# **APPENDIX G**

# **Section 41**

Outfall 009 – February 20, 2010 MEC<sup>X</sup> Data Validation Report





# DATA VALIDATION REPORT

**Boeing SSFL NPDES** 

SAMPLE DELIVERY GROUP: ITB2186

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITB2186 Project Manager: B. Kelly

Matrix: Water
QC Level: IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

**Table 1. Sample Identification** 

| Client ID                 | Laboratory ID | Sub-Laboratory<br>ID                | Matrix | Collected | Method                                                                                                          |
|---------------------------|---------------|-------------------------------------|--------|-----------|-----------------------------------------------------------------------------------------------------------------|
| OUTFALL 009<br>(COMPOSITE | 11101106111   | G0B230475-<br>001,<br>F0B230454-001 | Water  | 2/20/2010 | ASTM 5174-91, 245.1, 245.1 (DISS),<br>1613B, 900.0 MOD, 901.1 MOD,<br>903.0 MOD, 904 MOD, 905 MOD,<br>906.0 MOD |

### **II. Sample Management**

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-West Sacramento marginally below the temperature limit; however, the samples were no noted to be frozen or damaged. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at TestAmerica-St. Louis and TestAmerica-West Sacrament. As the samples were courier to TestAmerica-Irvine, no custody seals were required. If necessary, the client ID was added to the sample result summary by the reviewer.

## **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

## **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of<br>standards used for the calibration<br>was incorrect              |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| Е         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| 1         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

### **Qualification Code Reference Table Cont.**

| D      | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р      | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ    | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *  , * | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

#### **III. Method Analyses**

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 1, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{x}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - O GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - o Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for all target compounds except 2,3,7,8-TCDD and total TCDD, and 2,3,7,8-TCDF and total TCDF. Several detects in the method blank did not meet ratio criteria and were reported as EMPCs; however, due to the extent of contamination present in the method blank, it was the reviewer's professional opinion that those results be utilized to qualify applicable

sample results. Isomers present in the sample between the EDLs and RLs were qualified as nondetected, "U," at the levels of contamination. The sample result for total HpCDD was also qualified as nondetected, "U," at the level of contamination, as all peaks comprising the total were present in the method blank at similar concentrations. Results for total HxCDD, HxCDF, and HpCDF were qualified as estimated, "J," as only a portion of the total was considered method blank contamination. In the reviewer's professional opinion, the method blank result for OCDD was insufficient to qualify the sample result.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was
  verified by recalculating a representative number of reportable sample results. The
  EMPCs qualified as nondetected for method blank contamination were not further
  qualified as EMPCs. Any total results reported as EMPCs or including EMPCs were
  qualified as estimated, "J." Any detects reported below the EDL, or between the
  estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated,
  "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are
  valid to the EDL.

#### B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks

Date Reviewed: March 30, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

Holding Times: The analytical holding time, 28 days, was met.

- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 85-115% for mercury. CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 7, 2010

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (10/04).

- Holding Times: The aliquot for total uranium was prepared more than 3x beyond the 5-day holding time for unpreserved samples; therefore, nondetected uranium in the sample (see Blanks section) was rejected, "R." Aliquots for gross alpha and gross beta were prepared beyond the five-day analytical holding time for unpreserved samples; therefore, results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. The tritium sample was analyzed within 180 days of collection. Aliquots for the remaining analytes were prepared within the five-day holding time for unpreserved aqueous samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, the results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The barium chemical yields exceeded the upper control limit for both radium-226 and radium-228, at 178% each. Although in order to reduce the potential low bias, the laboratory only used a 100% yield to calculate the sample results, it was the reviewer's professional opinion that the results be qualified as estimated, "J," for detects and, "UJ," for nondetects. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Total uranium was detected in the method blank at 0.315 pCi/L; therefore, total
  uranium detected in the sample was qualified as nondetected, at the reporting limit. This
  result was subsequently rejected due to an exceeded holding time. There were no other
  analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs (radium-226, radium-228, strontium-90) were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.

 Matrix Spike/Matrix Spike Duplicate: A matrix spike analysis was performed on the sample in this SDG for tritium. The recovery was within the laboratory-established control limits. Method accuracy for the remaining methods was evaluated based on the LCS results.

Sample Result Verification: An EPA Level IV review was performed for the sample in this
data package. The sample results and MDAs reported on the sample result form were
verified against the raw data and no calculation or transcription errors were noted. Any
detects between the MDA and the reporting limit were qualified as estimated, "J," and
coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
valid to the MDA.

The reviewer noted that the total uranium preparation log was not signed as reviewed.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms ITB2186

| Analysis Metho   | d ASTM     | 5174-           | 91          |          |                 |                  |                         |                     |
|------------------|------------|-----------------|-------------|----------|-----------------|------------------|-------------------------|---------------------|
| Sample Name      | OUTFALL 00 | 9 (COMI         | O Matr      | іх Туре: | WATER           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date:   | 2/20/201 | 0 7:36:00 AM    | I                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Uranium    | 7440-61-1  | 0.472           | 0.693       | 0.21     | pCi/L           | Jb               | R                       | B, H                |
| Analysis Metho   | d EPA 2    | 245.1           |             |          |                 |                  |                         |                     |
| Sample Name      | OUTFALL 00 | 9 (COMI         | O Matr      | іх Туре: | Water           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date:   | 2/20/201 | 0 7:36:00 AM    | [                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6  | ND              | 0.20        | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | d EPA 2    | 245.1-L         | <i>Diss</i> |          |                 |                  |                         |                     |
| Sample Name      | OUTFALL 00 | 9 (COMI         | O Matr      | іх Туре: | Water           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date:   | 2/20/201 | 0 7:36:00 AM    | I                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6  | ND              | 0.20        | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | d EPA 9    | 900.0 N         | 10D         |          |                 |                  |                         |                     |
| Sample Name      | OUTFALL 00 | 9 (COMI         | O Matr      | іх Туре: | WATER           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date:   | 2/20/201 | 0 7:36:00 AM    | I                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Gross Alpha      | 12587-46-1 | 0.74            | 3           | 1.3      | pCi/L           | U                | UJ                      | C, H                |
| Gross Beta       | 12587-47-2 | 1.67            | 4           | 1        | pCi/L           | Jb               | J                       | H, DNQ              |
| Analysis Metho   | d EPA 9    | 901.1 N         | 10D         |          |                 |                  |                         |                     |
| Sample Name      | OUTFALL 00 | 9 (COMI         | O Matr      | іх Туре: | WATER           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date:   | 2/20/201 | 0 7:36:00 AM    | I                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Cesium 137       | 10045-97-3 | -10             | 20          | 20       | pCi/L           | U                | U                       |                     |
| Potassium 40     | 13966-00-2 | -100            | 0           | 200      | pCi/L           | U                | U                       |                     |

# Analysis Method EPA 903.0 MOD

| Sample Name      | OUTFALL 00 | 09 (COMI        | PO Matr   | ix Type: | WATER           | V                | alidation Le            | vel: IV             |
|------------------|------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date: | 2/20/201 | 0 7:36:00 AM    | I                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium (226)     | 13982-63-3 | 0.116           | 1         | 0.065    | pCi/L           | Jb               | J                       | C, *III, DNQ        |
| Analysis Metho   | od EPA 9   | 904 MC          | )D        |          |                 |                  |                         |                     |
| Sample Name      | OUTFALL 00 | )9 (COMI        | PO Matr   | ix Type: | WATER           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date: | 2/20/201 | 0 7:36:00 AM    | I                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium 228       | 15262-20-1 | 0.3             | 1         | 0.59     | pCi/L           | U                | UJ                      | *III                |
| Analysis Metho   | od EPA 9   | 905 MC          | DD        |          |                 |                  |                         |                     |
| Sample Name      | OUTFALL 00 | 9 (COMI         | PO Matr   | ix Type: | WATER           | V                | alidation Le            | evel: IV            |
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date: | 2/20/201 | 0 7:36:00 AM    | I                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Strontium 90     | 10098-97-2 | 0.4             | 3         | 0.53     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9   | 906.0 N         | 10D       |          |                 |                  |                         |                     |
| Sample Name      | OUTFALL 00 | )9 (COMI        | O Matr    | ix Type: | WATER           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITB2186-02 | Sam             | ple Date: | 2/20/201 | 0 7:36:00 AM    | I                |                         |                     |
| Analyte          | CAS No     | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Tritium          | 10028-17-8 | 82              | 500       | 140      | pCi/L           | U                | U                       |                     |

