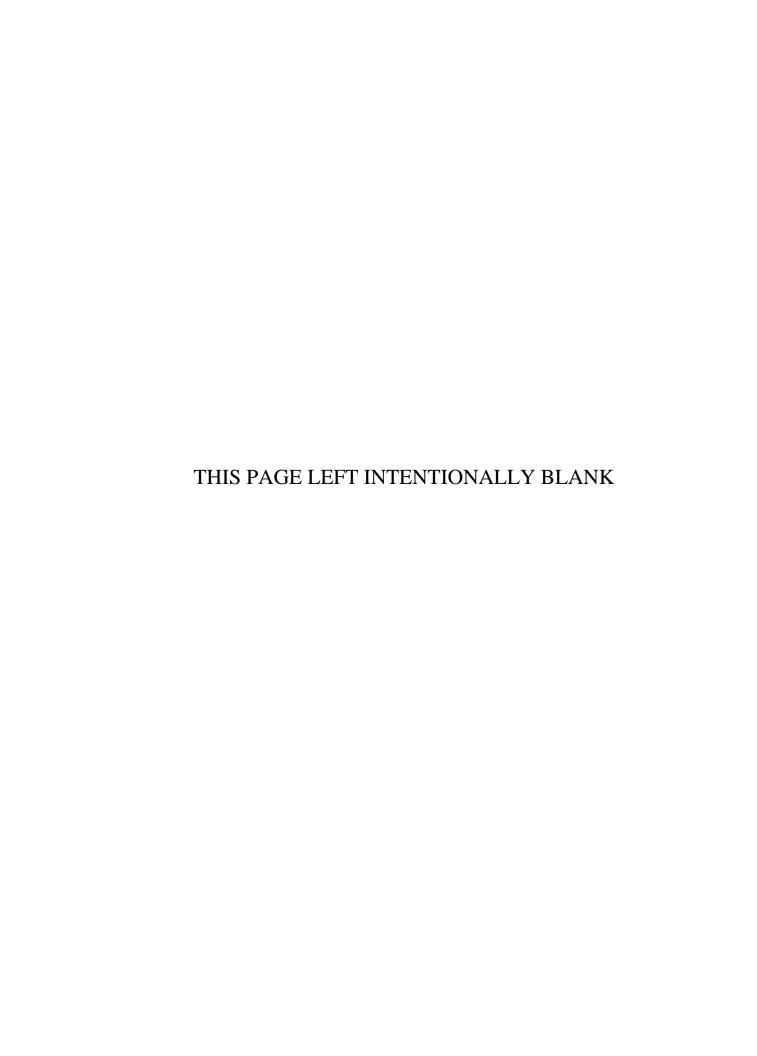
Displacement

Method	Matrix	Nelac	California
ASTM D3977	Water		

Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Test Ame	erica			CHAIN	OF CUS	STOL)Y FC	PRM					Page _1 of
Client Name/Address:				Project: Boei	ng BMP					t/	EQUIRED		
MWH-Pasa 618 Michillinda Pasadena, CA	Ave, Suit	te 200		Effectivenes Program	s Monitorin	g	STM-						TT(0584
Test America C	Contact: Jo	oe Doak					y art						1 1 ()
Project Mana	-	nwyn Kelly		Phone Numb (626) 568-66 Fax Number: (626) 568-65	91		Suspended Sediment Concentration (SSC, ASTM- D3977-1997)						Comments
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle *	Susp Conc D39						
018 EFF-1	W	500 mL Poly	1	3/2/10; 1450	None	1	Х						
018 EFF-2	W	500 mL Poly	1	3/3/10; 1445	None	2	X						
DIS EFF-3	W	500 mc poly	1_	3/4/10; 1420	none	3	X		-	_			
			ļ										
									 				
	 		 				 						
	 					ļ					+-		
			 				+		+ +		 		
			 			<u> </u>	+ +		+ +				
			1										100:45
													2/4/10/
													OTTO
			<u> </u>										VI VI
			ļ	<u> </u>		ļ							
			<u> </u>			_	-	_	-				
		 	 			7			 				
Relinguişhed By	-		⊥ Date/Tin	ne:	Received By	<u> </u>		Date	/Time:				Turn around Time: (check)
guyy	//K		40		le				4-10			1435	24 Hours 5 Days
Relingu/shed By	9	[Date/Tin	ne:	Received By				/Time:				48 Hours 10 Days
you	,		400		1	0			310	٠٠/١٠	, /	542	72 Hours Normal X
Relinquished By	-		Date/Tin		Received By			Date	/Time:				Perchiorate Only-72 Hours
													Metals Only 72 Hours 7.7 (
													Sample Integrity: (Check)


18/#

APPENDIX G

Section 69

Outfall 018 – March 6 & 7, 2010

MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITC0791

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES
SDG: ITC0791

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITC0791 Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub- Laboratory ID	Matrix	Collected	Method
Outfall 018 (COMPOSITE)	ITC0791-03	G0C090502- 001, F0C090512- 001	WATER	3/7/2010 7:00:00 AM	ASTM 5174-91, 180.1, 245.1, 245.1 (Diss), 1613B, 900.0 MOD, 901.1 MOD, 903.0 MOD, 904 MOD, 905 MOD, 906.0 MOD
Outfall 018 (GRAB)	ITC0791-01		WATER	3/6/2010 2:30:00 PM	120.1

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-St. Louis above the control limit at ambient temperature; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at TestAmercia-West Sacramento and TestAmerica-St. Louis. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Revision 0

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 9, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - O GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for approximately half of all target compounds. Most method blank results were reported as EMPCs; however, due to the extent of the method blank contamination, it was the reviewer's professional opinion that the EMPC results also be utilized to qualify sample results. All

sample detects except total PeCDD, which was not detected in the method blank, were qualified as nondetects, "U," at the levels of contamination.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of LCS results. The EMPCs qualified as nondetected for method blank contamination were not further qualified as EMPCs. Total PeCDD was comprised of a single EMPC peak, and was therefore qualified as an estimated nondetect, "UJ," at the level of the EMPC. Any detects reported below the EDL, or between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks Date Reviewed: April 8, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995

and all initial and continuing calibration recoveries were within 85-115%. The CRI recoveries were above the control limit; however, mercury was not detected in the site sample.

- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: April 13, 2010

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (10/04).

 Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.

 Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, the nondetected results for these analytes were qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Total Uranium was detected in the method blank at 0.315 pCi/L; therefore, total
 uranium detected in the sample was qualified as nondetected,"U," at the reporting limit.
 There were no other analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs (radium-226, radium-228, strontium-90) were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. A matrix spike analysis was performed on the sample in this SDG for tritium. The recovery was within the laboratory-established control limits. Method accuracy for the remaining analytes was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Any
 detects between the MDA and the reporting limit were qualified as estimated, "J," and

coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

The reviewer noted that the total uranium preparation log was not signed as having been reviewed. According to the case narrative, total uranium was analyzed at a dilution due to matrix interference.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 8, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^x Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1 and 180.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times were met.
- Calibration: Calibration criteria were met. The specific conductivity initial calibration r² value was ≥0.995 and all specific conductivity and turbidity continuing calibration recoveries were within 90-110%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer

was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITC0791

Analysis Metho	od ASTM	1 5174-	91					
Sample Name	Outfall 018 (0	COMPOS	ITE Matri	x Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Total Uranium	7440-61-1	ND	1.39	0.43	pCi/L	Jb	U	В
Analysis Metho	od EPA	120.1						
Sample Name	Outfall 018 (GRAB)	Matri	x Type:	Water	V	Validation Le	vel: IV
Lab Sample Name:	ITC0791-01	Sam	ple Date:	3/6/2010	2:30:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Specific Conductance	NA	490	1.0	1.0	umhos/c			result, RL and DL changed to match Form I
Analysis Metho	od EPA	180.1						
Sample Name	Outfall 018 (0	COMPOS	ITE Matri	x Type:	Water	1	Validation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Turbidity	Turb	0.39	1.0	0.040	NTU	Ja	J	DNQ
Analysis Metho	od EPA	245.1						
Sample Name	Outfall 018 (0	COMPOS	ITE Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA	245.1-L	<i>Diss</i>					
Sample Name	Outfall 018 (0	COMPOS	ITE Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	

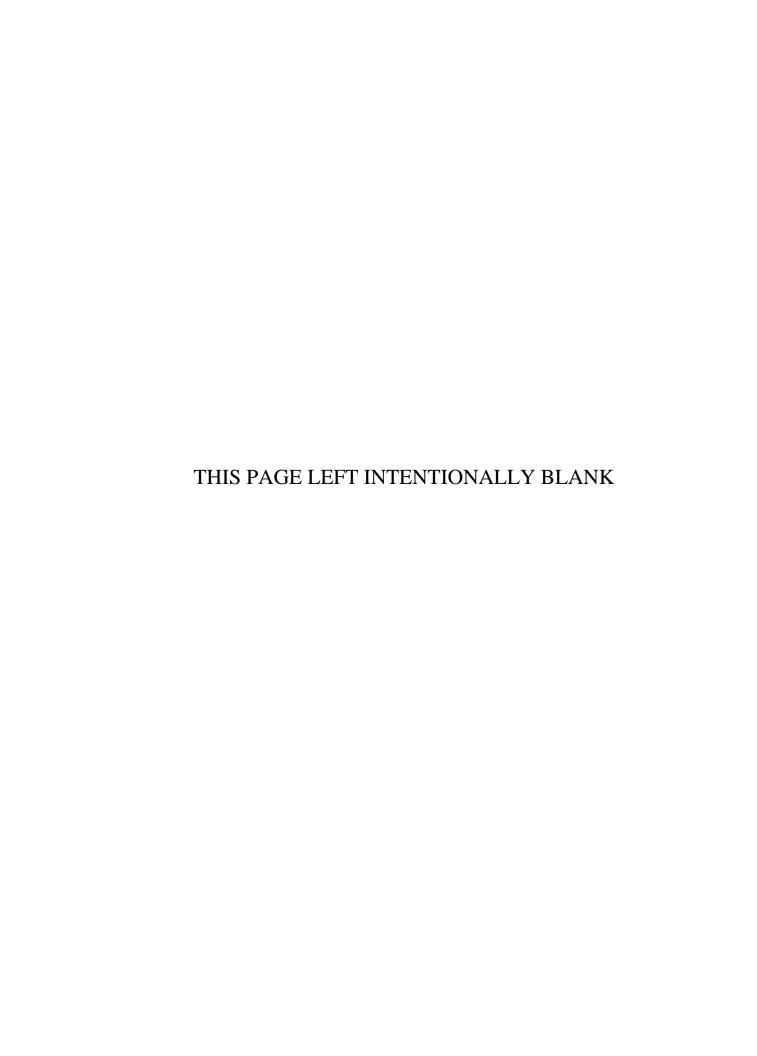
Thursday, April 15, 2010 Page 1 of 3

Analysis Method EPA 900.0 MOD

Sample Name	Outfall 018 (C	COMPOS	TE Matri	x Type:	WATER	7	alidation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587-46-1	0.6	3	2	pCi/L	U	UJ	C
Gross Beta	12587-47-2	4.5	4	2.1	pCi/L			
Analysis Metho	od EPA 9	901.1 N	10D					
Sample Name	Outfall 018 (C	OMPOS	TE Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium 137	10045-97-3	3.8	20	14	pCi/L	U	U	
Potassium 40	13966-00-2	-90	0	200	pCi/L	U	U	
Analysis Metho	od EPA 9	903.0 N	10D					
Sample Name	Outfall 018 (C	COMPOS	TE Matri	x Type:	WATER	7	alidation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium (226)	13982-63-3	0.058	1	0.066	pCi/L	U	UJ	C
Analysis Metho	od EPA 9	904 MC	DD					
Sample Name	Outfall 018 (C	COMPOS	TE Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010	7:00:00 AM			
A a l4 a	CAS No	Result	RL	MDL	Result	Lab	Validation	Validation
Analyte	CASINO	Value			Units	Qualifier	Qualifier	Notes
Analyte Radium 228	15262-20-1		1	0.61	Units pCi/L	Qualifier U	Qualifier U	Notes
	15262-20-1	Value		0.61				Notes
Radium 228	15262-20-1	0.37 005 MC)D			U		
Radium 228 Analysis Metho	15262-20-1 od EPA 9	0.37 0.05 MC)D	x Type:	pCi/L	U	U	
Radium 228 Analysis Metho Sample Name	15262-20-1 od EPA 9 Outfall 018 (C	0.37 0.05 MC	OD ITE Matri	x Type:	pCi/L WATER	U	U	vel: IV

Thursday, April 15, 2010 Page 2 of 3

Analysis Method EPA 906.0 MOD


Sample Name	Outfall 018 (C	COMPOS	WATER	7	Validation Le	vel: IV		
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010 7	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028-17-8	-17	500	150	pCi/L	U	U	
Analysis Metho	od EPA-S	5 16131	В					
Sample Name	Outfall 018 (C	COMPOS	TE Matri	x Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITC0791-03	Sam	ple Date:	3/7/2010 7	7:00:00 AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	2e-006	0.0000014	ug/L	J, Q, Ba	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	6.4e-007	0.0000009	ug/L	J, Q, Ba	U	В
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000015	ug/L		U	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000011	ug/L		U	
,2,3,4,7,8-HxCDF	70648-26-9	ND	6.6e-007	0.0000001	ug/L	J, Q, Ba	U	В
,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.000001	ug/L		U	
,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000001	ug/L		U	
,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000008	ug/L		U	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000001	ug/L		U	
,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000008	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000005	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000001	ug/L		U	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000005	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000006	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000004	ug/L		U	
OCDD	3268-87-9	ND	0.0001	0.0000021	ug/L	J, Ba	U	В
OCDF	39001-02-0	ND	0.0001	0.0000016	ug/L		U	
Total HpCDD	37871-00-4	ND	4.8e-006	0.0000014	ug/L	J, Q, Ba	U	В
Total HpCDF	38998-75-3	ND	6.4e-007	0.0000009	ug/L	J, Q, Ba	U	В
Total HxCDD	34465-46-8	ND	0.00005	0.0000008	ug/L		U	
Total HxCDF	55684-94-1	ND	6.6e-007	0.0000001	ug/L	J, Q, Ba	U	В
Total PeCDD	36088-22-9	ND	1.8e-006	0.0000008	ug/L	J, Q	UJ	*III
Γotal PeCDF	30402-15-4	ND	0.00005	0.0000004	ug/L		U	
Total TCDD	41903-57-5	ND	0.00001	0.0000006	ug/L		U	
Total TCDF	55722-27-5	ND	0.00001	0.0000004	ug/L		U	

Thursday, April 15, 2010 Page 3 of 3

APPENDIX G

Section 70

Outfall 018 – March 6 & 7, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 03/06/10-03/07/10

Received: 03/08/10 Revised: 04/16/10 17:27

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

There are no other anomalies associated with this project.

Revised report to provide corrected units and results for Conductivity. Form 1 results reported correctly.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 03/06/10-03/07/10

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

LABORATORY ID CLIENT ID MATRIX

ITC0791-01Outfall 018 (GRAB)WaterITC0791-02Trip BlanksWaterITC0791-03Outfall 018 (COMPOSITE)Water

Reviewed By:

TestAmerica Irvine

Kathleen A. Robb For Heather Clark

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Sampled: 03/06/10-03/07/10 Received: 03/08/10

Arcadia, CA 91007

Report Number: ITC0791

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-01 (Outfall 018 (GRA	018 (GRAB) - Water) Sampled: 03/06/10								
Reporting Units: ug/l					•				
Benzene	EPA 624	10C1689	0.28	0.50	ND	1	03/14/10	03/14/10	
Carbon tetrachloride	EPA 624	10C1689	0.28	0.50	ND	1	03/14/10	03/14/10	
Chloroform	EPA 624	10C1689	0.33	0.50	ND	1	03/14/10	03/14/10	
1,1-Dichloroethane	EPA 624	10C1689	0.40	0.50	ND	1	03/14/10	03/14/10	
1,2-Dichloroethane	EPA 624	10C1689	0.28	0.50	ND	1	03/14/10	03/14/10	
1,1-Dichloroethene	EPA 624	10C1689	0.42	0.50	ND	1	03/14/10	03/14/10	
Ethylbenzene	EPA 624	10C1689	0.25	0.50	ND	1	03/14/10	03/14/10	
Tetrachloroethene	EPA 624	10C1689	0.32	0.50	ND	1	03/14/10	03/14/10	
Toluene	EPA 624	10C1689	0.36	0.50	ND	1	03/14/10	03/14/10	
1,1,1-Trichloroethane	EPA 624	10C1689	0.30	0.50	ND	1	03/14/10	03/14/10	
1,1,2-Trichloroethane	EPA 624	10C1689	0.30	0.50	ND	1	03/14/10	03/14/10	
Trichloroethene	EPA 624	10C1689	0.26	0.50	ND	1	03/14/10	03/14/10	
Trichlorofluoromethane	EPA 624	10C1689	0.34	0.50	ND	1	03/14/10	03/14/10	
Vinyl chloride	EPA 624	10C1689	0.40	0.50	ND	1	03/14/10	03/14/10	
Xylenes, Total	EPA 624	10C1689	0.90	1.5	ND	1	03/14/10	03/14/10	
Surrogate: 4-Bromofluorobenzene (80-120%)	<i>6)</i>				96 %				
Surrogate: Dibromofluoromethane (80-1209)	6)				111 %				
Surrogate: Toluene-d8 (80-120%)					108 %				
Sample ID: ITC0791-02 (Trip Blanks - Wa	iter)				Sample	ed: 03/06/1	10		
Reporting Units: ug/l									
Benzene	EPA 624	10C1689	0.28	0.50	ND	1	03/14/10	03/14/10	
Carbon tetrachloride	EPA 624	10C1689	0.28	0.50	ND	1	03/14/10	03/14/10	
Chloroform	EPA 624	10C1689	0.33	0.50	ND	1	03/14/10	03/14/10	
1,1-Dichloroethane	EPA 624	10C1689	0.40	0.50	ND	1	03/14/10	03/14/10	
1,2-Dichloroethane	EPA 624	10C1689	0.28	0.50	ND	1	03/14/10	03/14/10	
1,1-Dichloroethene	EPA 624	10C1689	0.42	0.50	ND	1	03/14/10	03/14/10	
Ethylbenzene	EPA 624	10C1689	0.25	0.50	ND	1	03/14/10	03/14/10	
Tetrachloroethene	EPA 624	10C1689	0.32	0.50	ND	1	03/14/10	03/14/10	
Toluene	EPA 624	10C1689	0.36	0.50	ND	1	03/14/10	03/14/10	
1,1,1-Trichloroethane	EPA 624	10C1689	0.30	0.50	ND	1	03/14/10	03/14/10	
1,1,2-Trichloroethane	EPA 624	10C1689	0.30	0.50	ND	1	03/14/10	03/14/10	
Trichloroethene	EPA 624	10C1689	0.26	0.50	ND	1	03/14/10	03/14/10	
Trichlorofluoromethane	EPA 624	10C1689	0.34	0.50	ND	1	03/14/10	03/14/10	
Vinyl chloride	EPA 624	10C1689	0.40	0.50	ND	1	03/14/10	03/14/10	
Xylenes, Total	EPA 624	10C1689	0.90	1.5	ND	1	03/14/10	03/14/10	
Surrogate: 4-Bromofluorobenzene (80-120%)	<i>6)</i>				97 %				
Surrogate: Dibromofluoromethane (80-1209	<i>(</i> 0 <i>)</i>				107 %				
Surrogate: Toluene-d8 (80-120%)					107 %				

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

Project ID: Routine Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018 (COMPOSITE) - Water)					Sample	ed: 03/07/1	10	·	
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	10C1114	1.6	4.8	ND	0.952	03/09/10	03/11/10	
2,4-Dinitrotoluene	EPA 625	10C1114	0.19	8.6	ND	0.952	03/09/10	03/11/10	
N-Nitrosodimethylamine	EPA 625	10C1114	0.095	7.6	ND	0.952	03/09/10	03/11/10	
Pentachlorophenol	EPA 625	10C1114	0.095	7.6	ND	0.952	03/09/10	03/11/10	
2,4,6-Trichlorophenol	EPA 625	10C1114	0.095	5.7	ND	0.952	03/09/10	03/11/10	
Surrogate: 2,4,6-Tribromophenol (40-120%)					92 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					81 %				
Surrogate: 2-Fluorophenol (30-120%)					69 %				
Surrogate: Nitrobenzene-d5 (45-120%)					77 %				
Surrogate: Phenol-d6 (35-120%)					71 %				
Surrogate: Terphenyl-d14 (50-125%)					87 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

rasadena/Boeing Project ID:

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Report Number: ITC0791

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Received: 03/08/10

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018 (COMPOSITE) - Water) Sampled: 03/07/10									
Reporting Units: ug/l									
alpha-BHC	EPA 608	10C1222	0.0024	0.0094	ND	0.943	03/10/10	03/12/10	
Surrogate: Decachlorobiphenyl (45-120%)					93 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					56 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-01 (Outfall 018 (Sample	ed: 03/06/1	0			
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	10C1956	1.3	4.7	ND	1	03/16/10	03/16/10	
Grease)									

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018 (COMPOSITE) - Water)					Sample	ed: 03/07/1	10		
Reporting Units: mg/l Iron	EPA 200.7	10C1395	0.015	0.040	0.17	1	03/11/10	03/17/10	
Sample ID: ITC0791-03 (Outfall 018 (COMPOSITE) - Water)				Sampled: 03/07/10					
Reporting Units: ug/l									
Mercury	EPA 245.1	10C2010	0.10	0.20	ND	1	03/16/10	03/16/10	
Manganese	EPA 200.7	10C1395	7.0	20	9.7	1	03/11/10	03/17/10	Ja
Cadmium	EPA 200.8	10C1320	0.10	1.0	ND	1	03/10/10	03/12/10	
Copper	EPA 200.8	10C1320	0.50	2.0	1.4	1	03/10/10	03/11/10	Ja
Lead	EPA 200.8	10C1320	0.20	1.0	0.23	1	03/10/10	03/11/10	Ja
Selenium	EPA 200.8	10C1320	0.50	2.0	0.54	1	03/10/10	03/11/10	Ja
Zinc	EPA 200.8	10C1320	5.0	20	ND	1	03/10/10	03/11/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018 (COMPOSITE) - Water)					Sample	ed: 03/07/1	10		
Reporting Units: mg/l Iron	EPA 200.7-Diss	10C1739	0.015	0.040	ND	1	03/14/10	03/17/10	
Sample ID: ITC0791-03 (Outfall 018 (C	COMPOSITE) - Wat	er)			Sample	ed: 03/07/1	10		
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	10C2011	0.10	0.20	ND	1	03/16/10	03/16/10	
Manganese	EPA 200.7-Diss	10C1739	7.0	20	19	1	03/14/10	03/17/10	Ja
Cadmium	EPA 200.8-Diss	10C1740	0.10	1.0	ND	1	03/14/10	03/16/10	
Copper	EPA 200.8-Diss	10C1740	0.50	2.0	2.6	1	03/14/10	03/16/10	В
Lead	EPA 200.8-Diss	10C1740	0.20	1.0	ND	1	03/14/10	03/16/10	
Selenium	EPA 200.8-Diss	10C1740	0.50	2.0	ND	1	03/14/10	03/16/10	
Zinc	EPA 200.8-Diss	10C1740	5.0	20	6.7	1	03/14/10	03/16/10	Ja

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID:

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0791

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Received: 03/08/10

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018	(COMPOSITE) - Wat	er)			Sample	ed: 03/07/1	10		
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	10C1299	0.50	0.50	ND	1	03/10/10	03/10/10	
Biochemical Oxygen Demand	SM5210B	10C0996	0.50	2.0	0.50	1	03/08/10	03/13/10	Ja
Chloride	EPA 300.0	10C0921	0.25	0.50	15	1	03/08/10	03/08/10	
Nitrate-N	EPA 300.0	10C0921	0.060	0.11	ND	1	03/08/10	03/08/10	
Nitrite-N	EPA 300.0	10C0921	0.090	0.15	ND	1	03/08/10	03/08/10	
Nitrate/Nitrite-N	EPA 300.0	10C0921	0.15	0.26	ND	1	03/08/10	03/08/10	
Sulfate	EPA 300.0	10C0921	4.0	10	160	20	03/08/10	03/08/10	
Surfactants (MBAS)	SM5540-C	10C0982	0.050	0.10	0.074	1	03/08/10	03/08/10	Ja
Total Dissolved Solids	SM2540C	10C1348	1.0	10	370	1	03/11/10	03/11/10	
Total Suspended Solids	SM 2540D	10C1462	1.0	10	ND	1	03/11/10	03/11/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITC0791-01 (Outfall 018 (GR	RAB) - Water)				Sample	ed: 03/06/1	10			
Reporting Units: ml/l Total Settleable Solids	SM2540F	10C0938	0.10	0.10	ND	1	03/08/10	03/08/10		
Sample ID: ITC0791-03 (Outfall 018 (CC) Reporting Units: NTU	OMPOSITE) - Wa	ter)			Sample	d: 03/07/1	10			
Turbidity	EPA 180.1	10C0939	0.040	1.0	0.39	1	03/08/10	03/08/10	Ja	
Sample ID: ITC0791-01 (Outfall 018 (GR	RAB) - Water)				Sampled: 03/06/10					
Reporting Units: ug/l Total Cyanide	SM4500CN-E	10C1460	2.2	5.0	ND	1	03/11/10	03/11/10		
Sample ID: ITC0791-03 (Outfall 018 (CO	OMPOSITE) - Wa	ter)			Sample	ed: 03/07/1	10			
Reporting Units: ug/l Perchlorate	EPA 314.0	10C1095	0.90	4.0	ND	1	03/09/10	03/10/10		
Sample ID: ITC0791-01 (Outfall 018 (GR	RAB) - Water)				Sample	d: 03/06/1	10			
Reporting Units: umhos/cm @ 25C Specific Conductance	EPA 120.1	10C1346	1.0	1.0	490	1	03/11/10	03/11/10		

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Troject ID.

Report Number: ITC0791

Sampled: 03/06/10-03/07/10

Received: 03/08/10

EPA-5 1613B

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018 (Co	OMPOSITE) - Wat	er)			Sample	d: 03/07/1	10		
Reporting Units: ug/L	· · · · · · · · · · · · · · · · · · ·	,			Sample	u. 05/0///			
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	76166	0.0000014	0.00005	2e-006	0.95	03/17/10	03/19/10	J, Q, Ba
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	76166			6.4e-007	0.95	03/17/10	03/19/10	J, Q, Ba
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	76166			ND	0.95	03/17/10	03/19/10	, 0
1,2,3,4,7,8-HxCDD	EPA-5 1613B	76166			ND	0.95	03/17/10	03/19/10	
1,2,3,4,7,8-HxCDF	EPA-5 1613B	76166	0.0000001	3 0.00005	6.6e-007	0.95	03/17/10	03/19/10	J, Q, Ba
1,2,3,6,7,8-HxCDD	EPA-5 1613B	76166	0.000001	0.00005	ND	0.95	03/17/10	03/19/10	
1,2,3,6,7,8-HxCDF	EPA-5 1613B	76166	0.0000001	3 0.00005	ND	0.95	03/17/10	03/19/10	
1,2,3,7,8,9-HxCDD	EPA-5 1613B	76166	0.0000008	8 0.00005	ND	0.95	03/17/10	03/19/10	
1,2,3,7,8,9-HxCDF	EPA-5 1613B	76166	0.0000001	6 0.00005	ND	0.95	03/17/10	03/19/10	
1,2,3,7,8-PeCDD	EPA-5 1613B	76166	0.0000008	3 0.00005	ND	0.95	03/17/10	03/19/10	
1,2,3,7,8-PeCDF	EPA-5 1613B	76166	0.0000005	6 0.00005	ND	0.95	03/17/10	03/19/10	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	76166	0.0000001	1 0.00005	ND	0.95	03/17/10	03/19/10	
2,3,4,7,8-PeCDF	EPA-5 1613B	76166	0.0000005	8 0.00005	ND	0.95	03/17/10	03/19/10	
2,3,7,8-TCDD	EPA-5 1613B	76166	0.0000006	0.00001	ND	0.95	03/17/10	03/19/10	
2,3,7,8-TCDF	EPA-5 1613B	76166	0.0000004	2 0.00001	ND	0.95	03/17/10	03/19/10	
OCDD	EPA-5 1613B	76166	0.0000021	0.0001	1.9e-005	0.95	03/17/10	03/19/10	J, Ba
OCDF	EPA-5 1613B	76166	0.0000016	0.0001	ND	0.95	03/17/10	03/19/10	
Total HpCDD	EPA-5 1613B	76166	0.0000014	0.00005	4.8e-006	0.95	03/17/10	03/19/10	J, Q, Ba
Total HpCDF	EPA-5 1613B	76166	0.0000009	4 0.00005	6.4e-007	0.95	03/17/10	03/19/10	J, Q, Ba
Total HxCDD	EPA-5 1613B	76166	0.0000008	8 0.00005	ND	0.95	03/17/10	03/19/10	
Total HxCDF	EPA-5 1613B	76166	0.0000001	1 0.00005	6.6e-007	0.95	03/17/10	03/19/10	J, Q, Ba
Total PeCDD	EPA-5 1613B	76166	0.0000008	3 0.00005	1.8e-006	0.95	03/17/10	03/19/10	J, Q
Total PeCDF	EPA-5 1613B	76166	0.0000004	9 0.00005	ND	0.95	03/17/10	03/19/10	
Total TCDD	EPA-5 1613B	76166	0.0000006	0.00001	ND	0.95	03/17/10	03/19/10	
Total TCDF	EPA-5 1613B	76166	0.0000004	2 0.00001	ND	0.95	03/17/10	03/19/10	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23	-140%)				80 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28	-143%)				81 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26	-138%)				71 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-1	41%)				71 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1					70 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-1					72 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1	· · · · · · · · · · · · · · · · · · ·				68 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1					67 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18)	,				63 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-185					64 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1					69 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-178					64 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164%)					63 %				
Surrogate: 13C-2,3,7,8-TCDF (24-169%)					67 %				
Surrogate: 13C-OCDD (17-157%)					33 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-1979)	%)				89 %				

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

ASTM 5174-91

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018 (COMPOSITE) - Water)					Sample	ed: 03/07/1	10		
Reporting Units: pCi/L Total Uranium	ASTM 5174-91	67296	0.43	1.39	0.673	1	03/10/10	03/12/10	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: ITC0791

Sampled: 03/06/10-03/07/10

Received: 03/08/10

EPA 900.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018 (COMPOSITE) - Water)					Sample	d: 03/07/1	10		
Reporting Units: pCi/L									
Gross Alpha	EPA 900.0 MOD	70220	2	3	0.6	1	03/11/10	03/14/10	U
Gross Beta	EPA 900.0 MOD	70220	2.1	4	4.5	1	03/11/10	03/14/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

EPA 901.1 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 01			Sample	ed: 03/07/1	10				
Reporting Units: pCi/L									
Cesium 137	EPA 901.1 MOD	69127	14	20	3.8	1	03/10/10	03/20/10	U
Potassium 40	EPA 901.1 MOD	69127	200	NA	-90	1	03/10/10	03/20/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Report Number: ITC0791 Received: 03/08/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

EPA 903.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018 (COMPOSITE) - Water)					Sample	ed: 03/07/1	10		
Reporting Units: pCi/L Radium (226)	EPA 903.0 MOD	69101	0.066	1	0.058	1	03/10/10	04/02/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Report Number: ITC0791

Arcadia, CA 91007 Attention: Bronwyn Kelly Received: 03/08/10

Sampled: 03/06/10-03/07/10

EPA 904 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018	er)			Sample	ed: 03/07/1	10			
Reporting Units: pCi/L									
Radium 228	EPA 904 MOD	69102	0.61	1	0.37	1	03/10/10	03/19/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Report Number: ITC0791

Arcadia, CA 91007 Attention: Bronwyn Kelly Received: 03/08/10

EPA 905 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 018			Sample	ed: 03/07/1	10				
Reporting Units: pCi/L									
Strontium 90	EPA 905 MOD	69104	0.51	3	0.61	1	03/10/10	03/20/10	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

(10 Minhillim da A...... C..... 200

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Report Number: ITC0791

Sampled: 03/06/10-03/07/10

Received: 03/08/10

Attention: Bronwyn Kelly

EPA 906.0 MOD

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0791-03 (Outfall 01			Sample	ed: 03/07/1	10				
Reporting Units: pCi/L Tritium	EPA 906.0 MOD	77060	150	500	-17	1	03/18/10	03/23/10	U

Project ID: Routine Outfall 018

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 018 (GRAB) (ITC0791-0	Hold Time (in days) 1) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
SM2540F	2	03/06/2010 14:30	03/08/2010 03:45	03/08/2010 09:40	03/08/2010 09:40
Sample ID: Outfall 018 (COMPOSITE) (ITC	C0791-03) - Wat	ter			
EPA 180.1	2	03/07/2010 07:00	03/08/2010 03:45	03/08/2010 12:30	03/08/2010 12:30
EPA 300.0	2	03/07/2010 07:00	03/08/2010 03:45	03/08/2010 14:00	03/08/2010 14:11
Filtration	1	03/07/2010 07:00	03/08/2010 03:45	03/08/2010 16:42	03/08/2010 16:43
SM5210B	2	03/07/2010 07:00	03/08/2010 03:45	03/08/2010 19:35	03/13/2010 06:00
SM5540-C	2	03/07/2010 07:00	03/08/2010 03:45	03/08/2010 19:29	03/08/2010 20:20

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10C1689 Extracted: 03/14/10		2	.,,,,,	0 11105	20,01	1100411	, , , ,	234445			Quantities
Batch. 10C1007 Extracted. 05/14/10	<u>o</u>										
Blank Analyzed: 03/14/2010 (10C1689-E	BLK1)										
Benzene	ND	0.50	0.28	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
1,1-Dichloroethane	ND	0.50	0.40	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.0	1.1	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.40	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Cyclohexane	ND	1.0	0.40	ug/l							
Surrogate: 4-Bromofluorobenzene	24.5			ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	26.0			ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	26.9			ug/l	25.0		108	80-120			
LCS Analyzed: 03/14/2010 (10C1689-BS	S1)										
Benzene	24.8	0.50	0.28	ug/l	25.0		99	70-120			
Carbon tetrachloride	25.7	0.50	0.28	ug/l	25.0		103	65-140			
Chloroform	26.6	0.50	0.33	ug/l	25.0		106	70-130			
1,1-Dichloroethane	27.0	0.50	0.40	ug/l	25.0		108	70-125			
1,2-Dichloroethane	27.3	0.50	0.28	ug/l	25.0		109	60-140			
1,1-Dichloroethene	25.6	0.50	0.42	ug/l	25.0		102	70-125			
Ethylbenzene	26.1	0.50	0.25	ug/l	25.0		104	75-125			
Tetrachloroethene	24.3	0.50	0.32	ug/l	25.0		97	70-125			
Toluene	26.9	0.50	0.36	ug/l	25.0		108	70-120			
1,1,1-Trichloroethane	26.3	0.50	0.30	ug/l	25.0		105	65-135			
1,1,2-Trichloroethane	27.1	0.50	0.30	ug/l	25.0		108	70-125			
Trichloroethene	25.9	0.50	0.26	ug/l	25.0		104	70-125			
Trichlorofluoromethane	26.9	0.50	0.34	ug/l	25.0		108	65-145			
T				J							

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers	
·		Limit	IDE	Cints	Ecver	resure	, une	Limits	IXI D	Limit	Quantities	
Batch: 10C1689 Extracted: 03/14/10	<u>) </u>											
LCS Analyzed: 03/14/2010 (10C1689-BS	1)											
Vinyl chloride	25.6	0.50	0.40	ug/l	25.0		102	55-135				
Xylenes, Total	81.3	1.5	0.90	ug/l	75.0		108	70-125				
Surrogate: 4-Bromofluorobenzene	27.9		***	ug/l	25.0		111	80-120				
Surrogate: Dibromofluoromethane	27.7			ug/l	25.0		111	80-120				
Surrogate: Toluene-d8	27.1			ug/l	25.0		108	80-120				
Matrix Spike Analyzed: 03/14/2010 (10C	1689-MS1)				Sou	rce: ITC	0791-01					
Benzene	25.0	0.50	0.28	ug/l	25.0	ND	100	65-125				
Carbon tetrachloride	25.6	0.50	0.28	ug/l	25.0	ND	102	65-140				
Chloroform	26.6	0.50	0.33	ug/l	25.0	ND	106	65-135				
1,1-Dichloroethane	27.0	0.50	0.40	ug/l	25.0	ND	108	65-130				
1,2-Dichloroethane	26.2	0.50	0.28	ug/l	25.0	ND	105	60-140				
1,1-Dichloroethene	25.1	0.50	0.42	ug/l	25.0	ND	100	60-130				
Ethylbenzene	25.9	0.50	0.25	ug/l	25.0	ND	104	65-130				
Tetrachloroethene	23.8	0.50	0.32	ug/l	25.0	ND	95	65-130				
Toluene	26.6	0.50	0.36	ug/l	25.0	ND	106	70-125				
1,1,1-Trichloroethane	26.3	0.50	0.30	ug/l	25.0	ND	105	65-140				
1,1,2-Trichloroethane	25.0	0.50	0.30	ug/l	25.0	ND	100	65-130				
Trichloroethene	25.5	0.50	0.26	ug/l	25.0	ND	102	65-125				
Trichlorofluoromethane	26.6	0.50	0.34	ug/l	25.0	ND	106	60-145				
Vinyl chloride	25.7	0.50	0.40	ug/l	25.0	ND	103	45-140				
Xylenes, Total	79.3	1.5	0.90	ug/l	75.0	ND	106	60-130				
Surrogate: 4-Bromofluorobenzene	27.4			ug/l	25.0		110	80-120				
Surrogate: Dibromofluoromethane	27.8			ug/l	25.0		111	80-120				
Surrogate: Toluene-d8	26.8			ug/l	25.0		107	80-120				
Matrix Spike Dup Analyzed: 03/14/2010 (10C1689-MSD1)					Source: ITC0791-01							
Benzene	25.4	0.50	0.28	ug/l	25.0	ND	102	65-125	1	20		
Carbon tetrachloride	26.0	0.50	0.28	ug/l	25.0	ND	104	65-140	2	25		
Chloroform	26.6	0.50	0.33	ug/l	25.0	ND	106	65-135	0.2	20		
1,1-Dichloroethane	27.7	0.50	0.40	ug/l	25.0	ND	111	65-130	3	20		
1,2-Dichloroethane	27.2	0.50	0.28	ug/l	25.0	ND	109	60-140	4	20		
1,1-Dichloroethene	25.3	0.50	0.42	ug/l	25.0	ND	101	60-130	1	20		
Ethylbenzene	26.0	0.50	0.25	ug/l	25.0	ND	104	65-130	0.5	20		
Tetrachloroethene	24.2	0.50	0.32	ug/l	25.0	ND	97	65-130	1	20		
Toluene	27.3	0.50	0.36	ug/l	25.0	ND	109	70-125	3	20		

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C1689 Extracted: 03/14/10	<u>) </u>										
Matrix Spike Dup Analyzed: 03/14/2010 (10C1689-MSD1)					Source: ITC0791-01						
1,1,1-Trichloroethane	26.4	0.50	0.30	ug/l	25.0	ND	106	65-140	0.6	20	
1,1,2-Trichloroethane	26.3	0.50	0.30	ug/l	25.0	ND	105	65-130	5	25	
Trichloroethene	26.2	0.50	0.26	ug/l	25.0	ND	105	65-125	2	20	
Trichlorofluoromethane	26.6	0.50	0.34	ug/l	25.0	ND	106	60-145	0.2	25	
Vinyl chloride	24.3	0.50	0.40	ug/l	25.0	ND	97	45-140	5	30	
Xylenes, Total	79.5	1.5	0.90	ug/l	75.0	ND	106	60-130	0.2	20	
Surrogate: 4-Bromofluorobenzene	26.4			ug/l	25.0		105	80-120			
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	27.0			ug/l	25.0		108	80-120			

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10C1114 Extracted: 03/09/1	0										
Buten. 10C1111 Extracted. 05/07/1	<u> </u>										
Blank Analyzed: 03/11/2010 (10C1114-I	BLK1)										
Bis(2-ethylhexyl)phthalate	ND	5.0	1.7	ug/l							
2,4-Dinitrotoluene	ND	9.0	0.20	ug/l							
N-Nitrosodimethylamine	ND	8.0	0.10	ug/l							
Pentachlorophenol	ND	8.0	0.10	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2,4,6-Tribromophenol	17.0			ug/l	20.0		85	40-120			
Surrogate: 2-Fluorobiphenyl	8.96			ug/l	10.0		90	50-120			
Surrogate: 2-Fluorophenol	14.8			ug/l	20.0		74	30-120			
Surrogate: Nitrobenzene-d5	8.08			ug/l	10.0		81	45-120			
Surrogate: Phenol-d6	15.6			ug/l	20.0		78	35-120			
Surrogate: Terphenyl-d14	9.80			ug/l	10.0		98	50-125			
LCS Analyzed: 03/11/2010 (10C1114-BS	S1)										MNR1
Bis(2-ethylhexyl)phthalate	9.28	5.0	1.7	ug/l	10.0		93	65-130			
2,4-Dinitrotoluene	8.70	9.0	0.20	ug/l	10.0		87	65-120			Ja
N-Nitrosodimethylamine	7.36	8.0	0.10	ug/l	10.0		74	45-120			Ja
Pentachlorophenol	7.28	8.0	0.10	ug/l	10.0		73	50-120			Ja
2,4,6-Trichlorophenol	8.50	6.0	0.10	ug/l	10.0		85	55-120			
Surrogate: 2,4,6-Tribromophenol	17.5			ug/l	20.0		87	40-120			
Surrogate: 2-Fluorobiphenyl	8.52			ug/l	10.0		85	50-120			
Surrogate: 2-Fluorophenol	13.3			ug/l	20.0		66	30-120			
Surrogate: Nitrobenzene-d5	7.58			ug/l	10.0		76	45-120			
Surrogate: Phenol-d6	14.5			ug/l	20.0		73	35-120			
Surrogate: Terphenyl-d14	8.72			ug/l	10.0		87	50-125			
LCS Dup Analyzed: 03/11/2010 (10C11	14-BSD1)										
Bis(2-ethylhexyl)phthalate	10.2	5.0	1.7	ug/l	10.0		102	65-130	10	20	
2,4-Dinitrotoluene	9.40	9.0	0.20	ug/l	10.0		94	65-120	8	20	
N-Nitrosodimethylamine	7.80	8.0	0.10	ug/l	10.0		78	45-120	6	20	Ja
Pentachlorophenol	7.82	8.0	0.10	ug/l	10.0		78	50-120	7	25	Ja
2,4,6-Trichlorophenol	8.92	6.0	0.10	ug/l	10.0		89	55-120	5	30	
Surrogate: 2,4,6-Tribromophenol	19.5			ug/l	20.0		97	40-120			
Surrogate: 2-Fluorobiphenyl	8.84			ug/l	10.0		88	50-120			
Surrogate: 2-Fluorophenol	14.6			ug/l	20.0		73	30-120			
Surrogate: Nitrobenzene-d5	8.20			ug/l	10.0		82	45-120			
Surrogate: Phenol-d6	15.4			ug/l	20.0		77	35-120			

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C1114 Extracted: 03/09/10	<u>) </u>										

LCS Dup Analyzed: 03/11/2010 (10C1114-BSD1)

Surrogate: Terphenyl-d14 9.40 ug/l 10.0 94 50-125

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C1222 Extracted: 03/10/10	<u>) </u>										
Blank Analyzed: 03/11/2010 (10C1222-F	BLK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.447			ug/l	0.500		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.277			ug/l	0.500		55	35-115			
LCS Analyzed: 03/11/2010 (10C1222-BS	51)										MNR1
alpha-BHC	0.342	0.010	0.0025	ug/l	0.500		68	45-115			
Surrogate: Decachlorobiphenyl	0.473			ug/l	0.500		95	45-120			
Surrogate: Tetrachloro-m-xylene	0.331			ug/l	0.500		66	35-115			
LCS Dup Analyzed: 03/11/2010 (10C122	22-BSD1)										
alpha-BHC	0.300	0.010	0.0025	ug/l	0.500		60	45-115	13	30	
Surrogate: Decachlorobiphenyl	0.456			ug/l	0.500		91	45-120			
Surrogate: Tetrachloro-m-xylene	0.286			ug/l	0.500		57	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte <u>Batch: 10C1956 Extracted: 03/16/10</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 03/16/2010 (10C1956-B Hexane Extractable Material (Oil & Grease)	LK1) ND	5.0	1.4	mg/l							
LCS Analyzed: 03/16/2010 (10C1956-BS Hexane Extractable Material (Oil & Grease)	1) 19.7	5.0	1.4	mg/l	20.0		98	78-114			MNR1
LCS Dup Analyzed: 03/16/2010 (10C195 Hexane Extractable Material (Oil & Grease)	6-BSD1) 19.4	5.0	1.4	mg/l	20.0		97	78-114	2	11	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C1320 Extracted: 03/10/10)										
<u> </u>	=										
Blank Analyzed: 03/11/2010-03/12/2010	(10C1320-BL	K1)									
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
Zinc	ND	20	5.0	ug/l							
LCS Analyzed: 03/11/2010-03/12/2010 (1	0C1320-BS1)									
Cadmium	79.4	1.0	0.10	ug/l	80.0		99	85-115			
Copper	78.4	2.0	0.50	ug/l	80.0		98	85-115			
Lead	80.3	1.0	0.20	ug/l	80.0		100	85-115			
Selenium	79.9	2.0	0.50	ug/l	80.0		100	85-115			
Zinc	76.5	20	5.0	ug/l	80.0		96	85-115			
Matrix Spike Analyzed: 03/11/2010-03/1	2/2010 (10C1	320-MS1)			Sou	rce: ITC	0790-03				
Cadmium	81.1	1.0	0.10	ug/l	80.0	ND	101	70-130			
Copper	79.6	2.0	0.50	ug/l	80.0	1.76	97	70-130			
Lead	75.7	1.0	0.20	ug/l	80.0	0.316	94	70-130			
Selenium	80.3	2.0	0.50	ug/l	80.0	ND	100	70-130			
Zinc	76.9	20	5.0	ug/l	80.0	ND	96	70-130			
Matrix Spike Analyzed: 03/11/2010-03/1	2/2010 (10C1	320-MS2)			Sou	rce: ITC	0791-03				
Cadmium	81.3	1.0	0.10	ug/l	80.0	ND	102	70-130			
Copper	79.8	2.0	0.50	ug/l	80.0	1.36	98	70-130			
Lead	75.1	1.0	0.20	ug/l	80.0	0.231	94	70-130			
Selenium	82.0	2.0	0.50	ug/l	80.0	0.542	102	70-130			
Zinc	74.1	20	5.0	ug/l	80.0	ND	93	70-130			
Matrix Spike Dup Analyzed: 03/11/2010	-03/12/2010 (10C1320-MS	D1)		Sou	rce: ITC	0790-03				
Cadmium	78.2	1.0	0.10	ug/l	80.0	ND	98	70-130	4	20	
Copper	79.1	2.0	0.50	ug/l	80.0	1.76	97	70-130	0.6	20	
Lead	73.6	1.0	0.20	ug/l	80.0	0.316	92	70-130	3	20	
Selenium	82.2	2.0	0.50	ug/l	80.0	ND	103	70-130	2	20	
Zinc	75.4	20	5.0	ug/l	80.0	ND	94	70-130	2	20	

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C1395 Extracted: 03/11/10)										
	_										
Blank Analyzed: 03/17/2010 (10C1395-B	LK1)										
Iron	ND	0.040	0.015	mg/l							
Manganese	ND	20	7.0	ug/l							
LCS Analyzed: 03/17/2010 (10C1395-BS	1)										
Iron	0.518	0.040	0.015	mg/l	0.500		104	85-115			
Manganese	504	20	7.0	ug/l	500		101	85-115			
Matrix Spike Analyzed: 03/17/2010 (10C	(1395-MS1)				Sou	rce: ITC	0790-03				
Iron	0.698	0.040	0.015	mg/l	0.500	0.165	106	70-130			
Manganese	520	20	7.0	ug/l	500	9.67	102	70-130			
Matrix Spike Dup Analyzed: 03/17/2010	(10C1395-MS	SD1)			Sou	rce: ITC	0790-03				
Iron	0.725	0.040	0.015	mg/l	0.500	0.165	112	70-130	4	20	
Manganese	526	20	7.0	ug/l	500	9.67	103	70-130	1	20	
Batch: 10C2010 Extracted: 03/16/10	<u>)</u>										
Blank Analyzed: 03/16/2010 (10C2010-B	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 03/16/2010 (10C2010-BS	1)										
Mercury	8.36	0.20	0.10	ug/l	8.00		105	85-115			
Matrix Spike Analyzed: 03/16/2010 (10C	2010-MS1)				Sou	rce: ITC	1476-01				
Mercury	8.41	0.20	0.10	ug/l	8.00	ND	105	70-130			
Matrix Spike Dup Analyzed: 03/16/2010	(10C2010-MS	SD1)			Sou	rce: ITC	1476-01				
Mercury	8.38	0.20	0.10	ug/l	8.00	ND	105	70-130	0.5	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C1739 Extracted: 03/14/10)										
Blank Analyzed: 03/17/2010 (10C1739-B	SLK1)										
Iron	ND	0.040	0.015	mg/l							
Manganese	ND	20	7.0	ug/l							
LCS Analyzed: 03/17/2010 (10C1739-BS	51)										
Iron	0.547	0.040	0.015	mg/l	0.500		109	85-115			
Manganese	526	20	7.0	ug/l	500		105	85-115			
Matrix Spike Analyzed: 03/17/2010 (10C	C1739-MS1)				Sou	rce: ITC	0790-03				
Iron	0.558	0.040	0.015	mg/l	0.500	0.0164	108	70-130			
Manganese	531	20	7.0	ug/l	500	ND	106	70-130			
Matrix Spike Dup Analyzed: 03/17/2010	(10C1739-M	ASD1)			Sou	rce: ITC	0790-03				
Iron	0.540	0.040	0.015	mg/l	0.500	0.0164	105	70-130	3	20	
Manganese	518	20	7.0	ug/l	500	ND	104	70-130	2	20	
Batch: 10C1740 Extracted: 03/14/10)										
	_										
Blank Analyzed: 03/16/2010 (10C1740-B	SLK1)										
Cadmium	ND	1.0	0.10	ug/l							
Copper	0.692	2.0	0.50	ug/l							Ja
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
Zinc	ND	20	5.0	ug/l							
LCS Analyzed: 03/16/2010 (10C1740-BS	1)										
Cadmium	81.0	1.0	0.10	ug/l	80.0		101	85-115			
Copper	82.0	2.0	0.50	ug/l	80.0		103	85-115			
Lead	83.1	1.0	0.20	ug/l	80.0		104	85-115			
Selenium	82.0	2.0	0.50	ug/l	80.0		103	85-115			
Zinc	81.8	20	5.0	ug/l	80.0		102	85-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C1740 Extracted: 03/14/10	<u>)</u>										
	<u> </u>										
Matrix Spike Analyzed: 03/16/2010 (100	C1740-MS1)				Sou	rce: ITC	1128-01				
Cadmium	77.6	1.0	0.10	ug/l	80.0	ND	97	70-130			
Copper	76.4	2.0	0.50	ug/l	80.0	1.11	94	70-130			
Lead	78.0	1.0	0.20	ug/l	80.0	ND	97	70-130			
Selenium	95.3	2.0	0.50	ug/l	80.0	13.5	102	70-130			
Zinc	78.5	20	5.0	ug/l	80.0	ND	98	70-130			
Matrix Spike Analyzed: 03/16/2010 (100	C1740-MS2)				Sou	rce: ITC	1128-02				
Cadmium	77.7	1.0	0.10	ug/l	80.0	ND	97	70-130			
Copper	77.2	2.0	0.50	ug/l	80.0	2.21	94	70-130			
Lead	76.7	1.0	0.20	ug/l	80.0	ND	96	70-130			
Selenium	102	2.0	0.50	ug/l	80.0	20.5	102	70-130			
Zinc	77.1	20	5.0	ug/l	80.0	ND	96	70-130			
Matrix Spike Dup Analyzed: 03/16/2010	(10C1740-M	SD1)			Sou	rce: ITC	1128-01				
Cadmium	79.0	1.0	0.10	ug/l	80.0	ND	99	70-130	2	20	
Copper	77.6	2.0	0.50	ug/l	80.0	1.11	96	70-130	2	20	
Lead	78.3	1.0	0.20	ug/l	80.0	ND	98	70-130	0.4	20	
Selenium	97.0	2.0	0.50	ug/l	80.0	13.5	104	70-130	2	20	
Zinc	79.4	20	5.0	ug/l	80.0	ND	99	70-130	1	20	
Batch: 10C2011 Extracted: 03/16/10	<u>) </u>										
Blank Analyzed: 03/16/2010 (10C2011-E	BLK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 03/16/2010 (10C2011-BS	51)										
Mercury	8.65	0.20	0.10	ug/l	8.00		108	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C2011 Extracted: 03/16/10	-										
Matrix Spike Analyzed: 03/16/2010 (10C	2011-MS1)				Sou	rce: ITC	1128-01				
Mercury	8.49	0.20	0.10	ug/l	8.00	ND	106	70-130			
Matrix Spike Dup Analyzed: 03/16/2010	(10C2011-MS	SD1)			Sou	rce: ITC	1128-01				
Mercury	8.36	0.20	0.10	ug/l	8.00	ND	104	70-130	2	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C0921 Extracted: 03/08/10											
	_										
Blank Analyzed: 03/08/2010 (10C0921-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 03/08/2010 (10C0921-BS	1)										
Chloride	4.95	0.50	0.25	mg/l	5.00		99	90-110			
Nitrate-N	1.11	0.11	0.060	mg/l	1.13		98	90-110			
Nitrite-N	1.51	0.15	0.090	mg/l	1.52		100	90-110			
Sulfate	10.3	0.50	0.20	mg/l	10.0		103	90-110			
Matrix Spike Analyzed: 03/08/2010 (10C	0921-MS1)				Sou	rce: ITC	793-02				
Chloride	12.9	0.50	0.25	mg/l	5.00	7.84	102	80-120			
Nitrate-N	1.40	0.11	0.060	mg/l	1.13	0.258	101	80-120			
Nitrite-N	1.58	0.15	0.090	mg/l	1.52	ND	104	80-120			
Sulfate	22.1	0.50	0.20	mg/l	10.0	11.7	103	80-120			
Matrix Spike Analyzed: 03/08/2010 (10C	0921-MS2)				Sou	rce: ITC	0878-02				
Chloride	11.8	0.50	0.25	mg/l	5.00	6.58	104	80-120			
Nitrate-N	4.50	0.11	0.060	mg/l	1.13	3.38	99	80-120			
Nitrite-N	1.59	0.15	0.090	mg/l	1.52	ND	105	80-120			
Sulfate	31.2	0.50	0.20	mg/l	10.0	20.3	109	80-120			
Matrix Spike Dup Analyzed: 03/08/2010	(10C0921-M	SD1)			Sou	rce: ITC	793-02				
Chloride	12.9	0.50	0.25	mg/l	5.00	7.84	101	80-120	0.07	20	
Nitrate-N	1.37	0.11	0.060	mg/l	1.13	0.258	98	80-120	3	20	
Nitrite-N	1.58	0.15	0.090	mg/l	1.52	ND	104	80-120	0.1	20	
Sulfate	22.0	0.50	0.20	mg/l	10.0	11.7	103	80-120	0.1	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Oualifiers
·		Lillit	MIDL	Units	Level	Result	70KEC	Limits	KID	Lillit	Quanners
Batch: 10C0939 Extracted: 03/08/10	-										
Blank Analyzed: 03/08/2010 (10C0939-Bl	LK1)										
Turbidity	ND	1.0	0.040	NTU							
Duplicate Analyzed: 03/08/2010 (10C0939	9-DUP1)				Sou	rce: ITC	790-03				
Turbidity	4.17	1.0	0.040	NTU		4.12			1	20	
Batch: 10C0982 Extracted: 03/08/10											
Extracted OF OOF 19	_										
Blank Analyzed: 03/08/2010 (10C0982-Bl	LK1)										
Surfactants (MBAS)	ND	0.10	0.050	mg/l							
LCS Analyzed: 03/08/2010 (10C0982-BS1	1)										
Surfactants (MBAS)	0.235	0.10	0.050	mg/l	0.250		94	90-110			
Matrix Spike Analyzed: 03/08/2010 (10Co	0982-MS1)				Sou	rce: ITC	790-03				
Surfactants (MBAS)	0.329	0.10	0.050	mg/l	0.250	0.0567	109	50-125			
Matrix Spike Dup Analyzed: 03/08/2010	(10C0982-MS	D1)			Sou	rce: ITC	0790-03				
Surfactants (MBAS)	0.339	0.10	0.050	mg/l	0.250	0.0567	113	50-125	3	20	
Batch: 10C0996 Extracted: 03/08/10											
	_										
Blank Analyzed: 03/13/2010 (10C0996-Bl	*										
Biochemical Oxygen Demand	ND	2.0	0.50	mg/l							
LCS Analyzed: 03/13/2010 (10C0996-BS1	1)										
Biochemical Oxygen Demand	200	100	25	mg/l	198		101	85-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
·		Limit	MIDL	Cints	Level	Result	70KEC	Limits	KI D	Limit	Quantiters
Batch: 10C0996 Extracted: 03/08/10	-										
LCS Dup Analyzed: 03/13/2010 (10C0990	6-BSD1)										
Biochemical Oxygen Demand	196	100	25	mg/l	198		99	85-115	2	20	
Batch: 10C1095 Extracted: 03/09/10	_										
Blank Analyzed: 03/09/2010 (10C1095-B	LK1)										
Perchlorate	ND	4.0	0.90	ug/l							
LCS Analyzed: 03/09/2010 (10C1095-BS)	D										
Perchlorate	24.2	4.0	0.90	ug/l	25.0		97	85-115			
Matrix Spike Analyzed: 03/09/2010 (10C	1095-MS1)				Sou	rce: ITC(793-02				
Perchlorate	25.1	4.0	0.90	ug/l	25.0	ND	100	80-120			
Matrix Spike Dup Analyzed: 03/09/2010	(10C1095-MS	(D1)			Sou	rce: ITC(793-02				
Perchlorate	24.7	4.0	0.90	ug/l	25.0	ND	99	80-120	1	20	
Batch: 10C1299 Extracted: 03/10/10											
Batch: 10C1297 Extracted: 05/10/10	_										
Blank Analyzed: 03/10/2010 (10C1299-B	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.50	mg/l							
LCS Analyzed: 03/10/2010 (10C1299-BS)	1)										
Ammonia-N (Distilled)	9.80	0.50	0.50	mg/l	10.0		98	80-115			
Matrix Spike Analyzed: 03/10/2010 (10C	1299-MS1)				Sou	rce: ITC(0421-01				
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0	ND	101	70-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C1299 Extracted: 03/10/10)										
54000 10 C12/ 2000 400 10/10/10	_										
Matrix Spike Dup Analyzed: 03/10/2010	(10C1299-N	MSD1)			Sou	rce: ITC(0421-01				
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0	ND	101	70-120	0	15	
D. 4.1. 10C124C E 4 4 . 1. 02/11/10											
Batch: 10C1346 Extracted: 03/11/10	_										
Blank Analyzed: 03/11/2010 (10C1346-B	LK1)										
Specific Conductance	ND	1.0	1 Ouml	hos/cm @	25C						
•		1.0	1.ouiii	1103/0111 (4)	230						
LCS Analyzed: 03/11/2010 (10C1346-BS	1)										
Specific Conductance	1410	1.0	1.0uml	hos/cm @	25 C 410		100	90-110			
Batch: 10C1348 Extracted: 03/11/10)										
	_										
Blank Analyzed: 03/11/2010 (10C1348-B	LK1)										
Total Dissolved Solids	ND	10	1.0	mg/l							
LCS Analyzed: 03/11/2010 (10C1348-BS	1)										
Total Dissolved Solids	998	10	1.0	mg/l	1000		100	90-110			
Total Dissolved Solids	770	10	1.0	IIIg/I	1000		100	J0-110			
Duplicate Analyzed: 03/11/2010 (10C134	8-DUP1)				Sou	rce: ITC(719-01				
Total Dissolved Solids	293	10	1.0	mg/l		290			1	10	
Batch: 10C1460 Extracted: 03/11/10)										
Zation 1001100 Entraction 00/11/10	-										
Blank Analyzed: 03/11/2010 (10C1460-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
•				-							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791

Received: 03/08/10

METHOD BLANK/QC DATA

INORGANICS

	Reporting					Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C1460 Extracted: 03/11/10	-										
LCS Analyzed: 03/11/2010 (10C1460-BS	1)										
Total Cyanide	191	5.0	2.2	ug/l	200		95	90-110			
Matrix Spike Analyzed: 03/11/2010 (10C	1460-MS1)				Sou	rce: ITC(989-03				
Total Cyanide	186	5.0	2.2	ug/l	200	ND	93	70-115			
Matrix Spike Dup Analyzed: 03/11/2010	(10C1460-M	SD1)		Sou	rce: ITC(989-03					
Total Cyanide	185	5.0	2.2	ug/l	200	ND	93	70-115	0.6	15	
Batch: 10C1462 Extracted: 03/11/10	_										
Blank Analyzed: 03/11/2010 (10C1462-B	LK1)										
Total Suspended Solids	ND	10	1.0	mg/l							
LCS Analyzed: 03/11/2010 (10C1462-BS	1)										
Total Suspended Solids	996	10	1.0	mg/l	1000		100	85-115			
Duplicate Analyzed: 03/11/2010 (10C146	2-DUP1)				Sou	rce: ITC0	0803-01				
Total Suspended Solids	223	10	1.0	mg/l		223			0	10	

%REC

RPD

Data

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

Source

Spike

METHOD BLANK/QC DATA

EPA-5 1613B

Reporting

		Reportin	g		Spike	Source		%REC		KPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 76166 Extracted: 03/17/10	<u>) </u>										
Blank Analyzed: 03/18/2010 (G0C170	0000166B)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	1.1e-005	0.00005	0.000002	ug/L				-			J, Q
1,2,3,4,6,7,8-HpCDF	1.5e-006	0.00005	0.00000059	ug/L				-			J, Q
1,2,3,4,7,8,9-HpCDF	ND	0.00005	0.0000011	ug/L				-			
1,2,3,4,7,8-HxCDD	1.2e-006	0.00005	0.000001	ug/L				-			J
1,2,3,4,7,8-HxCDF	9.6e-007	0.00005	0.0000003	ug/L				-			J, Q
1,2,3,6,7,8-HxCDD	ND	0.00005	0.0000009	ug/L				-			
1,2,3,6,7,8-HxCDF	2.5e-007	0.00005	0.00000028	ug/L				-			J, Q
1,2,3,7,8,9-HxCDD	1.3e-006	0.00005	0.00000079	ug/L				-			J
1,2,3,7,8,9-HxCDF	3.5e-007	0.00005	0.00000032	ug/L				-			J, Q
1,2,3,7,8-PeCDD	ND	0.00005	0.00000072	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	0.00000052	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	0.00000026	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	0.00000056	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	0.00000053	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	0.00000056	ug/L				-			
OCDD	6.1e-005	0.0001	0.0000018	ug/L				-			J
OCDF	8.5e-006	0.0001	0.000001	ug/L				-			J
Total HpCDD	5e-005	0.00005	0.000002	ug/L				-			J, Q
Total HpCDF	4.4e-006	0.00005	0.0000008	ug/L				-			J, Q
Total HxCDD	5.9e-006	0.00005	0.00000089	ug/L				-			J
Total HxCDF	1.9e-006	0.00005	0.00000029	ug/L				-			J, Q
Total PeCDD	ND	0.00005	0.00000072	ug/L				-			
Total PeCDF	ND	0.00005	0.00000052	ug/L				-			
Total TCDD	ND	0.00001	0.00000053	ug/L				-			
Total TCDF	ND	0.00001	0.00000056	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0018			ug/L	0.00200		92	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.002			ug/L	0.00200		100	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0016			ug/L	0.00200		82	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0016			ug/L	0.00200		81	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0016			ug/L	0.00200		80	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0015			ug/L	0.00200		77	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0016			ug/L	0.00200		79	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0016			ug/L	0.00200		79	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0015			ug/L	0.00200		76	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0015			ug/L	0.00200		73	24-185			

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: ITC0791

Reporting

Sampled: 03/06/10-03/07/10

RPD

Data

Received: 03/08/10

METHOD BLANK/QC DATA

EPA-5 1613B

Spike

Source

		Keportin	g		Spike	Source		%REC		KPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 76166 Extracted: 03/17/10	<u>-</u>										
Blank Analyzed: 03/18/2010 (G0C1700	000166B)				Sou	rce:					
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0016			ug/L	0.00200		81	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0015			ug/L	0.00200		75	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0013			ug/L	0.00200		67	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0014			ug/L	0.00200		71	24-169			
Surrogate: 13C-OCDD	0.0027			ug/L	0.00400		68	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00074			ug/L	0.000800		92	35-197			
LCS Analyzed: 03/18/2010 (G0C17000	00166C)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00105	0.00005	0.0000077	ug/L	0.00100		105	70-140			Ва
1,2,3,4,6,7,8-HpCDF	0.00104	0.00005	0.0000049	ug/L	0.00100		104	82-122			Ва
1,2,3,4,7,8,9-HpCDF	0.00119	0.00005	0.0000082	ug/L	0.00100		119	78-138			
1,2,3,4,7,8-HxCDD	0.00112	0.00005	0.00000098	ug/L	0.00100		112	70-164			Ва
1,2,3,4,7,8-HxCDF	0.00111	0.00005	0.0000039	ug/L	0.00100		111	72-134			Ва
1,2,3,6,7,8-HxCDD	0.00107	0.00005	0.00000092	ug/L	0.00100		107	76-134			
1,2,3,6,7,8-HxCDF	0.00108	0.00005	0.0000037	ug/L	0.00100		108	84-130			Ва
1,2,3,7,8,9-HxCDD	0.00106	0.00005	0.00000079	ug/L	0.00100		106	64-162			Ва
1,2,3,7,8,9-HxCDF	0.00109	0.00005	0.0000043	ug/L	0.00100		109	78-130			Ва
1,2,3,7,8-PeCDD	0.00108	0.00005	0.0000027	ug/L	0.00100		108	70-142			
1,2,3,7,8-PeCDF	0.00108	0.00005	0.0000028	ug/L	0.00100		108	80-134			
2,3,4,6,7,8-HxCDF	0.00108	0.00005	0.0000034	ug/L	0.00100		108	70-156			
2,3,4,7,8-PeCDF	0.00114	0.00005	0.0000031	ug/L	0.00100		114	68-160			
2,3,7,8-TCDD	0.000231	0.00001	0.00000078	ug/L	0.000200		116	67-158			
2,3,7,8-TCDF	0.00022	0.00001	0.00000093	ug/L	0.000200		110	75-158			
OCDD	0.00256	0.0001	0.0000049	ug/L	0.00200		128	78-144			Ва
OCDF	0.00248	0.0001	0.0000041	ug/L	0.00200		124	63-170			Ва
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00145			ug/L	0.00200		73	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00157			ug/L	0.00200		78	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00134			ug/L	0.00200		67	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00124			ug/L	0.00200		62	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00124			ug/L	0.00200		62	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00129			ug/L	0.00200		65	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00127			ug/L	0.00200		64	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00127			ug/L	0.00200		64	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00126			ug/L	0.00200		63	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00119			ug/L	0.00200		60	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00128			ug/L	0.00200		64	22-176			

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

EPA-5 1613B

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 76166 Extracted: 03/17/10											
LCS Analyzed: 03/18/2010 (G0C170000	166C)				Sou	rce:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00119			ug/L	0.00200		60	13-328			
Surrogate: 13C-2,3,7,8-TCDD	0.00112			ug/L	0.00200		56	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00119			ug/L	0.00200		60	22-152			
Surrogate: 13C-OCDD	0.00151			ug/L	0.00400		38	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000752			ug/L	0.000800		94	31-191			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

ASTM 5174-91

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 67296 Extracted: 03/10/10											
Matrix Spike Dup Analyzed: 03/12/2010	(F0B23045200	01D)			Sou	rce: F0B2	23045200	1			
Total Uranium	26.9	0.7	0.2	pCi/L	27.7	0.677	95	62-150	4	20	
Matrix Spike Analyzed: 03/12/2010 (F0B	230452001S)				Sou	rce: F0B2	23045200	1			
Total Uranium	28.1	0.7	0.2	pCi/L	27.7	0.677	99	62-150			
Blank Analyzed: 03/12/2010 (F0C080000	296B)				Sou	rce:					
Total Uranium	0.315	0.693	0.21	pCi/L				-			Jb
LCS Analyzed: 03/12/2010 (F0C0800002	96C)				Sou	rce:					
Total Uranium	5.62	0.69	0.21	pCi/L	5.54		101	90-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791

Received: 03/08/10

METHOD BLANK/QC DATA

EPA 900.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 70220 Extracted: 03/11/10											
Matrix Spike Analyzed: 03/14/2010 (F0C	090509001S)				Sou	rce: F0C)9050900	1			
Gross Alpha	47.4	3	2.6	pCi/L	59.9	0.3	79	35-150			
Gross Beta	87	4	2.2	pCi/L	82.4	3.9	101	54-150			
Duplicate Analyzed: 03/14/2010 (F0C090)509001X)				Sou	rce: F0C	9050900	1			
Gross Alpha	1.9	3	2.1	pCi/L		0.3		-			U
Gross Beta	4.8	4	2.1	pCi/L		3.9		-			
Blank Analyzed: 03/14/2010 (F0C110000	220B)				Sou	rce:					
Gross Alpha	-0.16	3	0.79	pCi/L				-			U
Gross Beta	0.37	4	1.5	pCi/L				-			U
LCS Analyzed: 03/14/2010 (F0C1100002	20C)				Sou	rce:					
Gross Alpha	31.9	3	0.8	pCi/L	49.4		64	62-134			
Gross Beta	53	4	1.5	pCi/L	67.9		78	58-133			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

EPA 901.1 MOD

Analyte Batch: 69127 Extracted: 03/10/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 03/20/2010 (F0C09	0509001X)				Sou	rce: F0C	09050900	1			
Cesium 137	-0.3	20	13	pCi/L		4.5		-			U
Potassium 40	-50	NA	220	pCi/L		-50		-			U
Blank Analyzed: 03/21/2010 (F0C10000	0127B)				Sou	rce:					
Cesium 137	1.9	20	14	pCi/L				-			U
Potassium 40	12	NA	210	pCi/L				-			U
LCS Analyzed: 03/21/2010 (F0C100000	127C)				Sou	rce:					
Americium 241	131000	NA	500	pCi/L	141000		93	87-110			
Cobalt 60	79200	NA	200	pCi/L	87800		90	89-110			
Cesium 137	48400	20	200	pCi/L	53100		91	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

EPA 903.0 MOD

Analyte Batch: 69101 Extracted: 03/10/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 04/02/2010 (F0C100000 Radium (226)	0.025	1	0.051	pCi/L	Sour	rce:		-			U
LCS Analyzed: 04/02/2010 (F0C1000001 Radium (226)	01C) 10.6	1	0.05	pCi/L	Sou : 11.3	rce:	94	68-136			
LCS Dup Analyzed: 04/02/2010 (F0C100 Radium (226)	000101L) 10.1	1	0.05	pCi/L	Sou 11.3	rce:	89	68-136	6	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791 Received: 03/08/10

METHOD BLANK/QC DATA

EPA 904 MOD

Analyte Batch: 69102 Extracted: 03/10/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 03/19/2010 (F0C100000) Radium 228	102B) 0.19	1	0.39	pCi/L	Sour	rce:		-			U
LCS Analyzed: 03/19/2010 (F0C1000001 Radium 228	02C) 7.41	1	0.36	pCi/L	Sou 1 6.37	rce:	116	60-142			
LCS Dup Analyzed: 03/19/2010 (F0C100 Radium 228	000102L) 7.87	1	0.42	pCi/L	Sou 1 6.37	rce:	124	60-142	6	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791

Received: 03/08/10

METHOD BLANK/QC DATA

EPA 905 MOD

Analyte Batch: 69104 Extracted: 03/10/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 03/20/2010 (F0C100000 Strontium 90	104B) 0.01	3	0.43	pCi/L	Sou	rce:		-			U
LCS Analyzed: 03/20/2010 (F0C1000001 Strontium 90	04C) 6.64	3	0.4	pCi/L	Sou : 6.79	rce:	98	80-130			
LCS Dup Analyzed: 03/20/2010 (F0C100 Strontium 90	000104L) 6.75	3	0.39	pCi/L	Sou : 6.79	rce:	99	80-130	2	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Report Number: ITC0791

Received: 03/08/10

METHOD BLANK/QC DATA

EPA 906.0 MOD

Analyte Batch: 77060 Extracted: 03/18/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 03/23/2010 (F0C090)509001X)				Sou	rce: F0C0	9050900	1			
Tritium	-26	500	150	pCi/L		34		-			U
Matrix Spike Analyzed: 03/24/2010 (F00	C090512001S)				Sou	rce: ITC(791-03				
Tritium	4170	500	150	pCi/L	4510	-17	93	62-147			
Blank Analyzed: 03/23/2010 (F0C180000	0060B)				Sou	rce:					
Tritium	83	500	150	pCi/L				-			U
LCS Analyzed: 03/23/2010 (F0C1800000	60C)				Sou	rce:					
Tritium	4450	500	150	pCi/L	4510		99	85-112			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITC0791-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.7	15
ITC0791-01	624-Boeing 001/002Q (Fr113+X+F	Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITC0791-01	624-Boeing 001/002Q (Fr113+X+F	FrTrichloroethene	ug/l	0	0.50	5
ITC0791-01	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-1	5.0	8.5
ITC0791-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.3

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITC0791-02	624-Boeing 001/00	2Q (Fr113+X+Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITC0791-02	624-Boeing 001/00	2Q (Fr113+X+FrTrichloroethene	ug/l	0	0.50	5

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
<u>LabNumber</u>	Analysis	Analyte	Units	Result	MRL	Limit
ITC0791-03	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0.00054	0.0094	0.03
ITC0791-03	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.7	13
ITC0791-03	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	8.6	18
ITC0791-03	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.59	4.8	4
ITC0791-03	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	7.6	16
ITC0791-03	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	7.6	16
ITC0791-03	Ammonia-N, Titr 4500NH3-C (w/o	di:Ammonia-N (Distilled)	mg/l	0	0.50	10
ITC0791-03	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	0.50	2.0	30
ITC0791-03	Cadmium-200.8	Cadmium	ug/l	0.025	1.0	3.1
ITC0791-03	Chloride - 300.0	Chloride	mg/l	15	0.50	150
ITC0791-03	Copper-200.8	Copper	ug/l	1.36	2.0	14
ITC0791-03	Iron-200.7, Diss	Iron	mg/l	0.0049	0.040	0.3
ITC0791-03	Lead-200.8	Lead	ug/l	0.23	1.0	5.2
ITC0791-03	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0.074	0.10	0.5
ITC0791-03	Nitrate-N, 300.0	Nitrate-N	mg/l	0.024	0.11	8

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasader	na/Boeing	Project ID:	Routine Outfall 018				
618 Michillind Arcadia, CA 9 Attention: Bro		Report Number:	ITC0791			led: 03/06/10- ved: 03/08/10	
ITC0791-03	Nitrite-N, 300.0	Nitrite-N		mg/l	0	0.15	1
ITC0791-03	Nitrogen, NO3+NO2 -N EPA 30	0.0 Nitrate/Nitrite-N		mg/l	0.024	0.26	8
ITC0791-03	Perchlorate 314.0 - Default	Perchlorate		ug/l	0	4.0	6
ITC0791-03	Selenium-200.8	Selenium		ug/l	0.54	2.0	5
ITC0791-03	Sulfate-300.0	Sulfate		mg/l	163	10	300
ITC0791-03	TDS - SM2540C	Total Dissolved S	Solids	mg/l	367	10	950
ITC0791-03	TSS - SM2540D	Total Suspended	Solids	mg/l	-1	10	45
ITC0791-03	Zinc-200.8	Zinc		ug/l	0	20	120

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

В	Analyte was detected in the associated Method Blank.
---	--

Ba Method blank contamination. The associated method blank contains the target analyte at a reportable level.

J Estimated result. Result is less than the reporting limit.

Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Jb Result is greater than sample detection limit but less than stated reporting limit.

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

Q Estimated maximum possible concentration (EMPC).