# Analysis Method EPA-5 1613B

| Sample Name         | OUTFALL 00 | 9 (COMP         | O Matri   | x Type: \ | WATER           | Validation Level: IV |                         |                     |  |  |
|---------------------|------------|-----------------|-----------|-----------|-----------------|----------------------|-------------------------|---------------------|--|--|
| Lab Sample Name:    | ITB2186-02 | Sam             | ple Date: | 2/20/2010 | 7:36:00 AM      | I                    |                         |                     |  |  |
| Analyte             | CAS No     | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |  |
| 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | ND              | 0.000049  | 0.0000017 | ug/L            | J, B                 | U                       | В                   |  |  |
| 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | ND              | 3.5e-006  | 0.0000013 | ug/L            | J, Q, B              | U                       | В                   |  |  |
| 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | ND              | 0.000049  | 0.0000022 | ug/L            |                      | U                       |                     |  |  |
| 1,2,3,4,7,8-HxCDD   | 39227-28-6 | ND              | 0.000049  | 0.0000011 | ug/L            |                      | U                       |                     |  |  |
| 1,2,3,4,7,8-HxCDF   | 70648-26-9 | ND              | 0.000049  | 0.0000007 | ug/L            |                      | U                       |                     |  |  |
| 1,2,3,6,7,8-HxCDD   | 57653-85-7 | ND              | 9.2e-007  | 0.0000009 | ug/L            | J, Q, B              | U                       | В                   |  |  |
| 1,2,3,6,7,8-HxCDF   | 57117-44-9 | ND              | 0.000049  | 0.0000006 | ug/L            |                      | U                       |                     |  |  |
| 1,2,3,7,8,9-HxCDD   | 19408-74-3 | ND              | 0.000049  | 0.0000008 | ug/L            |                      | U                       |                     |  |  |
| 1,2,3,7,8,9-HxCDF   | 72918-21-9 | ND              | 0.000049  | 0.0000009 | ug/L            |                      | U                       |                     |  |  |
| 1,2,3,7,8-PeCDD     | 40321-76-4 | ND              | 0.000049  | 0.0000005 | ug/L            |                      | U                       |                     |  |  |
| 1,2,3,7,8-PeCDF     | 57117-41-6 | ND              | 0.000049  | 0.0000003 | ug/L            |                      | U                       |                     |  |  |
| 2,3,4,6,7,8-HxCDF   | 60851-34-5 | ND              | 0.000049  | 0.0000006 | ug/L            |                      | U                       |                     |  |  |
| 2,3,4,7,8-PeCDF     | 57117-31-4 | ND              | 0.000049  | 0.0000004 | ug/L            |                      | U                       |                     |  |  |
| 2,3,7,8-TCDD        | 1746-01-6  | ND              | 0.0000098 | 0.0000000 | ug/L            |                      | U                       |                     |  |  |
| 2,3,7,8-TCDF        | 51207-31-9 | ND              | 0.0000098 | 0.0000000 | ug/L            |                      | U                       |                     |  |  |
| OCDD                | 3268-87-9  | 0.00014         | 0.000098  | 0.0000012 | ug/L            | В                    |                         |                     |  |  |
| OCDF                | 39001-02-0 | ND              | 6.7e-006  | 0.0000007 | ug/L            | J, Q, B              | U                       | В                   |  |  |
| Total HpCDD         | 37871-00-4 | ND              | 0.000049  | 0.0000017 | ug/L            | J, B                 | U                       | В                   |  |  |
| Total HpCDF         | 38998-75-3 | 7.7e-006        | 7.7e-006  | 0.0000013 | ug/L            | J, Q, B              | J                       | B, DNQ, *III        |  |  |
| Total HxCDD         | 34465-46-8 | 2.3e-006        | 2.3e-006  | 0.0000008 | ug/L            | J, Q, B              | J                       | B, DNQ, *III        |  |  |
| Total HxCDF         | 55684-94-1 | 1.5e-006        | 1.5e-006  | 0.0000006 | ug/L            | J, Q, B              | J                       | B, DNQ, *III        |  |  |
| Total PeCDD         | 36088-22-9 | ND              | 0.000049  | 0.0000005 | ug/L            |                      | U                       |                     |  |  |
| Total PeCDF         | 30402-15-4 | ND              | 0.000049  | 0.0000000 | ug/L            |                      | U                       |                     |  |  |
| Total TCDD          | 41903-57-5 | ND              | 0.0000098 | 0.0000000 | ug/L            |                      | U                       |                     |  |  |
| Total TCDF          | 55722-27-5 | ND              | 0.0000098 | 0.0000000 | ug/L            |                      | U                       |                     |  |  |



# **APPENDIX G**

# **Section 42**

Outfall 009 – February 20, 2010 Test America Analytical Laboratory Report







#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/20/10

Received: 02/20/10 Issued: 03/19/10 16:37

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: Complete final report.

LABORATORY IDCLIENT IDMATRIXITB2186-01OUTFALL 009 (GRAB)WaterITB2186-02OUTFALL 009 (COMPOSITE)Water

Reviewed By:

**TestAmerica Irvine** 

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/20/10

Arcadia, CA 91007 Report Number: ITB2186 Received: 02/20/10

Attention: Bronwyn Kelly

#### HEXANE EXTRACTABLE MATERIAL

|                                       |                |         | MDL   | Reporting | Sample | Dilution | Date      | Date     | Data       |
|---------------------------------------|----------------|---------|-------|-----------|--------|----------|-----------|----------|------------|
| Analyte                               | Method         | Batch   | Limit | Limit     | Result | Factor   | Extracted | Analyzed | Qualifiers |
| Sample ID: ITB2186-01 (OUTFALL 009 (C | GRAB) - Water) |         |       |           |        |          |           |          |            |
| Reporting Units: mg/l                 |                |         |       |           |        |          |           |          |            |
| Hexane Extractable Material (Oil &    | EPA 1664A      | 10C0035 | 1.3   | 4.8       | ND     | 1        | 03/01/10  | 03/01/10 |            |
| Grease)                               |                |         |       |           |        |          |           |          |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ITB2186

Sampled: 02/20/10
Received: 02/20/10

Attention: Bronwyn Kelly

#### **METALS**

| Analyte                            | Method        | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|---------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2186-02 (OUTFALL 009 | (COMPOSITE) - | Water)  |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: ug/l              |               |         |              |                    |                  |                    |                   |                  |                    |
| Mercury                            | EPA 245.1     | 10B3105 | 0.10         | 0.20               | ND               | 1                  | 02/25/10          | 02/25/10         |                    |
| Antimony                           | EPA 200.8     | 10B2838 | 0.30         | 2.0                | 0.74             | 1                  | 02/23/10          | 02/26/10         | J                  |
| Cadmium                            | EPA 200.8     | 10B2838 | 0.10         | 1.0                | ND               | 1                  | 02/23/10          | 02/26/10         |                    |
| Copper                             | EPA 200.8     | 10B2838 | 0.50         | 2.0                | 2.9              | 1                  | 02/23/10          | 02/26/10         |                    |
| Lead                               | EPA 200.8     | 10B2838 | 0.20         | 1.0                | ND               | 1                  | 02/23/10          | 02/26/10         |                    |
| Thallium                           | EPA 200.8     | 10B2838 | 0.20         | 1.0                | ND               | 1                  | 02/23/10          | 02/26/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ITB2186

Sampled: 02/20/10
Received: 02/20/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

#### **DISSOLVED METALS**

| Analyte                                                 | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |  |
|---------------------------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|--|
| Sample ID: ITB2186-02 (OUTFALL 009 (COMPOSITE) - Water) |                |         |              |                    |                  |                    |                   |                  |                    |  |
| Reporting Units: ug/l                                   |                |         |              |                    |                  |                    |                   |                  |                    |  |
| Mercury                                                 | EPA 245.1-Diss | 10B2963 | 0.10         | 0.20               | ND               | 1                  | 02/24/10          | 02/24/10         |                    |  |
| Antimony                                                | EPA 200.8-Diss | 10B2705 | 0.30         | 2.0                | 0.59             | 1                  | 02/22/10          | 02/23/10         | J                  |  |
| Cadmium                                                 | EPA 200.8-Diss | 10B2705 | 0.10         | 1.0                | ND               | 1                  | 02/22/10          | 02/23/10         |                    |  |
| Copper                                                  | EPA 200.8-Diss | 10B2705 | 0.50         | 2.0                | 1.9              | 1                  | 02/22/10          | 02/23/10         | J                  |  |
| Lead                                                    | EPA 200.8-Diss | 10B2705 | 0.20         | 1.0                | ND               | 1                  | 02/22/10          | 02/23/10         | C                  |  |
| Thallium                                                | EPA 200.8-Diss | 10B2705 | 0.20         | 1.0                | ND               | 1                  | 02/22/10          | 02/23/10         | C                  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/20/10

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2186 Received: 02/20/10

Attention: Bronwyn Kelly

#### **INORGANICS**

Project ID: Routine Outfall 009

| Analyte                                                 | Method       | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |  |  |
|---------------------------------------------------------|--------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|--|--|
| Sample ID: ITB2186-02 (OUTFALL 009 (COMPOSITE) - Water) |              |         |              |                    |                  |                    |                   |                  |                    |  |  |
| Reporting Units: mg/l                                   |              |         |              |                    |                  |                    |                   |                  |                    |  |  |
| Chloride                                                | EPA 300.0    | 10B2502 | 0.25         | 0.50               | 12               | 1                  | 02/20/10          | 02/20/10         |                    |  |  |
| Nitrate/Nitrite-N                                       | EPA 300.0    | 10B2502 | 0.15         | 0.26               | 0.29             | 1                  | 02/20/10          | 02/20/10         |                    |  |  |
| Sulfate                                                 | EPA 300.0    | 10B2502 | 0.20         | 0.50               | 20               | 1                  | 02/20/10          | 02/20/10         |                    |  |  |
| Total Dissolved Solids                                  | SM2540C      | 10B2723 | 1.0          | 10                 | 160              | 1                  | 02/23/10          | 02/23/10         |                    |  |  |
| Sample ID: ITB2186-02 (OUTFALL 009 (                    | COMPOSITE) - | Water)  |              |                    |                  |                    |                   |                  |                    |  |  |
| Reporting Units: ug/l                                   |              |         |              |                    |                  |                    |                   |                  |                    |  |  |
| Perchlorate                                             | EPA 314.0    | 10B2593 | 0.90         | 4.0                | ND               | 1                  | 02/22/10          | 02/22/10         |                    |  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2186

Sampled: 02/20/10 Received: 02/20/10

Attention: Bronwyn Kelly

#### **ASTM 5174-91**

| Analyte                                                 | Method       | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |  |  |
|---------------------------------------------------------|--------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|--|--|
| Sample ID: ITB2186-02 (OUTFALL 009 (COMPOSITE) - Water) |              |       |              |                    |                  |                    |                   |                  |                    |  |  |
| Reporting Units: pCi/L Total Uranium                    | ASTM 5174-91 | 67296 | 0.21         | 0.693              | 0.472            | 1                  | 03/10/10          | 03/12/10         | Jb                 |  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 02/20/10
Report Number: ITB2186

Received: 02/20/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

#### **EPA 900.0 MOD**

| Analyte                                                    | Method                         | Batch          | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted    | Date<br>Analyzed     | Data<br>Qualifiers |
|------------------------------------------------------------|--------------------------------|----------------|--------------|--------------------|------------------|--------------------|----------------------|----------------------|--------------------|
| Sample ID: ITB2186-02 (OUTFALL 0<br>Reporting Units: pCi/L | 09 (COMPOSITE) - V             | Water)         |              |                    |                  |                    |                      |                      |                    |
| Gross Alpha<br>Gross Beta                                  | EPA 900.0 MOD<br>EPA 900.0 MOD | 62110<br>62110 | 1.3<br>1     | 3<br>4             | 0.74<br>1.67     | 1<br>1             | 03/03/10<br>03/03/10 | 03/07/10<br>03/07/10 | U<br>Jb            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/20/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2186 Received: 02/20/10

Attention: Bronwyn Kelly

#### **EPA 901.1 MOD**

| Analyte                        | Method              | Batch  | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------|---------------------|--------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2186-02 (OUTFALL | 009 (COMPOSITE) - V | Vater) |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: pCi/L         |                     |        |              |                    |                  |                    |                   |                  |                    |
| Cesium 137                     | EPA 901.1 MOD       | 55101  | 20           | 20                 | -10              | 1                  | 02/24/10          | 03/12/10         | U                  |
| Potassium 40                   | EPA 901.1 MOD       | 55101  | 200          | NA                 | -100             | 1                  | 02/24/10          | 03/12/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/20/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2186 Received: 02/20/10

Attention: Bronwyn Kelly

#### **EPA 903.0 MOD**

| Analyte                                                 | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |  |
|---------------------------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|--|
| Sample ID: ITB2186-02 (OUTFALL 009 (COMPOSITE) - Water) |               |       |              |                    |                  |                    |                   |                  |                    |  |
| Reporting Units: pCi/L<br>Radium (226)                  | EPA 903.0 MOD | 55153 | 0.065        | 1                  | 0.116            | 1                  | 02/24/10          | 03/19/10         | Jb                 |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 02/20/10 Report Number: ITB2186 Received: 02/20/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

#### **EPA 904 MOD**

| Analyte                            | Method          | Batch  | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-----------------|--------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2186-02 (OUTFALL 009 | (COMPOSITE) - V | Water) |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: pCi/L             |                 |        |              |                    |                  |                    |                   |                  |                    |
| Radium 228                         | EPA 904 MOD     | 55154  | 0.59         | 1                  | 0.3              | 1                  | 02/24/10          | 03/12/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/20/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: ITB2186 Received: 02/20/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

#### **EPA 905 MOD**

| Analyte                            | Method        | Batch  | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|---------------|--------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2186-02 (OUTFALL 009 | (COMPOSITE) - | Water) |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: pCi/L             |               |        |              |                    |                  |                    |                   |                  |                    |
| Strontium 90                       | EPA 905 MOD   | 55155  | 0.53         | 3                  | 0.4              | 1                  | 02/24/10          | 03/05/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 02/20/10
Report Number: ITB2186

Received: 02/20/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

#### **EPA 906.0 MOD**

| Analyte                            | Method            | Batch  | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-------------------|--------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2186-02 (OUTFALL 00) | 9 (COMPOSITE) - V | Vater) |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: pCi/L<br>Tritium  | EPA 906.0 MOD     | 61038  | 140          | 500                | 82               | 1                  | 03/02/10          | 03/03/10         | U                  |



MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ITB2186

Sampled: 02/20/10
Received: 02/20/10

Attention: Bronwyn Kelly

#### EPA-5 1613B

| Analyta                               | Method             | Batch  | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result |        | Date<br>Extracted | Date     | Data<br>Qualifiers |
|---------------------------------------|--------------------|--------|--------------|--------------------|------------------|--------|-------------------|----------|--------------------|
| Analyte                               | Method             | Daten  | Lillit       | Lillit             | Result           | ractor | Extracteu         | Analyzed | Quanners           |
| Sample ID: ITB2186-02 (OUTFALL 00     | 09 (COMPOSITE) - ' | Water) |              |                    |                  |        |                   |          |                    |
| Reporting Units: ug/L                 | DD 1 5 1 (10D      |        |              |                    |                  |        | 00/06/40          | 00/04/40 |                    |
| 1,2,3,4,6,7,8-HpCDD                   | EPA-5 1613B        | 57116  |              |                    | 1.1e-005         | 0.98   | 02/26/10          | 03/01/10 | J, B               |
| 1,2,3,4,6,7,8-HpCDF                   | EPA-5 1613B        | 57116  | 0.0000013    |                    | 3.5e-006         | 0.98   | 02/26/10          | 03/01/10 | J, Q, B            |
| 1,2,3,4,7,8,9-HpCDF                   | EPA-5 1613B        | 57116  | 0.0000022    |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 1,2,3,4,7,8-HxCDD                     | EPA-5 1613B        | 57116  | 0.0000011    |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 1,2,3,4,7,8-HxCDF                     | EPA-5 1613B        | 57116  |              |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 1,2,3,6,7,8-HxCDD                     | EPA-5 1613B        | 57116  | 0.0000009    |                    | 9.2e-007         | 0.98   | 02/26/10          | 03/01/10 | J, Q, B            |
| 1,2,3,6,7,8-HxCDF                     | EPA-5 1613B        |        | 0.00000068   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 1,2,3,7,8,9-HxCDD                     | EPA-5 1613B        |        | 0.00000088   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 1,2,3,7,8,9-HxCDF                     | EPA-5 1613B        | 57116  | 0.0000009    |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 1,2,3,7,8-PeCDD                       | EPA-5 1613B        |        | 0.00000056   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 1,2,3,7,8-PeCDF                       | EPA-5 1613B        |        | 0.00000036   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 2,3,4,6,7,8-HxCDF                     | EPA-5 1613B        |        | 0.00000066   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 2,3,4,7,8-PeCDF                       | EPA-5 1613B        |        | 0.00000044   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 2,3,7,8-TCDD                          | EPA-5 1613B        |        | 0.00000003   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| 2,3,7,8-TCDF                          | EPA-5 1613B        |        | 0.0000000    |                    | ND               | 0.98   | 02/26/10          | 03/01/10 | _                  |
| OCDD                                  | EPA-5 1613B        | 57116  | 0.0000012    |                    | 0.00014          | 0.98   | 02/26/10          | 03/01/10 | В                  |
| OCDF                                  | EPA-5 1613B        |        | 0.0000007    |                    | 6.7e-006         | 0.98   | 02/26/10          | 03/01/10 | J, Q, B            |
| Total HpCDD                           | EPA-5 1613B        | 57116  | 0.0000017    |                    | 3.1e-005         | 0.98   | 02/26/10          | 03/01/10 | J, B               |
| Total HpCDF                           | EPA-5 1613B        | 57116  | 0.0000013    |                    | 7.7e-006         | 0.98   | 02/26/10          | 03/01/10 | J, Q, B            |
| Total HxCDD                           | EPA-5 1613B        |        | 0.00000088   |                    | 2.3e-006         | 0.98   | 02/26/10          | 03/01/10 | J, Q, B            |
| Total HxCDF                           | EPA-5 1613B        |        | 0.00000066   |                    | 1.5e-006         | 0.98   | 02/26/10          | 03/01/10 | J, Q, B            |
| Total PeCDD                           | EPA-5 1613B        |        | 0.00000056   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| Total PeCDF                           | EPA-5 1613B        |        | 0.00000004   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| Total TCDD                            | EPA-5 1613B        |        | 0.00000003   |                    | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| Total TCDF                            | EPA-5 1613B        | 5/116  | 0.0000000    | 20.0000098         | ND               | 0.98   | 02/26/10          | 03/01/10 |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2 |                    |        |              |                    | 69 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (2 |                    |        |              |                    | 68 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (2 |                    |        |              |                    | 62 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (32- |                    |        |              |                    | 61 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (26- |                    |        |              |                    | 61 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (28- |                    |        |              |                    | 67 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (26- |                    |        |              |                    | 67 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29- |                    |        |              |                    | 64 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-18 |                    |        |              |                    | 60 %             |        |                   |          |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-18 |                    |        |              |                    | 60 %             |        |                   |          |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28- |                    |        |              |                    | 66 %             |        |                   |          |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-17 |                    |        |              |                    | 57 %             |        |                   |          |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164%) |                    |        |              |                    | 60 %             |        |                   |          |                    |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%  | <i>))</i>          |        |              |                    | 61 %             |        |                   |          |                    |
| Surrogate: 13C-OCDD (17-157%)         | 70/)               |        |              |                    | 65 %             |        |                   |          |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-197 | ( 70 <b>)</b>      |        |              |                    | 90 %             |        |                   |          |                    |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/20/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2186 Received: 02/20/10

Attention: Bronwyn Kelly

#### SHORT HOLD TIME DETAIL REPORT

| Sample ID: OUTFALL 009 (COMPOSITE) | Hold Time<br>(in days)<br>(ITB2186-02) - | Date/Time<br>Sampled<br>Water | Date/Time<br>Received | Date/Time<br>Extracted | Date/Time<br>Analyzed |
|------------------------------------|------------------------------------------|-------------------------------|-----------------------|------------------------|-----------------------|
| EPA 300.0                          | 2                                        | 02/20/2010 07:36              | 02/20/2010 14:38      | 02/20/2010 15:00       | 02/20/2010 15:31      |
| Filtration                         | 1                                        | 02/20/2010 07:36              | 02/20/2010 14:38      | 02/20/2010 17:15       | 02/20/2010 17:15      |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                                    | Result  | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------|---------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 10C0035 Extracted: 03/01/10         | _       |                    |     |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/01/2010 (10C0035-Bl     | LK1)    |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | ND      | 5.0                | 1.4 | mg/l  |                |                  |      |                |     |              |                    |
| LCS Analyzed: 03/01/2010 (10C0035-BS)      | 1)      |                    |     |       |                |                  |      |                |     |              | MNR1               |
| Hexane Extractable Material (Oil & Grease) | 20.3    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 102  | 78-114         |     |              |                    |
| LCS Dup Analyzed: 03/01/2010 (10C0035      | 5-BSD1) |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 20.7    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 104  | 78-114         | 2   | 11           |                    |

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Sampled: 02/20/10 Report Number: ITB2186 Received: 02/20/10