U Result is less than the sample detection limit.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Sampled: 03/06/10-03/07/10

Received: 03/08/10

Report Number: ITC0791

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 120.1	Water	X	X
EPA 1664A	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1-Diss	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500CN-E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 018

618 Michillinda Avenue, Suite 200 Sampled: 03/06/10-03/07/10

Arcadia, CA 91007 Report Number: ITC0791 Received: 03/08/10

Attention: Bronwyn Kelly TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045 Method Performed: ASTM 5174-91

Samples: ITC0791-03

Method Performed: EPA 900.0 MOD

Samples: ITC0791-03

Method Performed: EPA 901.1 MOD

Samples: ITC0791-03

Method Performed: EPA 903.0 MOD

Samples: ITC0791-03

Method Performed: EPA 904 MOD

Samples: ITC0791-03

Method Performed: EPA 905 MOD

Samples: ITC0791-03

Method Performed: EPA 906.0 MOD

Samples: ITC0791-03

TestAmerica West Sacramento

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B

Samples: ITC0791-03

CHAIN OF CUSTODY FORM

ITC:0701 Page 1 of 2

																	-	1.	<u>, </u>	•		
Client Name/	Address			Project:	_	·									ANALYS	SIS RE	QUIRE	0				1
MWH-Arca 618 Michillind Arcadia, CA	la Ave, S	Suite 200		Boeing-S Routine GRAB																	Field readings: (Log in and include in	
Test America	Contact	: Joseph Do	oak							(1664-HEM)	erable)		orine								report Temp and pH) Temp °F = 12.5°C pH = 7.5°C	SU F
Project Mana	ger: Bro	nwyn Kelly		Phone N	umbe	r:		Sec.	١	94-	Š		lŧ								pH = 7. 3	
Sampler:	Mel	ew		(626) 568 Fax Num (626) 568	ber: 3-651			s 624 + xylenes	Settleable Solids	Grease	Cyanide (total recoverable)	Conductivity	Hesidual Chiorine				:				Time of readings =	:
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampli Date/Ti	me	Preservative	Bottle #	VOCs	Settle	Oil &	Syan	Sond	of tal								Comments	
Outfall 018	w	VOAs	5	2/611	2:5	€ HCI	1A, 1B, 1C, 1D, 1E	X		Ŭ			T					·				
Outfall 018	W	1L Poly	1	1		None	2		Х													l
Outfall 018	W	1L Amber	2			HCI	3A, 3B			Х			T							•		
Outfall 018	w	500 mL Poly	1			NaOH	4				Х											
Outfall 018	W	500 mL Poly	2			None	5A, 5B					Х										
Trip Blanks	w	VOAs	3	1		HCI	6A, 6B, 6C	Х														
Outrail U18	VV	150 mL Poly	1	\ \		None	7						<u> </u>									b
															-							
	The	se Samples	are	the Grab	Porti	on of Outf	all 018 for t	his st	torm (event	. Co	mpos	ite s	amples will	follow a	nd are	to be	added	to this	s worl	lk order.	
		Sa	Date/	Time: •		20	Received By		$\overline{\Lambda}$,	Da	te/Time	e: 1 D	25	Turn-ard 24 Hour	ound time:	(Check)	72 Hour:			10 Day:	
Relinquished By	W	m	3	710	į (415	Received By		<u></u>			fte/Time	/ *	3/7/16 1415	Sample Intact:	Integrity: (Check)	On Ice: _	X	40	C	
Relinquished By			Date/	Time 7	10	1645	Received By	Vacel			511			fridge 345	Data Re	quirement	s: (Check	,			NPDES Level IV:	
$\overline{}$	7				,		V		41													2

8 Michillinda Ave, Sulte 200 cadds, CA 91007 st America Contact: Joseph Doak COMPOSITE ## # # # # # # # # # # # # # # # # #	Outfall 018 Outfall 018 ellinquished By ellinquished By	w -	1 Cal Gube 1L Poly	1 1 1 Date/T	The ime:	1300 311	None None OC Page 2 t be added	20 of 2 lists I to the sa Received B	THE	ork o	rder f	Or CC	DC Parate/Time	ige 1	13 d 31	ior Oi	Turn-ard 24 Hour 48 Hour Sample Intact:	018 for 1	the same even Check) 7 8 heck)	2 Hou		Filter win 24hrs of receipt at lab
Courtail 018 W 11	Outfall 018	w -	500 mL Amber 1 Gal Gube 1L Poly	1 1 1 Date/T	The ime:	1300	None None OC Page 2 t be added	20 of 2 lists I to the sa	ame w	ork o	rder f	Da	DC Parte/Time	ige 1 e: //d	of 21	or Ou	utfall Tum-ard 24 Hour 48 Hour	018 for 1	the same even Check) 7 8	2 Hou		event of the year Filter win 24hrs of receipt at lab 10 Day:
Countail O18	Outfall 018	w -	500 mL Amber 1 Cal Cube 1L Poly	1	Th	C nese mus	None None OC Page 2 t be added	20 2 of 2 lists	ame w	ork o	rder f	or CO	OC Pa	ige 1	of 2 1	or Ou	u tfall Tum-ard 24 Hour	018 for tound time: (0	the same even Check)	2 Hou		event of the year Filter win 24hrs of receipt at lab 10 Day:
Countail O18	Outfall 018	w -	500 mL Amber 1 Cal Cube 1L Poly	1	Th	C	None None OC Page 2 t be added	20 2 of 2 lists	ame w	ork o	rder f	or CO	OC Pa	ige 1		or O	ıtfall	018 for 1	the same even	t.	×	event of the year
Mail 18 W		w -	500 mL Amber	1	3)411		None None	20	s the o	ompo	osite	samr	oles fo	or Ou	tfall (018 fo	or this	s storm	event.		X	event of the year
Section Control Cont		w -	500 mL Amber	1	317/10	0-0700	None	19												1	Х	event of the year
Section Control Cont		w -	500 mL Amber	1	317/10	v -07 00	None	19												1	х	event of the year
March Marc	-Outrall 018		500 mL Amber			/		18B												*		
Section Counties	0.46-11.040						None	18B														
Coutail 018 Dup W	Outiali 018		2.5 Gal Cube	1	i 1									-	$\overline{}$				× F	1		· '
Cutfall 018 Dup W	0.45-11.040			,	1		None	18A												T		Unfiltered and unpreserved
Control Cont	Outfall 018	$\overline{\mathbf{w}}$	1L Amber		\vdash		None											Х		+	-	
Coutail O18	Outfall 018	w			1												×			╅		
Outfall 018 Dup W 1L Poly 1 3/7/10 - 6764 HNO3 8B X Image: Control of the contro													-+		$\stackrel{\wedge}{\longrightarrow}$	${x}$				+		
Control Cont					-									$\stackrel{\wedge}{\longrightarrow}$		-	_			1		
Outfall 018 Dup W 1L Poly 1 3/7/10 -67-64 HNO3 8B X Outfall 018 W 1L Amber 2 None 9A, 9B X Outfall 018 W 1L Poly 1 None 10 X Outfall 018 W 500 mL Poly 2 None 11A, 11B X													$\stackrel{\wedge}{\dashv}$	·						+		
Outfall 018 Dup W 1L Poly 1 3/7/10 - C/Tea HNO3 8B X Outfall 018 W 1L Amber 2 None 9A, 9B X Outfall 018 W 1L Poly 1 None 10 X					\vdash							×				_				╀		
Outfall 018 Dup W 1L Poly 1 3/7/20-67es HNO3 8B X Outfall 018 W 1L Amber 2 None 9A, 9B X				<u> </u>							×									\bot		
utfall 018 Dup W 1L Poly 1 3/7/30-6764 HNO3 8B X										Х							_			╀		
Contain to W 12.1 (b) 1 3/1/10 - Class 11103 0A A	outfall 018 Dup				3/4/2	-c7es			Х											\bot		
Se Zu, Fe, Mn Set Zho Gord Balas: Cu, Pb, Hg, Cd Set Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Fe, Mn Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zh, Pb,	Outfall 018								_											1		
Sample Sample Container 1 Sample Container 1 Sample Container Container			t e		Da	te/Time	Preservative	Bottle #	Tota Se,	TCI	BOI	Sur	.,	ž Ē	Ę	Am.	Alp	2,4, eth) 625	Griffi Rac 40,	⇟	Tota Se,	Comments
# Metalis: Cu, Pb, Hg, Cd, Pb,	Sampler: Ev	71-	3+CAN		(626) Fax N (626)	568-669 Number: 568-651	1		TE N	OD (and all cor	D _s (20 degrees	factants (MBA	SO₄, NO₃+NO	ate-N, Nitrite-N	oidity, TDS, TS	monia-N (350.	ла ВНС (608)	6 TCP, 2,4 Dir //hexyl)phthala /	ss Alpha(900.0 um (H-3) (906 nbined Radiun lium 228 (904 CS-137 (901.0	onic Toxicity	al Dissolved M Zn, Fe, Mn	Time Weigntel
8 Michillinda Ave Suite 200 Routine Outfall 018	rcadia, CA 91 est America C	1007 Contact:	: Joseph Do	oak	СОМ	POSITE			S,	igeners)	()	(S	₂ -N, Perchlorate		S	2)	+ Pesticides + PP	itrotoluene, Bis(2- te, NDMA, PCP (SV)), Gross Beta(900.C 0), Sr-90 (905.0), Tr 1 226 (903.0 or 903. .0), Uranium (908.0)		Cu, Pb, Hg,	
WH-Arcadia Boeing-SSFL NPDES セート・ファイン カーボー ファイン Boeing-SSFL NPDES	MH-Arcadi		tuite 200						, G									SCS); otal , k-		TÎ.	
ient Name/Address: Project: ANALYSIS REQUIRED							-										A۱	IALYSIS	REQUIRED	T		

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. ITC0791

MWH-Pasadena Boeing

Lot #: F0C090512

Kathleen Robb

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Lynn Fussner Project Manager

April 5, 2010

Case Narrative LOT NUMBER: F0C090512

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on March 9, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements, except as noted below.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

Radium-226 by GFPC (EPA 903.0 MOD)

There was insufficient sample volume to perform MS/MSD analysis. A LCS/LCSD was performed to demonstrate accuracy and replicate precision.

Affected Samples:

F0C090512 (1): ITC0791-03

Radium-228 by GFPC (EPA 904 MOD)

There was insufficient sample volume to perform MS/MSD analysis. A LCS/LCSD was performed to demonstrate accuracy and replicate precision.

Affected Samples:

F0C090512 (1): ITC0791-03

Total Uranium by KPA (ASTM 5174-91)

The samples were analyzed at a dilution due to the presence of matrix interferences which caused low sample correlations (R squared). The reporting limit has been adjusted for the dilution.

Affected Samples:

F0C090512 (1): ITC0791-03

METHODS SUMMARY

F0C090512

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Gamma Spectroscopy - Cesium-137 & Hits	EPA 901.1 MOD	
Gross Alpha/Beta EPA 900	EPA 900.0 MOD	EPA 900.0
H-3 by Distillation & LSC	EPA 906.0 MOD	
Radium-226 by GFPC	EPA 903.0 MOD	
Radium-228 by GFPC	EPA 904 MOD	
Strontium 90 by GFPC	EPA 905 MOD	
Total Uranium By Laser Ph osphorimetry	ASTM 5174-91	
References:		

"EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

Annual Book Of ASTM Standards.

ASTM

EPA

SAMPLE SUMMARY

F0C090512

WO # S	AMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LWFW4	001	ITC0791-03	03/07/10	07:00

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

TestAmerica Irvine

Client Sample ID: ITC0791-03

Radiochemistry

Lab Sample ID: F0C090512-001

Work Order:

Matrix:

LWFW4 WATER Date Collected:

03/07/10 0700

Date Received:

03/09/10 0915

_	_	,	-	_	•	_	_		 9

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & H	its by EPA 901	.1 MOD	p(Ci/L	Batch #	0069127	Yld %
Cesium 137	3.8	U	7.8	20.0	14	03/10/10	03/20/10
Potassium 40	-90	Ū	3600		200	03/10/10	03/20/10
Gross Alpha/Beta	EPA 900		p(Ci/L	Batch #	0070220	Yld %
Gross Alpha	0.6	σ	1.2	3.0	2.0	03/11/10	03/14/10
Gross Beta	4.5		1.5	4.0	2.1	03/11/10	03/14/10
SR-90 BY GFPC E	PA-905 MOD		p	Ci/L	Batch #	0069104	Yld % 76
Strontium 90	0.61	J	0.34	3.00	0.51	03/10/10	03/20/10
TRITIUM (Distill) by EPA 906.0	MOD	p(Ci/L	Batch #	0077060	Yld %
Tritium	-17	Ū	74	500	150	03/18/10	03/23/10
Total Uranium by	KPA ASTM 5174	-91	p	Ci/L	Batch #	0067296	Yld %
Total Uranium	0.673	J	0.082	1.39	0.43	03/10/10	03/12/10
Radium 226 by E	PA 903.0 MOD		pı	Ci/L	Batch #	0069101	Yld % 71
Radium (226)	0.058	U	0.046	1.00	0.066	03/10/10	04/02/10
Radium 228 by GF	PC EPA 904 MOD		p	Ci/L	Batch #	0069102	Yld % 65
			-				

NOTE (S)

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Data are incomplete without the case narrative,

Result is greater than sample detection limit but less than stated reporting limit.

Result is less than the sample detection limit.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID:

F0C090512

Matrix:

WATER

Parameter	Result	Qual	Total Undert. (2 g+/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Total Uranium b	y KPA ASTM 51	74-91	pCi/L	Batch #	0067296	Yld %	F	0C080000-296B
Total Uranium	0.315	J	0.039	0.693	0.21		03/10/10	03/12/10
Radium 226 by	EPA 903.0 MOD		pCi/L	Batch #	0069101	Yld %	105 F	0C100000-101B
Radium (226)	0.025	Ū	0.031	1.00	0.051		03/10/10	04/02/10
Radium 228 by G	FPC EPA 904 M	OD	pCi/L	Batch #	0069102	Yld %	91 F	0C100000-102B
Radium 228	0.19	U	0.24	1.00	0.39		03/10/10	03/19/10
SR-90 BY GFPC	EPA-905 MOD		pCi/L	Batch #	0069104	Yld %	83 F	0C100000-104B
Strontium 90	0.01	υ	0.24	3.00	0.43			03/20/10
Gamma Cs-137 &	Hits by EPA 9	01.1 MOD	pCi/L	Batch #	0069127	Yld %	F	0C100000-127B
Cesium 137	1.9	Ū	7.6	20.0	14		03/10/10	03/21/10
Potassium 40	12	U	93		210		03/10/10	03/21/10
Gross Alpha/Bet	a EPA 900		pCi/L	Batch #	0070220	Yld %	F	0C110000-220B
Gross Alpha	-0.16	U	0.35	3,00	0.79		03/11/10	03/14/10
Gross Beta	0.37	ט	0.91	4.00	1.5			03/14/10
TRITIUM (Distil	1) by EPA 906	.0 MOD	pCi/L	Batch #	0077060	Yld %	F	0C180000-060B
Tritium	83	U	94	500	150		03/18/10	03/23/10

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

Laboratory Control Sample Report

Radiochemistry

Client Lot ID:

F0C090512

Matrix:

WATER

				otal		Lab Sample ID		Sample ID
Parameter	Spike Amount	Result		ncert. 2 σ+/-)	MDC	% Yld	% Rec	QC Control Limits
Total Uranium by K	PA ASTM 5174-9	1	pCi/L	51	74-91		F0C(80000-296C
Total Uranium	27.7	28.6	3	. 5	0.2		103	(90 - 120)
	Batch #:	0067296			Analysis Date	03/12,	/10	
Total Uranium by K	PA ASTM 5174-9	1	pCi/L	51	74-91		F0C0	B0000-296C
Total Uranium	5.54	5.62	0	.58	0.21		101	(90 - 120)
	Batch #:	0067296			Analysis Date	03/12,	/10	
Gamma Cs-137 & Hits	s by EPA 901.1	MOD	pCi/L	90	1.1 MOD		F0C1	.00000-127C
Americium 241	141000	131000	1	0000	500		93	(87 - 110)
Cesium 137	53100	48400	2	800	200		91	(90 - 110)
Cobalt 60	87800	79200	4	400	200		90	(89 - 110)
	Batch #:	0069127			Analysis Date	03/21,	/10	
Gross Alpha/Beta El	PA 900		pCi/L	90	0.0 MOD		F0C1	10000-220C
Gross Alpha	49.4	31.9	3	.8	0.8		64	(62 - 134)
	Batch #:	0070220			Analysis Date	03/14,	/10	
Gross Alpha/Beta El	PA 900		pCi/L	90	0.0 MOD		F0C1	10000-220C
Gross Beta	67.9	53.0	4	.7	1.5		78	(58 - 133)
	Batch #:	0070220			Analysis Date	03/14,	/10	
TRITIUM (Distill) h	ру ЕРА 906.0 М	OD	pCi/L	90	6.0 MOD		F0C1	.80000-060C
Tritium	4510	4450	4	70	150		99	(85 - 112)
	Batch #:	0077060			Analysis Date	03/23	/10	

Laboratory Control Sample/LCS Duplicate Report

Radiochemistry

Client Lot ID:

F0C090512

Matrix:

WATER

					Total			Lab	Sample I	:D
Parameter		Spike Amount	Result		Uncert. (2 o+/-)	% Yld	% Rec	QC Control Limits	Preci	sion
Radium 226 by	EPA	903.0 MOD		pCi/L	903.0	MOD		F0C1	L00000-:	101C
Radium (226)	Spk 2	11.3 11.3	10.6 10.1		0.92 0.87	106 101	94 89	(68 - 136) (68 - 136)	6	%RPD
		Batch #:	0069101			Analysi	s Date:	04/02/10		
Radium 228 by	GFPC	EPA 904 MOD		pCi/L	904 M	10D		F0C1	L00000-:	102C
Radium 228	Spk 2	6.37 6.37	7.41 7.87		0.83 0.90	99 85	116 124	(60 - 142) (60 - 142)	6	%RPD
		Batch #:	0069102			Analysi	s Date:	03/19/10		
SR-90 BY GFPC	EPA-	-905 MOD		pCi/L	905 M	fOD	··· · · · · · · · · · · · · · · · · ·	F0C1	L00000-:	104C
Strontium 90	Spk 2	6.79 6.79	6.64 6.75		0.80 0.80	87 90	98 99	(80 - 130) (80 - 130)	2	%RPD
		Batch #:	0069104			31	s Date:	03/20/10		

MATRIX SPIKE REPORT

Radiochemistry

Client Lot Id:

F0C090512

Matrix:

WATER

Date Sampled:

03/07/10

Date Received:

03/09/10

			m - + - 1		m - + - 1	QC Sample	e ID
Parameter	Spike Amount	Spike Result	Total Uncert. (2c+/-)	Spike Sample Yld. Result	OHCGIC,	%YLD %REC	QC Control Limits
TRITIUM (Distill) by EPA	906.0 MOI)	pCi/L	906.0 M	DD	F0C090512	2-001
Tritium	4510	4170	440	-17	74	93	(62 - 147)
	Batch #:	0077060	An	alysis Date:	03/24/10		
Gross Alpha/Beta EPA 900)		pCi/L	900.0 M	OD .	F0C090509	9-001
Gross Alpha	59.9	47.4	6.6	0.3	1.1	79	(35 - 150)
	Batch #:	0070220	An	alysis Date:	03/14/10		
Gross Alpha/Beta EPA 900)		pCi/L	900.0 M	Œ	F0C090509	0-001
Gross Beta	82.4	87.0	7.4	3.9	1.4	101	(54 - 150)
	Batch #:	0070220	An	alysis Date:	03/14/10		

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

Radiochemistry

Client Lot ID:

F0B230452

Matrix:

WATER

Date Sampled:

02/20/10 1349

Date Received:

02/23/10 0910

				Total				Total	(QC Samp	le ID
Parameter		Spike Amount	SPIKE Result	Uncert. (2 g+/-)		SAMPLE Result		Uncert. (2 g +/-) %	Yld	%Rec	QC Control Limits
Total Uranium	n by KPA	ASTM 5		pCi/L	5	174-91			FO	B2304	52-001
Total Uranium		27.7	28.1	3.4		0.677	J	0.074		99	(62 - 150)
	Spk2	27.7	26.9	3.3		0.677	J	0.074 Precisio	n:	95 4	(62 - 150) %RPD
		Batch	#: 0067296	Ana	alysis da	te:	03/1	2/10			

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:

F0C090512

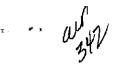
Matrix:

WATER

Date Sampled:

03/07/10

Date Received: 03/09/10


			Total			Total	Q	C Sample ID	
Parameter	SAMPI Resu		Uncert. (2σ+/-)	% Yld	DUPLICATE Result	Uncert. (2 σ+/-)	% Yld	Precisi	on
Gamma Cs-137 & Hits	by El	PA 901.1	MOD	pCi/L	901.1 M	סס	FOC	090509-00	1
Cesium 137	4.5	υ	9.4		-0.3 U	7.3		232	%RPD
Potassium 40	-50	Ū	360		-50 U	200		8	%RPD
		Batch #:	0069127	(Sample)	0069127	(Duplicate)			
Gross Alpha/Beta EPA	900			pCi/L	900.0 M	OD CC	F00	090509-00	1
Gross Alpha	0.3	Ū	1.1		1.9 U	1.5		143	&RPD
Gross Beta	3.9	ď	1.4		4.8	1.5		22	%RPD
		Batch #:	0070220	(Sample)	0070220	(Duplicate)			
TRITIUM (Distill) by	EPA	906.0 MC	QQ	pCi/L	906.0 M	QQ	FOC	090509-00	1
Tritium	34	U	87		-26 U	72		1480	%RPD
		Batch #:	0077060	(Sample)	0077060	(Duplicate)			

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

Result is greater than sample detection limit but less than stated reporting limit. U Result is less than the sample detection limit. F0C090512

SUBCONTRACT ORDER TestAmerica Irvine

ITC0791

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica St. Louis 13715 Rider Trail North

Earth City, MO 63045

Phone: (314) 298-8566 Fax: (314) 298-8757

Project Location: CA - CALIFORNIA

Receipt Temperature:

°C

Ice: Y / N

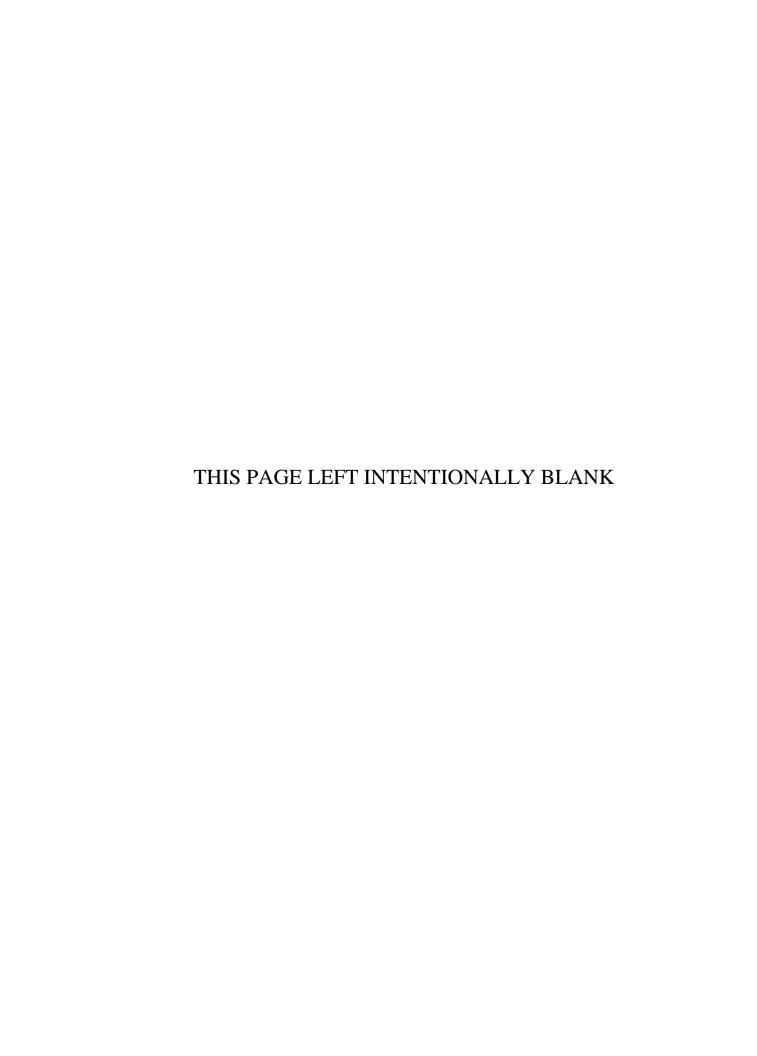
Analysis	Units	Due	Expires	Interlab Price S	Surch	Comments
Sample ID: ITC0791-03 (Outfall 018 (CO	MPOSITE) - W	/ater) Sampled	i: 03/07/10 07:0	D	
EDD + Level 4	N/A	03/17/10	04/04/10 07:00		0%	Excel EDD email to pm,Include Std logs for LvI IV
-Gamma Spec-O	mg/kg	03/17/10	03/07/11 07:00	\$200.00	50%	Out St Louis, K-40 and CS-137 only, DO NOT FILTER!
·Gross Alpha-O	pCi/L	03/17/10	09/03/10 07:00	90,00	50%	
Gross Beta-O	pCi/L	03/17/10	09/03/10 07:00	\$90.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Radium 226-0	pCi/L	03/17/10	03/07/11 07:00	\$88.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Radium 228-O	pCi/L	03/17/10	03/07/11 07:00	\$84.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
. Strontium 90-0	pCi/L	03/17/10	03/07/11 07:00	\$140.00	50%	
`Tritium-O	pCi/L	03/17/10	03/07/11 07:00	\$80.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	03/17/10	03/07/11 07:00	\$100.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Containers Supplied:						
2.5 gal Poly (R)	500 ml., Ami	per (S)				

Released By

Date/Time

Date/Time

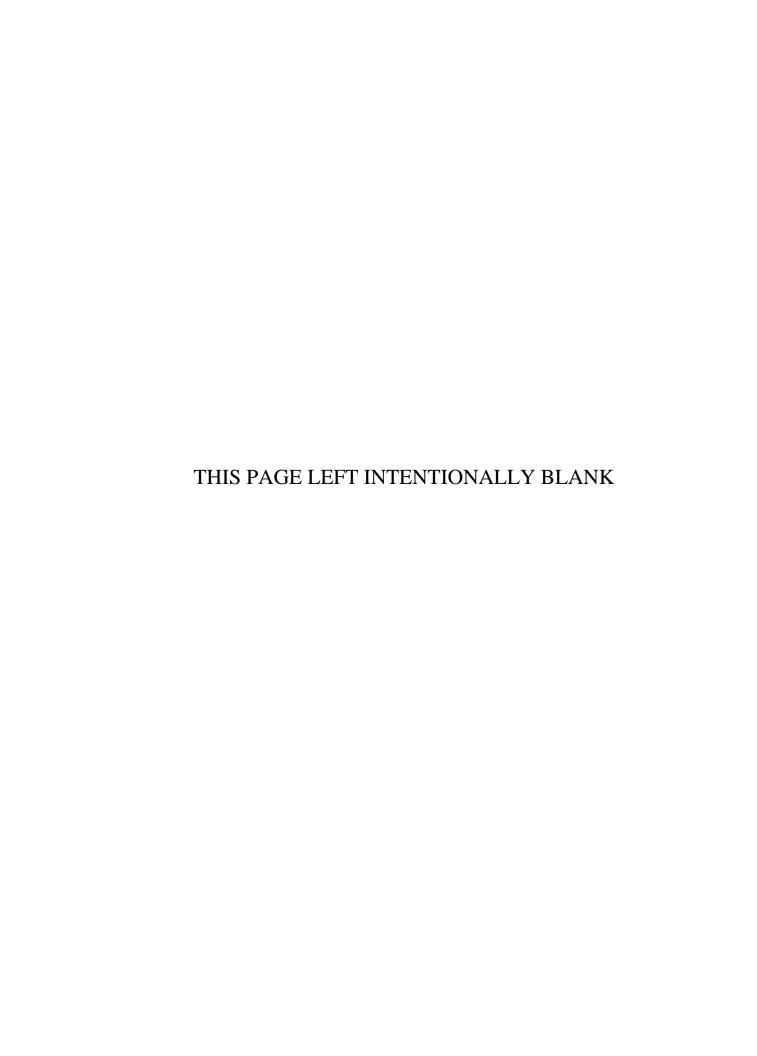
Page 1 of 1


Released By

Test America version 6/29/09	erica	3 Version 6/	29/02	m			EH.	Z	OF	CHAIN OF CUSTODY FORM)TO	<u>~</u>	FOR	Σ			^			Page 2 of 2	
																	. مجيد وا		H	T100701	
Client Name/Address:	dress:			Project:	1		L								NALYS	ANALYSIS REQUIRED					r
IMVV H-Arcadia 618 Michillinda Ave, Arcadia, CA 91007		Suite 200		Soeing-SSFL NPUE: Routine Outfall 018 COMPOSITE	Soeing-SSFL NPDES Routine Outfall 018 COMPOSITE		, Hg, Cd,				e	<u> </u>		do) (SAOC ⁸	lstoT ,(0 & (1.606		lg, Cd,			
Test America Contact: Joseph Doak	ontact	Joseph Di	oak X				letals: Cn' Er	suets)		<u> </u>	v, Perchlorate			4 + eabiobes	otoluene, Bis HOMA, PCF	g)staß seorÐ 1, 609) (9-18, 10 (903,0 or 10 (103,0 or 10 (103,0 or	(1,100 t	ila: Cn' bp' H			
Project Manager: Bronwyn Kelly Sampler: EV AT PN	Bron .	wyn Kelly	7	Phone Number: (626) 568-6691 Fax Number:	nber: 3691 17.		Coverable N	e; Mn nd all cong	degrees C	(SABM) str		M-shirtin,	28T, 20T,		o, 2,4 Diniti A)phthalate	(0.806) (8-1 S muìbs된 b (0.409) 829	o 0.100) Y8 	solved Meta e, Mn			*
Sample	Sample	Container	, \$5°	(626) 568-6515 Sampling	3515 Preservative	A of Hotel	aA listo			urfacta					μλιμех	l) mulifi anidmo adium		siO lete 7 ,nS ,e		Time Weight	
Outfall 018	XI A	1 Poly	\$ +	1			ŭ×		\dashv	s	-	+	 	-	1 0	OT CR	-	91 91		Comments	
-	: ≥	1L Poly	-	3/4/2-07es		-	\X	1	_		+-	+	+	_			-				
Outfall 018	*	1L Amber	2	_	None	9A, 9B		×			\vdash	-		_			-				
Outfall 018	*	1L Poly	-		None	10			×		-					ļ	-				
Outfall 018	w e	500 mL Poly	2		None	11A, 11B				×		<u> </u>					 	ļ			
Ouffall 018	w s	500 mL Poly	7		None	12A, 12B		<u> </u>			×		<u> </u>	_			-				т
Outfall 018	W s	500 mL Poly	1		None	13			L			×			_						·
Outfall 018	W 5	500 mL Poly	2	- <u>-</u> -	None	14A, 14B		ļ			-	×									••••
Outfall 018	w js	500 mL Paly	-		H ₂ SO ₄	15							×				_				
Outfall 018	W	1L Amber	77		None	16A, 16B								×							_
Cutfall 018	×	1L Amber	~		None	17A, 17B									×						
Outfall 018	<u>``</u> <u>\$</u> }	2.5 Gal Cube 500 mL Amber	← ←		None	18A 18B										×				Unfiltered and unpreserved analysis	~ ~
Outfall 018		1 Cel Cube	1		Nane	*		\prod		<u> </u>	#	╫	$\!$	\coprod			#			Only test if first and second rain	
H		11. Poly	-	5/4/10-07ED	None	82												×		avent of the year Filter win 24hrs of receipt at lab	
												-	_				_				· · ·
				Those	COC Pag	COC Page 2 of 2 lists the composite samples for Outfall 018 for this storm event.	s the	com	osite	sampl	es for	Outfa	11 01B	for th	is stor	COC Page 2 of 2 lists the composite samples for Outfall 018 for this storm event. Those must be added to the same work order for COC Bane 1 of 3 for Outfall 048 for the same areast	₅				 1
Relinquished By	1		Date/Time		indst be acu	Received B					Date/Time:		3 23	Tum-erou 24 Hour.	Tum-eround time: (Check) 24 Hour.	r the saine en	72 Hour.			10 Day.	
Refinquished By			N C	2	5/1/10	Received By Received By		1			Date/Time:	K	317,		Sample Integrity: (Check)	(Check)	On for				
71	\downarrow	7	\sum	37/10	Shol		1							Data Requir No Level IV:	tequirement	Dalz Requiraments; (Check) No Level IV:	All Leval IV:	<u> </u>		NPDES Level IV:	

TestAme	arion Lot	#(s):	FOCE	D90 (509. 523
165171110	JIIC U	· · · -			512):506
THE LEADER IN ENVIRONM	ENTAL TESTING				510)
' '	UPON RECEIPT FORM	_	•		518
	TH forme	_	,	5	726
Quote No:	8504477635				
COC/RFA No:	leglow	•	342	1	
Initiated By:	W	Da	ıte:	39	3.10 Time: 0915
	<u>Shipp</u>	ng In	<u>formati</u>	<u>on</u>	
	EdEx UPS DHL Courier Clien	at Of	ther:		
Shipping # (s):*					Sample Temperature (s):**
1. 4289 21	<u>33 6598 </u>				1. ambients.
2.	<u>6676</u> 7.				
3.	<u> 6587</u> 8				8
4	9,			'	
5	10,		•		
*Numbered shipping lines	correspond to Numbered Sample Temp lines	**San varian	nple must ce does N	be receive	d at 4°C ± 2°C- If not, note confents below. Temperature the following: Metals-Liquid of Rad tests - Liquid or Solids
Condition (Circle "Y"	for yes, "N" for no and "N/A" for not applicable):				· · · · · · · · · · · · · · · · · · ·
L Y N.	Are there custody seals present on the cooler?	8.	Y (N	D	Are there custody seals present on bottles?
2. Y N N/A	Do custody seals on cooler appear to be tampered with?	9.	Y N	MAN.	Do custody seals on bottles appear to be tampered with?
3. 💍 N	Were contents of cooler frisked after opening, but before unpacking?	10.	Y N	MA	Was sample received with proper pH ¹ ? (If not, make note below)
4. (Y) N	Sample received with Chain of Custody?	11.	R.B.	ſ	Sample received in proper containers?
5. N N/A	Does the Chain of Custody match sample ID's on the container(s)?	12.	ΥN	M/A	Headspace in VOA or TOX liquid samples? (If Yes, note sample ID's below)
6. Y (N)	Was sample received broken?	13.	Y) N	N/A	Was Internal CQC/Workshare received?
7. (Y) N	Is sample volume sufficient for analysis?	· \	Y		Was pH taken by original TestAmerica lab?
For DOE-AL (Pantex, L. Notes:	ANL, Sandia) sites, pH of ALL containers received m	ust be v	erified, B	XCEPT V	OA, TOX and soils.
110103.	750				
	754	··			
	464			····	
	-02				· · · · · · · · · · · · · · · · · · ·
	192	·	·-		
	12:				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
·	(77/)				
Corrective Action:					
☐ Client Contact N		I	nforme	đ by:	
☐ Sample(s) proces☐ Sample(s) on hol					
Project Management		li rele	ased, no I	otify: Date:	03-11-10
THIS FORM MUST BE C	COMPLETED AT THE TIME THE ITEMS ARE BE	NG CH			Y ITEM IS COMPLETED BY SOMEONE OTHER THAN

THIS FORM MUST BE COMPLETED AT THE TIME THE ITEMS ARE BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMEONE OTHER THAN THE INITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.


ADMIN-0004, REVISED 10/21/08 \Sisvt01\QA\FORMS\ST-LOUIS\ADMIN\Admin004 rev11.doc

APPENDIX G

Section 71

Outfall 018 - BMP Effectiveness March 7, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program

Arcadia, CA 91007

Attention: Bronwyn Kelly
Sampled: 03/07/10
Received: 03/08/10

Issued: 03/18/10 13:56

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: No analyses were subcontracted to an outside laboratory.

LABORATORY ID CLIENT ID MATRIX

ITC0795-01 018 EFF-1 Water

Reviewed By:

TestAmerica Irvine

Patty Mata For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: ITC0795

Sampled: 03/07/10

Received: 03/08/10

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC0795-01 (018 EFF-1 - Wa Reporting Units: g/cc Density	ter) Displacement	10C2037	N/A	NA	0.99	1	03/16/10	03/16/10	
Sample ID: ITC0795-01 (018 EFF-1 - Wa Reporting Units: mg/l Sediment	ter) ASTM D3977	10C2043	10	10	11	1	03/07/10	03/16/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: ITC0795

Sampled: 03/07/10

Received: 03/08/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C2037 Extracted: 03/16/	10										
Duplicate Analyzed: 03/16/2010 (10C20	037-DUP1)				Sou	rce: ITC	0795-01				
Density	0.994	NA	N/A	g/cc		0.994			0.06	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 03/07/10

Report Number: ITC0795 Received: 03/08/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

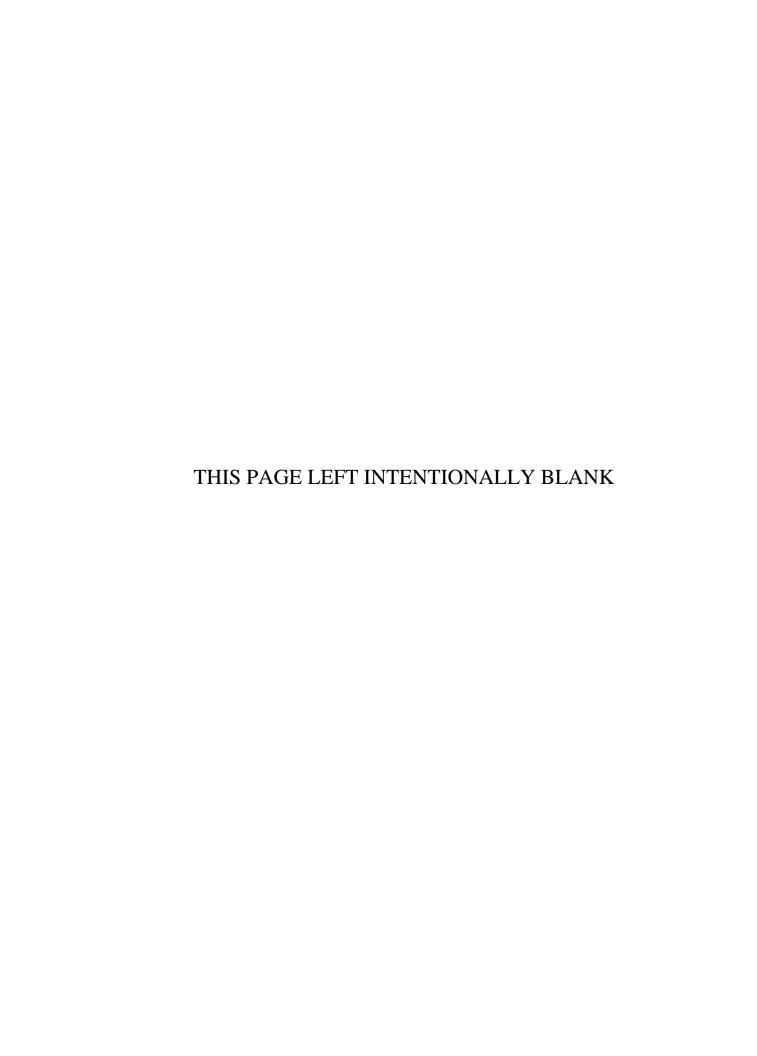
618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 03/07/10

Arcadia, CA 91007 Report Number: ITC0795 Received: 03/08/10
Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		
SM 2540D	Water	X	X


Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

ITC 0705Page 1 of 1 **CHAIN OF CUSTODY FORM Test America** Client Name/Address: Project: Boeing BMP **ANALYSIS REQUIRED Effectiveness Monitoring** MWH-Pasadena **Program** 618 Michillinda Ave, Suite 200 Suspended Sediment Concentration (SSC, ASTM-D3977-1997) Pasadena, CA 91007 Test America Contact: Joe Doak Project Manager: Bronwyn Kelly Phone Number: Comments (626) 568-6691 Sampler: Eric Walker Fax Number: (626) 568-6515 Sample Sample Container # of Sampling Preservative | Bottle * Description Matrix Type Cont. Date/Time 018 EFF-1 W 1 L-Roby Gal & 3/7/10-0700 None X Composita Relinquished B Date/Time: Received/By Date/Time: Turn around Time: (check) 24 Hours _____ 5 Days 1300 1300 48 Hours _____ 10 Days Date/Time: 1415 10 1415 72 Hours _____ Normal X Relinquished By Date/iTime: Perchlorate Only 72 Hours____ 1648 Metals Only 72 Hours C450 01/8/8 Sample Integrity: (Check)
Intact On Ice: 4 C

APPENDIX G

Section 72

Arroyo Simi Receiving Water February 11, 2010 $MEC^{X} \ Data \ Validation \ Report$

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITB1475

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITB1475
Project Manager: B. Kelly

Matrix: Water

QC Level: IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub- Laboratory ID	Matrix	Collected	Method
Arroyo Simi- FP	ITB1475-01	N/A	WATER	2/11/2010 12:00:00 PM	200.7, 525.2, SM2340B

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered from the field to the laboratory, no custody seals were required. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITB1475

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITB1475

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITB1475

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 200.7—Metals

Reviewed By: P. Meeks

Date Reviewed: March 30, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7 and SM2340B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, six months for ICP metals, was met.
- Tuning: Not applicable to these analyses.
- Calibration: Calibration criteria were met. All initial and continuing calibration recoveries were within 90-110%. CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Recoveries were within the method-established control limits. There were no target compounds present in the ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated base on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

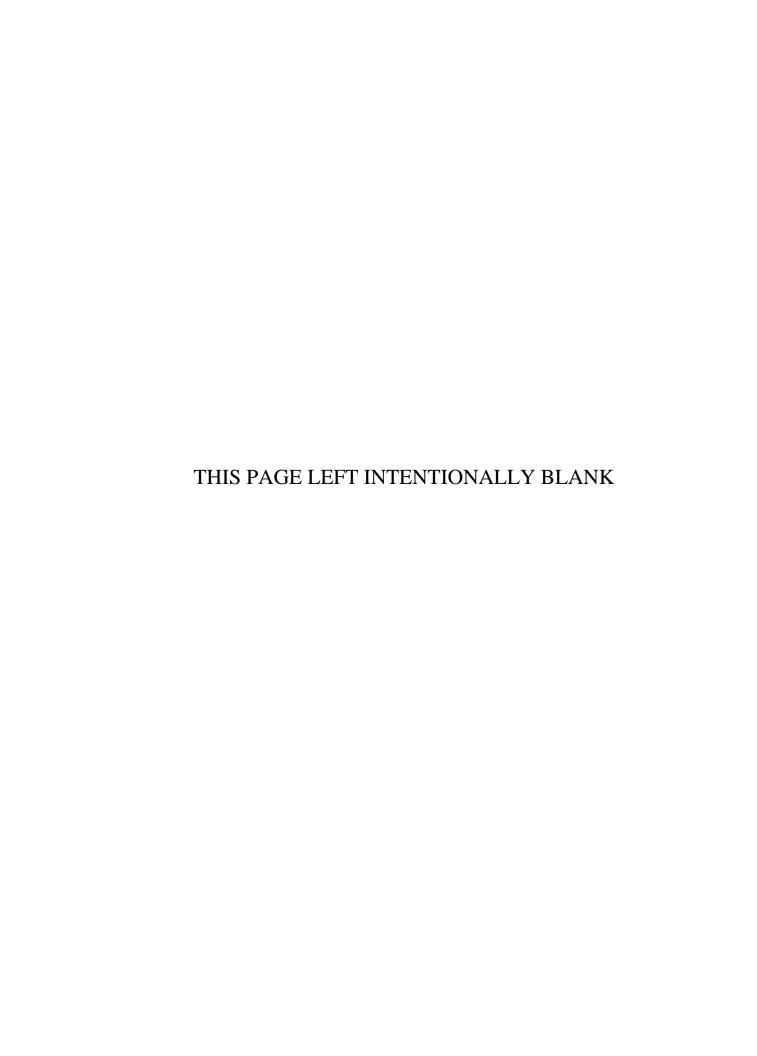
B. EPA METHOD 525.2—Semivolatile Organic Compounds (SVOCs)

Reviewed By: P. Meeks

Date Reviewed: March 30, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (10/99).

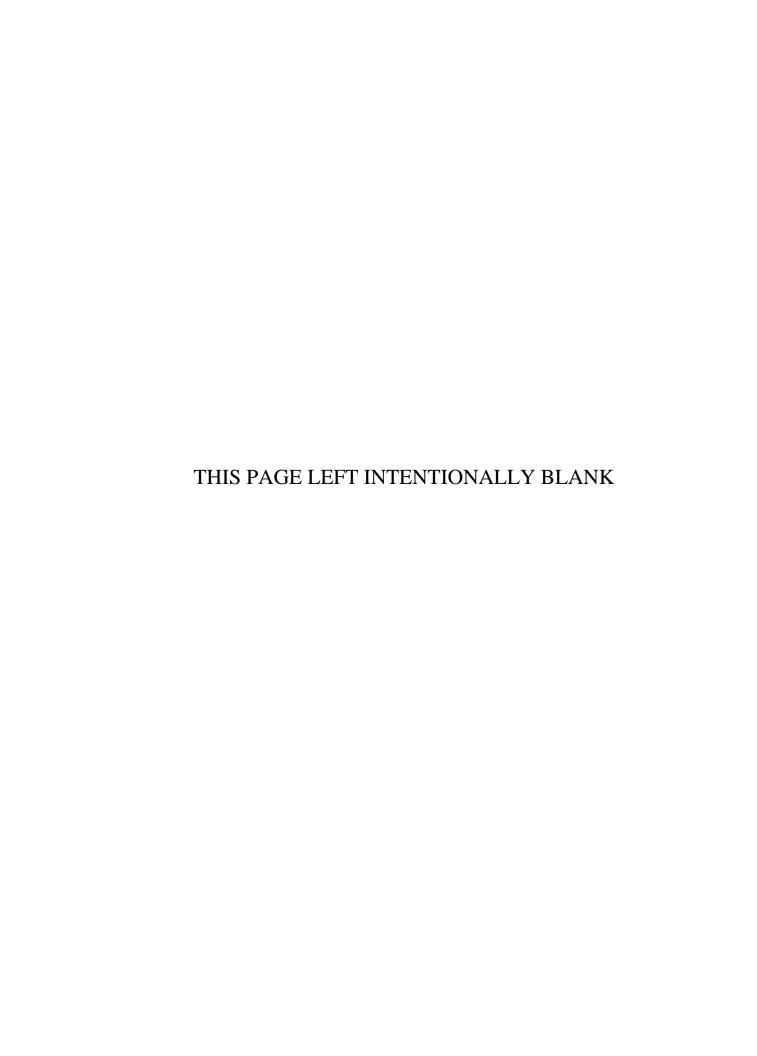
- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within 24 hours of collection and analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs were ≥0.05 and %RSDs ≤30%. The continuing calibration RRFs were ≥0.05 and recoveries were within the method QC limits of 70-130%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:


 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this analysis.
- System Performance: Review of the raw data indicated no problems with system performance.

Validated Sample Result Forms ITB1475

Analysis Metho	od EPA	200.7							
Sample Name	Arroyo Simi-l	FP	Matri	x Type:	Water	Validation Level: IV			
Lab Sample Name:	ITB1475-01	Sam	ple Date:	2/11/201	0 12:00:00 Pl	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Calcium	7440-70-2	230	0.10	0.050	mg/l				
Magnesium	7439-95-4	74	0.020	0.012	mg/l				
Analysis Metho	od EPA :	525.2							
Sample Name	Arroyo Simi-l	FP	Matri	Matrix Type: Water Validation Le				vel: IV	
Lab Sample Name:	ITB1475-01	Sam	ple Date:	2/11/201	0 12:00:00 PM	M			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Chlorpyrifos	2921-88-2	ND	1.0	0.10	ug/l		U		
Diazinon	333-41-5	ND	0.25	0.10	ug/l		U		
Analysis Metho	od SM23	240B							
Sample Name	Arroyo Simi-l	FP	Matri	х Туре:	Water	Validation Level: IV			
Lab Sample Name:	ITB1475-01	Sam	ple Date:	2/11/201	0 12:00:00 PM	М			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Hardness as CaCO3		880	0.33	0.17	mg/l				


Thursday, April 01, 2010 Page 1 of 1

APPENDIX G

Section 73

Arroyo Simi Receiving Water February 11, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Quartely Arroyo Simi-Frontier

Park

Arcadia, CA 91007 Quarterly Arroyo Simi-Frontier

Sampled: 02/11/10 Received: 02/11/10

Issued: 02/25/10 16:44

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: No analyses were subcontracted to an outside laboratory.

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

LABORATORY ID CLIENT ID MATRIX

ITB1475-01 Arroyo Simi-FP Water

Reviewed By:

TestAmerica Irvine

Debby Wilson For Joseph Doak Project Manager

Debby Wilson

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Sampled: 02/11/10 Report Number: ITB1475 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB1475-01 (Arroyo Simi-FP - Water)									
Reporting Units: ug/l									
Chlorpyrifos	EPA 525.2	10B1503	0.10	1.0	ND	1	02/12/10	02/17/10	
Diazinon	EPA 525.2	10B1503	0.10	0.25	ND	1	02/12/10	02/17/10	
Surrogate: 1,3-Dimethyl-2-nitrobenzene (70-130%)					90 %				
Surrogate: 1,3-Dimethyl-2-nitrobenzene (7	70-130%)				90 %				
Surrogate: Triphenylphosphate (70-130%)					109 %				
Surrogate: Triphenylphosphate (70-130%)					109 %				
Surrogate: Perylene-d12 (70-130%)					97 %				
Surrogate: Perylene-d12 (70-130%)					97 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Sampled: 02/11/10 Report Number: ITB1475 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ORGANOCHLORINE PESTICIDES (EPA 608)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITB1475-01 (Arroyo Simi-FP - Water)									
Reporting Units: ug/l									
4,4'-DDD	EPA 608	10B1716	0.0019	0.0048	ND	0.952	02/15/10	02/17/10	
4,4'-DDE	EPA 608	10B1716	0.0029	0.0048	ND	0.952	02/15/10	02/17/10	
4,4'-DDT	EPA 608	10B1716	0.0038	0.0095	ND	0.952	02/15/10	02/17/10	
Dieldrin	EPA 608	10B1716	0.0019	0.0048	ND	0.952	02/15/10	02/17/10	
Chlordane	EPA 608	10B1716	0.038	0.095	ND	0.952	02/15/10	02/17/10	
Toxaphene	EPA 608	10B1716	0.24	0.48	ND	0.952	02/15/10	02/17/10	
Surrogate: Decachlorobiphenyl (45-120%)					67 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					51 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 02/11/10

Report Number: ITB1475 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB1475-01 (Arroyo Simi-FP -	Water) - cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	10B1716	0.24	0.48	ND	0.952	02/15/10	02/15/10	
Aroclor 1221	EPA 608	10B1716	0.24	0.48	ND	0.952	02/15/10	02/15/10	
Aroclor 1232	EPA 608	10B1716	0.24	0.48	ND	0.952	02/15/10	02/15/10	
Aroclor 1242	EPA 608	10B1716	0.24	0.48	ND	0.952	02/15/10	02/15/10	
Aroclor 1248	EPA 608	10B1716	0.24	0.48	ND	0.952	02/15/10	02/15/10	
Aroclor 1254	EPA 608	10B1716	0.24	0.48	ND	0.952	02/15/10	02/15/10	
Aroclor 1260	EPA 608	10B1716	0.24	0.48	ND	0.952	02/15/10	02/15/10	
Surrogate: Decachlorobiphenyl (45-120%)					70 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Sampled: 02/11/10 Report Number: ITB1475 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB1475-01 (Arroyo Simi-FP Reporting Units: mg/l	- Water)								
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	880	1	02/19/10	02/19/10	
Calcium	EPA 200.7	10B2417	0.050	0.10	230	1	02/19/10	02/19/10	
Magnesium	EPA 200.7	10B2417	0.012	0.020	74	1	02/19/10	02/19/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITB1475

Sampled: 02/11/10

Received: 02/11/10

SHORT HOLD TIME DETAIL REPORT

	Hold Time	Date/Time	Date/Time	Date/Time	Date/Time
	(in days)	Sampled	Received	Extracted	Analyzed
Sample ID: Arroyo Simi-FP (ITB147	75-01) - Water				
EPA 525.2	1	02/11/2010 12:00	02/11/2010 19:45	02/12/2010 08:08	02/17/2010 10:46

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITB1475

Sampled: 02/11/10 Received: 02/11/10

METHOD BLANK/QC DATA

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1503 Extracted: 02/12/10)										
Blank Analyzed: 02/17/2010 (10B1503-B	BLK1)										
Chlorpyrifos	ND	1.0	0.10	ug/l							
Diazinon	ND	0.25	0.10	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.30			ug/l	5.00		106	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.30			ug/l	5.00		106	70-130			
Surrogate: Triphenylphosphate	5.34			ug/l	5.00		107	70-130			
Surrogate: Triphenylphosphate	5.34			ug/l	5.00		107	70-130			
Surrogate: Perylene-d12	4.90			ug/l	5.00		98	70-130			
Surrogate: Perylene-d12	4.90			ug/l	5.00		98	70-130			
LCS Analyzed: 02/17/2010 (10B1503-BS	51)										
Chlorpyrifos	5.20	1.0	0.10	ug/l	5.00		104	70-130			
Diazinon	5.30	0.25	0.10	ug/l	5.00		106	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.79			ug/l	5.00		96	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.79			ug/l	5.00		96	70-130			
Surrogate: Triphenylphosphate	4.66			ug/l	5.00		93	70-130			
Surrogate: Triphenylphosphate	4.66			ug/l	5.00		93	70-130			
Surrogate: Perylene-d12	4.49			ug/l	5.00		90	70-130			
Surrogate: Perylene-d12	4.49			ug/l	5.00		90	70-130			
LCS Dup Analyzed: 02/17/2010 (10B150	03-BSD1)										
Chlorpyrifos	5.12	1.0	0.10	ug/l	5.00		102	70-130	2	30	
Diazinon	4.83	0.25	0.10	ug/l	5.00		97	70-130	9	30	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.67			ug/l	5.00		93	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.67			ug/l	5.00		93	70-130			
Surrogate: Triphenylphosphate	4.95			ug/l	5.00		99	70-130			
Surrogate: Triphenylphosphate	4.95			ug/l	5.00		99	70-130			
Surrogate: Perylene-d12	5.40			ug/l	5.00		108	70-130			
Surrogate: Perylene-d12	5.40			ug/l	5.00		108	70-130			

TestAmerica Irvine

Debby Wilson For Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park MWH-Pasadena/Boeing

Quarterly Arroyo Simi-Frontier Park 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Sampled: 02/11/10 Report Number: ITB1475 Received: 02/11/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10B1716 Extracted: 02/15							, , , , , ,				Q
	<u></u>										
Blank Analyzed: 02/16/2010 (10B1710	,	0.0050		/1							
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0025	ug/l							
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
gamma-BHC (Lindane)	ND	0.020	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Chlordane	ND	0.10	0.040	ug/l							
Toxaphene	ND	0.50	0.25	ug/l	0.500		0.5	45.100			
Surrogate: Decachlorobiphenyl	0.426			ug/l	0.500		85	45-120			
Surrogate: Tetrachloro-m-xylene	0.287			ug/l	0.500		57	35-115			
LCS Analyzed: 02/16/2010 (10B1716-	·BS1)										
4,4'-DDD	0.447	0.0050	0.0020	ug/l	0.500		89	55-120			
4,4'-DDE	0.419	0.0050	0.0030	ug/l	0.500		84	50-120			
4,4'-DDT	0.456	0.010	0.0040	ug/l	0.500		91	55-120			
Aldrin	0.308	0.0050	0.0015	ug/l	0.500		62	40-115			
alpha-BHC	0.299	0.0050	0.0025	ug/l	0.500		60	45-115			
beta-BHC	0.404	0.010	0.0040	ug/l	0.500		81	55-115			
delta-BHC	0.397	0.0050	0.0035	ug/l	0.500		79	55-115			
Dieldrin	0.398	0.0050	0.0020	ug/l	0.500		80	55-115			
Endosulfan I	0.408	0.0050	0.0020	ug/l	0.500		82	55-115			
Endosulfan II	0.479	0.0050	0.0030	ug/l	0.500		96	55-120			
Endosulfan sulfate	0.501	0.010	0.0030	ug/l	0.500		100	60-120			
Endrin	0.420	0.0050	0.0020	ug/l	0.500		84	55-115			
TestAmerica Irvine											

TestAmerica Irvine

Debby Wilson For Joseph Doak Project Manager

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 02/11/10

Report Number: ITB1475 Received: 02/11/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1716 Extracted: 02/15/10	_										
LCS Analyzed: 02/16/2010 (10B1716-BS	,										
Endrin aldehyde	0.488	0.010	0.0020	ug/l	0.500		98	50-120			
Endrin ketone	0.492	0.010	0.0030	ug/l	0.500		98	55-120			
gamma-BHC (Lindane)	0.304	0.020	0.0030	ug/l	0.500		61	45-115			
Heptachlor	0.320	0.010	0.0030	ug/l	0.500		64	45-115			
Heptachlor epoxide	0.389	0.0050	0.0025	ug/l	0.500		78	55-115			
Methoxychlor	0.518	0.0050	0.0035	ug/l	0.500		104	60-120			
Surrogate: Decachlorobiphenyl	0.428			ug/l	0.500		86	45-120			
Surrogate: Tetrachloro-m-xylene	0.291			ug/l	0.500		58	35-115			
Matrix Spike Analyzed: 02/17/2010 (10B	1716-MS1)				Sou	rce: ITB	1357-01				
4,4'-DDD	0.446	0.014	0.0057	ug/l	0.472	ND	94	50-125			
4,4'-DDE	0.425	0.014	0.0085	ug/l	0.472	ND	90	45-125			
4,4'-DDT	0.438	0.028	0.011	ug/l	0.472	ND	93	50-125			
Aldrin	0.380	0.014	0.0042	ug/l	0.472	ND	81	35-120			
alpha-BHC	0.365	0.014	0.0071	ug/l	0.472	ND	77	40-120			
beta-BHC	0.458	0.028	0.011	ug/l	0.472	ND	97	50-120			
delta-BHC	0.420	0.014	0.0099	ug/l	0.472	ND	89	50-120			
Dieldrin	0.423	0.014	0.0057	ug/l	0.472	ND	90	50-120			
Endosulfan I	0.437	0.014	0.0057	ug/l	0.472	ND	93	50-120			
Endosulfan II	0.480	0.014	0.0085	ug/l	0.472	ND	102	50-125			
Endosulfan sulfate	0.482	0.028	0.0085	ug/l	0.472	ND	102	55-125			
Endrin	0.440	0.014	0.0057	ug/l	0.472	ND	93	50-120			
Endrin aldehyde	0.460	0.028	0.0057	ug/l	0.472	ND	97	45-125			
Endrin ketone	0.473	0.028	0.0085	ug/l	0.472	ND	100	50-125			
gamma-BHC (Lindane)	0.375	0.057	0.0085	ug/l	0.472	ND	80	40-120			
Heptachlor	0.395	0.028	0.0085	ug/l	0.472	ND	84	40-120			
Heptachlor epoxide	0.430	0.014	0.0071	ug/l	0.472	ND	91	50-120			
Methoxychlor	0.483	0.014	0.0099	ug/l	0.472	ND	102	55-125			
Surrogate: Decachlorobiphenyl	0.427			ug/l	0.472		91	45-120			
Surrogate: Tetrachloro-m-xylene	0.349			ug/l	0.472		74	35-115			

TestAmerica Irvine

Debby Wilson For Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITB1475

Sampled: 02/11/10

Received: 02/11/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1716 Extracted: 02/15/10	<u>)</u>										
M	(10D151 ()	ICD 1)			C	ITD	255.01				
Matrix Spike Dup Analyzed: 02/17/2010						rce: ITB1					
4,4'-DDD	0.429	0.014	0.0057	ug/l	0.472	ND	91	50-125	4	30	
4,4'-DDE	0.402	0.014	0.0085	ug/l	0.472	ND	85	45-125	6	30	
4,4'-DDT	0.414	0.028	0.011	ug/l	0.472	ND	88	50-125	6	30	
Aldrin	0.343	0.014	0.0042	ug/l	0.472	ND	73	35-120	10	30	
alpha-BHC	0.325	0.014	0.0071	ug/l	0.472	ND	69	40-120	12	30	
beta-BHC	0.435	0.028	0.011	ug/l	0.472	ND	92	50-120	5	30	
delta-BHC	0.399	0.014	0.0099	ug/l	0.472	ND	85	50-120	5	30	
Dieldrin	0.400	0.014	0.0057	ug/l	0.472	ND	85	50-120	6	30	
Endosulfan I	0.419	0.014	0.0057	ug/l	0.472	ND	89	50-120	4	30	
Endosulfan II	0.460	0.014	0.0085	ug/l	0.472	ND	98	50-125	4	30	
Endosulfan sulfate	0.464	0.028	0.0085	ug/l	0.472	ND	98	55-125	4	30	
Endrin	0.416	0.014	0.0057	ug/l	0.472	ND	88	50-120	5	30	
Endrin aldehyde	0.444	0.028	0.0057	ug/l	0.472	ND	94	45-125	3	30	
Endrin ketone	0.452	0.028	0.0085	ug/l	0.472	ND	96	50-125	5	30	
gamma-BHC (Lindane)	0.343	0.057	0.0085	ug/l	0.472	ND	73	40-120	9	30	
Heptachlor	0.356	0.028	0.0085	ug/l	0.472	ND	75	40-120	11	30	
Heptachlor epoxide	0.402	0.014	0.0071	ug/l	0.472	ND	85	50-120	7	30	
Methoxychlor	0.462	0.014	0.0099	ug/l	0.472	ND	98	55-125	4	30	
Surrogate: Decachlorobiphenyl	0.411			ug/l	0.472		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.312			ug/l	0.472		66	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITB1475

Sampled: 02/11/10

Received: 02/11/10

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

A I 4 -	D14	Reporting	MDI	11	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1716 Extracted: 02/15/10	<u>) </u>										
Blank Analyzed: 02/15/2010 (10B1716-B	BLK1)										
Aroclor 1016	ND	0.50	0.25	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.25	ug/l							
Surrogate: Decachlorobiphenyl	0.410			ug/l	0.500		82	45-120			
LCS Analyzed: 02/15/2010 (10B1716-BS	52)										
Aroclor 1016	2.85	0.50	0.25	ug/l	4.00		71	50-115			
Aroclor 1260	3.28	0.50	0.25	ug/l	4.00		82	60-120			
Surrogate: Decachlorobiphenyl	0.397			ug/l	0.500		79	45-120			
Matrix Spike Analyzed: 02/15/2010 (10E	B1716-MS2)				Sou	rce: ITB1	1357-01				
Aroclor 1016	2.66	0.47	0.24	ug/l	3.77	ND	70	45-120			
Aroclor 1260	3.40	0.47	0.24	ug/l	3.77	ND	90	55-125			
Surrogate: Decachlorobiphenyl	0.412			ug/l	0.472		87	45-120			
Matrix Spike Dup Analyzed: 02/15/2010	(10B1716-M	ISD2)			Sou	rce: ITB1	1357-01				
Aroclor 1016	2.64	0.47	0.24	ug/l	3.77	ND	70	45-120	0.4	30	
Aroclor 1260	3.39	0.47	0.24	ug/l	3.77	ND	90	55-125	0.06	25	
Surrogate: Decachlorobiphenyl	0.412			ug/l	0.472		87	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITB1475

Sampled: 02/11/10

Received: 02/11/10

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B2417 Extracted: 02/19/10	_										
Blank Analyzed: 02/22/2010 (10B2417-Bl	LK1)										
Calcium	0.0503	0.10	0.050	mg/l							J
Magnesium	ND	0.020	0.012	mg/l							
LCS Analyzed: 02/19/2010-02/22/2010 (1	0B2417-BS1)										
Calcium	0.524	0.10	0.050	mg/l	0.500		105	85-115			
Magnesium	0.525	0.020	0.012	mg/l	0.500		105	85-115			
Matrix Spike Analyzed: 02/19/2010-02/22	2/2010 (10B24	17-MS1)			Sou	rce: ITB1	1490-01				
Calcium	474	0.10	0.050	mg/l	0.500	476	-371	70-130			MHA
Magnesium	7.00	0.020	0.012	mg/l	0.500	6.46	107	70-130			MHA
Matrix Spike Analyzed: 02/22/2010 (10B	2417-MS2)				Sou	rce: ITB1	1425-05				
Calcium	308	0.10	0.050	mg/l	0.500	306	411	70-130			MHA
Magnesium	198	0.020	0.012	mg/l	0.500	196	439	70-130			MHA
Matrix Spike Dup Analyzed: 02/19/2010-	02/22/2010 (10	0B2417-MS	D1)		Sou	rce: ITB1	1490-01				
Calcium	457	0.10	0.050	mg/l	0.500	476	-3880	70-130	4	20	MHA
Magnesium	6.81	0.020	0.012	mg/l	0.500	6.46	70	70-130	3	20	MHA

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 02/11/10

Report Number: ITB1475 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quartely Arroyo Simi-Frontier Park

618 Michillinda Avenue, Suite 200

Quarterly Arroyo Simi-Frontier Park

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: ITB1475

Sampled: 02/11/10 Received: 02/11/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 200.7	Water	X	X
EPA 525.2	Water		
EPA 608	Water	X	X
SM2340B	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

(F+1/second)=0,12 Time of readings = 1200 hrs N .00 Page 1 of SV Extract within 36-Hours of Temp = 44.6 Field readings: Sample Integrity: (check) On Ice: Data Requirements: (check)
No Level IV All Level IV 5 Days 10 Days Normal PH= 7.4 Turn around Time: (check) 24 Hours 5 Day NPDES Level IV 72 Hours 48 Hours ANALYSIS REQUIRED 2-11-10 14:30 Date/Time: Date/Time: Date/Time: **CHAIN OF CUSTODY FORM** Chlordane, Dieldrin, Toxaphene (608), 4,4-DDD, 4,4-DDE, 4,4-DDT × Chlorpyrifos, Diazinon (525.2) × PCBs (608) × Hardness as CaCO3 × Received By Redeived By Received By Bottle # 2A, 2B 3A, 3B 4A, 4B Quarterly Arroyo Simi-Frontier Project: Boeing-SSFL NPDES Preservative HNO3 None None 오 0182-11-2 Phone Number: (626) 568-6691 (626) 568-6515 Fax Number: Sampling Date/Time 1200 2-11-2010 2-11-10 Date/Time: Park Date/Time: Date/Time: Test America version tazoror # of Cont. Project Manager: Bronwyn Kelly 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak Container 1L Amber 1L Amber 1L Amber Sholly Dowson Type Sampler: Van Vothanogen 1L Poly Client Name/Address: Sample MWH-Arcadia Matrix ≥ 3 3 3 Relinquished By Relinquished By Relinquished By Description Sample Arroyo Simi-FP Arroyo Simi-FP Arroyo Simi-FP Arroyo Simi-FP

6015219

Test America Version 12/20/07

CHAIN OF CUSTODY FORM

1731475 Page 1 of 1

			12/20/0			17 XIII O		,			O 1 7 1 1 1	ı			_	- (c 1	- rage ioi i
Client Na		ess:		Projec			, , , , , , , , , , , , , , , , , , , ,							ANA	LYSIS	REQ	UIRED)1	
MWH-A	rcadia			Boein	g-SSF	L NPDES								T				<u> </u>	
618 Michill	inda Aver	nue, Suite 2	:00	Quart	erly A	rroyo Simi-I	Frontier			5.2									
Arcadia, C	A 91007			Park						(525.2)					ļ				Field readings:
											<u> </u>				Ì		ļ		
		t: Joseph D		 			<u> </u>	၂ ဂ္ဂ		Diazinon	5 4 T		Ì				l		Temp = 14.4
Project M	anager:	Bronwyn I	Kelly	Phone				CaCO3		azi	무용률								nu = # //
0	., .,			(626)						۵	15 8 T					1 1			pH = 7.4
Sampler:	Van Vod	hanagin		Fax N				as	8	os,	e, e, 6, 7, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	·		1	- 1	1			Time of readings = 1200 hrs
	Shalley			(626)	568-6	515	(6C (6C)											Time of readings - 1200 vas	
	т.	T						Ę	38	g	무효합								Comments
Sample Description	Sample Matrix	Container Type	# of Cont.	Samp Date/		Preservative	Bottle #	Hardness as	PCBs (608)	Chlorpyrifos,	Chlordane, Dieldrin, Toxaphene (608), 4,4-DDD, 4,4-DDE, 4,4-DDT								
Arroyo Simi-FP	w	1L Poly	1	2-11-20	200	HNO ₃	1	х											
Arroyo Simi-FP	w	1L Amber	2		-	None	2A, 2B		х										
Arroyo Simi-FP	w	1L Amber	2			HCI	3A, 3B			Х				1					Extract within 36-Hours of sampling
Arroyo Simi-FP	w	1L Amber	2		1	None	4A, 4B				х								
											†			+		\vdash		-	
		 				 		-	\vdash		<u> </u>	+		-		 			
	 	 	 	 	11-7	10			\longrightarrow			+		$+\!\!-$		\vdash			
	 		<u> </u>		11-1	1		ļ				1				$\sqcup \bot$			
	 		 ,	1															0.11
			0 4	4															0.3/
·		La	2 6											\perp					2/1,05
	 					 													9
	L	/		ļ												L _ l	1		
							1												
										•		•		+	\top				
Relinguished	Ву	7		Date/Time		1	Received By			•	10	ate/Tim	e:	Щ			+		
Mylin	7 / J	W		2-11-1	ol	145°	Mat	17		luj			2-10	-10	14	: 30	Tu 24	rn arour Hours	nd Time: (check) 5 Days
Relinguished	і Ву		_ D	ate/Time			Redeived By	4			D	ate/Tim				70		Hours	10 Days
11 14	41	111/1/	1 ₂ .		10			•											
/// am	1///	WW//	2-1	1-10	19:	:45				/							72	Hours	Normal
Relinquished	I By	1//	D	Date/Time	:		Received By				Di O	ate/Tim	e;				Sa Int	mple Int	tegrity: (check) On Ice:
		4					J				•	•	. , .5	("	.~0				uirements: (check) V All Level IV
																		DES Le	

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project: Annual Sediment Arroyo

Simi-Frontier Park Boeing SSFL NPDES

Sampled: 02/11/10

Received: 02/11/10

Issued: 03/19/10 15:12

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX

ITB1519-01 Arroyo Simi-FP Soil

Reviewed By:

TestAmerica Irvine

Debby Wilson For Heather Clark Project Manager

Debby Wilson

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ORGANOCHLORINE PESTICIDES (EPA 8081A)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB1519-01 (Arroyo Simi-	FP - Soil)								
Reporting Units: ug/kg									
4,4'-DDD	EPA 3545/8081A	10B2001	1.5	5.0	ND	1	02/17/10	02/17/10	
4,4'-DDE	EPA 3545/8081A	10B2001	1.5	5.0	ND	1	02/17/10	02/17/10	
4,4'-DDT	EPA 3545/8081A	10B2001	1.5	5.0	ND	1	02/17/10	02/17/10	C-2
Dieldrin	EPA 3545/8081A	10B2001	1.5	5.0	ND	1	02/17/10	02/17/10	
Chlordane	EPA 3545/8081A	10B2001	10	50	ND	1	02/17/10	02/17/10	
Toxaphene	EPA 3545/8081A	10B2001	50	200	ND	1	02/17/10	02/17/10	
Surrogate: Decachlorobiphenyl (45-120	%)				79 %				
Surrogate: Tetrachloro-m-xylene (35-11	5%)				83 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

POLYCHLORINATED BIPHENYLS (EPA 3545/8082)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB1519-01 (Arroyo Simi-FP -	Soil)								
Reporting Units: ug/kg									
Aroclor 1016	EPA 8082	10B2001	6.7	50	ND	1	02/17/10	02/18/10	
Aroclor 1221	EPA 8082	10B2001	6.7	50	ND	1	02/17/10	02/18/10	
Aroclor 1232	EPA 8082	10B2001	6.7	50	ND	1	02/17/10	02/18/10	
Aroclor 1242	EPA 8082	10B2001	6.7	50	ND	1	02/17/10	02/18/10	
Aroclor 1248	EPA 8082	10B2001	6.7	50	ND	1	02/17/10	02/18/10	
Aroclor 1254	EPA 8082	10B2001	6.7	50	ND	1	02/17/10	02/18/10	
Aroclor 1260	EPA 8082	10B2001	6.7	50	ND	1	02/17/10	02/18/10	
Surrogate: Decachlorobinhenyl (45-120%)					73 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB1519-01 (Arroyo Sin Reporting Units: %	ni-FP - Soil)								
Percent Moisture	EPA 160.3	10B2316	0.10	0.10	30	1	02/18/10	02/18/10	
Sample ID: ITB1519-01 (Arroyo Sin Reporting Units: mg/kg	ni-FP - Soil)								
Ammonia-N	SM4500NH3-D, MO	D. 10B2438	2.0	5.0	ND	0.997	02/19/10	02/19/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Sediment Arroyo Simi-Frontier Park

618 Michillinda Avenue, Suite 200 Boeing SSFL NPDES Sampled: 02/11/10

Arcadia, CA 91007 Report Number: ITB1519 Received: 02/11/10

Attention: Bronwyn Kelly

TOTAL ORGANIC CARBON (EPA 9060A MOD.)

Analyte	Method	Batch	MDL R Batch Limit		Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB1519-01 (Arroyo Simi-H	FP - Soil)								
Reporting Units: mg/kg									
Total Organic Carbon	EPA 9060A MOD.	10B1995	1700	5000	ND	0.997	02/17/10	02/17/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES Sampled: 02/11/10

Report Number: ITB1519 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

	D422													
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers					
Sample ID: ITB1519-01 (Arroyo Simi-FI	P - Soil)													
Reporting Units: %														
Clay	D422	'[none]'	N/A	NA	32.9	1	02/19/10	02/24/10						
Coarse Sand	D422	'[none]'	N/A	NA	0.5	1	02/19/10	02/24/10						
Fine Sand	D422	'[none]'	N/A	NA	28.8	1	02/19/10	02/24/10						
Gravel	D422	'[none]'	N/A	NA	0.9	1	02/19/10	02/24/10						
Medium Sand	D422	'[none]'	N/A	NA	11.5	1	02/19/10	02/24/10						
Silt	D422	'[none]'	N/A	NA	25.5	1	02/19/10	02/24/10						

Sampled: 02/11/10

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Report Number: ITB1519 Received: 02/11/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 8081A)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Cints	Level	Result	/ore	Limits	KI D	Limit	Quanners
Batch: 10B2001 Extracted: 02/17/10	<u></u>										
Blank Analyzed: 02/17/2010 (10B2001-B	LK1)										
4,4'-DDD	ND	5.0	1.5	ug/kg							
4,4'-DDE	ND	5.0	1.5	ug/kg							
4,4'-DDT	ND	5.0	1.5	ug/kg							
Aldrin	ND	5.0	1.5	ug/kg							
alpha-BHC	ND	5.0	1.5	ug/kg							
alpha-Chlordane	ND	5.0	2.0	ug/kg							
beta-BHC	ND	5.0	1.5	ug/kg							
delta-BHC	ND	10	1.5	ug/kg							
Dieldrin	ND	5.0	1.5	ug/kg							
Endosulfan I	ND	5.0	1.5	ug/kg							
Endosulfan II	ND	5.0	1.5	ug/kg							
Endosulfan sulfate	ND	10	2.0	ug/kg							
Endrin	ND	5.0	1.5	ug/kg							
Endrin aldehyde	ND	5.0	1.5	ug/kg							
Endrin ketone	ND	5.0	2.0	ug/kg							
gamma-BHC (Lindane)	ND	5.0	1.5	ug/kg							
gamma-Chlordane	ND	5.0	1.5	ug/kg							
Heptachlor	ND	5.0	2.0	ug/kg							
Heptachlor epoxide	ND	5.0	2.0	ug/kg							
Methoxychlor	ND	5.0	1.5	ug/kg							
Chlordane	ND	50	10	ug/kg							
Toxaphene	ND	200	50	ug/kg							
Surrogate: Decachlorobiphenyl	29.4			ug/kg	33.3		88	45-120			
Surrogate: Tetrachloro-m-xylene	27.2			ug/kg	33.3		82	35-115			
LCS Analyzed: 02/17/2010 (10B2001-BS	1)										
4,4'-DDD	31.0	5.0	1.5	ug/kg	33.3		93	60-120			
4,4'-DDE	30.3	5.0	1.5	ug/kg	33.3		91	60-120			
4,4'-DDT	29.6	5.0	1.5	ug/kg	33.3		89	65-120			
Aldrin	29.7	5.0	1.5	ug/kg	33.3		89	50-115			
alpha-BHC	30.4	5.0	1.5	ug/kg	33.3		91	60-115			
beta-BHC	29.2	5.0	1.5	ug/kg	33.3		88	60-115			
delta-BHC	31.1	10	1.5	ug/kg	33.3		93	60-115			
Dieldrin	30.1	5.0	1.5	ug/kg	33.3		90	65-115			
Endosulfan I	29.2	5.0	1.5	ug/kg	33.3		88	40-120			
Endosulfan II	29.1	5.0	1.5	ug/kg	33.3		87	55-120			
TD 44 . T .											