### METHOD BLANK/QC DATA

#### **METALS**

| Analyte                                | Result     | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10B2838 Extracted: 02/23/10     | _          |                    |      |       |                |                  |         |                |     |              |                    |
| DI I A I I 03/35/2010 (10D2020 D       | T 174)     |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/25/2010 (10B2838-B  |            | 2.0                | 0.20 | /1    |                |                  |         |                |     |              |                    |
| Antimony                               | ND         | 2.0                | 0.30 | ug/l  |                |                  |         |                |     |              |                    |
| Cadmium                                | ND         | 1.0                | 0.10 | ug/l  |                |                  |         |                |     |              |                    |
| Copper                                 | ND         | 2.0                | 0.50 | ug/l  |                |                  |         |                |     |              |                    |
| Lead                                   | ND         | 1.0                | 0.20 | ug/l  |                |                  |         |                |     |              |                    |
| Thallium                               | ND         | 1.0                | 0.20 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/25/2010 (10B2838-BS   | 1)         |                    |      |       |                |                  |         |                |     |              |                    |
| Antimony                               | 83.6       | 2.0                | 0.30 | ug/l  | 80.0           |                  | 105     | 85-115         |     |              |                    |
| Cadmium                                | 82.5       | 1.0                | 0.10 | ug/l  | 80.0           |                  | 103     | 85-115         |     |              |                    |
| Copper                                 | 85.9       | 2.0                | 0.50 | ug/l  | 80.0           |                  | 107     | 85-115         |     |              |                    |
| Lead                                   | 82.4       | 1.0                | 0.20 | ug/l  | 80.0           |                  | 103     | 85-115         |     |              |                    |
| Thallium                               | 81.8       | 1.0                | 0.20 | ug/l  | 80.0           |                  | 102     | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 02/25/2010 (10B | 2838-MS1)  |                    |      |       | Sou            | rce: ITB         | 1988-01 |                |     |              |                    |
| Antimony                               | 85.9       | 2.0                | 0.30 | ug/l  | 80.0           | 0.392            | 107     | 70-130         |     |              |                    |
| Cadmium                                | 81.9       | 1.0                | 0.10 | ug/l  | 80.0           | ND               | 102     | 70-130         |     |              |                    |
| Copper                                 | 97.9       | 2.0                | 0.50 | ug/l  | 80.0           | 9.13             | 111     | 70-130         |     |              |                    |
| Lead                                   | 78.6       | 1.0                | 0.20 | ug/l  | 80.0           | 1.00             | 97      | 70-130         |     |              |                    |
| Thallium                               | 77.4       | 1.0                | 0.20 | ug/l  | 80.0           | ND               | 97      | 70-130         |     |              |                    |
| Matrix Spike Analyzed: 02/25/2010 (10B | 2838-MS2)  |                    |      |       | Sou            | rce: ITB2        | 2030-01 |                |     |              |                    |
| Antimony                               | 85.0       | 2.0                | 0.30 | ug/l  | 80.0           | 0.306            | 106     | 70-130         |     |              |                    |
| Cadmium                                | 81.1       | 1.0                | 0.10 | ug/l  | 80.0           | ND               | 101     | 70-130         |     |              |                    |
| Copper                                 | 81.0       | 2.0                | 0.50 | ug/l  | 80.0           | 2.67             | 98      | 70-130         |     |              |                    |
| Lead                                   | 81.0       | 1.0                | 0.20 | ug/l  | 80.0           | ND               | 101     | 70-130         |     |              |                    |
| Thallium                               | 81.8       | 1.0                | 0.20 | ug/l  | 80.0           | ND               | 102     | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/25/2010  | (10B2838-M | ISD1)              |      |       | Sou            | rce: ITB         | 1988-01 |                |     |              |                    |
| Antimony                               | 86.9       | 2.0                | 0.30 | ug/l  | 80.0           | 0.392            | 108     | 70-130         | 1   | 20           |                    |
| Cadmium                                | 82.2       | 1.0                | 0.10 | ug/l  | 80.0           | ND               | 103     | 70-130         | 0.4 | 20           |                    |
| Copper                                 | 93.6       | 2.0                | 0.50 | ug/l  | 80.0           | 9.13             | 106     | 70-130         | 4   | 20           |                    |
| Lead                                   | 81.3       | 1.0                | 0.20 | ug/l  | 80.0           | 1.00             | 100     | 70-130         | 3   | 20           |                    |
| Thallium                               | 80.1       | 1.0                | 0.20 | ug/l  | 80.0           | ND               | 100     | 70-130         | 3   | 20           |                    |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186 Received: 02/20/10

### METHOD BLANK/QC DATA

#### **METALS**

| Analyte                                | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|--------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10B3105 Extracted: 02/25/10     | -            |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/25/2010 (10B3105-Bl | LK1)         |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | ND           | 0.20               | 0.10 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/25/2010 (10B3105-BS)  | 1)           |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | 7.51         | 0.20               | 0.10 | ug/l  | 8.00           |                  | 94      | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 02/25/2010 (10B | 3105-MS1)    |                    |      |       | Sou            | rce: ITB2        | 2155-01 |                |     |              |                    |
| Mercury                                | 7.44         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 93      | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/25/2010  | (10B3105-MSI | <b>D1</b> )        |      |       | Sou            | rce: ITB2        | 2155-01 |                |     |              |                    |
| Mercury                                | 7.64         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 96      | 70-130         | 3   | 20           |                    |



MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

|                                        |            | Reporting |      |       | Spike | Source    |        | %REC   |      | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|-------|-----------|--------|--------|------|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Level | Result    | %REC   | Limits | RPD  | Limit | Qualifiers |
| Batch: 10B2705 Extracted: 02/22/10     | _          |           |      |       |       |           |        |        |      |       |            |
|                                        | =          |           |      |       |       |           |        |        |      |       |            |
| Blank Analyzed: 02/23/2010 (10B2705-B  | LK1)       |           |      |       |       |           |        |        |      |       |            |
| Antimony                               | ND         | 2.0       | 0.30 | ug/l  |       |           |        |        |      |       |            |
| Cadmium                                | ND         | 1.0       | 0.10 | ug/l  |       |           |        |        |      |       |            |
| Copper                                 | ND         | 2.0       | 0.50 | ug/l  |       |           |        |        |      |       |            |
| Lead                                   | ND         | 1.0       | 0.20 | ug/l  |       |           |        |        |      |       |            |
| Thallium                               | ND         | 1.0       | 0.20 | ug/l  |       |           |        |        |      |       |            |
| LCS Analyzed: 02/23/2010 (10B2705-BS   | 1)         |           |      |       |       |           |        |        |      |       |            |
| Antimony                               | 73.5       | 2.0       | 0.30 | ug/l  | 80.0  |           | 92     | 85-115 |      |       |            |
| Cadmium                                | 75.8       | 1.0       | 0.10 | ug/l  | 80.0  |           | 95     | 85-115 |      |       |            |
| Copper                                 | 82.3       | 2.0       | 0.50 | ug/l  | 80.0  |           | 103    | 85-115 |      |       |            |
| Lead                                   | 85.6       | 1.0       | 0.20 | ug/l  | 80.0  |           | 107    | 85-115 |      |       |            |
| Thallium                               | 88.6       | 1.0       | 0.20 | ug/l  | 80.0  |           | 111    | 85-115 |      |       |            |
| Matrix Spike Analyzed: 02/23/2010 (10B | 2705-MS1)  |           |      |       | Sou   | rce: ITB1 | 886-01 |        |      |       |            |
| Antimony                               | 76.6       | 2.0       | 0.30 | ug/l  | 80.0  | ND        | 96     | 70-130 |      |       |            |
| Cadmium                                | 74.3       | 1.0       | 0.10 | ug/l  | 80.0  | ND        | 93     | 70-130 |      |       |            |
| Copper                                 | 80.3       | 2.0       | 0.50 | ug/l  | 80.0  | 1.28      | 99     | 70-130 |      |       |            |
| Lead                                   | 79.4       | 1.0       | 0.20 | ug/l  | 80.0  | 0.445     | 99     | 70-130 |      |       |            |
| Thallium                               | 83.1       | 1.0       | 0.20 | ug/l  | 80.0  | ND        | 104    | 70-130 |      |       |            |
| Matrix Spike Analyzed: 02/23/2010 (10B | 2705-MS2)  |           |      |       | Sou   | rce: ITB1 | 774-03 |        |      |       |            |
| Antimony                               | 73.8       | 2.0       | 0.30 | ug/l  | 80.0  | ND        | 92     | 70-130 |      |       |            |
| Cadmium                                | 73.8       | 1.0       | 0.10 | ug/l  | 80.0  | ND        | 92     | 70-130 |      |       |            |
| Copper                                 | 84.9       | 2.0       | 0.50 | ug/l  | 80.0  | 4.26      | 101    | 70-130 |      |       |            |
| Lead                                   | 82.7       | 1.0       | 0.20 | ug/l  | 80.0  | 0.324     | 103    | 70-130 |      |       |            |
| Thallium                               | 85.7       | 1.0       | 0.20 | ug/l  | 80.0  | ND        | 107    | 70-130 |      |       |            |
| Matrix Spike Dup Analyzed: 02/23/2010  | (10B2705-M | SD1)      |      |       | Sou   | rce: ITB1 | 886-01 |        |      |       |            |
| Antimony                               | 76.0       | 2.0       | 0.30 | ug/l  | 80.0  | ND        | 95     | 70-130 | 0.7  | 20    |            |
| Cadmium                                | 75.0       | 1.0       | 0.10 | ug/l  | 80.0  | ND        | 94     | 70-130 | 0.9  | 20    |            |
| Copper                                 | 82.6       | 2.0       | 0.50 | ug/l  | 80.0  | 1.28      | 102    | 70-130 | 3    | 20    |            |
| Lead                                   | 80.4       | 1.0       | 0.20 | ug/l  | 80.0  | 0.445     | 100    | 70-130 | 1    | 20    |            |
| Thallium                               | 83.1       | 1.0       | 0.20 | ug/l  | 80.0  | ND        | 104    | 70-130 | 0.05 | 20    |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **DISSOLVED METALS**

| Analyte                                | Result                           | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|----------------------------------|--------------------|------|-------|----------------|------------------|---------|----------------|------|--------------|--------------------|
| Batch: 10B2963 Extracted: 02/24/10     | _                                |                    |      |       |                |                  |         |                |      |              |                    |
| Blank Analyzed: 02/24/2010 (10B2963-Bl | LK1)                             |                    |      |       |                |                  |         |                |      |              |                    |
| Mercury                                | ND                               | 0.20               | 0.10 | ug/l  |                |                  |         |                |      |              |                    |
| LCS Analyzed: 02/24/2010 (10B2963-BS)  | 1)                               |                    |      |       |                |                  |         |                |      |              |                    |
| Mercury                                | 8.36                             | 0.20               | 0.10 | ug/l  | 8.00           |                  | 104     | 85-115         |      |              |                    |
| Matrix Spike Analyzed: 02/24/2010 (10B | 2963-MS1)                        |                    |      |       | Sou            | rce: ITB2        | 2365-01 |                |      |              |                    |
| Mercury                                | 8.21                             | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 103     | 70-130         |      |              |                    |
| Matrix Spike Dup Analyzed: 02/24/2010  | lyzed: 02/24/2010 (10B2963-MSD1) |                    |      |       | Sou            | rce: ITB2        | 2365-01 |                |      |              |                    |
| Mercury                                | 8.21                             | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 103     | 70-130         | 0.02 | 20           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186 Received: 02/20/10