TestAmerica Irvine

Debby Wilson For Heather Clark Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 8081A)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B2001 Extracted: 02/17/10)										
Butter 10B2001 Extracted 02/17/10	<u>-</u>										
LCS Analyzed: 02/17/2010 (10B2001-BS	1)										
Endosulfan sulfate	27.9			ug/kg	33.3		84	65-115			
Endrin	29.3 5.		1.5	ug/kg	33.3		88	55-120			
Endrin aldehyde	28.9 5.0		1.5	ug/kg	33.3		87	55-115			
Endrin ketone	30.2 5.0		2.0	ug/kg	33.3		91	65-115			
gamma-BHC (Lindane)	30.4 5.0		1.5	ug/kg	33.3		91	55-115			
Heptachlor	30.7 5.0		2.0	ug/kg	33.3		92	55-115			
Heptachlor epoxide	29.5	5.0	2.0	ug/kg	33.3		89	55-115			
Methoxychlor	28.6	5.0	1.5	ug/kg	33.3		86	65-120			
Surrogate: Decachlorobiphenyl	29.5			ug/kg	33.3		89	45-120			
Surrogate: Tetrachloro-m-xylene	28.0			ug/kg	33.3		84	35-115			
Matrix Spike Analyzed: 02/17/2010 (10B	32001-MS1)				Sou	rce: ITB1	1620-01				
4,4'-DDD	27.8	5.0	1.5	ug/kg	33.3	ND	84	40-130			
4,4'-DDE	33.4	5.0	1.5	ug/kg	33.3	3.89	88	35-130			
4,4'-DDT	28.0	5.0	1.5	ug/kg	33.3	ND	84	35-130			
Aldrin	27.4	5.0	1.5	ug/kg	33.3	ND	82	40-115			
alpha-BHC	28.4	5.0	1.5	ug/kg	33.3	ND	85	40-115			
beta-BHC	26.6	5.0	1.5	ug/kg	33.3	ND	80	40-120			
delta-BHC	28.5	10	1.5	ug/kg	33.3	ND	86	45-120			
Dieldrin	27.5	5.0	1.5	ug/kg	33.3	ND	83	40-125			
Endosulfan I	27.1	5.0	1.5	ug/kg	33.3	ND	81	40-120			
Endosulfan II	26.4	5.0	1.5	ug/kg	33.3	ND	79	40-125			
Endosulfan sulfate	27.2	10	2.0	ug/kg	33.3	ND	82	45-120			
Endrin	28.7	5.0	1.5	ug/kg	33.3	ND	86	45-125			
Endrin aldehyde	23.9	5.0	1.5	ug/kg	33.3	ND	72	30-120			
Endrin ketone	26.7	5.0	2.0	ug/kg	33.3	ND	80	40-120			
gamma-BHC (Lindane)	28.2	5.0	1.5	ug/kg	33.3	ND	85	40-120			
Heptachlor	28.8	5.0	2.0	ug/kg	33.3	ND	87	40-115			
Heptachlor epoxide	27.2	5.0	2.0	ug/kg	33.3	ND	82	45-115			
Methoxychlor	26.5	5.0	1.5	ug/kg	33.3	ND	79	40-135			
Surrogate: Decachlorobiphenyl	26.7			ug/kg	33.3		80	45-120			
Surrogate: Tetrachloro-m-xylene	28.2			ug/kg	33.3		84	35-115			

TestAmerica Irvine

Debby Wilson For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 8081A)

Analyte	Reporting Result Limit M		MDL	Units	Spike Source ts Level Result %		%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B2001 Extracted: 02/17/1	<u>0</u>										
Matrix Spike Dup Analyzed: 02/17/2010) (10B2001-M	ISD1)			Sou	rce: ITB1	620-01				
4,4'-DDD	27.3	5.0	1.5	ug/kg	33.3	ND	82	40-130	2	30	
4,4'-DDE	32.2	5.0	1.5	ug/kg	33.3	3.89	85	35-130	4	30	
4,4'-DDT	26.9	5.0	1.5	ug/kg	33.3	ND	81	35-130	4	30	
Aldrin	26.3	5.0	1.5	ug/kg	33.3	ND	79	40-115	4	30	
alpha-BHC	27.0	5.0	1.5	ug/kg	33.3	ND	81	40-115	5	30	
beta-BHC	25.9	5.0	1.5	ug/kg	33.3	ND	78	40-120	3	30	
delta-BHC	27.4	10	1.5	ug/kg	33.3	ND	82	45-120	4	30	
Dieldrin	26.8	5.0	1.5	ug/kg	33.3	ND	80	40-125	3	30	
Endosulfan I	26.3	5.0	1.5	ug/kg	33.3	ND	79	40-120	3	30	
Endosulfan II	25.7	5.0	1.5	ug/kg	33.3	ND	77	40-125	3	30	
Endosulfan sulfate	25.9	10	2.0	ug/kg	33.3	ND	78	45-120	5	30	
Endrin	27.9	5.0	1.5	ug/kg	33.3	ND	84	45-125	3	30	
Endrin aldehyde	23.6	5.0	1.5	ug/kg	33.3	ND	71	30-120	1	30	
Endrin ketone	25.7	5.0	2.0	ug/kg	33.3	ND	77	40-120	4	30	
gamma-BHC (Lindane)	26.9	5.0	1.5	ug/kg	33.3	ND	81	40-120	5	30	
Heptachlor	27.6	5.0	2.0	ug/kg	33.3	ND	83	40-115	5	30	
Heptachlor epoxide	26.4	5.0	2.0	ug/kg	33.3	ND	79	45-115	3	30	
Methoxychlor	25.5	5.0	1.5	ug/kg	33.3	ND	76	40-135	4	30	
Surrogate: Decachlorobiphenyl	25.8			ug/kg	33.3		77	45-120			
Surrogate: Tetrachloro-m-xylene	27.0			ug/kg	33.3		81	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/11/10

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Report Number: ITB1519 Received: 02/11/10

METHOD BLANK/QC DATA

POLYCHLORINATED BIPHENYLS (EPA 3545/8082)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B2001 Extracted: 02/17/	<u>′10</u>										
Blank Analyzed: 02/18/2010 (10B2001	-BLK1)										
Aroclor 1016	ND	50	6.7	ug/kg							
Aroclor 1221	ND	50	6.7	ug/kg							
Aroclor 1232	ND	50	6.7	ug/kg							
Aroclor 1242	ND	50	6.7	ug/kg							
Aroclor 1248	ND	50	6.7	ug/kg							
Aroclor 1254	ND	50	6.7	ug/kg							
Aroclor 1260	ND	50	6.7	ug/kg							
Surrogate: Decachlorobiphenyl	26.7			ug/kg	33.3		80	45-120			
LCS Analyzed: 02/18/2010 (10B2001-	BS2)										
Aroclor 1016	236	50	6.7	ug/kg	267		89	65-115			
Aroclor 1260	242	50	6.7	ug/kg	267		91	65-115			
Surrogate: Decachlorobiphenyl	27.1			ug/kg	33.3		81	45-120			
Matrix Spike Analyzed: 02/18/2010 (1	0B2001-MS2)				Sou	rce: ITB	1620-01				
Aroclor 1016	233	50	6.7	ug/kg	267	ND	87	50-120			
Aroclor 1260	225	50	6.7	ug/kg	267	ND	84	50-125			
Surrogate: Decachlorobiphenyl	24.2			ug/kg	33.3		72	45-120			
Matrix Spike Dup Analyzed: 02/18/20	10 (10B2001-M	ISD2)			Sou	rce: ITB	1620-01				
Aroclor 1016	233	50	6.7	ug/kg	267	ND	87	50-120	0.2	30	
Aroclor 1260	223	50	6.7	ug/kg	267	ND	84	50-125	0.8	30	
Surrogate: Decachlorobiphenyl	23.8			ug/kg	33.3		71	45-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

METHOD BLANK/QC DATA

INORGANICS

	D 1	Reporting	MDI	T T •.	Spike Source				DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B2316 Extracted: 02/18/10	_										
Duplicate Analyzed: 02/18/2010 (10B231	6-DUP1)				Sou	rce: ITA2	2245-02				
Percent Moisture	13.6	0.10	0.10	%		13.5	i		1	20	
Batch: 10B2438 Extracted: 02/19/10	-										
Blank Analyzed: 02/19/2010 (10B2438-B	LK1)										
Ammonia-N	ND	5.0	2.0	mg/kg							
LCS Analyzed: 02/19/2010 (10B2438-BS	1)										
Ammonia-N	47.2	5.0	2.0	mg/kg	50.0		94	85-115			
Matrix Spike Analyzed: 02/19/2010 (10B	2438-MS1)				Sou	rce: ITB1	519-01				
Ammonia-N	48.5	4.9	2.0	mg/kg	49.5	ND	98	75-125			
Matrix Spike Dup Analyzed: 02/19/2010	(10B2438-M	SD1)			Source: ITB1519-01						
Ammonia-N	48.4	4.9	2.0	mg/kg	49.4	ND	98	75-125	0.2	15	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Sediment Arroyo Simi-Frontier Park MWH-Pasadena/Boeing

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

METHOD BLANK/QC DATA

TOTAL ORGANIC CARBON (EPA 9060A MOD.)

				Spike	Source		%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1995 Extracted: 02/17/10	_										
Blank Analyzed: 02/17/2010 (10B1995-B	LK1)										
Total Organic Carbon	ND	5000	1700	mg/kg							
LCS Analyzed: 02/17/2010 (10B1995-BS	1)										
Total Organic Carbon	10100	5000	1700	mg/kg	10000		101	90-110			
Matrix Spike Analyzed: 02/17/2010 (10B	1995-MS1)				Sou	rce: ITB1	557-01				
Total Organic Carbon	19800	5000	1700	mg/kg	20000	ND	99	70-130			
Matrix Spike Dup Analyzed: 02/17/2010	(10B1995-MSI	D1)			Sou	rce: ITB1	557-01				
Total Organic Carbon	20000	5000	1700	mg/kg	19900	ND	100	70-130	1	30	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

GC CALIBRATION CHECK CRITERIA

Per Method 8000B of SW-846, the percent recovery of the calibration checks for GC analyses must be within ± 15% from the true value for each individual compound or the average % recovery of all compounds in the calibration check solution must be within ± 15% recovery. Per Method 8000B, the end user is to be notified if the latter situation occurs.

The % recovery for the following individual compounds fell outside the \pm 15% criteria, however the average % recovery of all compounds in the calibration check solution was within \pm 15%, thus meeting the overall calibration check criteria.

Calibration Check

<u>Compound</u>	<u>Footnote</u>	% Recovery	<u>Lab Number</u>	<u>Batch</u>
4,4'-DDT	2	80	ITB1519-01	10B2001

Footnotes:

- The calibration demonstrated a high bias for this compound. Samples were flagged to indicate a possible high bias in the result for this compound.
- The calibration demonstrated a low bias for this compound. Samples were flagged to indicate a possible low bias in the result for this compound.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Sediment Arroyo Simi-Frontier Park

Boeing SSFL NPDES

Sampled: 02/11/10 Report Number: ITB1519 Received: 02/11/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

C-2 Calibration Verification recovery was below the method control limit for this analyte, however the average %

difference for all analytes met method criteria. See Calibration Summary form.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Sediment Arroyo Simi-Frontier Park

618 Michillinda Avenue, Suite 200 Boeing SSFL NPDES Sampled: 02/11/10

Arcadia, CA 91007 Report Number: ITB1519 Received: 02/11/10

Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.3	Soil		
EPA 3545/8081A	Soil	X	X
EPA 8082	Soil	X	X
EPA 9060A MOD.	Soil	N/A	N/A
SM4500NH3-D, MOD.	Soil		

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

ABC Laboratories California Cert #1907

29 N. Olive Street - Ventura, CA 93001

Analysis Performed: Bioassay-Haz. Waste

Samples: ITB1519-01

Analysis Performed: Bioassay-Haz. Waste Def

Samples: ITB1519-01

TestAmerica Burlington

30 Community Drive, Suite 11 - South Burlington, VT 05403

Method Performed: D422 Samples: ITB1519-01

TestAmerica Irvine

Page 1 of 1 Keep sample in cooler in the dark until delivered to ABC Labs 500,3 Data Requirements: (check)

No Level IV

All Level IV Sample Integrity: (check)
On Ice: Time of readings = 12:00 Normal 5 Days 10 Days On Ice: Turn around Time: (check) 24 Hours 5 Day Conductivity = 2.19 Temp = 446 Field readings Comments NPDES Level IV DO = 4.89 14.7 = Hq 48 Hours 72 Hours ANALYSIS REQUIRED DDT (608), 4,4-DDD, 4,4-DDE, 4,4-× Chlordane, Dieldrin, Toxaphene PCBs (608) 21/10 × Total Organic Carbon × Bate/Time: Date/Time: Date/Time Particle Size Distribution × CHAIN OF CUSTODY FORM % Moisture × sinommA lstoT × gigas) (Mytilus edulis or Crassostrea × 48-hour Bivalve Embryo toxicity estuarius Toxicity × Chronic 10-day eohaustorius Received By Received By Received By 1A, 1B, 1C, 1D Bottle # Annual Sediment Arroyo Simi – Frontier Park 2A 34 44 SA Preservative Boeing-SSFL NPDES 4C in the Dark 4 deg C 4 deg C 4 deg C 4 deg C (626) 568-6515 Phone Number (626) 568-6691 2-11-10 Fax Number: Sampling Date/Time 1150 2-11-2010 Date/Time: Project Date/Time: Test America version 6/29/09 Project Manager: Bronwyn Kelly # of Cont. 4 Test America Contact: Joseph Doak 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Container Sampler: Shelby Dawson Type 1L wide mouth Plastic 9 oz Jar 9 oz Jar 9 oz Jar 9 oz Jar Client Name/Address: Sample MWH-Arcadia S S Relinguished By S S S Relinquished By Relinquished By Sample Description Arroyo Simi-FP Arroyo Simi-FP Arroyo Simi-FP Arroyo Simi-FP Arroyo Simi-FP

Page 1 of 1 ANALYSIS REQUIRED CHAIN OF CUSTODY FORM Test America version 6/29/09
Client Name/Address: The second secon

ANALYSIS KEQUIKED	Field readings. Temp = [4.6	pH = 7.41	DO = 4,89	Conductivity = 2.19	Time of readings = (7:00 Comments	Keep sample in cooler in the dark until delivered to ABC Labs				,			71. 41	/ Ch:01 /	0/12/10	/ 4 1 1					Turn around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	72 Hours Normal X	Sample Integrity: (check) On loe:	Data Requirements: (check) No Level IV All Level IV	NPDES Level IV On Ice: X	
KEGO				.*																							
S T T																					14:30						
ALX					(608), 4, DDT					×								ŀ			\geq	-			7		
Y	əuəya	exo.	T .ninl		PCBs (6 Chlordar					×								\dashv		\dashv	.0				かいのつかっと		
			uoqı		Total Org	1		×				-							+		24/L/0			 36:	٤		
		uo	itudint	siG əzi	Partide 3				×											Ę	24/L	Date/Time:		Date/Time:	き		
				ıre	stioM %			×													1	۵		۵	Č		
				sinom	mA letoT		×														W,	\setminus			•		
					48-hour (Mytilus gigas)	×					-											1)				
	snı	ıotsı			Chronic estuarius	×															M.		ز		V		
					Bottle #	1A, 1B, 1C, 1D	2A	3A	4A	94										777	THE STATE OF THE S	Received By	•	Received By	-		
	Boeing-SSFL NPDES Annual Sediment Arroyo Simi – Frontier Park		er:	5	Preservative	4C in the Dark	4 deg C	4 deg C	4 deg C	4 deg C			0181	٠ الـ ١							14:2		14:45				
	SFL edin Park		dmu	ber:	စ ဓ	ي ا									عر						5	2	6				
Project:	Boeing-SSFL NPDES Annual Sediment Arro Frontier Park		Phone Number: (626) 568-6691	(526) 568-6515 (626) 568-6515	Sampling Date/Time	2-11-2010	-			→					. Jus	W \ 40	3			Contraction of the contraction o	Date/Time.	Date/Time:	2-11-10	Date/Time:			
		¥	È		# of Cont.	4	-	-	-	-						1			2] [4				
	e 20() Dog	Ē	<u>ج</u>	-					L		-					1	\top	\dagger	\dashv	\	*	1				
ess:	nue, Suit	t: Joseph	Bronwy	Dawson	Container Type	1L wide mouth Plastic	9 oz Jar	9 oz Jar	9 oz Jar	9 oz Jar										,	A				}		
ne/Addr	r cadia Inda Ave	a Contac	anager:	Shelby	Sample Matrix	တ	ဟ	တ	ဟ	တ										ر ب		d By	The State of the S	Page 1			
Client Name/Address:	MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	Sampler: Shelby Dawson	Sample Description	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Siml-FP	Arroyo Simi-FP	Arroyo Simi-FP								• .		100	HANN MALT	Relinguished By	1100	Refinduished By	,		

2.5 W2112

TOXICITY TESTING . OCEANOGRAPHIC RESEARCH

March 10, 2010

Mr. Joseph Doak TestAmerica Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Dear Mr. Doak:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT:

TestAmerica Irvine

SAMPLE I.D.:

ITB1519-01 (Arroyo Simi-FP-Soil)

DATE RECEIVED:

15 Feb - 10

ABC LAB. NO.:

TAM0310.033

CHRONIC EOHAUSTORIUS SURVIVAL BIOASSAY

SURVIVAL = 94.00%

Yours very truly,

Thomas (Tim) Mikel Laboratory Director

CETIS Summary Report

Report Date:

10 Mar-10 10:09 (p 1 of 1)

Test Code:

18-2330-0588/TAM0310033eoh

							rest code:	10-2000	7-0300/ TAIV	100100000
Eohaustorius	10-d Survival ar	nd Reburial Sedin	nent Test				Aquatic I	3ioassay &	Consulting	g Labs, In
Batch ID:	10-1406-8141	Test Type:	Survival-Rebur	ial			Analyst:			
Start Date:	23 Feb-10 12:00		EPA/600/R-94/				Diluent: Laboratory Seawater			
Ending Date:	05 Mar-10 12:00	Species:	Eohaustorius e	stuarius			Brine: Not Applicable			
Duration:	10d 0h	Source:	Northwestern A	Aquatic Scie	nce, OR		Age:			
Sample ID:	15-1789-4853	Code:	TAM0310033e				Client: Tes	st America I	vine	
Sample Date:	11 Feb-10 11:50	Material:	Sediment				Project: ITE	1519		
Receive Date:	15 Feb-10 11:15	Source:	Bioassay Repo	ort						
Sample Age:	12d Oh (3.6 °C)	Station:	ITB1519-01 (ar	royo Simi-F	P-Soil)					
Comparison S	Summary									
Analysis ID	Endpoint	NOEI	LOEL	TOEL	PMSD	TU	Method			
16-1469-1325	Survival Rate	100	>100	N/A	3.38%	1	Equal Va	riance t Two	-Sample Te	est
Point Estimate	e Summary									
Analysis ID	Endpoint	Level	%	95% LCL	95% UCL	TU	Method			
12-5858-9985	Survival Rate	EC5	>100	N/A	N/A	<1	Linear Interpolation (ICPIN)			
		EC10	>100	N/A	N/A	<1				
		EC15	>100	N/A	N/A	<1				
		EC20	>100	N/A	N/A	<1				
		EC25	>100	N/A	N/A	<1				
		EC40	>100	N/A	N/A	<1				
		EC50	>100	N/A	N/A	<1				
Test Acceptab	ility									
Analysis ID	Endpoint	Attrib	oute	Test Stat	TAC Limi	its	Overlap	Decision		
12-5858-9985	Survival Rate	Contr	ol Resp	0.92	0.9 - NL		Yes	Result W	ithin Limits	
16-1469-1325	Survival Rate	Contr	ol Resp	0.92	0.9 - NL		Yes	Result W	ithin Limits	
Survival Rate	Summary									
Conc-%	Control Type	Count Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
)	Negative Control	5 0.92	0.9098	0.9302	0.9	0.95	0.005	0.02739	2.98%	0.0%
100		5 0.94	0.9317	0.9483	0.9	0.95	0.004082	0.02236	2.38%	-2.17%
Survival Rate	Detail									
100000000000000000000000000000000000000	Control Type	Rep 1 Rep 2	Rep 3	Rep 4	Rep 5					
)	Negative Control	0.9	0.95	0.9	0.95					

0.9

0.95

0.95

0.95

0.95

100

Report Date:

10 Mar-10 10:09 (p 1 of 2)

Test Code:

18-2330-0588/TAM0310033eoh

Eohaustorius											
	10-d Survival a	nd Reb	urial Sedim	ent Test				Aquatic	Bioassay &	Consultin	g Labs, lı
Analysis ID:	16-1469-1325	Endpoint:	Survival Rate			CE.	1.7.0				
Analyzed:	10 Mar-10 9:49	,	Analysis:	Parametric-Two	o Sample		Offi	icial Result	ts: Yes		
Batch ID:	10-1406-8141		Test Type:	Survival-Rebur	ial		Ana	alyst:			
Start Date:	23 Feb-10 12:0		Protocol:	EPA/600/R-94/			Dilu	uent: La	boratory Sea	water	
Ending Date:	05 Mar-10 12:0		Species:	Eohaustorius e			Brit		ot Applicable		
Duration:	10d 0h		Source:	Northwestern A	quatic Scie	nce, OR	Age				
Sample ID:	15-1789-4853		Code:	TAM0310033e			Clie	ent: Te	est America I	rvine	
Sample Date:	11 Feb-10 11:5	0 1	Material:	Sediment			Pro	ject: IT	B1519		
	15 Feb-10 11:1		Source:	Bioassay Repo	rt						
Sample Age:	12d Oh (3.6 °C)) :	Station:	ITB1519-01 (ar	royo Simi-F	P-Soil)					
Data Transfori	m	Zeta	Alt H	yp Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted)	0	C > T	Not Run		100	>100	N/A	1	3.38%	
Equal Varianc	e t Two-Sample	Test									
Control	vs Conc-%		Test S	Stat Critical	MSD	P-Value	Decision	1(5%)			
Negative Contr	ol 100		-1.265	1.86	0.05659	0.8792		nificant Effe	ct		
Test Acceptab	oility										
Attribute	Test Stat	TAC L	imits	Overlap	Decision						
Control Resp	0.92	0.9 - N	IL	Yes	Result Wi	thin Limits					
Auxiliary Tests	s										
Attribute	Test			Test Stat	Critical	P-Value	Decision	,			
	1031			1 Cot Otal	Officioni						
Extreme Value	Grubbs S	ingle Ou	utlier	1.697	2.29	0.6884		ers Detected	d		
	Grubbs S	ingle Οι	utlier	1.697	2.29	0.6884		ers Detected	d		
ANOVA Table				The state of			No Outlie				
ANOVA Table Source	Sum Squa	ares	Mean	Square	DF	F Stat	No Outlie	Decision	n(5%)	t	
ANOVA Table Source Between	Sum Squa 0.0037046	ares	Mean 0.0037	Square 704635	DF 1		No Outlie	Decision		t	
ANOVA Table Source Between Error	Sum Squa	ares 35	Mean 0.0037 0.0023	Square	DF	F Stat	No Outlie	Decision	n(5%)	t	
ANOVA Table Source Between Error Total	Sum Squa 0.0037046 0.0185231 0.0222278	ares 35	Mean 0.0037 0.0023	Square 704635 315397	DF 1 8	F Stat	No Outlie	Decision	n(5%)	t	
ANOVA Table Source Between Error Fotal	Sum Squa 0.0037046 0.0185231 0.0222278	ares 35	Mean 0.0037 0.0023	Square 704635 315397	DF 1 8 9	F Stat	P-Value 0.2415	Decision Non-Sign	n(5%)	t	
ANOVA Table Source Between Error Total ANOVA Assum	Sum Squa 0.0037046 0.0185231 0.0222278	ares 35 8	Mean 0.0037 0.0023	Square 704635 815397 020033	DF 1 8 9	F Stat	P-Value 0.2415	Decision Non-Sign	n(5%)	t	
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance	ares 35 8 1	Mean 0.0037 0.0023 0.0060	Square 704635 315397 020033 Test Stat 1.5	DF 1 8 9	F Stat 1.6	P-Value 0.2415	Decision Non-Sign (1%) riances	n(5%)	t	
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance	ares 35 8 1	Mean 0.0037 0.0023 0.0060	Square 704635 315397 020033	DF 1 8 9 Critical 23.15	F Stat 1.6 P-Value 0.7040	P-Value 0.2415 Decision Equal Va Equal Va	Decision Non-Sign (1%) riances	n(5%)	t	
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance Mod Leve	Ratio F ne Equa	Mean 0.0037 0.0023 0.0060 ality of Varia	Square 704635 315397 020033 Test Stat 1.5 ance 0.4286	DF 1 8 9 Critical 23.15	F Stat 1.6 P-Value 0.7040 0.5370	P-Value 0.2415 Decision Equal Va Equal Va Normal D	Decision Non-Sign n(1%) riances riances	n(5%)	t	
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance Mod Leve Shapiro-W	ares 35 8 1 Ratio F ne Equa	Mean 0.0037 0.0023 0.0060 ality of Variamality	Square 704635 815397 020033 Test Stat 1.5 ance 0.4286 0.8904	DF 1 8 9 Critical 23.15 13.75	F Stat 1.6 P-Value 0.7040 0.5370 0.1713	P-Value 0.2415 Decision Equal Va Equal Va Normal D Normal D	Decision Non-Sign (1%) rriances rriances Distribution	n(5%)	t	
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance (Mod Leve Shapiro-W Kolmogor D'Agostine	ares 35 8 1 Ratio F ne Equa	Mean 0.0037 0.0023 0.0060 ality of Variamality	Square 704635 815397 020033 Test Stat 1.5 ance 0.4286 0.8904 0.2643	DF 1 8 9 Critical 23.15 13.75	F Stat 1.6 P-Value 0.7040 0.5370 0.1713 0.0461	P-Value 0.2415 Decision Equal Va Equal Va Normal D Normal D	Decision Non-Sign (1%) riances riances Distribution Distribution	n(5%)	t	
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution Distribution Survival Rate S	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance (Mod Leve Shapiro-W Kolmogor D'Agostine	ares 35 8 1 Ratio F ne Equa	Mean 0.0037 0.0023 0.0060 ality of Variamality nov	Square 704635 815397 020033 Test Stat 1.5 ance 0.4286 0.8904 0.2643	DF 1 8 9 Critical 23.15 13.75	F Stat 1.6 P-Value 0.7040 0.5370 0.1713 0.0461	P-Value 0.2415 Decision Equal Va Equal Va Normal D Normal D	Decision Non-Sign (1%) riances riances Distribution Distribution	n(5%)	t CV%	Diff%
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution Distribution Survival Rate S	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance Mod Leve Shapiro-W Kolmogor D'Agostine	Ratio F ne Equa Vilk Norr ov-Smir o Skewr	Mean 0.0037 0.0023 0.0060 ality of Variamality nov	Square 704635 815397 020033 Test Stat 1.5 ance 0.4286 0.8904 0.2643 0.4789	DF 1 8 9 Critical 23.15 13.75 0.3025 2.576	P-Value 0.7040 0.5370 0.1713 0.0461 0.6320	P-Value 0.2415 Decision Equal Va Rormal D Normal D Normal D	Decision Non-Sign (1%) riances riances Distribution Distribution	n(5%) nificant Effec		Diff% 0.0%
ANOVA Table Source Setween Error Fotal ANOVA Assum Attribute Variances Variances Distribution Distribution Distribution Survival Rate S	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance Mod Leve Shapiro-W Kolmogoro D'Agostino Summary Control Type	Ratio F ne Equa Vilk Norr ov-Smir o Skewr	Mean 0.0037 0.0023 0.0060 ality of Variamality nov ness Mean	Square 704635 815397 920033 Test Stat 1.5 90.4286 0.8904 0.2643 0.4789	DF 1 8 9 Critical 23.15 13.75 0.3025 2.576	P-Value 0.7040 0.5370 0.1713 0.0461 0.6320	P-Value 0.2415 Decision Equal Va Rormal D Normal D Normal D	Decision Non-Sign (1%) riances riances Distribution Distribution Std Err	n(5%) nificant Effec Std Dev 5 0.02739	CV%	0.0%
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution Distribution Survival Rate \$ Conc-%	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance Mod Leve Shapiro-W Kolmogoro D'Agostino Summary Control Type Negative Control	Ratio F ne Equa Vilk Norr ov-Smir o Skewr	Mean 0.0037 0.0023 0.0060 ality of Variamality nov ness Mean 0.92 0.94	Square 704635 815397 920033 Test Stat 1.5 ance 0.4286 0.8904 0.2643 0.4789 95% LCL 0.9096	DF 1 8 9 Critical 23.15 13.75 0.3025 2.576 95% UCL 0.9304	P-Value 0.7040 0.5370 0.1713 0.0461 0.6320 Min 0.9	P-Value 0.2415 Decision Equal Va Rormal D Normal D Normal D Normal D	Decision Non-Sign (1%) riances riances Distribution Distribution Std Err 0.005088	n(5%) nificant Effec Std Dev 5 0.02739	CV% 2.98%	0.0%
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution Distribution Survival Rate S Conc-% 0 100 Angular (Corre	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance (Mod Leve Shapiro-W Kolmogor D'Agostino Summary Control Type Negative Control	Ratio F ne Equa Vilk Norr ov-Smir o Skewr	Mean 0.0037 0.0023 0.0060 ality of Variamality nov ness Mean 0.92 0.94	Square 704635 815397 020033 Test Stat 1.5 ance 0.4286 0.8904 0.2643 0.4789 95% LCL 0.9096 0.9315	DF 1 8 9 Critical 23.15 13.75 0.3025 2.576 95% UCL 0.9304 0.9485	F Stat 1.6 P-Value 0.7040 0.5370 0.1713 0.0461 0.6320 Min 0.9 0.9	P-Value 0.2415 Decision Equal Va Equal Va Normal D Normal D Max 0.95 0.95	Decision Non-Sign (1%) riances riances Distribution Distribution Std Err 0.005088	n(5%) nificant Effec Std Dev 5 0.02739	CV% 2.98% 2.38%	0.0%
0 100 Angular (Corre Conc-%	Sum Squa 0.0037046 0.0185231 0.0222278 nptions Test Variance Mod Leve Shapiro-W Kolmogor D'Agostine Summary Control Type Negative Control	Ratio F ne Equa Vilk Norr ov-Smir o Skewr	Mean 0.0037 0.0023 0.0060 ality of Variamality nov ness Mean 0.92 0.94	Square 704635 815397 920033 Test Stat 1.5 ance 0.4286 0.8904 0.2643 0.4789 95% LCL 0.9096	DF 1 8 9 Critical 23.15 13.75 0.3025 2.576 95% UCL 0.9304	F Stat 1.6 P-Value 0.7040 0.5370 0.1713 0.0461 0.6320 Min 0.9 0.9	P-Value 0.2415 Decision Equal Va Rormal D Normal D Normal D Normal D	Decision Non-Sign (1%) riances riances Distribution Distribution Std Err 0.005088	Std Dev 5 0.02739 2 0.02236	CV% 2.98%	0.0% -2.17%

Report Date:

10 Mar-10 10:09 (p 2 of 2)

Test Code:

18-2330-0588/TAM0310033eoh

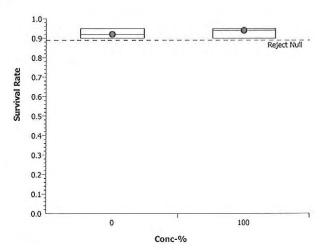
Echaustorius 10-d Survival and Reburial Sediment Test

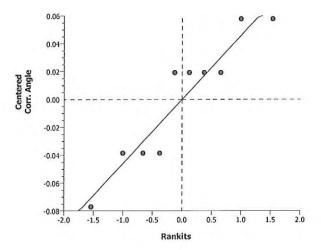
Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: Analyzed:

16-1469-1325 10 Mar-10 9:49 Endpoint: Survival Rate Analysis:

Parametric-Two Sample


CETIS Version: Official Results: Yes


CETISv1.7.0

Survival Rate Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Negative Control	0.9	0.9	0.95	0.9	0.95	
100		0.95	0.95	0.9	0.95	0.95	

Graphics

Report Date:

10 Mar-10 10:09 (p 1 of 2)

Test Code:

18-2330-0588/TAM0310033eoh

nsulting Labs, In 0 ter
ter
В
e
e
В
2 100
A 9:

Analyst: QA:

Report Date:

10 Mar-10 10:09 (p 2 of 2)

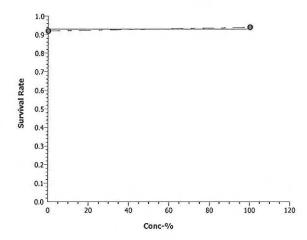
Test Code:

18-2330-0588/TAM0310033eoh

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

CETISv1.7.0


Analysis ID: Analyzed: 12-5858-9985 10 Mar-10 9:49 Endpoint: Survival Rate

Analysis: Linear Interpolation (ICPIN)

CETIS Version:

Official Results: Yes

Graphics

CETIS Measurement R	Report
----------------------------	--------

Report Date:

10 Mar-10 10:09 (p 1 of 2)

Test Code: 18-2330-0588/TAM0310033eoh

								cot oouc.	10 200	0 000071711	1100100000011		
Eohaustorius 10-d Survival and Reburial Sediment Test								Aquatic Bioassay & Consulting Labs, Inc.					
Batch ID: Start Date: Ending Date: Duration:	10-1406-8141 23 Feb-10 12:0 05 Mar-10 12:0 10d 0h		Test Type: Protocol: Species: Source:	Survival-Reburial EPA/600/R-94/025 (1994) Eohaustorius estuarius Northwestern Aquatic Science, OR		D B		Laboratory Seawater Not Applicable					
Sample ID:	15-1789-4853		Code:	TAM03100336	9		C	lient:	Γest America I	rvine			
Sample Date:	11 Feb-10 11:	50	Material:	Sediment			P	roject: I	TB1519				
Receive Date:	15 Feb-10 11:	15	Source:	Bioassay Rep	ort								
Sample Age:	12d 0h (3.6 °C) Station:			ITB1519-01 (arroyo Simi-FP-Soil)									
Dissolved Oxy	/gen-mg/L												
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Negative Contr	2	10.1	10.1	10.1	10.1	10.1	0	0	0.0%	0		
100		2	10.15	10.08	10.22	10	10.3	0.03536	0.2121	2.09%	0		
Overall		4	10.13			10	10.3				0 (0%)		
Total Ammoni	a (N)-mg/L												
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Negative Contr	1	0			0	0	0	0		0		
100		1	0			0	0	0	0		0		
Overall		2	0			0	0				0 (0%)		
pH-Units													
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Negative Contr	2	7.75	7.726	7.774	7.7	7.8	0.01179	0.07072	0.91%	0		
100		2	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0		
Overall		4	7.825			7.7	7.9				0 (0%)		
Salinity-ppt													
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Negative Contr	2	20	20	20	20	20	0	0	0.0%	0		
100		2	20	20	20	20	20	0	0	0.0%	0		
Overall		4	20			20	20				0 (0%)		
Temperature-°	С												
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	Negative Contr	2	14.9	14.9	14.9	14.9	14.9	0	0	0.0%	0		
100		2	14.9	14.9	14.9	14.9	14.9	0	0	0.0%	0		
Overall		4	14.9			14.9	14.9				0 (0%)		

Report Date:

10 Mar-10 10:09 (p 2 of 2)

Test Code:

18-2330-0588/TAM0310033eoh

							rest	oue:	10-2330-0300/ TAIVIUS 10033801
Eohaustoriu	s 10-d Survival a	and Reburial Sedi	ment Test					Aquatic I	Bioassay & Consulting Labs, Inc.
Dissolved O	xygen-mg/L								
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr		10.1					75-171-2-50-71	
100			10.3						
0	Negative Contr	2	10.1					-	
100			10						
Total Ammo	nia (N)-mg/L								
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	0						
100			0						
pH-Units									
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	7.8						
100			7.9						
0	Negative Contr	2	7.7						
100			7.9						
Salinity-ppt									
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	20						
100			20						
0	Negative Contr	2	20						
100			20						
Temperature	-°C								
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	14.9						
100			14.9						
0	Negative Contr	2	14.9						
100			14.9						

Analyst: QA:

TOXICITY TESTING • OCEANOGRAPHIC RESEARCH

March 10, 2010

Mr. Joseph Doak TestAmerica Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Dear Mr. Doak:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136.* Results were as follows:

CLIENT:

TestAmerica Irvine

SAMPLE I.D.:

IRB1519-01 (Arroyo Simi-FP-Soil)

DATE RECEIVED:

15 February 2010

ABC LAB. NO.:

TAM0310.033

CHRONIC MYTILUS DEVELOPMENT BIOASSAY

NOEC = 100.00 %

TUc = 1.00

IC25 = >100.00 %

IC50 = >100.00 %

Yours very truly,

Thomas (Tim) Mikel Laboratory Director

CETIS S	Summary	Report
---------	---------	--------

Report Date:

10 Mar-10 10:08 (p 1 of 1)

Test Code:

02-9099-5544/TAM0310033myt

								Test Code:	02-909	9-5544/IAN	110310033my
Mussel Shell	Development Te	st						Aquatio	Bioassay &	Consultin	g Labs, Inc
Batch ID:	01-5868-5140	Test	Type:	Development-S	Survival			Analyst:			
Start Date:	23 Feb-10 12:0	1 Prot	ocol:	EPA/600/R-95	/136 (1995)			Diluent: La	aboratory Wa	ter	
Ending Date:	25 Feb-10 12:0	1 Spec	ies:	Mytilis gallopro	vincialis			Brine:			
Duration:	48h	Sour	ce:	Carlsbad Aqua	farms CA			Age:			
Sample ID:	19-3935-0221	Code	e:	TAM0310033n	n			Client: To	est America I	rvine	
Sample Date:	18 Feb-10 11:50) Mate	rial:	Sediment				Project: IT	B1519		
Receive Date:	: 15 Feb-10 11:15	5 Sour	ce:	Bioassay Repo	ort						
Sample Age:	5d 0h (3.6 °C)	Stati	on:	ITB1519-01 (a	rroyo Simi-F	P-Soil)					
Comparison S	Summary										
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Method			
13-7342-3361	Combined Prop	ortion Norm	100	>100	N/A	3.58%	1	Equal V	ariance t Two	o-Sample T	est
Point Estimat	e Summary										
Analysis ID	Endpoint		Level	%	95% LCL	95% UCL	TU	Method			
01-9378-2761	Combined Prop	ortion Norm	EC5	>100	N/A	N/A	<1	Linear I	nterpolation (ICPIN)	
			EC10	>100	N/A	N/A	<1				
			EC15	>100	N/A	N/A	<1				
			EC20	>100	N/A	N/A	<1				
			EC25	>100	N/A	N/A	<1				
			EC40	>100	N/A	N/A	<1				
			EC50	>100	N/A	N/A	<1				
Test Acceptal	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Limi	its	Overlap	Decision	1	
13-7342-3361	Combined Propo	ortion Norm	PMSD)	0.03582	NL - 0.25		No	Result W	ithin Limits	
Combined Pro	oportion Normal	Summary									
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Control	5	0.978	1 0.9732	0.983	0.9605	0.991	2 0.00240	2 0.01316	1.35%	0.0%
100	The South of the Control of Control	5	0.95	0.9362	0.9638	0.9035	1	0.00676	2 0.03703	3.9%	2.87%
Combined Pro	oportion Normal	Detail									
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	Negative Control	0.9912	0.9737	7 0.9605	0.9912	0.9737					

0.9605

0.9035

0.9254

0.9605

100

CETIS Analytical Re	eport
---------------------	-------

Report Date:

10 Mar-10 10:08 (p 1 of 2)

Test Code:

02-9099-5544/TAM0310033myt

		. 102							Rinassay &	Consultin	g Labs, Ir
Mussel Shell D	Development Te	est						Aquatic E	oloussuy w		•
Analysis ID:	13-7342-3361	E	ndpoint:	Combined Prop	oortion Norm	nal	CET	IS Version:	CETISv1	.7.0	
Analyzed:	10 Mar-10 10:0)8 A	nalysis:	Parametric-Two	o Sample		Offic	cial Results	: Yes		
Batch ID:	01-5868-5140	T	est Type:	Development-S	Survival		Ana	lyst:	2 1 71		
Start Date:	23 Feb-10 12:0	1 P	rotocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: Lab	oratory Wat	er	
Ending Date:	25 Feb-10 12:0	1 S	pecies:	Mytilis gallopro	vincialis		Brin	e:			
Duration:	48h	S	ource:	Carlsbad Aqua	farms CA		Age				
Sample ID:	19-3935-0221	C	ode:	TAM0310033m	ı.		Clie	nt: Tes	t America Ir	vine	
Sample Date:	18 Feb-10 11:5	0 N	laterial:	Sediment			Proj	ect: ITB	1519		
Receive Date:	15 Feb-10 11:1	5 S	ource:	Bioassay Repo	ort						
Sample Age:	5d 0h (3.6 °C)	S	tation:	ITB1519-01 (ar	royo Simi-Fl	P-Soil)					
Data Transforn	n	Zeta	Alt Hy	p Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	cted)	0	C > T	Not Run		100	>100	N/A	1	3.58%	
Equal Variance	e t Two-Sample	Test									
Control	vs Conc-%		Test S	tat Critical	MSD	P-Value	Decision	(5%)			
Negative Contro			1.181	1.86	0.0983	0.1358		ificant Effect			
Test Acceptabi	ility										
Attribute	Test Stat	TACLI	mits	Overlap	Decision						
PMSD	0.03582	NL - 0.2		No	Result Wit	hin Limits					
			100			IVERTICAL PROPERTY OF THE PARTY					
Auviliant Toots											
				Toot Stat	Critical	P _a Value	Decision				
Attribute	Test	ingle Out	llior	Test Stat		P-Value	Decision No Outlie	rs Detected			
Attribute Extreme Value		ingle Out	llier	Test Stat 2,183	Critical 2.29	P-Value 0.0965		rs Detected			
Attribute Extreme Value	Test Grubbs S			2.183	2.29	0.0965	No Outlie		200		
Attribute Extreme Value ANOVA Table Source	Test Grubbs S Sum Squa	ares	Mean \$	2.183 Square	2.29 DF	0.0965 F Stat	No Outlie	Decision(
Attribute Extreme Value ANOVA Table Source Between	Grubbs S Sum Squa 0.0097395	ares	M ean \$	2.183 Square 39579	2.29 DF 1	0.0965	No Outlie	Decision((5%) ficant Effect		
Attribute Extreme Value ANOVA Table Source Between Error	Test Grubbs S Sum Squa 0.0097395 0.0558914	ares 579	Mean \$ 0.0097 0.0069	2.183 Square 39579 86429	2.29 DF 1 8	0.0965 F Stat	No Outlie	Decision(
Attribute Extreme Value ANOVA Table Source Between Error	Test Grubbs S Sum Squa 0.0097395 0.0558914 0.0656310	ares 579	M ean \$	2.183 Square 39579 86429	2.29 DF 1	0.0965 F Stat	No Outlie	Decision(
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum	Test Grubbs S Sum Squa 0.0097395 0.0558914 0.0656310	ares 579	Mean \$ 0.0097 0.0069	2.183 Square 39579 86429 2601	2.29 DF 1 8 9	0.0965 F Stat 1.394	P-Value 0.2716	Decision(Non-Signi			
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum	Test Grubbs S Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test	ares 579 13	Mean \$ 0.0097 0.0069	2.183 Square 39579 86429 2601	DF 1 8 9 Critical	0.0965 F Stat 1.394 P-Value	P-Value 0.2716	Decision(Non-Signi			
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances	Test Grubbs S Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance	ares 679 13 11	Mean \$ 0.0097 0.0069 0.0167	2.183 Square 39579 86429 2601 Test Stat 5.289	2.29 DF 1 8 9 Critical 23.15	0.0965 F Stat 1.394 P-Value 0.1356	P-Value 0.2716 Decision Equal Val	Decision(Non-Signi (1%)			
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve	ares 579 13 01 Ratio F	Mean \$ 0.0097	2.183 Square 39579 86429 2601 Test Stat 5.289 nce 1.401	DF 1 8 9 Critical	0.0965 F Stat 1.394 P-Value 0.1356 0.2813	P-Value 0.2716 Decision Equal Van Equal Van	Decision(Non-Signi (1%) iances iances			
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V	ares 579 3 11 Ratio F sine Equa	Mean \$ 0.0097	2.183 Square 39579 86429 2601 Test Stat 5.289 nce 1.401 0.9358	2.29 DF 1 8 9 Critical 23.15 13.75	0.0965 F Stat 1.394 P-Value 0.1356 0.2813 0.5074	P-Value 0.2716 Decision Equal Var Equal Var Normal D	Decision(Non-Signi (1%) iances iances istribution			
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V Kolmogor	ares 679 13 11 Ratio F sine Equa Vilk Norm	Mean \$ 0.0097 0.0069 0.0167 lity of Varianality	2.183 Square 39579 86429 2601 Test Stat 5.289 nce 1.401 0.9358 0.1742	2.29 DF 1 8 9 Critical 23.15 13.75 0.3025	P-Value 0.1356 0.2813 0.5074 0.6068	P-Value 0.2716 Decision Equal Var Equal Var Normal D Normal D	Decision(Non-Signi (1%) iances iances istribution istribution			
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V	ares 679 13 11 Ratio F sine Equa Vilk Norm	Mean \$ 0.0097 0.0069 0.0167 lity of Varianality	2.183 Square 39579 86429 2601 Test Stat 5.289 nce 1.401 0.9358	2.29 DF 1 8 9 Critical 23.15 13.75	0.0965 F Stat 1.394 P-Value 0.1356 0.2813 0.5074	P-Value 0.2716 Decision Equal Var Equal Var Normal D	Decision(Non-Signi (1%) iances iances istribution istribution			
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V Kolmogor	Ratio F ene Equa Vilk Norm ov-Smirn o Skewn	Mean \$ 0.0097 0.0069 0.0167 lity of Varianality nov	2.183 Square 39579 86429 2601 Test Stat 5.289 nce 1.401 0.9358 0.1742	2.29 DF 1 8 9 Critical 23.15 13.75 0.3025	P-Value 0.1356 0.2813 0.5074 0.6068	P-Value 0.2716 Decision Equal Var Equal Var Normal D Normal D	Decision(Non-Signi (1%) iances iances istribution istribution	ficant Effect		
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Distribution Distribution Distribution Combined Prop	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V Kolmogor D'Agostin portion Normal Control Type	Ratio F ene Equa Vilk Norm o Skewn Summa	Mean \$ 0.0097 0.0069 0.0167 lity of Varianality nov ess ury Mean	2.183 Square 39579 86429 2601 Test Stat 5.289 1.401 0.9358 0.1742 1.419	2.29 DF 1 8 9 Critical 23.15 13.75 0.3025 2.576	P-Value 0.1356 0.2813 0.5074 0.6068 0.1558	P-Value 0.2716 Decision Equal Van Equal Van Normal D Normal D Normal D	Decision(Non-Signi (1%) clances clances cistribution cistribution cistribution	ficant Effect	CV%	Diff%
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution Combined Prop	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V Kolmogor D'Agostin	Ratio F ene Equa Vilk Norm ov-Smirn o Skewn Summa Count	Mean S 0.0097 0.0069 0.0167 lity of Varianality lov ess ary Mean 0.9781	2.183 Square 39579 86429 2601 Test Stat 5.289 1.401 0.9358 0.1742 1.419 95% LCL 0.9731	2.29 DF 1 8 9 Critical 23.15 13.75 0.3025 2.576 95% UCL 0.9831	P-Value 0.1356 0.2813 0.5074 0.6068 0.1558 Min 0.9605	P-Value 0.2716 Decision Equal Var Rormal D Normal D Normal D Max 0.9912	Decision(Non-Signi (1%) clances clances istribution istribution istribution Std Err 0.002443	Std Dev 0.01316	CV% 1.35%	0.0%
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution Combined Prop	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V Kolmogor D'Agostin portion Normal Control Type	Ratio F ene Equa Vilk Norm o Skewn Summa	Mean \$ 0.0097 0.0069 0.0167 lity of Varianality nov ess ury Mean	2.183 Square 39579 86429 2601 Test Stat 5.289 1.401 0.9358 0.1742 1.419	2.29 DF 1 8 9 Critical 23.15 13.75 0.3025 2.576	P-Value 0.1356 0.2813 0.5074 0.6068 0.1558	P-Value 0.2716 Decision Equal Van Equal Van Normal D Normal D Normal D	Decision(Non-Signi (1%) clances clances cistribution cistribution cistribution	ficant Effect	CV%	
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Distribution Distribution Distribution Combined Prop	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V Kolmogor D'Agostin portion Normal Control Type	Ratio F ene Equa Vilk Norm ov-Smirn o Skewn Summa Count 15	Mean \$ 0.0097 0.0069 0.0167 lity of Varianality nov ess rry Mean 0.9781 0.95	2.183 Square 39579 86429 2601 Test Stat 5.289 1.401 0.9358 0.1742 1.419 95% LCL 0.9731	2.29 DF 1 8 9 Critical 23.15 13.75 0.3025 2.576 95% UCL 0.9831	P-Value 0.1356 0.2813 0.5074 0.6068 0.1558 Min 0.9605	P-Value 0.2716 Decision Equal Var Rormal D Normal D Normal D Max 0.9912	Decision(Non-Signi (1%) clances clances istribution istribution istribution Std Err 0.002443	Std Dev 0.01316	CV% 1.35%	0.0%
Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution Combined Prop Conc-% Conc	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V Kolmogor D'Agostin portion Normal Control Type Negative Contro	Ratio F ene Equa Vilk Norm ov-Smirn o Skewn Summa Count 15	Mean \$ 0.0097 0.0069 0.0167 lity of Varianality nov ess rry Mean 0.9781 0.95	2.183 Square 39579 86429 2601 Test Stat 5.289 1.401 0.9358 0.1742 1.419 95% LCL 0.9731	2.29 DF 1 8 9 Critical 23.15 13.75 0.3025 2.576 95% UCL 0.9831	P-Value 0.1356 0.2813 0.5074 0.6068 0.1558 Min 0.9605	P-Value 0.2716 Decision Equal Var Rormal D Normal D Normal D Max 0.9912	Decision(Non-Signi (1%) clances clances istribution istribution istribution Std Err 0.002443	Std Dev 0.01316 0.03703 Std Dev	CV% 1.35% 3.9%	0.0%
Conc-% C 0 N 100 Angular (Corre- Conc-% C	Sum Squa 0.0097395 0.0558914 0.0656310 nptions Test Variance Mod Leve Shapiro-V Kolmogor D'Agostin portion Normal Control Type Negative Control ected) Transform	Ratio F ene Equa Vilk Norm o Skewn Summa Count 1 5 5	Mean S 0.0097 0.0069 0.0167 lity of Varian lality lov less lary Mean 0.9781 0.95	2.183 Square 39579 86429 2601 Test Stat 5.289 1.401 0.9358 0.1742 1.419 95% LCL 0.9731 0.9359	2.29 DF 1 8 9 Critical 23.15 13.75 0.3025 2.576 95% UCL 0.9831 0.9641	P-Value 0.1356 0.2813 0.5074 0.6068 0.1558 Min 0.9605 0.9035	P-Value 0.2716 Decision Equal Var Rormal D Normal D Max 0.9912	Decision(Non-Signi (1%) iances iances istribution istribution istribution Std Err 0.002443 0.006877	Std Dev 0.01316 0.03703	CV% 1.35% 3.9%	0.0% 2.87%

Report Date:

10 Mar-10 10:08 (p 2 of 2)

Test Code:

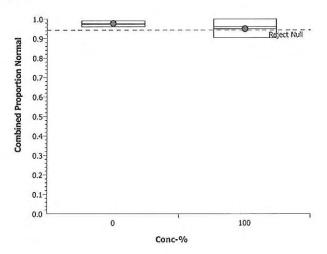
02-9099-5544/TAM0310033myt

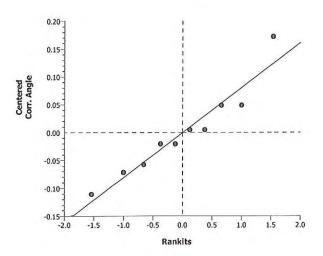
Mussel Shell Development Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: Analyzed:

13-7342-3361 10 Mar-10 10:08 **Endpoint:** Combined Proportion Normal Parametric-Two Sample Analysis:


CETIS Version: Official Results: Yes

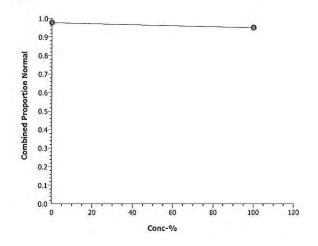

CETISv1.7.0

Combined Proportion Normal Detail

Conc	-% Control Ty	pe Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Negative Co	ontrol 0.9912	0.9737	0.9605	0.9912	0.9737	
100		1	0.9605	0.9035	0.9254	0.9605	

Graphics

Report Date:


10 Mar-10 10:08 (p 1 of 1)

Test Code:

02-9099-5544/TAM0310033myt

								Test	Code:	02-909	9-5544/IAN	vios roossiny
Musse	Shell [Development Te	est						Aquatic I	Bioassay 8	Consultin	g Labs, Inc.
Analys	is ID:	01-9378-2761	End	point:	Combined Prop	ortion Norn	nal	CET	IS Version	: CETISV	1.7.0	
Analyz		10 Mar-10 10:0		lysis:	Linear Interpola			Offic	ial Results	s: Yes		
Batch	ID:	01-5868-5140	Tes	t Type:	Development-S	urvival		Ana	yst:			
Start D	ate:	23 Feb-10 12:0		ocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: Lab	oratory Wa	ater	
Ending	Date:	25 Feb-10 12:0	1 Spe	cies:	Mytilis galloprov	vincialis		Brin	e:			
Duratio	on:	48h	Sou	rce:	Carlsbad Aquaf	farms CA		Age				
Sample	e ID:	19-3935-0221	Cod	e:	TAM0310033m			Clie	nt: Tes	st America	Irvine	
Sample	e Date:	18 Feb-10 11:5	0 Mat	erial:	Sediment			Proj	ect: ITB	1519		
Receiv	e Date:	15 Feb-10 11:1	5 Sou	rce:	Bioassay Repo	rt						
Sample	e Age:	5d Oh (3.6 °C)	Stat	ion:	ITB1519-01 (ar	royo Simi-F	P-Soil)					
Linear	Interpol	ation Options										
X Tran	sform	Y Transform	See.	d	Resamples	Exp 95%	CL Meth	od				
Linear		Linear	289	625	280	Yes	Two-	Point Interp	olation			
Residu	al Analy	rsis										
Attribu	te	Method			Test Stat	Critical	P-Value	Decision	(5%)			
Extrem	e Value	Grubbs Ex	treme Value	9	2.183	2.29	0.0965	No Outlie	s Detected			
Point E	stimate	S										
	01	95% LCL	050/ 1101									
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
	>100	N/A	N/A	<1	95% LCL N/A	95% UCL N/A						
EC5	2500		The D.S. Carlotte	4 (2)								
EC5 EC10	>100	N/A	N/A	<1	N/A	N/A						
EC5 EC10 EC15	>100 >100	N/A N/A	N/A N/A	<1 <1	N/A N/A	N/A N/A						
EC5 EC10 EC15 EC20	>100 >100 >100	N/A N/A N/A	N/A N/A N/A	<1 <1 <1	N/A N/A N/A	N/A N/A N/A						
EC5 EC10 EC15 EC20 EC25 EC40	>100 >100 >100 >100	N/A N/A N/A N/A	N/A N/A N/A N/A	<1 <1 <1 <1	N/A N/A N/A	N/A N/A N/A N/A						
EC5 EC10 EC15 EC20 EC25 EC40	>100 >100 >100 >100 >100	N/A N/A N/A N/A	N/A N/A N/A N/A	<1 <1 <1 <1 <1	N/A N/A N/A N/A N/A	N/A N/A N/A N/A						
EC5 EC10 EC15 EC20 EC25 EC40 EC50	>100 >100 >100 >100 >100 >100 >100 >100	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	<1 <1 <1 <1 <1 <1	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	lated Varial	e(A/B)				
EC5 EC10 EC15 EC20 EC25 EC40 EC50	>100 >100 >100 >100 >100 >100 >100 >100	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	<1 <1 <1 <1 <1 <1	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	lated Variat Std Err	e(A/B) Std Dev	CV%	Diff%	- A	В
EC5 EC10 EC15 EC20 EC25 EC40 EC50 Combin	>100 >100 >100 >100 >100 >100 >100 oned Pro	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	<1 <1 <1 <1 <1 <1 <1	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A			CV% 1.35%	Diff% 0.0%	A 1115	B 1140
EC5 EC10 EC15 EC20 EC25 EC40 EC50 Combin	>100 >100 >100 >100 >100 >100 >100 oned Pro	N/A	N/A N/A N/A N/A N/A N/A N/A Summary	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A Calcu	Std Err	Std Dev				
EC5 EC10 EC15 EC20 EC25 EC40 EC50 Combin Conc-%	>100 >100 >100 >100 >100 >100 >100 oned Pro	N/A	N/A N/A N/A N/A N/A N/A Summary Count 5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A Calcu Max 0.9912	Std Err 0.002402	Std Dev 0.01316	1.35%	0.0%	1115	1140
EC5 EC10 EC15 EC20 EC25 EC40 EC50 Combin Conc-% 0	>100 >100 >100 >100 >100 >100 >100 oned Pro	N/A N/A N/A N/A N/A N/A N/A N/A Ontrol Type Egative Control	N/A N/A N/A N/A N/A N/A Summary Count 5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	N/A N/A N/A N/A N/A N/A N/A Min 1 0.9605 0.9035	N/A N/A N/A N/A N/A N/A N/A Calcu Max 0.9912	Std Err 0.002402	Std Dev 0.01316	1.35%	0.0%	1115	1140
EC5 EC10 EC15 EC20 EC25 EC40 EC50 Combin	>100 >100 >100 >100 >100 >100 >100 ned Pro	N/A N/A N/A N/A N/A N/A N/A N/A Portion Normal Control Type Egative Control Portion Normal	N/A N/A N/A N/A N/A N/A Summary Count 5 5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	N/A N/A N/A N/A N/A N/A N/A Min 1 0.9605 0.9035	N/A N/A N/A N/A N/A N/A Calcu Max 0.9912	Std Err 0.002402 0.006762	Std Dev 0.01316	1.35%	0.0%	1115	1140

Graphics

CETIS Measurement Rep

Report Date:

10 Mar-10 10:08 (p 1 of 2)

Test Code:

02-9099-5544/TAM0310033myt

								est Code:	02-909	9-5544/TAI	vius ruussmy
Mussel Shell	Development T	est						Aquatic	Bioassay &	Consultin	ıg Labs, Inc.
Batch ID:	01-5868-5140	4	Test Type:	Development-	Survival		А	nalyst:			
Start Date:	23 Feb-10 12:0	01	Protocol:	EPA/600/R-95	/136 (1995)		D	iluent: La	boratory Wa	iter	
Ending Date:	25 Feb-10 12:0	01	Species:	Mytilis gallopro	ovincialis		В	rine:			
Duration:	48h		Source:	Carlsbad Aqua	afarms CA		Α	ge:			
Sample ID:	19-3935-0221		Code:	TAM0310033r	n		С	lient: Te	st America I	rvine	
Sample Date:	18 Feb-10 11:	50	Material:	Sediment			P	roject: IT	B1519		
Receive Date:	15 Feb-10 11:	15	Source:	Bioassay Rep	ort						
Sample Age:	5d 0h (3.6 °C))	Station:	ITB1519-01 (a	rroyo Simi-F	P-Soil)					
Dissolved Oxy	ygen-mg/L										
Conc-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	2	9.15	9.126	9.174	9.1	9.2	0.01179	0.07072	0.77%	0
100		2	9.25	9.226	9.274	9.2	9.3	0.01179	0.07075	0.76%	0
Overall		4	9.2			9.1	9.3				0 (0%)
Total Ammoni	ia (N)-mg/L										
Conc-%	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	1	0			0	0	0	0		0
100		1	0			0	0	0	0		0
Overall		2	0			0	0				0 (0%)
pH-Units											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	2	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0
100		2	8.05	8.026	8.074	8	8.1	0.01179	0.07073	0.88%	0
Overall		4	7.975			7.9	8.1				0 (0%)
Salinity-ppt											
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	2	34	34	34	34	34	0	0	0.0%	0
100		2	34	34	34	34	34	0	0	0.0%	0
Overall		4	34			34	34				0 (0%)
Temperature-°	C										
Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	2	14.85	14.83	14.87	14.8	14.9	0.0118	0.07077	0.48%	0
100	11177	2	14.85	14.83	14.87	14.8	14.9	0.0118	0.07077	0.48%	0
Overall		4	14.85			14.8	14.9				0 (0%)

Analyst:_____ QA:____

CETIS Measurement Report

Report Date:

10 Mar-10 10:08 (p 2 of 2)

Test Code:

02-9099-5544/TAM0310033myt

							1030	Jouo.	02 0000 0044117 Wilde 100001119
Mussel Shel	I Development T	est						Aquatic	Bioassay & Consulting Labs, Inc.
Dissolved O	xygen-mg/L								
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr		9.1						
100			9.3						
0	Negative Contr	2	9.2						-
100			9.2						
Total Ammo	nia (N)-mg/L								
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	0						
100			0						
pH-Units									
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	7.9						
100			8						
0	Negative Contr	2	7.9						
100			8.1						
Salinity-ppt									
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	34						
100			34						
0	Negative Contr	2	34						
100			34						
Temperature	-°C								
Conc-%	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	14.9						
100			14.9						
0	Negative Contr	2	14.8						
100			14.8						

Analyst: QA:

TOXICITY TESTING • OCEANOGRAPHIC RESEARCH

96 Hour *Eohaustorius estuarius* Survival Bioassay - Standard Toxicant

DATE: 26 February 2010

STANDARD TOXICANT: Ammonium Chloride

ENDPOINT: SURVIVAL

UNIONIZED AMMONIA

NOEC = 0.368 mg/L

IC25 = 0.5249 mg/LIC50 = 0.8411 mg/L

1C30 0.0411 Ilig/L

Yours very truly,

Thomas (Tim) Mikel Laboratory Director

CETIS Summary Report

Report Date:

10 Mar-10 09:40 (p 1 of 1) 09-1794-0873/EOH022610e

Test Code: 09

Reference To:	eference Toxicant 96-h Acute Survival Test								atic E	lioassay &	Consulting	Labs, Inc
Batch ID: Start Date: Ending Date: Duration:	09-2836-6539 26 Feb-10 12:00 02 Mar-10 12:00 96h	0	Test Type: Protocol: Species: Source:	Survival EPA/600/R-94 Eohaustorius e Northwestern	estuarius	nce, OR		Analyst: Diluent: Brine: Age:		oratory Sea Applicable	water	
Sample ID:	05-9211-9044		Code:	EOH022610				Client:		rnal Lab		
Sample Date:			Material:	Ammonia (Uni				Project:	REF	TOX		
Receive Date:			Source:	Reference Tox	ricant							
Sample Age:	12h		Station:	REF TOX								
Comparison S	Summary											
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Met	and selections			
16-6141-9107	Survival Rate		0.368	0.647	0.488	12.01%		Dun	nett's	Multiple Co	mparison T	est
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Met	hod			
13-7746-9954	Survival Rate		EC5	0.304	0.1062	0.4608		Line	ar Inte	erpolation (I	CPIN)	
			EC10		0.2169	0.4804						
			EC15		0.3282	0.5514						
			EC20		0.3754	0.6403						
			EC25		0.4226	0.7091						
			EC40		0.5199	0.9326						
			EC50	0.8411	0.5306	1.04						- j
Survival Rate	Summary											
Conc-mg/L	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std	Err	Std Dev	CV%	Diff%
0	Negative Control	4	0.975	0.9563	0.9937	0.9	1	0.00	9129	0.05	5.13%	0.0%
0.185		4	0.975	0.9563	0.9937	0.9	1	0.00	9129	0.05	5.13%	0.0%
0.368		4	0.9	0.8695	0.9305	0.8	1	0.01	491	0.08165	9.07%	7.69%
0.647		4	0.6	0.5472	0.6528	0.5	8.0	0.02	582	0.1414	23.57%	38.46%
1.337		4	0.2	0.1695	0.2305	0.1	0.3	0.01	491	0.08165	40.82%	79.49%
2.789		4	0	0	0	0	0	0		0		100.0%
Survival Rate	Detail											
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4							
0	Negative Control	1	0.9	1	1							
0.185		1	0.9	1	1							
0.368		0.8	0.9	0.9	1							
0.647		0.6	0.5	0.8	0.5							
1.337		0.3	0.2	0.2	0.1							
					1.25							

2.789

0

0

0

0

Report Date:

10 Mar-10 09:40 (p 1 of 2) 09-1794-0873/EOH022610e

Test Code:

Reference Tox	icant 96-h Acute S	Survival Test					Aquatic I	Bioassay	& Consulting Labs, In
Analysis ID:	16-6141-9107	Endpoint: St	ırvival Rate			CET	IS Version	: CETIS	v1.7.0
Analyzed:	10 Mar-10 9:40	Analysis: Pa	arametric-Co	ntrol vs Tre	atments	Offi	cial Results	s: Yes	
Batch ID:	09-2836-6539	Test Type: Su	ırvival			Ana	lyst:		
Start Date:	26 Feb-10 12:00	Protocol: EF	PA/600/R-94/	(025 (1994)		Dilu	ent: Lab	oratory Se	eawater
Ending Date:	02 Mar-10 12:00	Species: Ed	haustorius e	stuarius		Brin	ie: Not	t Applicabl	е
Duration:	96h	Source: No	orthwestern A	Aquatic Sci	ence, OR	Age	:		
Sample ID:	05-9211-9044	Code: EC	DH022610			Clie	nt: Inte	ernal Lab	
Sample Date:	26 Feb-10	Material: An	nmonia (Unic	onized)		Proj	ect: RE	F TOX	
Receive Date:	26 Feb-10	Source: Re	eference Tox	icant					
Sample Age:	12h	Station: RE	F TOX						
Data Transform	n Ze	eta Alt Hyp	Monte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD
Angular (Correc	ted) 0	C > T	Not Run		0.368	0.647	0.488		12.01%
Dunnett's Multi	iple Comparison 1	Test							
Control	vs Conc-mg/L	Test Stat	Critical	MSD	P-Value	Decision	(5%)		
Negative Contro	0.185	0	2.356	0.187	0.8000	Non-Sign	ificant Effec	t	
	0.368	1.474	2.356	0.187	0.2113	Non-Sign	ificant Effec	t	
	0.647*	6.053	2.356	0.187	< 0.0001	Significar			
	1.337*	11.52	2.356	0.187	<0.0001	Significar	t Effect		
Auxiliary Tests									
Attribute	Test		Test Stat	Critical	P-Value	Decision			
Extreme Value	Grubbs Singl	e Outlier	2.168	2.708	0.4306	No Outlie	rs Detected		
ANOVA Table									
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision	(5%)	
Between	2.492385	0.623096	2	4	49.48	< 0.0001	Significan	t Effect	
Error	0.1888913	0.012592	75	15					
Total	2.681276	0.635688	9	19					
ANOVA Assum	ptions								
Attribute	Test		Test Stat	4.16-374-31-37	P-Value	Decision			
Variances .		lity of Variance	1.562	13.28	0.8156	Equal Var			
/ariances		Equality of Variance		4.893	0.8204	Equal Var			
Distribution	Shapiro-Wilk		0.9202		0.0998	Normal D			
Distribution	Kolmogorov-		0.1914	0.2235	0.0531	Normal D			
Distribution	D'Agostino Si		0.5579	2.576	0.5769	Normal D			
Distribution	D'Agostino K		0.0208	2.576	0.9834	Normal Distribution			
Distribution	D'Agostino O	mnibus	0.3117	9.21	0.8557	Normal D	stribution		

Report Date: **Test Code:**

10 Mar-10 09:40 (p 2 of 2) 09-1794-0873/EOH022610e

Aquatic Bioassay & Consulting Labs, Inc.

Reference Toxicant 96-h Acute Surviv	val I	est
--------------------------------------	-------	-----

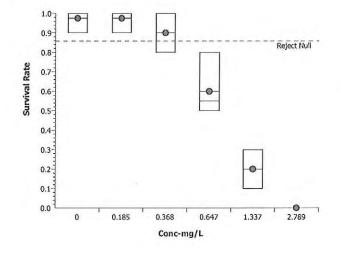
CETIS Version: CETISv1.7.0

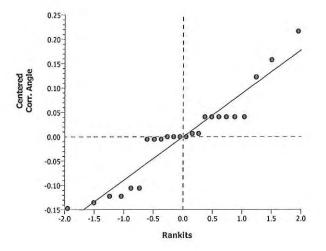
Analysis ID: 16-6141-9107 Analyzed: 10 Mar-10 9:40 Endpoint: Survival Rate Analysis:

Parametric-Control vs Treatments

Official	Destilles	Yes
Ulliciai	Results:	165

Survival Rate	e Summary										
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Control	4	0.975	0.956	0.994	0.9	1	0.009285	0.05	5.13%	0.0%
0.185		4	0.975	0.956	0.994	0.9	1	0.009285	0.05	5.13%	0.0%
0.368		4	0.9	0.8689	0.9311	0.8	1	0.01516	0.08165	9.07%	7.69%
0.647		4	0.6	0.5462	0.6538	0.5	0.8	0.02626	0.1414	23.57%	38.46%
1.337		4	0.2	0.1689	0.2311	0.1	0.3	0.01516	0.08165	40.82%	79.49%
2.789		4	0	0	0	0	0	0	0		100.0%


Angular (Corrected) Transformed Summary


Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	4	1.371	1.34	1.402	1.249	1.412	0.01513	0.08149	5.94%	0.0%
0.185		4	1.371	1.34	1.402	1.249	1.412	0.01513	0.08149	5.94%	0.0%
0.368		4	1.254	1.207	1.302	1.107	1.412	0.02314	0.1246	9.94%	8.53%
0.647		4	0.891	0.8333	0.9487	0.7854	1.107	0.02817	0.1517	17.03%	35.02%
1.337		4	0.4572	0.417	0.4973	0.3218	0.5796	0.0196	0.1055	23.09%	66.66%
2.789		4	0.1588	0.1588	0.1588	0.1588	0.1588	0	0	0.0%	88.42%

Survival Rate Detail

Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Negative Control	1	0.9	1	1
0.185		1	0.9	1	1
0.368		0.8	0.9	0.9	1
0.647		0.6	0.5	0.8	0.5
1.337		0.3	0.2	0.2	0.1
2.789		0	0	0	0

Graphics

Report Date:

10 Mar-10 09:40 (p 1 of 2) 09-1794-0873/EOH022610e

Test Code:	09-1794-0873/EOH
	00 4704 0070/7014

							Test	Code:	09-1	794-0873	3/EOH022610
Reference	Toxicant 96-h Acu	te Survival	Test					Aquatic	Bioassay &	Consulti	ng Labs, Inc.
Analysis II	D: 13-7746-9954	En	dpoint:	Survival Rate			CET	IS Version	: CETISV	1.7.0	
Analyzed:	10 Mar-10 9:40		alysis:	Linear Interpola	ation (ICPIN	1)	Offic	ial Result	s: Yes		
Batch ID:	09-2836-6539	Tes	t Type:	Survival			Ana	yst:			
Start Date:	26 Feb-10 12:0	00 Pro	tocol:	EPA/600/R-94/	025 (1994)		Dilu	ent: Lal	poratory Sea	awater	
Ending Da	te: 02 Mar-10 12:0	00 Sp	ecies:	Eohaustorius e	stuarius		Brin	e: No	t Applicable		
Duration:	96h	So	urce:	Northwestern A	quatic Scie	ence, OR	Age				
Sample ID:	: 05-9211-9044	Co	de:	EOH022610			Clie	nt: Inte	ernal Lab		
Sample Da	ite: 26 Feb-10	Ma	terial:	Ammonia (Unic	nized)		Proj	ect: RE	F TOX		
Receive Da	ate: 26 Feb-10	So	irce:	Reference Toxi	cant						
Sample Ag	je: 12h	Sta	tion:	REF TOX							
Linear Inte	rpolation Options										
X Transfor	The state of the s	The state of the s		Resamples	Exp 95%		1000				
Linear	Linear	705	5475	280	Yes	Two-	Point Interp	olation			
Residual A	nalysis										
Attribute	Method			Test Stat	Critical	P-Value	Decision	(5%)			
Extreme Va	lue Grubbs Ex	xtreme Valu	ie	2.385	2.802	0.2703	No Outlie	s Detected			
Point Estin	nates										
Level m	g/L 95% LCL	95% UCL									
EC5 0.3	304 0.1062	0.4608									
EC10 0.3	3889 0.2169	0.4804									
EC15 0.4	4343 0.3282	0.5514									
EC20 0.4	4796 0.3754	0.6403									
EC25 0.5	5249 0.4226	0.7091									
EC40 0.6	6729 0.5199	0.9326									
EC50 0.8	8411 0.5306	1.04									
Survival Ra	ate Summary				Calcu	ılated Varia	te(A/B)				
Conc-mg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
)	Negative Control	4	0.975	0.9	1	0.009129	0.05	5.13%	0.0%	39	40
).185		4	0.975	0.9	1	0.009129	0.05	5.13%	0.0%	39	40
0.368		4	0.9	8.0	1	0.01491	0.08165	9.07%	7.69%	36	40
0.647		4	0.6	0.5	8.0	0.02582	0.1414	23.57%	38.46%	24	40
1.337		4	0.2	0.1	0.3	0.01491	0.08165	40.82%	79.49%	8	40
2.789		4	0	0	0	0	0		100.0%	0	40
Survival Ra	ate Detail										
Mana	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
				4	1						
)	Negative Control	1	0.9	1	1						
)).185		1	0.9	1	1						
) 0.185 0.368		1 0.8	0.9 0.9	1 0.9							
0.185 0.368 0.647 1.337		1	0.9	1	1						

0

0

2.789

Report Date:

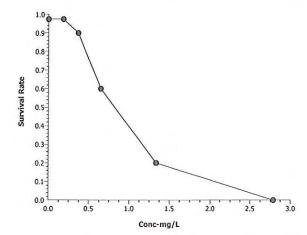
10 Mar-10 09:40 (p 2 of 2)

Test Code:

09-1794-0873/EOH022610e

Reference Toxicant 96-h Acute Survival Test

Aquatic Bioassay & Consulting Labs, Inc.


Analysis ID: Analyzed: 13-7746-9954 10 Mar-10 9:40 Endpoint: Survival Rate

Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET Official Results: Yes

: CETISv1.7.0

Graphics

CETIS Measurement Report

Report Date:

10 Mar-10 09:40 (p 1 of 3)

ourio moc	surement	. topo	· ·					Test Code:	09-	1794-0873/	EOH022610
Reference To	xicant 96-h Acı	ite Surv	vival Test					Aquatic	Bioassay &	Consultin	g Labs, Inc.
Batch ID: Start Date: Ending Date:			Test Type: Protocol: Species:	EPA/600/R-94 Eohaustorius	estuarius			Brine: No	boratory Sea t Applicable		
Duration:	96h		Source:	Northwestern .	Aquatic Sci	ence, OR		Age:			
Sample ID:	05-9211-9044		Code:	EOH022610	ii1\				ernal Lab F TOX		
Sample Date: Receive Date:			Material: Source:	Ammonia (Uni				Project: RE	FIOX		
Sample Age:	12h		Station:	REF TOX	Kicarit						
Dissolved Oxy			Ottationi	1147 1971						-	
	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Coun
0	Negative Contr		6.35	6.135	6.565	5.9	6.8	0.1061	0.6364	10.02%	0
0.185		2	6.2	6.009	6.391	5.8	6.6	0.09428	0.5657	9.12%	0
0.368		2	6.25	6.035	6.465	5.8	6.7	0.1061	0.6364	10.18%	0
0.647		2	6.3	6.109	6.491	5.9	6.7	0.09428	0.5657	8.98%	0
1.337		2	6.25	6.083	6.417	5.9	6.6	0.0825	0.495	7.92%	0
2.789		2	6.2	6.009	6.391	5.8	6.6	0.09428	0.5657	9.12%	0
Overall		12	6.258			5.8	6.8				0 (0%)
Total Ammoni	ia (N)-mg/L										
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Coun
	Negative Contr	1	0			0	0	0	0	T/L'II	0
0.185		1	12.5			12.5	12.5	0	0	0.0%	0
0.368		1	24.8			24.8	24.8	0	0	0.0%	0
0.647		1	43.6			43.6	43.6	0	0	0.0%	0
1.337		1	90.1			90.1	90.1	0	0	0.0%	0
2.789		1	188			188	188	0	0	0.0%	0
Overall		6	59.83			0	188	U		0.070	0 (0%)
pH-Units											
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
	Negative Contr		7.75	7.726	7.774	7.7	7.8	0.01179	0.07072	0.91%	0
0.185		2	7.75	7.726	7.774	7.7	7.8	0.01179	0.07072	0.91%	0
0.368		2	7.75	7.726	7.774	7.7	7.8	0.01179	0.07072	0.91%	0
0.647		2	7.75	7.726	7.774	7.7	7.8	0.01179	0.07072	0.91%	0
1.337		2	7.75	7.726	7.774	7.7	7.8	0.01179	0.07072	0.91%	0
2.789		2	7.75	7.726	7.774	7.7	7.8	0.01179	0.07072	0.91%	0
Overall		12	7.75	1.720		7.7	7.8	0.011.0	0,0,0,1	0,0,7,0	0 (0%)
Salinity-ppt											
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
	Negative Contr		20	20	20	20	20	0	0	0.0%	0
0.185	THE WAY STORY	2	20	20	20	20	20	0	0	0.0%	0
0.368		2	20	20	20	20	20	0	0	0.0%	0
0.647		2	20	20	20	20	20	0	0	0.0%	0
1.337		2	20	20	20	20	20	0	0	0.0%	0
2.789		2	20	20	20	20	20	0	0	0.0%	0
Overall		12	20		1.7	20	20				0 (0%)
Temperature-°	С										
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
	Negative Contr		14.9	14.9	14.9	14.9	14.9	0	0	0.0%	0
0.185		2	14.95	14.93	14.97	14.9	15	0.01179	0.07075	0.47%	0
0.368		2	14.95	14.93	14.97	14.9	15	0.01179	0.07075	0.47%	0
0.647		2	14.95	14.93	14.97	14.9	15	0.01179	0.07075	0.47%	0
1.337		2	14.95	14.93	14.97	14.9	15	0.01179	0.07075	0.47%	0
2.789		2			14.97	14.9	15	0.01179	0.07075	0.47%	0
2.789 Overall		12	14.95	14.93	14.87	14.9	15	0.01179	0.07073	0.47 /0	0 (0%)
WATON		1 /	1/1 (1/1			1/1 \(\mathred{A} \)	17				11 111 1/01

14.9

15

Overall

12

14.94

Report Date: Test Code: 10 Mar-10 09:40 (p 2 of 3) 09-1794-0873/EOH022610e

Reference T	oxicant 96-h Ac	ute Survival Test						Aquatic Bioassay & Consulting Labs, Inc.
Dissolved O	xygen-mg/L							
Conc-mg/L	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	Negative Cont	r 1	6.8					
0.185			6.6					
0.368			6.7					
0.647			6.7					
1.337			6.6					
2.789			6.6					
0	Negative Contr	- 2	5.9					
0.185			5.8					
0.368			5.8					
0.647			5.9					
1.337			5.9					
2.789			5.8					
Total Ammo	nia (N)-mg/L							
Conc-mg/L	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	Negative Contr		0					
0.185			12.5					
0.368			24.8					
0.647			43.6					
1.337			90.1					
2.789			188					
pH-Units								
Conc-mg/L	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	Negative Contr		7.8					
0.185			7.8					
0.368			7.8					
0.647			7.8					
1.337			7.8					
2.789			7.8					
0	Negative Contr	2	7.7					
0.185			7.7					
0.368			7.7					
0.647			7.7					
1.337			7.7					
2.789			7.7					
Salinity-ppt								
Conc-mg/L		Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	Negative Contr	1	20					
0.185			20					
0.368			20					
0.647			20					
1.337 2.789			20					
			20					
0	Negative Contr	2	20					
0.185			20					
0.368			20					
0.647			20					
1.337			20					
2.789			20					

Analyst: QA:

CETIS Measurement Report

Report Date: Test Code: 10 Mar-10 09:40 (p 3 of 3) 09-1794-0873/EOH022610e

Temperature	e-°C					
Conc-mg/L	Control Type Reading Time	Measure QA	Diff-%	Inst ID	Analyst	Notes
0	Negative Contr 1	14.9				
0.185		14.9				
0.368		14.9				
0.647		14.9				
1.337		14.9				
2.789		14.9				
0	Negative Contr 2	14.9				
0.185		15				
0.368		15				
0.647		15				
1.337		15				
2.789		15				

Analyst: QA:

TOXICITY TESTING • OCEANOGRAPHIC RESEARCH

CHRONIC MYTILUS DEVELOPMENT BIOASSAY

DATE:

23 February 2010

STANDARD TOXICANT:

Unionized Ammonia

NOEC =

0.032 mg/l

IC25 =

0.079 mg/l

IC50 =

0.096 mg/l

Yours very truly,

Thomas (Tim) Mikel

Laboratory Director

CETIS Summary Report

Report Date:

10 Mar-10 09:59 (p 1 of 1)

Test Code:

01-3844-4523/MYT022310myt

	Development Te	st						1	Aquatic E	lioassay &	Consulting	Labs, In
Batch ID:	10-0504-5266	Tes	t Type:	Development-	Survival			Analys	t:			
Start Date:	23 Feb-10 12:00		tocol:	EPA/600/R-95				Diluent		oratory Sea	water	
Ending Date:	25 Feb-10 12:00	0 Spe	cies:	Mytilis gallopro	vincialis			Brine:		Applicable		
Duration:	48h		ırce:	Carlsbad Aqua				Age:				
Sample ID:	02-9949-1709	Cod	le:	MYT022310				Client:	Inte	rnal Lab		
Sample Date:	23 Feb-10	Mat	erial:	Ammonia (Uni	onized)			Project	t:			
Receive Date:	23 Feb-10	Sou	irce:	Reference Tox	icant							
Sample Age:	12h	Sta	tion:									
Comparison S	Summary				1000							
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	1	Method			
02-9822-7674	Combined Prop	ortion Norn	n 0.032	0.061	0.04418	4.1%		E	Bonferron	i Adj t Test		
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU		Method			
12-0454-3247	Combined Prop	ortion Norn	n EC5	0.04712	0.03428	0.06754		L	inear Inte	erpolation (I	CPIN)	
			EC10	0.06261	0.04923	0.06751						
			EC15	0.06812	0.06207	0.072						
			EC20	0.07362	0.06846	0.07821						
			EC25	0.07912	0.07429	0.08454						
			EC40	0.08997	0.08722	0.09293						
			EC50	0.0964	0.09275	0.09998						
	ility											
Test Acceptab	(1)2, 30											
	Endpoint		Attrib	ute	Test Stat	TAC Limi	ts	(Overlap	Decision		
Analysis ID		ortion Norn	- March 2010		Test Stat 0.04096	TAC Limi	ts		Overlap Vo	7.300.347.00#1.46	thin Limits	
Analysis ID 02-9822-7674	Endpoint		- March 2010			0.00	ts		200000000000000000000000000000000000000	7.300.347.00#1.46	thin Limits	
Analysis ID 02-9822-7674 Combined Pro	Endpoint Combined Propo		- March 2010)	0.04096	0.00	ts Max	١	200000000000000000000000000000000000000	7.300.347.00#1.46	thin Limits	Diff%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L	Endpoint Combined Propoportion Normal	Summary Count	PMSE	95% LCL	0.04096	NL - 0.25		8	10	Result Wi	7.02.0 \ 0.000	Diff% 0.0%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L	Endpoint Combined Proportion Normal Control Type	Summary Count	Mean	95% LCL 3 0.9811	0.04096 95% UCL	NL - 0.25 Min	Max	S 0	No Std Err	Result Wi	CV%	
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032	Endpoint Combined Proportion Normal Control Type	Summary Count 2	Mean 0.9876	95% LCL 3 0.9811 2 0.9724	0.04096 95% UCL 0.9941	NL - 0.25 Min 0.9752	Max 1	S 0 76 0	Std Err 0.003201	Std Dev 0.01753	CV% 1.78%	0.0%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061	Endpoint Combined Proportion Normal Control Type	Summary Count 2 4	Mean 0.9876	95% LCL 3 0.9811 2 0.9724 3 0.8874	95% UCL 0.9941 0.9801	NL - 0.25 Min 0.9752 0.9628	Max 1 0.98	5 0 76 0 45	Std Err 0.003201 0.001886	Std Dev 0.01753 0.01033	CV% 1.78% 1.06%	0.0% 1.15% 8.54%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061 0.082	Endpoint Combined Proportion Normal Control Type	Summary Count 2 4 5	Mean 0.9876 0.9762 0.9033 0.7149	95% LCL 6 0.9811 2 0.9724 3 0.8874 9 0.7017	95% UCL 0.9941 0.9801 0.9192 0.728	Min 0.9752 0.9628 0.8512 0.6901	Max 1 0.98 0.95 0.77	8 0 76 0 45 0	Std Err 0.003201 0.001886 0.007778	Std Dev 0.01753 0.01033 0.0426 0.03518	CV% 1.78% 1.06% 4.72% 4.92%	0.0% 1.15%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061 0.082 0.11	Endpoint Combined Proportion Normal Control Type	Summary Count 2 4 5	Mean 0.9876 0.9033	95% LCL 6 0.9811 2 0.9724 3 0.8874 9 0.7017	95% UCL 0.9941 0.9801 0.9192	Min 0.9752 0.9628 0.8512	Max 1 0.98 0.95	8 0 76 0 45 0	Std Err 0.003201 0.001886 0.007778 0.006424 0.01373	Std Dev 0.01753 0.01033 0.0426	CV% 1.78% 1.06% 4.72%	0.0% 1.15% 8.54% 27.62%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061 0.082 0.11 0.127	Endpoint Combined Proportion Normal Control Type	Summary Count 2 4 5 5 5 5	Mean 0.9876 0.9762 0.9033 0.7149 0.285	95% LCL 3 0.9811 2 0.9724 3 0.8874 9 0.7017 1 0.2571	0.04096 95% UCL 0.9941 0.9801 0.9192 0.728 0.3132	Min 0.9752 0.9628 0.8512 0.6901 0.1694	Max 1 0.98 0.95 0.77 0.36	76 0 45 0 69 0 36 0	Std Err 0.003201 0.001886 0.007778 0.006424 0.01373	Std Dev 0.01753 0.01033 0.0426 0.03518 0.07518	CV% 1.78% 1.06% 4.72% 4.92%	0.0% 1.15% 8.54% 27.62% 71.13%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061 0.082 0.11 0.127 Combined Pro	Endpoint Combined Proportion Normal Control Type Negative Control	Summary Count 2 4 5 5 5 5	Mean 0.9876 0.9762 0.9033 0.7149 0.285	95% LCL 0.9811 0.9724 0.8874 0.7017 0.2571 0	0.04096 95% UCL 0.9941 0.9801 0.9192 0.728 0.3132	Min 0.9752 0.9628 0.8512 0.6901 0.1694	Max 1 0.98 0.95 0.77 0.36	76 0 45 0 69 0 36 0	Std Err 0.003201 0.001886 0.007778 0.006424 0.01373	Std Dev 0.01753 0.01033 0.0426 0.03518 0.07518	CV% 1.78% 1.06% 4.72% 4.92%	0.0% 1.15% 8.54% 27.62% 71.13%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061 0.082 0.11 0.127 Combined Pro Conc-mg/L	Endpoint Combined Proportion Normal Control Type Negative Control	Summary Count 2 4 5 5 5 Detail Rep 1	Mean 0.9876 0.9762 0.9033 0.7144 0.285	95% LCL 0.9811 0.9724 0.8874 0.7017 0.2571 0	0.04096 95% UCL 0.9941 0.9801 0.9192 0.728 0.3132 0	Min 0.9752 0.9628 0.8512 0.6901 0.1694 0	Max 1 0.98 0.95 0.77 0.36	76 0 45 0 69 0 36 0	Std Err 0.003201 0.001886 0.007778 0.006424 0.01373	Std Dev 0.01753 0.01033 0.0426 0.03518 0.07518	CV% 1.78% 1.06% 4.72% 4.92%	0.0% 1.15% 8.54% 27.62% 71.13%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061 0.082 0.11 0.127 Combined Pro Conc-mg/L	Endpoint Combined Proportion Normal Control Type Negative Control Proportion Normal Control Type	Summary Count 2 4 5 5 5 Detail Rep 1	Mean 0.9876 0.9762 0.9033 0.7144 0.285	95% LCL 0.9811 0.9724 0.8874 0.7017 0.2571 0	0.04096 95% UCL 0.9941 0.9801 0.9192 0.728 0.3132 0	Min 0.9752 0.9628 0.8512 0.6901 0.1694 0	Max 1 0.98 0.95 0.77 0.36	76 0 45 0 69 0 36 0	Std Err 0.003201 0.001886 0.007778 0.006424 0.01373	Std Dev 0.01753 0.01033 0.0426 0.03518 0.07518	CV% 1.78% 1.06% 4.72% 4.92%	0.0% 1.15% 8.54% 27.62% 71.13%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061 0.082 0.11 0.127 Combined Pro Conc-mg/L 0	Endpoint Combined Proportion Normal Control Type Negative Control Proportion Normal Control Type	Summary Count 2 4 5 5 5 Detail Rep 1 0.9752	Mean 0.9876 0.9762 0.9033 0.7144 0.285	95% LCL 0.9811 0.9724 0.8874 0.7017 0.2571 0	95% UCL 0.9941 0.9801 0.9192 0.728 0.3132 0	Min 0.9752 0.9628 0.8512 0.6901 0.1694 0	Max 1 0.98 0.95 0.77 0.36	76 0 45 0 69 0 36 0	Std Err 0.003201 0.001886 0.007778 0.006424 0.01373	Std Dev 0.01753 0.01033 0.0426 0.03518 0.07518	CV% 1.78% 1.06% 4.72% 4.92%	0.0% 1.15% 8.54% 27.62% 71.13%
Analysis ID 02-9822-7674 Combined Pro Conc-mg/L 0 0.032 0.061 0.082 0.11 0.127 Combined Pro Conc-mg/L 0 0.032	Endpoint Combined Proportion Normal Control Type Negative Control Proportion Normal Control Type	Summary Count 2 4 5 5 5 Detail Rep 1 0.9752 0.9752	Mean 0.9876 0.976; 0.903; 0.7149 0.285	95% LCL 3 0.9811 2 0.9724 3 0.8874 9 0.7017 1 0.2571 0 Rep 3 0.9876 0.9339	95% UCL 0.9941 0.9801 0.9192 0.728 0.3132 0 Rep 4	Min 0.9752 0.9628 0.8512 0.6901 0.1694 0 Rep 5 1 0.9793	Max 1 0.98 0.95 0.77 0.36	76 0 45 0 69 0 36 0	Std Err 0.003201 0.001886 0.007778 0.006424 0.01373	Std Dev 0.01753 0.01033 0.0426 0.03518 0.07518	CV% 1.78% 1.06% 4.72% 4.92%	0.0% 1.15% 8.54% 27.62% 71.13%
Conc-mg/L 0 0.032 0.061 0.082 0.11 0.127 Combined Pro	Endpoint Combined Proportion Normal Control Type Negative Control Proportion Normal Control Type	Summary Count 2 4 5 5 5 Detail Rep 1 0.9752 0.9752 0.9545	Mean 0.9876 0.9762 0.9033 0.7149 0.2855 0	95% LCL 3 0.9811 2 0.9724 3 0.8874 9 0.7017 1 0.2571 0 Rep 3 0.9876 0.9339	95% UCL 0.9941 0.9801 0.9192 0.728 0.3132 0 Rep 4 0.9628 0.8512	Min 0.9752 0.9628 0.8512 0.6901 0.1694 0 Rep 5 1 0.9793 0.8719	Max 1 0.98 0.95 0.77 0.36	76 0 45 0 69 0 36 0	Std Err 0.003201 0.001886 0.007778 0.006424 0.01373	Std Dev 0.01753 0.01033 0.0426 0.03518 0.07518	CV% 1.78% 1.06% 4.72% 4.92%	0.0% 1.15% 8.54% 27.62% 71.13%

Report Date:

10 Mar-10 09:59 (p 1 of 2)

Test Code:

01-3844-4523/MYT022310myt

Mussel Shell I	Deve	lopment Te	est						Aqua	tic Bio	assay a	& Cons	ulting Labs, Inc.
Analysis ID:	02-9	9822-7674		Endpoint:	Combined Pr	oportion Nor	mal	CET	IS Vers	ion:	CETIS	v1.7.0	
Analyzed:	10 1	Mar-10 9:59)	and the contract of the contra	Parametric-M	No. of Contract Contr		Offi	cial Res	ults:	Yes		
Batch ID:	10-0	0504-5266		Test Type:	Development	-Survival		Ana	lyst:				
Start Date:	23 F	eb-10 12:0	0	Protocol:	EPA/600/R-9	5/136 (1995))	Dilu	ent:	Labora	atory Se	eawater	
Ending Date:	25 F	eb-10 12:0	0	Species:	Mytilis gallopi	ovincialis		Brin	ne:	Not Ap	plicable	е	
Duration:	48h			Source:	Carlsbad Aqu	afarms CA		Age	:				
Sample ID:	02-9	9949-1709		Code:	MYT022310			Clie	nt:	Interna	al Lab		
Sample Date:	23 F	eb-10		Material:	Ammonia (Ur	nionized)		Pro	ject:				
Receive Date:	23 F	Feb-10		Source:	Reference To	xicant							
Sample Age:	12h			Station:									
Data Transform	n		Zeta	Alt Hy	p Monte C	arlo	NOEL	LOEL	TOEL		ru	PM	SD
Angular (Correc	cted)		0	C > T	Not Run		0.032	0.061	0.044	18		4.1	%
Bonferroni Adj	onferroni Adj t Test ontrol vs Conc-mg/L												
Control	vs	Conc-mg	/L	Test S	tat Critical	MSD	P-Value	Decision	(5%)				
Negative Contro	egative Control 0.032			0.9929	2.473	0.1416	0.6711	Non-Sign	ificant E	ffect			
	0.061*			3.884	2.473	0.1368	0.0026	Significar	nt Effect				
	0.061* 0.082*			8.449	2.473	0.1368	< 0.0001	Significar	nt Effect	Significant Effect			
	0.11* 16.				2.473	0.1368	< 0.0001	Significar					
Test Acceptabl	ility	0.11*		16.55	2.473	0.1368	<0.0001	Significar					
Test Acceptabl	ility		TAC		2.473 Overlap			Significar					
	ility		TAC	Limits		Decision		Significar					
Attribute		Test Stat	400	Limits	Overlap	Decision		Significar					
Attribute PMSD		Test Stat	400	Limits	Overlap	Decision Result W		Significar	nt Effect				
Attribute PMSD Auxiliary Tests Attribute		Test Stat 0.04096	NL - (Limits 0.25	Overlap No	Decision Result W	I (ithin Limits		nt Effect	sted			
Attribute PMSD Auxiliary Tests		Test Stat 0.04096 Test	NL - (Limits 0.25	Overlap No Test Sta	Decision Result W	ithin Limits	Decision	nt Effect	cted			
Attribute PMSD Auxiliary Tests Attribute Extreme Value		Test Stat 0.04096 Test	NL - (Limits 0.25	Overlap No Test Sta 2.298	Decision Result W	ithin Limits	Decision	nt Effect	eted	6)		
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source		Test Stat 0.04096 Test Grubbs S	NL - (Limits 0.25 Outlier	Overlap No Test Sta 2.298	Decision Result W t Critical 2.734	P-Value 0.2979	Decision No Outlie	nt Effect rs Detec				
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table		Test Stat 0.04096 Test Grubbs S	NL - (Limits 0.25 Outlier Mean S	Overlap No Test Sta 2.298 Square 246	Decision Result W t Critical 2.734	P-Value 0.2979 F Stat	Decision No Outlie	nt Effect rs Detec	ion(5%			
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between Error		Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099	NL - (Limits 0.25 Outlier Mean \$ 0.5780	Overlap No Test Sta 2.298 Square 246 73852	Decision Result W t Critical 2.734 DF 4	P-Value 0.2979 F Stat	Decision No Outlie	nt Effect rs Detec	ion(5%			
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between	•	Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099 0.0699816 2.38208	NL - (Limits 0.25 Outlier Mean \$ 0.5780 0.0043	Overlap No Test Sta 2.298 Square 246 73852	Decision Result W t Critical 2.734 DF 4 16	P-Value 0.2979 F Stat	Decision No Outlie	nt Effect rs Detec	ion(5%	-		
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between Error Total	•	Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099 0.0699816 2.38208	NL - (Limits 0.25 Outlier Mean \$ 0.5780 0.0043	Overlap No Test Sta 2.298 Square 246 73852	Decision Result W t Critical 2.734 DF 4 16	P-Value 0.2979 F Stat	Decision No Outlie	rs Detect Decis Signifi	ion(5%	-		
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum	•	Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099 0.0699816 2.38208 ns Test	NL - (Limits 0.25 Outlier Mean \$ 0.5780 0.0043	Overlap No Test Sta 2.298 Square 246 73852	Decision Result W t Critical 2.734 DF 4 16 20	P-Value 0.2979 F Stat 132.2	Decision No Outlie P-Value <0.0001	rs Detect Decis Signifi (1%)	ion(5%	-		
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances	•	Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099 0.0699816 2.38208 ns Test Bartlett Ed	NL - (Limits 0.25 Outlier Mean \$ 0.5780 0.0043 0.5823	Overlap No Test Sta 2.298 Square 246 73852 985 Test Sta 3.668	Decision Result W t Critical 2.734 DF 4 16 20 t Critical	P-Value 0.2979 F Stat 132.2 P-Value	Decision No Outlie P-Value <0.0001	rs Detect Decis Signifi (1%) riances	ion(5%	-		
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances	•	Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099 0.0699816 2.38208 ns Test Bartlett Ed	NL - (ingle C ares 3 quality ne Equ	Limits 0.25 Outlier Mean \$ 0.5780 0.0043 0.5823 of Variance uality of Variance	Overlap No Test Sta 2.298 Square 246 73852 985 Test Sta 3.668	Decision Result W t Critical 2.734 DF 4 16 20 t Critical 13.28	P-Value 0.2979 F Stat 132.2 P-Value 0.4529	Decision No Outlie P-Value <0.0001 Decision Equal Value	rs Detect Decis Signiff (1%) riances riances	ion(5%	-		
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution	•	Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099 0.0699816 2.38208 ns Test Bartlett Ed Mod Leve	NL - (ingle C ares 3 quality ne Equ Vilk No	Dutlier Mean S 0.5780 0.0043 0.5823 of Variance pality of Variance mality	Overlap No Test Sta 2.298 Square 246 73852 985 Test Sta 3.668 ace 1.42	Decision Result W t Critical 2.734 DF 4 16 20 t Critical 13.28	P-Value 0.2979 F Stat 132.2 P-Value 0.4529 0.2821	Decision No Outlie P-Value <0.0001 Decision Equal Value Equal Value	rs Detect Decis Signiff (1%) riances riances istributio	ion(5%	-		
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute	•	Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099 0.0699816 2.38208 ns Test Bartlett Ec Mod Leve Shapiro-V	NL - (ingle Co ares 3 quality ne Equ Vilk No ov-Smi	Dutlier Mean S 0.5780 0.0043 0.5823 of Variance reality of Variatre reality irnov	Overlap No Test Sta 2.298 Square 246 73852 985 Test Sta 3.668 1.42 0.9759	Decision Result W t Critical 2.734 DF 4 16 20 t Critical 13.28 5.205	P-Value 0.2979 F Stat 132.2 P-Value 0.4529 0.2821 0.8574	Decision No Outlie P-Value <0.0001 Decision Equal Value Equal Value Normal D	rs Detect Decis Signiff (1%) riances riances istributio istributio	ion(5% icant E	-		
Attribute PMSD Auxiliary Tests Attribute Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Variances Distribution Distribution	•	Test Stat 0.04096 Test Grubbs S Sum Squa 2.312099 0.0699816 2.38208 ns Test Bartlett Ec Mod Leve Shapiro-V Kolmogor	NL - (ingle Coares ares quality ne Equ Vilk No ov-Smi o Skew	Limits 0.25 Outlier Mean \$ 0.5780 0.0043 0.5823 of Variance rality of Variant rmality irnov yness	Overlap No Test Sta 2.298 Square 246 73852 985 Test Sta 3.668 1.42 0.9759 0.1022	Decision Result W t Critical 2.734 DF 4 16 20 t Critical 13.28 5.205 0.2186	P-Value 0.2979 F Stat 132.2 P-Value 0.4529 0.2821 0.8574 0.9243	Decision No Outlie P-Value <0.0001 Decision Equal Value Royal Document Doc	rs Detect Decis Signifi (1%) riances riances istributio istributio istributio	on on	-		

Mussel Shell Development Test

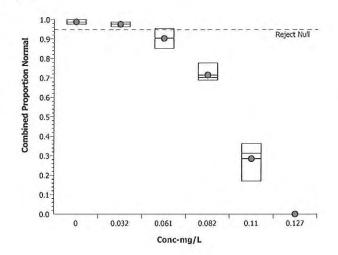
Report Date:

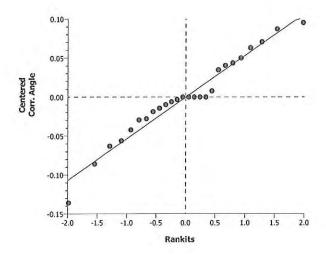
10 Mar-10 09:59 (p 2 of 2) 01-3844-4523/MYT022310myt

Test Code:

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 02-9822-7674 Endpoint: Combined Proportion Normal CETIS Version: CETISv1.7.0


Analyzed: 10 Mar-10 9:59 Analysis: Parametric-Multiple Comparison Official Results: Yes


Combined P	roportion Normal	Summar	1								
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Control	2	0.9876	0.9809	0.9943	0.9752	1	0.003255	0.01753	1.78%	0.0%
0.032		4	0.9762	0.9723	0.9802	0.9628	0.9876	0.001918	0.01033	1.06%	1.15%
0.061		5	0.9033	0.8871	0.9195	0.8512	0.9545	0.007911	0.0426	4.72%	8.54%
0.082		5	0.7149	0.7015	0.7283	0.6901	0.7769	0.006534	0.03518	4.92%	27.62%
0.11		5	0.2851	0.2565	0.3137	0.1694	0.3636	0.01396	0.07518	26.37%	71.13%
0.127		5	0	0	0	0	0	0	0		100.0%

Angular (Cor	rected) Transfor	med Sum	mary								
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Negative Contr	2	1.476	1.442	1.51	1.413	1.539	0.01654	0.08907	6.04%	0.0%
0.032		4	1.419	1.406	1.432	1.377	1.459	0.006344	0.03416	2.41%	3.85%
0.061		5	1.261	1.232	1.289	1.175	1.356	0.0138	0.07431	5.89%	14.56%
0.082		5	1.008	0.9929	1.023	0.9804	1.079	0.007437	0.04005	3.97%	31.68%
0.11		5	0.5602	0.5272	0.5931	0.4242	0.6473	0.01609	0.08666	15.47%	62.04%
0.127		5	0.03215	0.03214	0.03215	0.03215	0.03215	0	0	0.0%	97.82%

Combined P	roportion Normal	Detail					
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	Negative Control	0.9752	1				
0.032		0.9752	0.9876	0.9628	0.9793		
0.061		0.9545	0.905	0.9339	0.8512	0.8719	
0.082		0.7769	0.6901	0.7066	0.6983	0.7025	
0.11		0.3223	0.314	0.2562	0.1694	0.3636	
0.127		0	0	0	0	0	

Graphics

0.082

0.11

0.127

000-055-170-1

Report Date:

10 Mar-10 09:59 (p 1 of 2)

Test Code:	01-3844-4523/MYT02	22310r
		w w)

	,						Tes	t Code:	01-384	44-4523/M	YT022310my
Mussel She	ell Development T	est						Aquatic	Bioassay &	Consultir	ng Labs, Inc
Analysis ID	: 12-0454-3247	Endp	oint:	Combined Pro	portion Nor	mal	CET	IS Version	: CETISV	1.7.0	
Analyzed:	10 Mar-10 9:59	9 Analy	sis:	Linear Interpol	ation (ICPII	۷)	Offi	cial Result	s: Yes		
Batch ID:	10-0504-5266	Test 1	Гуре:	Development-S	Survival		Ana	lyst:			
Start Date:	23 Feb-10 12:0	00 Proto	col:	EPA/600/R-95	/136 (1995)		Dilu	ent: La	boratory Sea	awater	
Ending Dat	e: 25 Feb-10 12:0	00 Speci	ies:	Mytilis gallopro	vincialis		Brin	e: No	t Applicable		
Duration:	48h	Source	ce:	Carlsbad Aqua	farms CA		Age	:			
Sample ID:	02-9949-1709	Code	:	MYT022310			Clie	nt: Int	ernal Lab		
Sample Dat	te: 23 Feb-10	Mater	ial:	Ammonia (Unic	onized)		Proj	ect:			
Receive Da	te: 23 Feb-10	Source	ce:	Reference Tox	icant						
Sample Age	e: 12h	Statio	n:								
_inear Inter	rpolation Options										
X Transform	n Y Transforn	n Seed		Resamples	Exp 95%	6 CL Meth	nod				
inear	Linear	57951	86	280	Yes	Two-	Point Interp	olation			
Residual Ar	nalysis										
Attribute	Method			Test Stat	Critical	P-Value	Decision	(5%)			
xtreme Val	lue Grubbs Ex	xtreme Value		2.57	2.841	0.1558	No Outlie	rs Detected			
Point Estim	ates										
Level mg		95% UCL									
	0.03428	0.06754									
	06261 0.04923	0.06751									
	0.06207	0.072									
	7362 0.06846	0.07821									
	7912 0.07429	0.08454									
C40 0.0	8997 0.08722	0.09293									
C50 0.0	964 0.09275	0.09998									
Combined F	Proportion Norma	I Summary			Calci	ulated Varia	te(A/B)				
	Control Type	-	Mean	Min	Max	Std Err	Std Dev	CV%	Diff%	Α	В
	Negative Control		0.9876	0.9752	1	0.003201	0.01753	1.78%	0.0%	478	484
.032		4 (0.9762	0.9628	0.9876	0.001886	0.01033	1.06%	1.15%	945	968
.061		5 (0.9033	0.8512	0.9545	0.007778	0.0426	4.72%	8.54%	1093	1210
.082			0.7149		0.7769	0.006424	0.03518	4.92%	27.62%	865	1210
.11			0.2851		0.3636	0.01373	0.07518	26.37%	71.13%	345	1210
.127		5 (0	0	0	0	0		100.0%	0	1210
ombined F	Proportion Norma	l Detail									
Conc-mg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
	Negative Control	0.9752	1								
0.032		0.9752	0.9876		0.9793						
0.061		0.9545	0.905	0.9339	0.8512	0.8719					
100000											

0.7066

0.2562

0

0.7769

0.3223

0

0.6901

0.314

0

0.6983

0.1694

0

0.7025

0.3636

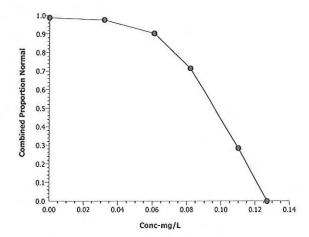
0

Report Date:

10 Mar-10 09:59 (p 2 of 2)

Test Code:

01-3844-4523/MYT022310myt


Mussel Shell Development Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: Analyzed: 12-0454-3247 10 Mar-10 9:59 Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: CETISv1.7.0
Official Results: Yes

Graphics

CETIS Measurement Report

Report Date:

10 Mar-10 09:59 (p 1 of 3)

JETTO WICE	Surcincine i	CPO					Te	est Code:	01-38	44-4523/MY	T022310myt
Mussel Shell I	Development T	est						Aquatic	Bioassay &	Consulting	g Labs, Inc.
Batch ID: Start Date: Ending Date: Duration:	10-0504-5266 23 Feb-10 12:0 25 Feb-10 12:0 48h		Test Type: Protocol: Species: Source:	Development-S EPA/600/R-95 Mytilis gallopro Carlsbad Aqua	/136 (1995) ovincialis		Di Bi		boratory Sea t Applicable		
Sample ID: Sample Date: Receive Date: Sample Age:			Code: Material: Source: Station:	MYT022310 Ammonia (Uni Reference Tox				lient: Int roject:	ernal Lab		
Dissolved Oxy Conc-mg/L	/gen-mg/L Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
)	Negative Contr	2	6.35	6.135	6.565	5.9	6.8	0.1061	0.6364	10.02%	0

Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Coun
0	Negative Contr	2	6.35	6.135	6.565	5.9	6.8	0.1061	0.6364	10.02%	0
0.032		2	6.25	6.035	6.465	5.8	6.7	0.1061	0.6364	10.18%	0
0.061		2	6.15	5.887	6.413	5.6	6.7	0.1296	0.7778	12.65%	0
0.082		2	6.1	5.861	6.339	5.6	6.6	0.1179	0.7071	11.59%	0
0.11		2	6.25	5.987	6.513	5.7	6.8	0.1296	0.7778	12.45%	0
0.127		2	6.2	5.961	6.439	5.7	6.7	0.1179	0.7071	11.4%	0
Overall		12	6.217			5.6	6.8				0 (0%)

Total Amino	ma (w)-mg/L										
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	1	0			0	0	0	0		0
0.032		1	1.9			1.9	1.9	0	0	0.0%	0
0.061		1	3.6			3.6	3.6	0	0	0.0%	0
0.082		1	4.8			4.8	4.8	0	0	0.0%	0
0.11		1	6.5			6.5	6.5	0	0	0.0%	0
0.127		1	7.5			7.5	7.5	0	0	0.0%	0
Overall		6	4.05			0	7.5				0 (0%)

pH-Units											
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	2	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0
0.032		2	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0
0.061		2	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0
0.082		2	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0
0.11		2	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0
0.127		2	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0
Overall		12	7.9			7.9	7.9				0 (0%)

Salinity-ppt											
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	2	34	34	34	34	34	0	0	0.0%	0
0.032	4.0	2	34	34	34	34	34	0	0	0.0%	0
0.061		2	34	34	34	34	34	0	0	0.0%	0
0.082		2	34	34	34	34	34	0	0	0.0%	0
0.11		2	34	34	34	34	34	0	0	0.0%	0
0.127		2	34	34	34	34	34	0	0	0.0%	0
Overall		12	34			34	34				0 (0%)

Temperature	e-°C										
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Negative Contr	2	14.85	14.83	14.87	14.8	14.9	0.0118	0.07077	0.48%	0
0.032	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2	14.85	14.83	14.87	14.8	14.9	0.0118	0.07077	0.48%	0
0.061		2	14.85	14.83	14.87	14.8	14.9	0.0118	0.07077	0.48%	0
0.082		2	14.85	14.83	14.87	14.8	14.9	0.0118	0.07077	0.48%	0
0.11		2	14.85	14.83	14.87	14.8	14.9	0.0118	0.07077	0.48%	0
0.127		2	14.85	14.83	14.87	14.8	14.9	0.0118	0.07077	0.48%	0
Overall		12	14.85			14.8	14.9				0 (0%)
										Λ	

Report Date: **Test Code:**

10 Mar-10 09:59 (p 2 of 3) 01-3844-4523/MYT022310myt

Aquatic Bioassay	1 &	Consulting	Labs,	Inc.

							1631		
Mussel Shell	I Development 1	Test						Aquatic Bioassay & Consulting Lab	s, Inc.
Dissolved O	xygen-mg/L								
Conc-mg/L	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr	1	6.8						
0.032			6.7						
0.061			6.7						
0.082			6.6						
0.11			6.8						
0.127			6.7						
0	Negative Contr	2	5.9						
0.032			5.8						
0.061			5.6						
0.082			5.6						
0.11			5.7						
0.127			5.7						
Total Ammor	nia (N)-mg/L								
Conc-mg/L	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr		0						
0.032			1.9						
0.061			3.6						
0.082			4.8						
0.11			6.5						
0.127			7.5						
pH-Units									
Conc-mg/L	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr		7.9						
0.032			7.9						
0.061			7.9						
0.082			7.9						
0.11			7.9						
0.127			7.9						
0	Negative Contr	2	7.9						
0.032			7.9						
0.061			7.9						
0.082			7.9						
0.11			7.9						
0.127			7.9						
Salinity-ppt									
Conc-mg/L	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	Negative Contr		34						
0.032			34						
0.061			34						
0.082			34						
0.11			34						
0.127			34						
0	Negative Contr	2	34						
0.032			34						
0.061			34						
0.082			34						
0.11			34						
0.127			34						

CETIS Measurement Report

Report Date:

10 Mar-10 09:59 (p 3 of 3)

Test Code:

01-3844-4523/MYT022310myt

Mussel Shel	I Development T	Aquatic Bioassay & Consulting Labs, Inc.											
Temperature-°C													
Conc-mg/L	Control Type	Reading Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes					
0	Negative Contr	1	14.9										
0.032			14.9										
0.061			14.9										
0.082			14.9										
0.11			14.9										
0.127			14.9										
0	Negative Contr	2	14.8										
0.032			14.8										
0.061			14.8										
0.082			14.8										
0.11			14.8										
0.127			14.8										

Analyst: QA: ____

SUBCONTRACT ORDER TestAmerica Irvine

ITB1519

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

ABC Laboratories-SUB

29 N. Olive Street

Ventura, CA 93001

Phone: (805) 643-5621

Fax: (805) 643-2930

Project Location: CA - CALIFORNIA

Receipt Temperature: 3.6 °C

Ice: Y / N

Standard TAT is requested unless specific due date is requested. => Due Date: Initials:												
Analysis	Units	Expires	Comments									
Sample ID: ITB1519-01 (A	rroyo Simi-FP - Soil)	Sampled: 02/11/	10 11:50 Temp=14.6, pH=7.41, DO=4.89, Conductiv									
Bioassay-Haz. Waste	N/A	02/18/10 11:50	Chronic 10 day(eohaustorius) Out to ABC Labs									
Bioassay-Haz. Waste Det	f N/A	02/18/10 11:50	48hr Bivalve Embryo TOX(mytilus edulis) Out to ABC									
Level 4 Data Package	N/A	03/11/10 11:50	oddio, odi io i ibo									
Containers Supplied:												
1 L Poly W/M (E)	1 L Poly W/M (F)	1 L Poly W/M (G)	1 L Poly W/M (H)									

TAM0310,033

Released By

Deserged By

Date/Time 115

Date/Time

Received B

Received By

Date/Time

2/18/10 //15

Date/Time

Page 1 of 1

TestAmerica South Burlington, VT

Extended Data Package

ITB1519

TestAmerica Laboratories, Inc.

February 24, 2010

Mr. Joseph Doak TestAmerica, Inc. 17461 Derian Avenue Suite 100 Irvine, CA 92614

Re: Laboratory Project No. 28000 Case: BOEING; SDG: ITB1519

Dear Mr. Doak:

Enclosed are the analytical results for the sample that was received by TestAmerica Burlington on February 17th, 2010. A laboratory identification number was assigned, and designated as follows:

	Client	Sample	Sample
<u>Lab ID</u>	Sample ID	<u>Date</u>	Matrix

Received: 02/17/10 ETR No: 136034

820745 ITB1519-01 02/11/10 SOIL

Documentation of the condition of the sample at the time of receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

Particle Size Analysis by ASTM D422

There were no exceptions to the method quality control criteria during the analysis of this sample.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

For...