### METHOD BLANK/QC DATA

### **INORGANICS**

|                                        |             | Reporting |      |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|----------------------------------------|-------------|-----------|------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                | Result      | Limit     | MDL  | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B2502 Extracted: 02/20/10     | _           |           |      |       |       |           |         |        |     |       |            |
|                                        | _           |           |      |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/20/2010 (10B2502-B  | LK1)        |           |      |       |       |           |         |        |     |       |            |
| Chloride                               | ND          | 0.50      | 0.25 | mg/l  |       |           |         |        |     |       |            |
| Nitrate/Nitrite-N                      | ND          | 0.26      | 0.15 | mg/l  |       |           |         |        |     |       |            |
| Sulfate                                | ND          | 0.50      | 0.20 | mg/l  |       |           |         |        |     |       |            |
| LCS Analyzed: 02/20/2010 (10B2502-BS   | 1)          |           |      |       |       |           |         |        |     |       |            |
| Chloride                               | 4.74        | 0.50      | 0.25 | mg/l  | 5.00  |           | 95      | 90-110 |     |       |            |
| Sulfate                                | 9.75        | 0.50      | 0.20 | mg/l  | 10.0  |           | 98      | 90-110 |     |       |            |
| Matrix Spike Analyzed: 02/20/2010 (10B | 2502-MS1)   |           |      |       | Sou   | rce: ITB2 | 2033-01 |        |     |       |            |
| Chloride                               | 215         | 10        | 5.0  | mg/l  | 50.0  | 168       | 95      | 80-120 |     |       |            |
| Sulfate                                | 673         | 10        | 4.0  | mg/l  | 100   | 582       | 92      | 80-120 |     |       | MHA        |
| Matrix Spike Dup Analyzed: 02/20/2010  | (10B2502-MS | SD1)      |      |       | Sou   | rce: ITB2 | 2033-01 |        |     |       |            |
| Chloride                               | 217         | 10        | 5.0  | mg/l  | 50.0  | 168       | 98      | 80-120 | 0.7 | 20    |            |
| Sulfate                                | 676         | 10        | 4.0  | mg/l  | 100   | 582       | 94      | 80-120 | 0.4 | 20    | MHA        |
| Batch: 10B2593 Extracted: 02/22/10     |             |           |      |       |       |           |         |        |     |       |            |
|                                        |             |           |      |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/22/2010 (10B2593-B  | LK1)        |           |      |       |       |           |         |        |     |       |            |
| Perchlorate                            | ND          | 4.0       | 0.90 | ug/l  |       |           |         |        |     |       |            |
| LCS Analyzed: 02/22/2010 (10B2593-BS   | 1)          |           |      |       |       |           |         |        |     |       |            |
| Perchlorate                            | 23.6        | 4.0       | 0.90 | ug/l  | 25.0  |           | 94      | 85-115 |     |       |            |
| Matrix Spike Analyzed: 02/22/2010 (10B | 2593-MS1)   |           |      |       | Sou   | rce: ITB2 | 2054-01 |        |     |       |            |
| Perchlorate                            | 26.4        | 4.0       | 0.90 | ug/l  | 25.0  | 2.12      | 97      | 80-120 |     |       |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **INORGANICS**

|                                           |           | Reporting |      |       | Spike              | Source    |        | %REC   |     | RPD   | Data       |
|-------------------------------------------|-----------|-----------|------|-------|--------------------|-----------|--------|--------|-----|-------|------------|
| Analyte                                   | Result    | Limit     | MDL  | Units | Level              | Result    | %REC   | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 10B2593 Extracted: 02/22/10</b> | -         |           |      |       |                    |           |        |        |     |       |            |
| Matrix Spike Dup Analyzed: 02/22/2010     | ,         |           |      |       | Sou                | rce: ITB2 | 054-01 |        |     |       |            |
| Perchlorate                               | 26.6      | 4.0       | 0.90 | ug/l  | 25.0               | 2.12      | 98     | 80-120 | 0.7 | 20    |            |
| <b>Batch: 10B2723 Extracted: 02/23/10</b> | <u>-</u>  |           |      |       |                    |           |        |        |     |       |            |
| Blank Analyzed: 02/23/2010 (10B2723-Bl    | LK1)      |           |      |       |                    |           |        |        |     |       |            |
| Total Dissolved Solids                    | ND        | 10        | 1.0  | mg/l  |                    |           |        |        |     |       |            |
| LCS Analyzed: 02/23/2010 (10B2723-BS1     | 1)        |           |      |       |                    |           |        |        |     |       |            |
| Total Dissolved Solids                    | 1000      | 10        | 1.0  | mg/l  | 1000               |           | 100    | 90-110 |     |       |            |
| Duplicate Analyzed: 02/23/2010 (10B272)   | 723-DUP1) |           |      |       | Source: ITB2031-02 |           |        |        |     |       |            |
| Total Dissolved Solids                    | 315       | 10        | 1.0  | mg/l  |                    | 313       |        |        | 0.6 | 10    |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **ASTM 5174-91**

| Analyte                                 | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------------|--------------------|------|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| <b>Batch: 67296 Extracted: 03/10/10</b> |              |                    |      |       |                |                  |          |                |     |              |                    |
| Matrix Spike Dup Analyzed: 03/12/2010   | (F0B23045200 | 1D)                |      |       | Sou            | rce: F0B2        | 23045200 | 1              |     |              |                    |
| Total Uranium                           | 26.9         | 0.7                | 0.2  | pCi/L | 27.7           | 0.677            | 95       | 62-150         | 4   | 20           |                    |
| Matrix Spike Analyzed: 03/12/2010 (F0B  | 230452001S)  |                    |      |       | Sou            | rce: F0B2        | 23045200 | 1              |     |              |                    |
| Total Uranium                           | 28.1         | 0.7                | 0.2  | pCi/L | 27.7           | 0.677            | 99       | 62-150         |     |              |                    |
| Blank Analyzed: 03/12/2010 (F0C080000   | 296B)        |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Total Uranium                           | 0.315        | 0.693              | 0.21 | pCi/L |                |                  |          | -              |     |              | Jb                 |
| LCS Analyzed: 03/12/2010 (F0C0800002    | 96C)         |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Total Uranium                           | 28.6         | 0.7                | 0.2  | pCi/L | 27.7           |                  | 103      | 90-120         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **EPA 900.0 MOD**

| Analyte                                       | Result      | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------------|-------------|--------------------|------|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| <b>Batch: 62110 Extracted: 03/03/10</b>       |             |                    |      |       |                |                  |          |                |     |              |                    |
| Matrix Spike Analyzed: 03/07/2010 (F0B        | 230452001S) |                    |      |       | Sou            | rce: F0B2        | 23045200 | 1              |     |              |                    |
| Gross Alpha                                   | 45.6        | 3                  | 2    | pCi/L | 52             | -0.12            | 88       | 35-150         |     |              |                    |
| Gross Beta                                    | 84.5        | 4                  | 1.2  | pCi/L | 71.6           | 3.5              | 113      | 54-150         |     |              |                    |
| <b>Duplicate Analyzed: 03/07/2010 (F0B230</b> | 452001X)    |                    |      |       | Sou            | rce: F0B2        | 23045200 | 1              |     |              |                    |
| Gross Alpha                                   | 0.8         | 3                  | 2.1  | pCi/L |                | -0.12            |          | -              |     |              | U                  |
| Gross Beta                                    | 2.12        | 4                  | 1.2  | pCi/L |                | 3.5              |          | -              |     |              | Jb                 |
| Blank Analyzed: 03/08/2010 (F0C030000         | 110B)       |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Gross Alpha                                   | 0.25        | 2                  | 0.79 | pCi/L |                |                  |          | -              |     |              | U                  |
| Gross Beta                                    | -0.44       | 4                  | 1.5  | pCi/L |                |                  |          | -              |     |              | U                  |
| LCS Analyzed: 03/08/2010 (F0C0300001          | 10C)        |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Gross Alpha                                   | 49.2        | 3                  | 0.9  | pCi/L | 49.4           |                  | 100      | 62-134         |     |              |                    |
| Gross Beta                                    | 70          | 4                  | 1.5  | pCi/L | 68             |                  | 103      | 58-133         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186 Received: 02/20/10

### METHOD BLANK/QC DATA

### **EPA 901.1 MOD**

| Analyte  Batch: 55101 Extracted: 02/24/10 | Result    | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|-----------|--------------------|-----|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 03/12/2010 (F0B23     | 0452001X) |                    |     |       | Sou            | rce: F0B2        | 23045200 | 1              |     |              |                    |
| Cesium 137                                | -1.6      | 20                 | 15  | pCi/L |                | -1               |          | -              |     |              | U                  |
| Potassium 40                              | -20       | NA                 | 240 | pCi/L |                | -30              |          | -              |     |              | U                  |
| Blank Analyzed: 03/11/2010 (F0B24000      | 0101B)    |                    |     |       | Sou            | rce:             |          |                |     |              |                    |
| Cesium 137                                | -4        | 20                 | 19  | pCi/L |                |                  |          | -              |     |              | U                  |
| Potassium 40                              | -10       | NA                 | 220 | pCi/L |                |                  |          | -              |     |              | U                  |
| LCS Analyzed: 03/12/2010 (F0B240000)      | 101C)     |                    |     |       | Sou            | rce:             |          |                |     |              |                    |
| Americium 241                             | 142000    | NA                 | 600 | pCi/L | 141000         |                  | 101      | 87-110         |     |              |                    |
| Cobalt 60                                 | 86900     | NA                 | 200 | pCi/L | 87900          |                  | 99       | 89-110         |     |              |                    |
| Cesium 137                                | 52800     | 20                 | 300 | pCi/L | 53100          |                  | 99       | 90-110         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **EPA 903.0 MOD**

| Analyte  Batch: 55153 Extracted: 02/24/10                 | Result            | Reporting<br>Limit | MDL   | Units | Spike<br>Level     | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------------------------|-------------------|--------------------|-------|-------|--------------------|------------------|------|----------------|-----|--------------|--------------------|
| <b>Blank Analyzed: 03/19/2010 (F0B240000</b> Radium (226) | 0.04              | 1                  | 0.055 | pCi/L | Sour               | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 03/19/2010 (F0B2400001<br>Radium (226)      | <b>53C)</b> 11.8  | 1                  | 0.06  | pCi/L | <b>Sou</b> : 11.3  | rce:             | 105  | 68-136         |     |              |                    |
| LCS Dup Analyzed: 03/19/2010 (F0B240 Radium (226)         | 0000153L)<br>11.4 | 1                  | 0.06  | pCi/L | <b>Sou</b><br>11.3 | rce:             | 102  | 68-136         | 3   | 40           |                    |