Joseph Carabillo Project Manager

Chain of Custody	1	
Particle Size Results	4	
Sample Handling	10	

Chain of Custody

SUBCONTRACT ORDER TestAmerica Irvine

ITB1519

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica Burlington

30 Community Drive, Suite 11

South Burlington, VT 05403

Phone: (802) 655-1203

Fax: (802) 655-1248

Project Location: CA - CALIFORNIA

Receipt Temperature: 3,4 °C

Analysis Interlab Price Surch Comments Units Due **Expires**

Sample ID: ITB1519-01 (Arroyo Simi-FP - Soil)

Temp=14.6, pH=7.41, DO=4.89, Conductivi Sampled: 02/11/10 11:50

0%

Level 4 Data Package - Out N/A

02/22/10 % by Weight

03/11/10 11:50 02/22/10 03/11/10 11:50

\$0.00 \$108.00

Boeing, J flags, OUT to TA- Burlington

Containers Supplied:

Particlesize-OUT

9 oz Jar (D)

Released By

Date/Time

Received By

6/5/9 Page 1 of 1	Field readings:	pH = 7.41 DO = 4.89 Conductivity = 2.19	I'me of readings = 12:00	Keep sample in cooler in the dark until delivered to ABC Labs							2.3	01210)		Turn around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	72 Hours Normal	Sample Integrity: (check) Intact On Ice:	its.	2,5 M2/(V
M	AN AL YSIS Sphene A,4,4	08) 7e, Dieldrin, Tox 4-DDD, 4,4-DDE	PCBs (6 Chlorda (608), 4, DDT					×		 £							08.70			7	<u></u>	1032
		ganic Carbon				×							\perp				1e/Time: 24/	ime:		Date/Time:		2/17/10
_		Size Distribution					×						+	-	_		Bate/Time: 24/_	Date/Time:		Date/Time:	•	11
S.S.			nA lstoT tsioM %		×	×			-		-	-	-	+	+	4	I/I			_ (0
Y FO		Bivalve Embryo edulis or Crasso	(Mytilus gigas)	×													The state of the s)			- M
0		10-day eohauste s Toxicity	estuariu	×																		\mathcal{K}_{o}
HAIN OF CUSTODY FORM			Bottle #	1A, 1B, 1C, 1D	2A	3A	44	5A									Received By	Received By (Received By		Wan Koll
HAIN	L NPDES ment Arroy	591 315	Preservative	4C in the Dark	4 deg C	4 deg C	4 deg C	4 deg C		0180	11 /2						14.2	7	77.			
Ö	Project: Boeing-SSFL NPDES Annual Sediment Arroyo Simi Frontier Park	Phone Number: (526) 568-6691 Fax Number: (526) 568-6515	Sampling Date/Time	2-11-2019				>			\	3	Tab.			į	Date/ I ime:	Date/Time:	211-10 19	Date/Time:		
8/29/09	00	oak (elly	# of Cont.	4	-	-	-	-					1			(- \		17	Δ		
Fest America version 6/29/09	Client Name/Address: MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak Project Manager: Bronwyn Kelly Sampler: Shelby Dawser	Container Type	1L wide mouth Plastic	9 oz Jar	9 oz Jar	9 oz Jar	9 oz Jar								,	W	1		1		
meric	me/Addr rcadia inda Aven A 91007	anager: Shelby	Sample Matrix	S	S	S	S	S									X 6	By	1/1) _(B)		
Test A	Client Name/Address MWH-Arcadia 618 Michillinda Avenue, Arcadia, CA 91007	Test America Contact: Joseph Project Manager: Bronwyr Sampler: Shelby Dawson	Sample Description	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP									W//W	Relinguished By	14 at	Refinquished By		

Particle Size Results

Particle Size by ASTM D4464

Monday, February 22, 2010 10:15:41 AM

Client Code:

SDG/ETR:

Instrument Name:

TACAI

ITB1519

Hydro 2000G (A)

Sample ID:

Analyzed:

SOP Name:

ITB1519-01

STL-BTV-D4464

Laboratory ID:

Measured by:

Analysis model:

820745 - Average

DJP

General purpose

Dispersant Name:

Water

Size range:

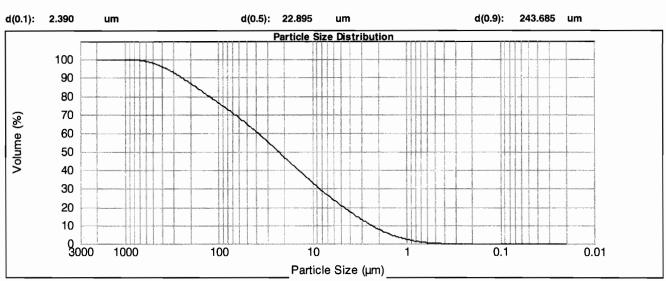
Sensitivity:

Dispersant RI:

0.020 to 2000.000 um

Enhanced Obscuration:

1.330


Weighted Residual:

26.52 %

0.864

Sand

28.21

U ,	/*			•	000	,·•		•			
Size (µm)	Volume In %	Size (µm) Vo	olume in %	Size (µm)	Volume In %	Size (µm)	Volume In %	Size (µm)	Volume In %	Size (µm)	Volume In %
0.010	0.00	0.105	0.00	1.096	0.86	11.482	2.74	120.226	2.15	1258.925	0.001
0.011	0.00	0.120	0.00	1.259	1.01	13.183	2.79	138.038	2.14	1445.440	0.00
0.013 0.015	1 0.001	0.138 0.158	0.00	1.445 1.660	1.20	15.136 17.378	2.83	158.489 181.970	2.13	1659.587 1905.461	0.00
0.013	0.00	0.182	0.00	1.905	1.40	19.953	2.84	208.930	2.10	2187.762	0.00
0.020	0.00	0.209	0.00	2.188	1.59	22.909	2.84	239.883	2.04	2511.886	0.00
0.023	0.00	0.240	0.00	2.512	1.76	26.303	2.81	275.423	1.94	2884.032	0.00
0.026	0.00	0.275	0.00	2.884	1.90 2.01	30.200	2.76	316.228	1.80	3311.311	0.00
0.030	0.00	0.316	0.00	3.311	2.01	34.674	2.69	363.078	1.62	3801.894	0.00
0.035	0.00	0.363	0.00	3.802	2.16	39.811	2.52	416.869	1.17	4365.158	0.00
0.040	0.00	0.417	0.08	4.365	2.23	45.709	2.43	478.630	0.92	5011.872	0.00
0.046	0.00	0.479	0.19	5.012	2.30	52.481	2.35	549.541	0.66	5754.399	0.00
0.052 0.060	0.00	0.550 0.631	0.31	5.754 6.607	2.37	60.256 69.183	2.28	630.957 724.436	0.43	6606.934	0.00
0.060	0.00	0.631	0.41	7.586	2.45	79.433	2.23	831.764	0.21	7585.776 8709.636	0.00
0.009	0.00	0.832	0.52	8.710	2.53	91.201	2.19	954.993	0.07	10000.000	0.001
0.091	0.00	0.955	0.62	10.000	2.60	104.713	2.17	1096.478	0.00		1
0.105	0.00	1.096	0.73	11.482	2.67	120,226	2.16	1258.925	0.00		

50.79

Malvern Instruments Ltd.

Clay

21

Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

Mastersizer 2000 Ver. 5.22 Serial Number: MAL101709 File name: ITB1519 Record Number: 4 22 Feb 2010 10:23:17 AM

Particle Size of Soils by ASTM D422

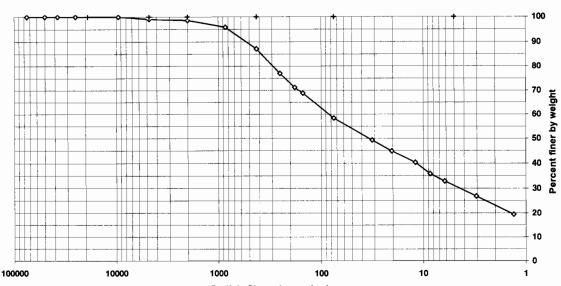
 Client Code:
 TACAI

 Sample ID:
 ITB1519-01

 Lab ID:
 820745

SDG: ITB1519 **ETR(s)**: 136034
 Date Received:
 02/17/10

 Start Date:
 02/19/10


 End Date:
 02/24/10

Percent Solids: 73.7%
Specific Gravity: 2.650
Maximum Particle Size: 9.5 mm

 Non-soil material:
 plant

 Shape (> #10):
 angular

 Hardness (> #10):
 hard

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.1	0.9
#10	2000	98.6	0.5
#20	850	95.8	2.8
#40	425	87.1	8.7
#60	250	77.0	10.2
#80	180	71.2	5.8
#100	150	68.8	2.4
#200	75	58.4	10.4
Hydrometer	31.6	49.3	9.1
1	20.4	44.8	4.5
Ī	12.0	40.3	4.5
Ī	8.6	35.9	4.5
1	6.2	32.9	3.0
	3.0	26.9	6.0
V	1.3	19.4	7.5

Percent of
Total Sample
0.9
40.7
0.5
11.5
28.8
25.5
32.9

Preparation Method: **D2217**Dispersion Device: Mechanical mixer with a metal paddle.

Dispersion Period: 1 minute

FSL024:07.29.05:0 TestAmerica Burlington

SDG: ITB1519

ITB1519PS 02/24/10

Particle Size Analysis of Soils By ASTM D422 Hydrometer Data	ysis of Soils		Set Number		Client Code: SDG: ETR(s):	TACAI ITB1519 136034				Date Received: Start Date: End Date:	17-Feb-10 19-Feb-10 24-Feb-10	
	Date and Analyst	st Percent Solids		Weighed		Mixed		Hydrometer		Large sieves		Small sieves
		MAP 2/19/10		MAP 2/19/10		MAP 2/19/10		DJP 2/22/10		MAP 2/19/10		SAF 02/23/10
		DJP 2/22/10								DJP 2/22/10		DJP 2/24/10
Test number	-	2	က	4	2	9	7	8	6	01	11	12
Lab number	820745											
Time, min. (2)	2	2	2	2	2	2	2	2	2	2	2	2
Reading	1.0210											
Temperature, C	20.0											
Time, min. (5)	5	5	5	5	5	5	5	5	5	5	5	5
Reading	1.0195											
Temperature, C	20.0											
Time, min. (15)	15	15	15	15	15	15	15	15	15	15	15	15
Reading	1.0180											
Temperature, C	20.0											
Time, min. (30)	30	30	29	29	31	31	31	32	30	30	30	31
Reading	1.0165											
Temperature, C	20.0											
Time, min. (60)	59	28	58	63	09	59	59	09	63	25	63	22
Reading	1.0155											
Temperature, C	20.0											
Time, min. (250)	256	256	250	250	240	234	265	259	253	247	241	235
Reading	1.0135											
Temperature, C	20.0											
Time, min. (1440)	1440	1440	1434	1434	1424	1418	1412	1406	1400	1394	1388	1382
Reading	1.0110											
Temperature, C	20.0											
Hyd	Hydrometer used:	705151	Model #:	Model #: ASTM 151H			Manufacturer:	Manufacturer: HB Instrument	,	Hydrome	Hydrometer start time:	7:00
	Calibrations:	L temp, C	L read	H Temp, C	H read		Cal. Date:	01/06/09	Hydr	Hydrometer data entered:	red:	
	_	>:-	2000	2.23	2							

FSL024:07.29.05:0 TestAmerica Burlington

Date Received: 17.Feb-10 Start Date: 19-Feb-10 End Date: 3.27.10	Large sieves My 2 19.10 51F 02.7 My 2.22.10 1.12.10	10 11 12	2 2	1		5 5			5 15 15			0 30 30			3 57 63			3 247 241 235			1394 1388 1382			Hydrometer etert time:
	Hydrometer ()) 7.72.10 ()) 2.73.10	8	2 2			9 9			15 15			32 30			69 63			259 253			1406 1400			
TACAI TB1519 136034	Mixed 2.19-10	2 9	2 2			5 5			15 15			31 31			59 59			234 265			1418 1412			Manufacturer:
Client Code: SDG: ETR(s):	Waighed 10 10	4	2 2			5 5			15 15			29 31			09 69			250 240			1434 1424			STM 151H
Set Number ITB1519	2、19-10	2 3	2 2			5 5			15 15			30 29			99 28			256 250			1440 1434			Model #: ASTM
Particle Size Analysis of Soils By ASTM D422 Hydrometer Data	AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Test number 1 Lab number 820745		1.0216	Temperature, c $\lambda_D.D$	Time, min. (5) 5	Reading 1.0 195	Temperature, C 20.0	Time, min. (15)	Reading (.0 80	Temperature, C λΟ Φ	Time, min. (30) 30		Temperature, c 20.0	Time, min. (60) 59	Reading 1.0155	Temperature, c 20.0	Time, min. (250)	Reading .0 35	Temperature, C 20.0	Time, min. (1440) 1440	Reading (.O) (O	Temperature, C 20.0	Hydrometer used:

FSL024:07.29.05:0 TestAmerica Burlington

Test Test 2 3 4 4 4 4 4 4 4 4 4	SDG: SDG: MASS, g 0.00 #VALUE!
	and wet prep Mass. g Mass. g 0.00 0.00 #VALUE! #VALUE!

Sample Handling

ORIGIN ID: APVA (949)261-1022 TESTAMERICA-TRVINE/SAMPLE CONTROL TESTAMERICA ANALYTICAL 17461 DERIAN AVE SUITE 100 IRVINE, CA 92614 UNITED STATES US

SHIP DATE: 16FEB10 ACTWGT: 6.6 LB CAD: 616730/CAFE2434

BILL THIRD PARTY

TO SAMPLE RECEIVING TESTAMERICA - BURLINGTON 30 COMMUNITY DRIVE, SUITE 11

SOUTH BURLINGTON VT 05403 (802)655-1203 REF: TA-BURLINGTON

(802)665 - 1203 DEPT: ALWAYS BILL RECIPIENT

FedEx

TRK# 4289 2133 3533

WED - 17FEB PRIORITY OVERNIGHT

XH BTVA

05403 VT - US BTV

	SA	MPLE RECEIPT & LO	G IN C	on HECK	(LIST		
Client: TACA	7	Date Received: (1)2		Ø	Log In D	Date: 02/19/10	
ETR: 136 034		Time Received:	332		By: \/	10 1 1	
SDG: TTB15	- 4:	Received By:	CK		Signatur	re: Tulkan	
Project: 294 QC	Q	# Coolers Received:			PM Sign	nature:	
Samples Delivered By:	Shipping Service a Co	ourier Hand Other (specify)		Date:	1 2:22:10	
List Air bill Number(s) or	Attach a photocopy of t	the Air Bill:					
COOLER SCREEN	visi s gali k ^{er} asas <u>nagk</u> as	AMERICAN STREET	YES	NO	NA	COMMENTS	SM Star
There is no evidence to i			1 2		1111	- Cartaga - Comment	
Custody seals are presen			X		1		
Custody seal numbers are			1/2	∇			
If yes, list custody seal nu							
Thermal Preservation Type				_			
IR Gun ID:	/ Correction Factor				- ·		
Cooler 1: 2, L	°C Cooler 6	°C Cooler 11			Cooler 1		
Cooler 2:	°C Cooler 7	°C Cooler 12			Cooler 1		
Cooler 3:	°C Cooler 8	°C Cooler 13		_	Cooler 1		
Cooler 4:	°C Cooler 9	°C Cooler 14			Cooler 1		
Cooler 5	°C Cooler 10	°C Cooler 15			Cooler 2		
Unless otherwise docume	ented, the recorded ten	nperature readings are adjusted	readings	to acco	unt for th	e or of the IR Gun	
EPA Unteria: 0-6°C, exce	pt for air and geo sam	ples which should be at ambier	tempera	ure and	otific C14	ampies, wnich may be trozen. when altemate criteria is specifi	ind
SAMPLE CONDITION			YES	NO NO	NA I	COMMENTS	
Sample containers were r		section with the transfer of the first transfer	1	110	13910 81		275,44
Legible sample labels are			$+ \sim$		 1		
		ner	$1 \sim$	l .	I I		
		ner	ÝES	NO	NA NA	COMMENTS	of also is
CHAIN OF CUSTODY (C	OC)	3:	YES	NO	NA NA	COMMENTS	of all the
CHAIN OF CUSTODY (C	OC) des the following inform	3:	YES	NO	NA	COMMENTS	a age y
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des	OC) des the following inform scription	3:	YES	NO	NA NA	COMMENTS	102
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection	OC) des the following inform scription on	3:	YES	NO	NA NA	COMMENTS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection	OC) des the following inform scription on	3:	YES	NO	NA NA	COMMENTS	- A m2 - 4 - 4
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam	OC) des the following inform scription on	3:	YES	NO	NA NA	COMMENTS	
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type	OC) des the following inform scription on on pler	3:	YES	NO	NA NA	COMMENTS	
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam	OC) des the following inform scription on on pler	3:	YES	NO	NA NA	COMMENTS	
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Methor	OC) des the following inform scription on pler d(s)	3:	YES	NO NO	NA NA	COMMENTS	
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody	des the following information on on pler (ICOC) Required	nation for each container:	YES	NO	NA X	COMMENTS	
CHAIN OF CUSTODY (C COC is present and inclu- Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Methon Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec	des the following information on on pler (ICOC) Required cord initiated for every	nation for each container:	YES	NO NO	NA N		
CHAIN OF CUSTODY (C COC is present and inclu- Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Methon Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U	des the following information on pler (ICOC) Required cord initiated for every SABILITY	nation for each container:	× × × × × × × × × × × × × × × × × × ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collectic Time of Sample Collectic Identification of the Sam Preservation Type Requested Tests Metho Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U The sample container mai Appropriate sample conta	des the following information on on pler (ICOC) Required cord initiated for every sability thes the COC iners were received for	nation for each container:	× × × × × × × × × × × × × × × × × × ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collectic Time of Sample Collectic Identification of the Sam Preservation Type Requested Tests Metho Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U The sample container mat Appropriate sample conta	des the following information on o	mation for each container: Worksheet r the tests requested	× × × × × × × × × × × × × × × × × × ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collectic Time of Sample Collectic Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U The sample container mat Appropriate sample conta Samples were received w Sufficient amount of samp	des the following information on o	worksheet r the tests requested ested analyses	× × × × × × × × × × × × × × × × × × ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collectic Time of Sample Collectic Identification of the Sam Preservation Type Requested Tests Methor Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U The sample container ma Appropriate sample conta Samples were received w Sufficient amount of samp VOA vials do not have her	des the following information on o	worksheet r the tests requested ested analyses 6mm (1/4" diameter)	× × × × × × × × × × × × × × × × × × ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collectic Time of Sample Collectic Identification of the Sam Preservation Type Requested Tests Metho Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U The sample container ma Appropriate sample conta Samples were received w Sufficient amount of samp VOA vials do not have he Appropriate preservatives	des the following information on o	Worksheet r the tests requested ested analyses 6mm (1/4" diameter) s requested	× × × × × × × × × × × × × × × × × × ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures	des the following information on o	Worksheet The tests requested ested analyses form (1/4" diameter) s requested nethod specification	× × × × × × × × × × × × × × × × × × ×	×	× ×		

FSR002:12.19.07:3 TestAmerica Burlington

SDG: ITB1519

TestAmerica South Burlington, VT

Extended Data Package

ITB1519

TestAmerica Laboratories, Inc.

February 24, 2010

Mr. Joseph Doak TestAmerica, Inc. 17461 Derian Avenue Suite 100 Irvine, CA 92614

Re: Laboratory Project No. 28000 Case: BOEING; SDG: ITB1519

Dear Mr. Doak:

Enclosed are the analytical results for the sample that was received by TestAmerica Burlington on February 17th, 2010. A laboratory identification number was assigned, and designated as follows:

	Client	Sample	Sample
<u>Lab ID</u>	Sample ID	<u>Date</u>	Matrix

Received: 02/17/10 ETR No: 136034

820745 ITB1519-01 02/11/10 SOIL

Documentation of the condition of the sample at the time of receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

Particle Size Analysis by ASTM D422

There were no exceptions to the method quality control criteria during the analysis of this sample.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

For...

Joseph Carabillo Project Manager

Chain of Custody	1	
Particle Size Results	4	
Sample Handling	10	

Chain of Custody

SUBCONTRACT ORDER TestAmerica Irvine

ITB1519

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica Burlington

30 Community Drive, Suite 11

South Burlington, VT 05403

Phone: (802) 655-1203

Fax: (802) 655-1248

Project Location: CA - CALIFORNIA

Receipt Temperature: 3,4 °C

Analysis Interlab Price Surch Comments Units Due **Expires**

Sample ID: ITB1519-01 (Arroyo Simi-FP - Soil)

Temp=14.6, pH=7.41, DO=4.89, Conductivi Sampled: 02/11/10 11:50

0%

Level 4 Data Package - Out N/A

02/22/10 % by Weight

03/11/10 11:50 02/22/10 03/11/10 11:50

\$0.00 \$108.00

Boeing, J flags, OUT to TA- Burlington

Containers Supplied:

Particlesize-OUT

9 oz Jar (D)

Released By

Date/Time

Received By

6/5/9 Page 1 of 1	Field readings:	pH = 7.41 $DO = 4.89$ $Conductivity = 2.19$	I'me of readings = 17:00	Keep sample in cooler in the dark until delivered to ABC Labs							2:2	01210)		Turn around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	72 Hours Normal	Sample Integrity: (check) Intact On Ice:	iş. V	2,5 M2/(V
M	AN ALYSIS Sphene A,4,4	08) 4-DDD, 4,4-DDB	PCBs (6 Chlordar (608), 4, DDT					×		 j							08.70			7		1032
		ganic Carbon				×							\perp				1e/Time: 24/	ime:		Date/Time:		2/17/10
_		Size Distribution					×						+	-	_		Bate/Time: 24/_	Date/Time:		Date/Time:	•	11
S.S.			nA lstoT tsioM %		×	×			-		-	-	-	+	+	4	I/I			(0
Y FO		Bivalve Embryo edulis or Crasso	(Mytilus gigas)	×													The state of the s)			- M
0		10-day eohauste s Toxicity	uinsutse	×																1		\mathcal{K}_{o}
HAIN OF CUSTODY FORM			Bottle #	1A, 1B, 1C, 1D	2A	3A	44	5A									Received By	Received By (,	Received By		Wan Koll
HAIN	L NPDES ment Arroy	591 391	Preservative	4C in the Dark	4 deg C	4 deg C	4 deg C	4 deg C		0180	11 /2						14.2	7	77.			
Ö	Project: Boeing-SSFL NPDES Annual Sediment Arroyo Simi Frontier Park	Phone Number: (526) 568-6691 Fax Number: (526) 568-6515	Sampling Date/Time	2-11-2010				>		 	\	3	Tab.			į	Date/ I ime:	Date/Time:	211-10 19	Date/Time:		
8/29/09	00	oak (elly	# of Cont.	4	-	-	τ-	-					1			(۱ -	Ω	71	۵		
Fest America version 6/29/09	Client Name/Address: MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak Project Manager: Bronwyn Kelly Sampler: Shelby Dawsen	Container Type	1L wide mouth Plastic	9 oz Jar	9 oz Jar	9 oz Jar	9 oz Jar									B			1		
meric	me/Addr rcadia inda Aven A 91007	anager: Shelby	Sample	S	S	S	S	S									7 A	By	1/1) _(B)		
Test A	Client Name/Address MWH-Arcadia 618 Michillinda Avenue, Arcadia, CA 91007	Test America Contact: Joseph Project Manager: Bronwyr Sampler: Shelby Dawson	Sample Description	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP	Arroyo Simi-FP									White By Whi	Relinguished By	11 art	Refinquished By		

Particle Size Results

Particle Size by ASTM D4464

Client Code:

SDG/ETR:

Instrument Name:

TACAI

ITB1519

Hydro 2000G (A)

Sample ID:

Analyzed:

SOP Name:

ITB1519-01

Monday, February 22, 2010 10:15:41 AM

STL-BTV-D4464

Laboratory ID:

Measured by:

Analysis model:

820745 - Average

DJP

General purpose

Dispersant Name:

Water

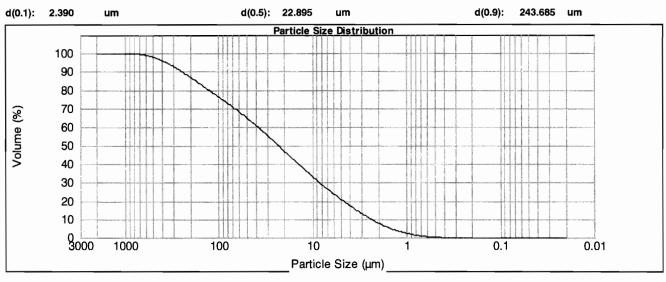
Size range:

Sensitivity:

0.020 to 2000.000 um

Enhanced

Dispersant RI:


Weighted Residual:

Obscuration:

1.330

0.864

26.52 %

ze (µm) 0.010 0.00 0.011 0.00 0.013 0.00 0.015 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.026 0.030 0.00 0.035 0.00 0.040 0.00 0.046 0.00

Clay

% 21

Size (µm) 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00 0.240 0.00 0.275 0.316 0.00 0.363 0.00 0.417 0.08

0.479

0.550

0.631

0.724

0.832

0.955

1.096

0.19

0.31

0.41

0.52

0.62

0.73

Silt te (µm)

1.096

1.259

1.445

1.660

1.905

2.188

2.512

2.884

3.311

3.802

4.365

5.012

5.754

6.607

7.586

8.710

10.000

11,482

50.79

0.86

1.01

1.20

1.40

1.59

1.76

1.90

2.09

2.16

2.23

2.30

2.37

2.45

2.53

2.60

2.67

ze (µm) 11.482 13.183 15.136 17.378

39.811

45.709

52.481

60.256

69.183

79.433

91.201

104.713

120.226

2.74 2.79 2.83 2.84 19.953 2.84 22.909 2.81 26.303 2.76 30.200 34.674 2.61

2.52

2.43

2.35

2.28

2.23

2.19

2.17

2.16

Sand

363.078

416 869

478.630

549.541

630.957

724.436

831.764

954.993

1096.478

1258.925

Size (µm) Volume in % 120.226 2.15 138.038 2.14 158.489 2.13 181.970 2.10 208.930 2.04 239.883 1.94 275.423 1.80 316.228

28.21

1.62

1.41

1.17

0.92

0.66

0.43

0.21

0.07

0.00

0.00

0.00 1445.440 0.00 1659.587 0.00 1905.461 0.00 2187.762 0.00 2511.886 0.00 2884.032 0.00 3311.311 0.00 3801.894 0.00 4365, 158 0.00 5011.872 0.00 5754.399 0.00 6606.934 0.00 7585.776

8709.636

10000.000

Size (µm) Volume In %

Malvern Instruments Ltd.

SDG: ITB1519

0.052

0.060

0.069

0.079

0.091

0.105

Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789

0.00

0.00

0.00

0.00

0.00

Mastersizer 2000 Ver. 5.22 Serial Number: MAL101709 File name: ITB1519 Record Number: 4 22 Feb 2010 10:23:17 AM

0.00

0.00

Particle Size of Soils by ASTM D422

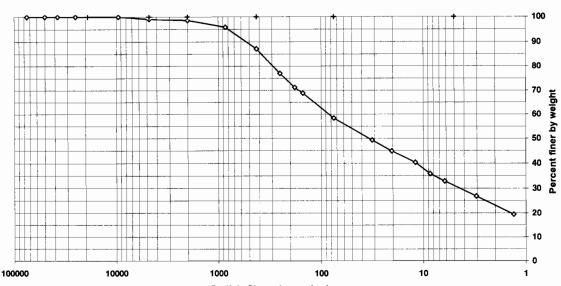
 Client Code:
 TACAI

 Sample ID:
 ITB1519-01

 Lab ID:
 820745

SDG: ITB1519 **ETR(s)**: 136034
 Date Received:
 02/17/10

 Start Date:
 02/19/10


 End Date:
 02/24/10

Percent Solids: 73.7%
Specific Gravity: 2.650
Maximum Particle Size: 9.5 mm

 Non-soil material:
 plant

 Shape (> #10):
 angular

 Hardness (> #10):
 hard

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.1	0.9
#10	2000	98.6	0.5
#20	850	95.8	2.8
#40	425	87.1	8.7
#60	250	77.0	10.2
#80	180	71.2	5.8
#100	150	68.8	2.4
#200	75	58.4	10.4
Hydrometer	31.6	49.3	9.1
1	20.4	44.8	4.5
Ī	12.0	40.3	4.5
Ī	8.6	35.9	4.5
1	6.2	32.9	3.0
	3.0	26.9	6.0
V	1.3	19.4	7.5

Percent of
Total Sample
0.9
40.7
0.5
11.5
28.8
25.5
32.9

Preparation Method: **D2217**Dispersion Device: Mechanical mixer with a metal paddle.

Dispersion Period: 1 minute

FSL024:07.29.05:0 TestAmerica Burlington

SDG: ITB1519

ITB1519PS 02/24/10

Particle Size Analysis of Soils By ASTM D422 Hydrometer Data	ysis of Soils	L	Set Number		Client Code: SDG: ETR(s):	TACAI ITB1519 136034				Date Received: Start Date: End Date:	17-Feb-10 19-Feb-10 24-Feb-10	
<u> </u>	Date and Analyst	yst Percent Solids		Weighed		Mixed		Hydrometer		Large sieves		Small sieves
		MAP 2/19/10		MAP 2/19/10		MAP 2/19/10		DJP 2/22/10		MAP 2/19/10		SAF 02/23/10
		DJP 2/22/10								DJP 2/22/10		DJP 2/24/10
Test number	1	5	3	4	5	9	7	8	6	10	11	12
Lab number	820745											
Time, min. (2)	2	2	2	2	2	2	2	2	2	2	2	2
Reading	1.0210											
Temperature, C	20.0											
Time, min. (5)	5	5	5	5	5	5	5	5	5	5	2	5
Reading	1.0195											
Temperature, C	20.0											
Time, min. (15)	15	15	15	15	15	15	15	15	15	15	15	15
Reading	1.0180											
Temperature, C	20.0											
Time, min. (30)	30	30	29	29	31	31	31	32	30	30	30	31
Reading	1.0165											
Temperature, C	20.0											
Time, min. (60)	59	58	58	63	09	29	59	09	63	25	63	25
Reading	1.0155											
Temperature, C	20.0											
Time, min. (250)	256	256	250	250	240	234	265	259	253	247	241	235
Reading	1.0135											
Temperature, C	20.0											
Time, min. (1440)	1440	1440	1434	1434	1424	1418	1412	1406	1400	1394	1388	1382
Reading	1.0110											
Temperature, C	20.0											
Hydi	Hydrometer used:	705151	Model #:	Model #: ASTM 151H			Manufacturer:	Ξ		Hydrom	Hydrometer start time:	7:00
	Calibrations:	L temp, C	L read	H Temp, C	H read		Cal. Date:	01/06/09	Hydr	Hydrometer data entered:	ered:	
	_	17.0	OCOO.1	23.0	1.0040							

FSL024:07.29.05:0 TestAmerica Burlington

Percent Solids MAP 2.19-10 1 2 3 4 820745 2 2 2 1 0216 20.0 20.0 15 15 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mixed 2.19-10	2 2 9	Hydrometer U) 2. 2. 10 U) 2. 3. 10 8 6 5 5	9 2 2	Large sieves 10 10 2 2 2 2 5 5 5	11 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Small sieves SAF PARAMO 12 12 2 2 14 15
2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5		13 8 2	8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6	7		
5 5 5 5 6 6 15 15								
5 5 5 5 6 6 15 15		5 5	15 5 2	5 5 15	2 0	2 2	5 5 15	5 5
5 5 5		15	13	5 2	6 15	u)	5 5	5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		15	5 5	2 21	2 2	2	5 5	5 5
5 5 5		15	2 21	5 2 15	2 2	2	5 5	5
15		15	15	15	15		15	15
15 15		15	15	15	15		15	15
5 15 15		15	15	15	15		15	15
						15		
30 39 29	29 31	31	31	32	30	30	30	31
1910								
30.0								
59 58 58	63 60	69	29	09	63	25	63	57
256 256 250 28	250 240	234	265	259	253	247	241	235
1440 1440 1434 1434	1424	1418	1412	1406	1400	1394	1388	1382
Model #: A		Manu	Manufacturer:		•	Hydromete	Hydrometer start time:	7.00
Calibrations: L temp, C L read H Temp, C	H read	•	Cal. Date:		Hydrom	Hydrometer data entered:	ëq:	2

FSL024:07.29.05:0 TestAmerica Burlington

SET: ITBIESTS Test 1 2 3 4 Laboratory No acords Sample Prep D2217 Pan, 9 Pan'dry sample, 9 Pan'dry s	SDG: Mass, g
	and wet prep Mass. g Mass. g

Sample Handling

ORIGIN ID: APVA (949)261-1022 TESTAMERICA-TRVINE/SAMPLE CONTROL TESTAMERICA ANALYTICAL 17461 DERIAN AVE SUITE 100 IRVINE, CA 92614 UNITED STATES US

SHIP DATE: 16FEB10 ACTWGT: 6.6 LB CAD: 616730/CAFE2434

BILL THIRD PARTY

TO SAMPLE RECEIVING TESTAMERICA - BURLINGTON 30 COMMUNITY DRIVE, SUITE 11

SOUTH BURLINGTON VT 05403 (802)655-1203 REF: TA-BURLINGTON

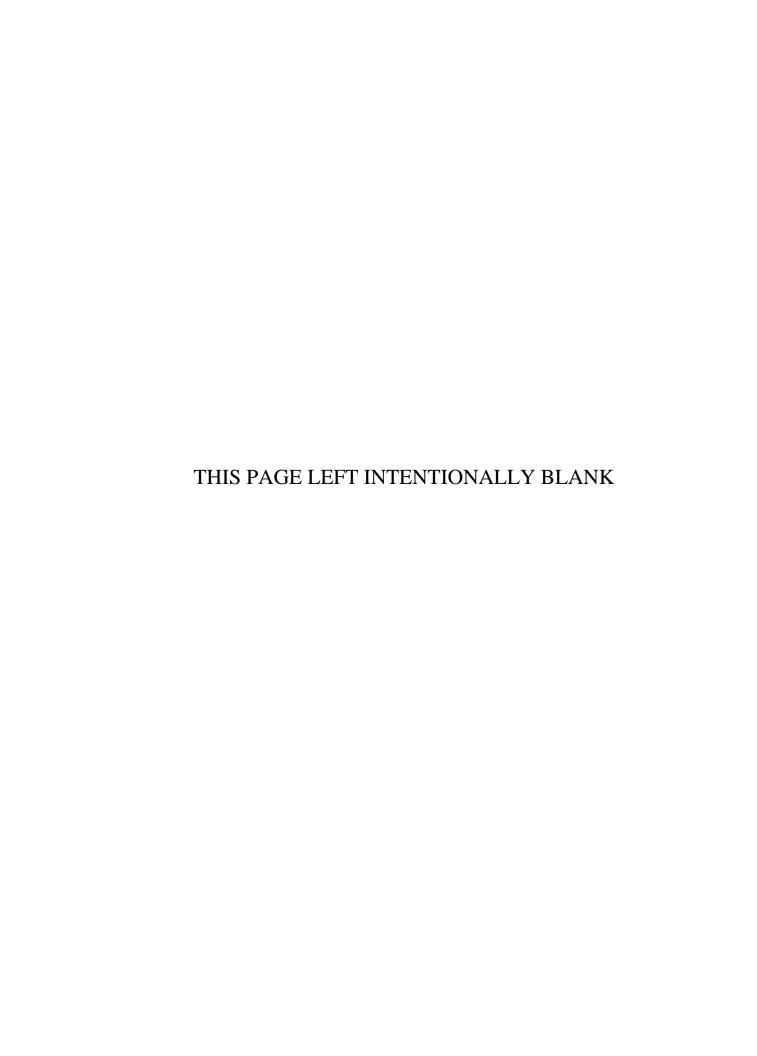
(802)665 - 1203 DEPT: ALWAYS BILL RECIPIENT

FedEx

TRK# 4289 2133 3533

WED - 17FEB PRIORITY OVERNIGHT

XH BTVA


05403 VT - US BTV

- 1	SAI	MPLE RECEIPT & LO	G IN C	on HECK	(LIST		
Client: $\Gamma A \cap A$	T	Date Received: (02		Ø	Log In D	Date: 02/19/10	-
ETR: 136 034		Time Received:	332		By: \/	B F TATY	
SDG: TTB15		Received By:	CK		Signatur	e: Mhan	April 10
Project: 294 QO	Q	# Coolers Received:	1 _		PM Sign	nature:	
Samples Delivered By: X	Shipping Service D Co	ourier - Hand - Other (specify)		Date:	1 2.22.10	
List Air bill Number(s) or A	ttach a photocopy of t	he Air Bill:				\\	
COOLER SCREEN	735, 3 or 15 ^{col} 158788 <u>11</u> 1475.4.		YES	NO	NA	COMMENT	St. St.
There is no evidence to it			X		1111	- egacine agen : O O man Zitt	
Custody seals are presen			 X	_	-		
Custody seal numbers are		*	1/	∇			
If yes, list custody seal nu							
Thermal Preservation Typ				_			
IR Gun ID:	/ Correction Facto				- ·		
Cooler 1: 3, L	°C Cooler 6	C Cooler 11			Cooler 1		
Cooler 2:	°C Cooler 7	°C Cooler 12			Cooler 1		
Cooler 3:	°C Cooler 8	°C Cooler 13		_	Cooler 1		
Cooler 4:	°C Cooler 9	°C Cooler 14			Cooler 1		
Cooler 5	°C Cooler 10	°C Cooler 15			Cooler 2		
Unless otherwise docume	nted, the recorded tem	perature readings are adjusted	readings	to acco	ount for th	e CF of the IR Gun	
EPA Criteria: 0-6°C, exce	pt for air and geo samp	oles which should be at ambier	t tempera	ture and	tissue sa	when elternete esterie is a	ceri.
SAMPLE CONDITION		a of 2-4°C or other such criteria	YES	NO NO	NA I	COMMENT	
Sample containers were r		ALCOHOLOGY (1994) AND	153	NO	TO THE	A COMMETTER	o programme .
			$+\Delta$		 		
			$1 \sim$	l .			
Legible sample labels are		ner	ÝES	NO	NA NA	COMMENT	s
CHAIN OF CUSTODY (C	OC)		YES	NO	NA NA	COMMENT	S
CHAIN OF CUSTODY (C	OC) des the following inform		YES	NO	NA	COMMENT	S
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des	OC) des the following inform scription		YES	NO	NA NA	COMMENT	S
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection	OC) des the following inform scription on		YES	NO	NA NA	COMMENT	S
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection	OC) des the following inform scription on		YES	NO	NA NA	COMMENT	S
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam	OC) des the following inform scription on		YES	NO	NA NA	COMMENT	S
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type	OC) des the following inform scription on pler		YES	NO	NA NA	COMMENT	8
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method	OC) des the following inform scription on pler		YES	NO	NA NA	COMMENT	S
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type	OC) des the following inform scription on pler d(s)		YES	NO NO	NA NA	COMMENT	S
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody	OC) des the following inform scription on pler d(s) (ICOC) Required	nation for each container:	YES	NO	NA X	COMMENT	S
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec	OC) des the following inform scription on pler d(s) (ICOC) Required cord initiated for every \(\)	nation for each container:	YES	NO NO	NA NA	COMMENT	
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / Use	OC) des the following inform scription on pler d(s) (ICOC) Required cord initiated for every very very very very very very ve	nation for each container:	× ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and inclue Sample ID / Sample Des Date of Sample Collectio Time of Sample Collectio Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / Us The sample container mat	des the following informscription on pler d(s) (ICOC) Required cord initiated for every to sability ches the COC	Norksheet	× ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / Us The sample container mat Appropriate sample container	des the following information on o	Norksheet	× ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U The sample container mat Appropriate sample container Samples were received w	des the following information on o	Norksheet the tests requested	× ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collectice Time of Sample Collectice Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U The sample container mat Appropriate sample conta Samples were received w Sufficient amount of samp VOA vials do not have hea	des the following information on o	Norksheet the tests requested ested analyses Smm (1/4" diameter)	× ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collectic Time of Sample Collectic Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures Internal Chain of Custody If yes to above, ICOC Rec SAMPLE INTEGRITY / U The sample container mat Appropriate sample contai Samples were received w Sufficient amount of samp VOA vials do not have hea Appropriate preservatives	des the following information on o	Worksheet the tests requested ested analyses form (1/4" diameter) erequested	× ×	×	× ×		
CHAIN OF CUSTODY (C COC is present and include Sample ID / Sample Des Date of Sample Collection Time of Sample Collection Identification of the Sam Preservation Type Requested Tests Method Necessary Signatures	des the following information on pler d(s) (ICOC) Required cord initiated for every to the sthe COC inters were received for ithin holding time le is provided for requestable or a bubble >6 were used for the tests thecked and is within m	Worksheet the tests requested ested analyses form (1/4" diameter) for requested ethod specification	× ×	×	× ×		

FSR002:12.19.07:3 TestAmerica Burlington

SDG: ITB1519