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **EPA 904 MOD**

| Analyte  Batch: 55154 Extracted: 02/24/10            | Result                  | Reporting<br>Limit | MDL  | Units | Spike<br>Level    | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------------|-------------------------|--------------------|------|-------|-------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 03/12/2010 (F0B240000)<br>Radium 228 | -0.02                   | 1                  | 0.57 | pCi/L | Sou               | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 03/12/2010 (F0B2400001<br>Radium 228   | <b>54C)</b> 5.73        | 1                  | 0.54 | pCi/L | <b>Sou</b> : 6.38 | rce:             | 90   | 60-142         |     |              |                    |
| LCS Dup Analyzed: 03/12/2010 (F0B240 Radium 228      | <b>000154L)</b><br>6.46 | 1                  | 0.58 | pCi/L | <b>Sou</b> : 6.38 | rce:             | 101  | 60-142         | 12  | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **EPA 905 MOD**

| Analyte  Batch: 55155 Extracted: 02/24/10             | Result              | Reporting<br>Limit | MDL  | Units | Spike<br>Level    | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------------|---------------------|--------------------|------|-------|-------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 03/05/2010 (F0B240000<br>Strontium 90 | <b>155B)</b> -0.03  | 3                  | 0.46 | pCi/L | Sour              | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 03/05/2010 (F0B2400001<br>Strontium 90  | <b>55C)</b> 7.04    | 3                  | 0.47 | pCi/L | <b>Sou</b> : 6.79 | rce:             | 104  | 80-130         |     |              |                    |
| LCS Dup Analyzed: 03/05/2010 (F0B240 Strontium 90     | <b>000155L)</b> 7.2 | 3                  | 0.46 | pCi/L | <b>Sou</b> : 6.79 | rce:             | 106  | 80-130         | 2   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **EPA 906.0 MOD**

| Analyte  Batch: 61038 Extracted: 03/02/10 | Result       | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|--------------|--------------------|-----|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 03/03/2010 (F0B230    | )452001X)    |                    |     |       | Sou            | rce: F0B2        | 23045200 | 1              |     |              |                    |
| Tritium                                   | -46          | 500                | 140 | pCi/L |                | -79              |          | -              |     |              | U                  |
| Matrix Spike Analyzed: 03/03/2010 (F0E    | 3230454001S) |                    |     |       | Sou            | rce: ITB2        | 2186-02  |                |     |              |                    |
| Tritium                                   | 4210         | 500                | 140 | pCi/L | 4520           | 82               | 91       | 62-147         |     |              |                    |
| Blank Analyzed: 03/03/2010 (F0C020000     | 0038B)       |                    |     |       | Sou            | rce:             |          |                |     |              |                    |
| Tritium                                   | 112          | 500                | 140 | pCi/L |                |                  |          | -              |     |              | U                  |
| LCS Analyzed: 03/03/2010 (F0C0200000      | 38C)         |                    |     |       | Sou            | rce:             |          |                |     |              |                    |
| Tritium                                   | 4270         | 500                | 140 | pCi/L | 4520           |                  | 94       | 85-112         |     |              |                    |

%REC



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

TED2106

Report Number: ITB2186

Reporting

Sampled: 02/20/10 Received: 02/20/10

RPD

Data

### METHOD BLANK/QC DATA

### **EPA-5 1613B**

Spike

Source

|                                    |            | Keporung | g          |       | Spike | Source |      | OKEC   |     | KI D  | Data       |
|------------------------------------|------------|----------|------------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result     | Limit    | MDL        | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 57116 Extracted: 02/26/1    | 10         |          |            |       |       |        |      |        |     |       |            |
| Blank Analyzed: 03/01/2010 (G0B26  | 60000116B) |          |            |       | Sou   | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.0000096  | 0.00005  | 0.0000017  | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,4,6,7,8-HpCDF                | 0.0000086  | 0.00005  | 0.0000023  | ug/L  |       |        |      | -      |     |       | J, Q       |
| 1,2,3,4,7,8,9-HpCDF                | 0.0000082  | 0.00005  | 0.0000038  | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,4,7,8-HxCDD                  | 0.0000049  | 0.00005  | 0.0000007  | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,4,7,8-HxCDF                  | 0.0000047  | 0.00005  | 0.0000011  | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,6,7,8-HxCDD                  | 0.0000043  | 0.00005  | 0.00000062 | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,6,7,8-HxCDF                  | 0.0000044  | 0.00005  | 0.00000097 | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,7,8,9-HxCDD                  | 0.0000055  | 0.00005  | 0.00000059 | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,7,8,9-HxCDF                  | 0.0000056  | 0.00005  | 0.0000012  | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,7,8-PeCDD                    | 0.0000021  | 0.00005  | 0.0000006  | ug/L  |       |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8-PeCDF                    | 0.00000091 | 0.00005  | 0.00000031 | ug/L  |       |        |      | -      |     |       | J, Q       |
| 2,3,4,6,7,8-HxCDF                  | 0.0000058  | 0.00005  | 0.00000097 | ug/L  |       |        |      | -      |     |       | J          |
| 2,3,4,7,8-PeCDF                    | 0.0000033  | 0.00005  | 0.00000037 | ug/L  |       |        |      | -      |     |       | J          |
| 2,3,7,8-TCDD                       | ND         | 0.00001  | 0.00000003 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDF                       | ND         | 0.00001  | 0.00000094 | ug/L  |       |        |      | -      |     |       |            |
| OCDD                               | 0.000028   | 0.0001   | 0.0000015  | ug/L  |       |        |      | -      |     |       | J, Q       |
| OCDF                               | 0.00002    | 0.0001   | 0.0000013  | ug/L  |       |        |      | -      |     |       | J          |
| Total HpCDD                        | 0.000012   | 0.00005  | 0.0000017  | ug/L  |       |        |      | -      |     |       | J, Q       |
| Total HpCDF                        | 0.000017   | 0.00005  | 0.0000023  | ug/L  |       |        |      | -      |     |       | J, Q       |
| Total HxCDD                        | 0.000015   | 0.00005  | 0.00000059 | ug/L  |       |        |      | -      |     |       | J          |
| Total HxCDF                        | 0.000021   | 0.00005  | 0.00000097 | ug/L  |       |        |      | -      |     |       | J          |
| Total PeCDD                        | 0.0000021  | 0.00005  | 0.0000006  | ug/L  |       |        |      | -      |     |       | J, Q       |
| Total PeCDF                        | 0.0000042  | 0.00005  | 0.00000003 | ug/L  |       |        |      | -      |     |       | J, Q       |
| Total TCDD                         | ND         | 0.00001  | 0.00000003 | ug/L  |       |        |      | -      |     |       |            |
| Total TCDF                         | ND         | 0.00001  | 0.00000002 | ug/L  |       |        |      | -      |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.0018     |          |            | ug/L  | 0.002 |        | 89   | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.0018     |          |            | ug/L  | 0.002 |        | 88   | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.0016     |          |            | ug/L  | 0.002 |        | 81   | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.0016     |          |            | ug/L  | 0.002 |        | 78   | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.0017     |          |            | ug/L  | 0.002 |        | 83   | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.0017     |          |            | ug/L  | 0.002 |        | 86   | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.0016     |          |            | ug/L  | 0.002 |        | 82   | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.0017     |          |            | ug/L  | 0.002 |        | 83   | 29-147 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.0016     |          |            | ug/L  | 0.002 |        | 78   | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.0016     |          |            | ug/L  | 0.002 |        | 78   | 24-185 |     |       |            |
|                                    |            |          |            |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager

%REC



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Reporting

Received: 02/20/10

RPD

Data

### METHOD BLANK/QC DATA

### **EPA-5 1613B**

Spike

Source

|                                    |           | Keporun | g          |       | Spike  | Source |      | OKEC   |     | KI D  | Data       |
|------------------------------------|-----------|---------|------------|-------|--------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result    | Limit   | MDL        | Units | Level  | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 57116 Extracted: 02/26/10   | <u>0</u>  |         |            |       |        |        |      |        |     |       |            |
| Blank Analyzed: 03/01/2010 (G0B26  | 0000116B) |         |            |       | Sou    | rce:   |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0017    |         |            | ug/L  | 0.002  |        | 86   | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.0015    |         |            | ug/L  | 0.002  |        | 74   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.0015    |         |            | ug/L  | 0.002  |        | 75   | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.0015    |         |            | ug/L  | 0.002  |        | 74   | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                | 0.0034    |         |            | ug/L  | 0.004  |        | 85   | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00073   |         |            | ug/L  | 0.0008 |        | 91   | 35-197 |     |       |            |
| LCS Analyzed: 03/01/2010 (G0B2600  | 000116C)  |         |            |       | Sou    | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00102   | 0.00005 | 0.0000042  | ug/L  | 0.001  |        | 102  | 70-140 |     |       | B          |
| 1,2,3,4,6,7,8-HpCDF                | 0.00105   | 0.00005 | 0.0000065  | ug/L  | 0.001  |        | 105  | 82-122 |     |       | B          |
| 1,2,3,4,7,8,9-HpCDF                | 0.00112   | 0.00005 | 0.000011   | ug/L  | 0.001  |        | 112  | 78-138 |     |       | B          |
| 1,2,3,4,7,8-HxCDD                  | 0.00106   | 0.00005 | 0.00000088 | ug/L  | 0.001  |        | 106  | 70-164 |     |       | B          |
| 1,2,3,4,7,8-HxCDF                  | 0.0011    | 0.00005 | 0.00000088 | ug/L  | 0.001  |        | 110  | 72-134 |     |       | B          |
| 1,2,3,6,7,8-HxCDD                  | 0.000966  | 0.00005 | 0.00000075 | ug/L  | 0.001  |        | 97   | 76-134 |     |       | B          |
| 1,2,3,6,7,8-HxCDF                  | 0.00108   | 0.00005 | 0.0000008  | ug/L  | 0.001  |        | 108  | 84-130 |     |       | B          |
| 1,2,3,7,8,9-HxCDD                  | 0.00106   | 0.00005 | 0.00000072 | ug/L  | 0.001  |        | 106  | 64-162 |     |       | B          |
| 1,2,3,7,8,9-HxCDF                  | 0.00104   | 0.00005 | 0.00000093 | ug/L  | 0.001  |        | 104  | 78-130 |     |       | B          |
| 1,2,3,7,8-PeCDD                    | 0.000998  | 0.00005 | 0.000002   | ug/L  | 0.001  |        | 100  | 70-142 |     |       | B          |
| 1,2,3,7,8-PeCDF                    | 0.00106   | 0.00005 | 0.0000016  | ug/L  | 0.001  |        | 106  | 80-134 |     |       | B          |
| 2,3,4,6,7,8-HxCDF                  | 0.00105   | 0.00005 | 0.00000078 | ug/L  | 0.001  |        | 105  | 70-156 |     |       | B          |
| 2,3,4,7,8-PeCDF                    | 0.00113   | 0.00005 | 0.0000019  | ug/L  | 0.001  |        | 113  | 68-160 |     |       | B          |
| 2,3,7,8-TCDD                       | 0.000194  | 0.00001 | 0.00000002 | ug/L  | 0.0002 |        | 97   | 67-158 |     |       |            |
| 2,3,7,8-TCDF                       | 0.000198  | 0.00001 | 0.00000034 | ug/L  | 0.0002 |        | 99   | 75-158 |     |       |            |
| OCDD                               | 0.00203   | 0.0001  | 0.000004   | ug/L  | 0.002  |        | 102  | 78-144 |     |       | B          |
| OCDF                               | 0.00196   | 0.0001  | 0.0000024  | ug/L  | 0.002  |        | 98   | 63-170 |     |       | B          |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00191   |         |            | ug/L  | 0.002  |        | 96   | 26-166 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00183   |         |            | ug/L  | 0.002  |        | 92   | 21-158 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.00174   |         |            | ug/L  | 0.002  |        | 87   | 20-186 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00173   |         |            | ug/L  | 0.002  |        | 87   | 21-193 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00168   |         |            | ug/L  | 0.002  |        | 84   | 19-202 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00167   |         |            | ug/L  | 0.002  |        | 84   | 25-163 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00166   |         |            | ug/L  | 0.002  |        | 83   | 21-159 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.0018    |         |            | ug/L  | 0.002  |        | 90   | 17-205 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.00175   |         |            | ug/L  | 0.002  |        | 87   | 21-227 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.0017    |         |            | ug/L  | 0.002  |        | 85   | 21-192 |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00179   |         |            | ug/L  | 0.002  |        | 90   | 22-176 |     |       |            |
|                                    |           |         |            |       |        |        |      |        |     |       |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### METHOD BLANK/QC DATA

### **EPA-5 1613B**

|                                         |          | Reporting |     |       | Spike  | Source |      | %REC   |     | RPD   | Data       |
|-----------------------------------------|----------|-----------|-----|-------|--------|--------|------|--------|-----|-------|------------|
| Analyte                                 | Result   | Limit     | MDL | Units | Level  | Result | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 57116 Extracted: 02/26/10</b> |          |           |     |       |        |        |      |        |     |       |            |
| LCS Analyzed: 03/01/2010 (G0B260000     | 116C)    |           |     |       | Sou    | rce:   |      |        |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF          | 0.00161  |           |     | ug/L  | 0.002  |        | 80   | 13-328 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD             | 0.00165  |           |     | ug/L  | 0.002  |        | 82   | 20-175 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF             | 0.00166  |           |     | ug/L  | 0.002  |        | 83   | 22-152 |     |       |            |
| Surrogate: 13C-OCDD                     | 0.0038   |           |     | ug/L  | 0.004  |        | 95   | 13-199 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD           | 0.000771 |           |     | ug/L  | 0.0008 |        | 96   | 31-191 |     |       |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/20/10

Arcadia, CA 91007 Report Number: ITB2186 Received: 02/20/10

DATA QUALIFIERS AND DEFINITIONS

**B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.

C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not

impacted.

Attention: Bronwyn Kelly

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

**Jb** Result is greater than sample detection limit but less than stated reporting limit.

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

**Q** Estimated maximum possible concentration (EMPC).

U Result is less than the sample detection limit.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 02/20/10

Report Number: ITB2186

Received: 02/20/10

### **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EDD + Level 4  | Water  | N/A   | N/A        |
| EPA 1664A      | Water  | X     | X          |
| EPA 200.8-Diss | Water  | X     | X          |
| EPA 200.8      | Water  | X     | X          |
| EPA 245.1-Diss | Water  | X     | X          |
| EPA 245.1      | Water  | X     | X          |
| EPA 300.0      | Water  | X     | X          |
| EPA 314.0      | Water  | X     | X          |
| Filtration     | Water  | N/A   | N/A        |
| Level 4        | Water  |       |            |
| SM2540C        | Water  | X     |            |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

#### TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Method Performed: ASTM 5174-91

Samples: ITB2186-02

Method Performed: EPA 900.0 MOD

Samples: ITB2186-02

Method Performed: EPA 901.1 MOD

Samples: ITB2186-02

Method Performed: EPA 903.0 MOD

Samples: ITB2186-02

Method Performed: EPA 904 MOD

Samples: ITB2186-02

Method Performed: EPA 905 MOD

Samples: ITB2186-02

Method Performed: EPA 906.0 MOD

Samples: ITB2186-02

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/20/10

Arcadia, CA 91007 Report Number: ITB2186 Received: 02/20/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

### **TestAmerica West Sacramento**

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITB2186-02

#### **TestAmerica Irvine**

2TB2186

| Client Name/A                             |                  |                   |                                                  | Project:                                                        |                                                                       |              |                   |         |         |                 | ***  |         |                          | ANAI    | YSIS F                       | EQUIP       | RED        |           | ·        |                    |
|-------------------------------------------|------------------|-------------------|--------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|--------------|-------------------|---------|---------|-----------------|------|---------|--------------------------|---------|------------------------------|-------------|------------|-----------|----------|--------------------|
| MWH-Arca<br>618 Michillind<br>Arcadia, CA | a Ave, S         | uite 200          |                                                  | Boeing-SSFL N<br>Routine Outfa<br>GRAB<br>Stormwater at N       | 11 009                                                                |              |                   |         |         |                 |      |         |                          |         |                              |             |            |           |          | Field readings:    |
| Test America                              | Contact:         | Joseph Do         | ak                                               |                                                                 |                                                                       |              | Grease (1664-HEM) |         |         |                 |      |         |                          |         |                              |             |            |           |          | Temp °F = 46.86    |
| Project Manag                             | -                |                   | ₩                                                | Phone Number<br>(626) 568-6691<br>Fax Number:<br>(626) 568-6515 | 326) 568-6691<br>ax Number:<br>326) 568-6515<br>Sampling<br>Date/Time |              |                   |         |         |                 |      |         |                          |         |                              |             |            |           |          | Time of readings = |
| Sample<br>Description                     | Sample<br>Matrix | Container<br>Type | # of<br>Cont.                                    |                                                                 | Preservative                                                          | Bottle #     | Ö                 |         |         |                 |      |         |                          |         |                              |             |            |           |          | Comments           |
| Outfall 009                               | w                | 1L Amber          | 2                                                | 2/20/10 8500                                                    | нсі                                                                   | 1A, 1B       | х                 |         |         |                 |      |         |                          |         |                              |             |            |           |          |                    |
|                                           |                  |                   |                                                  |                                                                 |                                                                       |              |                   |         |         |                 |      |         |                          |         |                              |             |            |           |          |                    |
|                                           |                  |                   |                                                  |                                                                 |                                                                       |              |                   |         |         |                 |      |         |                          |         |                              |             |            |           |          |                    |
|                                           |                  |                   |                                                  |                                                                 |                                                                       |              |                   |         |         |                 |      |         |                          |         |                              |             |            |           |          |                    |
|                                           |                  |                   |                                                  |                                                                 |                                                                       | ₹ <u>5</u>   |                   |         |         |                 |      |         |                          |         |                              |             |            |           |          | 15/60,             |
|                                           |                  |                   |                                                  |                                                                 |                                                                       |              |                   |         |         |                 |      |         |                          |         |                              |             |            |           |          | 1200/              |
|                                           |                  |                   | <u> </u>                                         |                                                                 |                                                                       |              |                   |         |         |                 |      |         |                          |         |                              |             |            |           |          |                    |
|                                           |                  |                   | <del>                                     </del> |                                                                 |                                                                       |              | <del> </del>      |         |         |                 |      |         |                          |         |                              |             |            |           |          |                    |
|                                           |                  |                   |                                                  |                                                                 |                                                                       |              |                   |         |         |                 |      |         |                          | )       |                              |             |            |           |          |                    |
|                                           | Th               | ass Commi         |                                                  | e the Grab Por                                                  | lion of Out                                                           | fall 000 far | Abia a            | •••••   |         |                 | ita  |         |                          | l falls |                              |             |            |           | Alaiaaul |                    |
| Relinquished By                           | th S             |                   | ate/Ti                                           |                                                                 |                                                                       | Received By  |                   | • m1018 | ovent.  | Date/Tit        | ne:  | 3-30    | ies wii<br>) - iP<br>こひく | 1 TOIIO | Turn-arour 24 Hour: 48 Hour: | nd time: (C | heck)      | 2 Hour:   | ,        |                    |
| Relinquished By                           |                  |                   | ate/Ti                                           | me:                                                             | ,                                                                     | Received By  |                   | ) 5     | <u></u> | Date/Tir        | ne:  | · · · · | <u> </u>                 |         |                              |             |            |           |          |                    |
| Relinquished By                           | ~ /              | yasich-           | ate/fi                                           | <i>`}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>                   | <b>λ</b> ., β%                                                        | Received By_ |                   |         | ≥_      | Z/Z<br>Date/Til | 20 ( | 10 /    | 43                       | £       | Sample Int                   | egrity: (Cl | neck)<br>O | On Ice: _ | *        | 400                |
|                                           |                  |                   |                                                  |                                                                 | •                                                                     |              |                   |         | ···     |                 | ·    |         |                          |         | Data Requ                    | irements:   | (Check)    | ll Level  | ıv:      | MPDES Level IV: _X |

## **CHAIN OF CUSTODY FORM**

| Client Name/    |          |              |          | Projec       |              |                  |            |                                                  |                          |                                                  |          |                                                                                                                                                                                                           |                  | ANA                                   | ANALYSIS REQUIRED                                |            |             |                                       |          |          |                                     |
|-----------------|----------|--------------|----------|--------------|--------------|------------------|------------|--------------------------------------------------|--------------------------|--------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|--------------------------------------------------|------------|-------------|---------------------------------------|----------|----------|-------------------------------------|
| MWH-Arca        |          |              |          |              | g-SSFL I     |                  |            | Ď,                                               |                          |                                                  |          | Gross Alpha(900.0), Gross Beta(900.0),<br>Tritium (H-3) (906.0), Sr-90 (905.0), Total<br>Combined Radium 226 (903.0 or 903.1) &<br>Radium 228 (904.0), Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) | $\Box$           |                                       |                                                  |            |             |                                       |          |          |                                     |
| 618 Michillind  |          | Suite 200    |          |              | ne Outfa     | all 009          |            | Cu, Pb,                                          |                          | 1                                                |          | ), ± 5 ota                                                                                                                                                                                                | l /              | يْم                                   |                                                  |            |             |                                       |          |          |                                     |
| Arcadia, CA     | 91007    |              |          |              | OSITE        |                  |            | 3                                                |                          | o,                                               |          | 00.(<br>03.<br>8.0)                                                                                                                                                                                       | (                | Cu, Pb,                               |                                                  |            |             |                                       |          |          |                                     |
|                 |          |              |          | Storm        | water at     | WS-13            |            | ß                                                |                          | rate                                             |          | 90 5.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                               |                  | Q                                     |                                                  |            |             |                                       |          |          |                                     |
| Test America    | Contact  | : Joseph Do  | ak       |              |              |                  |            | Sp,                                              |                          | 웆                                                |          | 38tg<br>(90 mr                                                                                                                                                                                            | 11               | Ŕ                                     |                                                  |            |             |                                       |          |          |                                     |
|                 |          |              |          |              |              |                  |            | 160                                              | <u>ش</u> ا               | erc                                              |          | ss F<br>903<br>anit<br>1.1)                                                                                                                                                                               | 1 /              |                                       |                                                  |            |             |                                       |          |          |                                     |
|                 |          |              |          |              |              |                  |            | ) sta                                            | ē                        | 」って                                              |          | 90.5° (3.5°)                                                                                                                                                                                              |                  | 3:6                                   |                                                  |            |             |                                       |          |          | Comments                            |
| Project Mana    | nor: Pro | nun Kally    |          | Dhone        | Numba        |                  |            | Total Recoverable Metals:<br>Hg, TI              | TCDD (and all congeners) | Cl-, SO <sub>4</sub> , NO3+NO2-N, Perchlorate    |          | 0,0,0,0                                                                                                                                                                                                   | 11               | Total Dissolved Metals: Sb,<br>Hg, Tl |                                                  |            |             |                                       |          |          | Comments                            |
|                 |          | -            |          | 1            | Numbe        |                  |            | gpe                                              | ß                        | Ž                                                |          | 00.00<br>906.<br>10.00<br>10.00                                                                                                                                                                           | ₽                | ĮΣ                                    |                                                  |            |             |                                       |          |          |                                     |
| l,              | سهما     | 1 weight     |          | 1' '         | 568-669      | 1                |            | Je Je                                            | a                        | 용                                                |          | (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)                                                                                                                                                                   | l Ĕ              | ĕ                                     |                                                  |            |             | '                                     |          |          | high flow                           |
| Sampler: 5      | ارداد    | ALLEN        |          | ł            | umber:       |                  |            | ő                                                | P. DE                    | ž                                                |          | H-3<br>228<br>137                                                                                                                                                                                         | Chronie Toxicity | l SS                                  |                                                  |            |             |                                       |          |          | אמון בי וייבוייי                    |
|                 |          |              |          | 1,           | 568-651      | 5                |            | _ هـ [                                           | 👸                        | o <sub>2</sub>                                   |          | S AI<br>Oine<br>L-S:-1                                                                                                                                                                                    | lŧ               | ے قا                                  |                                                  |            |             | i i                                   |          |          |                                     |
| Sample          | Sample   |              | # of     |              | npling       | Preservative     | Bottle #   | Total F<br>Hg, Ti                                | l g                      | 3,                                               | TDS      | ross<br>ritiu<br>oml                                                                                                                                                                                      | lE               | g, Tal                                |                                                  |            |             |                                       |          |          |                                     |
| Description     | Matrix   | Туре         | Cont.    | 4            | e/Time       |                  |            | <del>                                     </del> | ĮĚ                       | O                                                | F        | Q F Q E A                                                                                                                                                                                                 | P                | FI                                    |                                                  |            |             |                                       |          |          |                                     |
| Outfall 009     | w        | 1L. Poly     | 1        | 2/20/1       | 0 0736       | HNO <sub>3</sub> | 2A         | Х                                                |                          |                                                  |          |                                                                                                                                                                                                           | 11               | ŀ                                     |                                                  |            |             | 1                                     |          |          |                                     |
| Outfall 009 Dup | w        | 1L Poly      | 1        |              | 10 0736      |                  | 2B         | Х                                                |                          |                                                  |          |                                                                                                                                                                                                           | П                |                                       |                                                  |            |             |                                       |          |          |                                     |
| Outfall 009     | w        | 1L Amber     | 2        |              | 1            | None             | 3A, 3B     |                                                  | х                        |                                                  |          |                                                                                                                                                                                                           |                  |                                       |                                                  |            |             |                                       |          |          |                                     |
| Outfall 009     | w        | 500 mL Poly  | 2        |              |              | None             | 4A, 4B     |                                                  |                          | х                                                |          |                                                                                                                                                                                                           |                  |                                       |                                                  |            |             |                                       |          |          |                                     |
| Outfall 009     | w        | 500 mL Poly  | 1        |              | 1            | None             | 5          |                                                  |                          |                                                  | х        |                                                                                                                                                                                                           |                  |                                       |                                                  |            |             |                                       |          |          |                                     |
| Outfall 009     | w        | 2.5 Gal Cube | 1        |              | G.           | None             | 6A         |                                                  |                          |                                                  |          | х                                                                                                                                                                                                         |                  |                                       |                                                  |            |             |                                       |          |          | Unfiltered and unpreserved          |
| Odnan 003       | "        | 500 ml Amber | 1        | ]            | 1            | None             | 6B         |                                                  |                          |                                                  |          | ] ^                                                                                                                                                                                                       | П                |                                       |                                                  |            |             |                                       |          |          | analysis                            |
| Outfall 009     | W        | 1 Gal Poly   | _        |              |              | Nono             |            | <b>_</b> _                                       |                          |                                                  |          |                                                                                                                                                                                                           |                  |                                       |                                                  |            |             |                                       |          |          | Only test if first or second rain   |
| Odtiaii 009     |          | 1 Gai Foly   | ,        | 10101        | ,            |                  |            | T                                                |                          |                                                  |          |                                                                                                                                                                                                           |                  | <del></del>                           |                                                  |            |             |                                       |          |          | events or the year                  |
| Outfall 009     | W        | 1L Poly      | 1        | 721          | 10 0736      | None             | 8          |                                                  |                          |                                                  |          |                                                                                                                                                                                                           |                  | ×                                     |                                                  |            |             |                                       |          |          | Filter w/in 24hrs of receipt at lab |
|                 |          |              |          |              |              |                  |            |                                                  |                          |                                                  |          |                                                                                                                                                                                                           |                  |                                       |                                                  |            |             |                                       |          |          |                                     |
|                 |          |              |          |              |              |                  |            |                                                  |                          | <del>                                     </del> | <u> </u> | -                                                                                                                                                                                                         |                  | 1                                     | <del>                                     </del> |            |             |                                       |          |          |                                     |
|                 |          |              |          |              |              |                  |            |                                                  |                          | ļ                                                |          |                                                                                                                                                                                                           |                  |                                       |                                                  |            |             |                                       |          |          |                                     |
|                 | <b>L</b> |              |          | <u> </u>     | CC           | OC Page 2        | of 2 are t | he cor                                           | nnos                     | ite sa                                           | mole     | s for Outfall 00                                                                                                                                                                                          | 19 fo            | r this s                              | torm ev                                          | /ent       |             | l                                     |          |          |                                     |
|                 |          |              |          | These        |              |                  |            |                                                  |                          |                                                  |          | Page 1 of 2 fo                                                                                                                                                                                            |                  |                                       |                                                  |            | me ev       | ent                                   |          |          |                                     |
| Relinguished By |          |              | Date/    |              | - 111431     | uuded l          | Received B |                                                  | 510                      | .0. 101                                          |          |                                                                                                                                                                                                           |                  |                                       | Turn-arour                                       |            |             | · · · · · · · · · · · · · · · · · · · |          |          |                                     |
| //11/           | 4        |              |          |              |              |                  |            |                                                  | ſ                        |                                                  |          |                                                                                                                                                                                                           | .0-1             | Ü                                     | 24 Hour:                                         |            | ,,          | 72 Hour:                              |          |          | 10 Day:                             |
| Junu            | 411/     |              | _        | NOW          | )            | ·                | 8 L        | √2∧                                              | _ \                      |                                                  |          | 40 ×                                                                                                                                                                                                      | 12               | .0<br>:,uS                            | -                                                |            |             |                                       |          |          | Normal: X                           |
|                 | 1 10     |              | <u> </u> | 0/\\         | , <u>, ,</u> | 7,43             |            | .,,,,                                            |                          | <u>V/V</u>                                       | N/       | 14 >                                                                                                                                                                                                      |                  |                                       | 48 Hour: _                                       |            |             | 5 Day:                                |          |          | Normal: _/\                         |
| Relinquished By |          |              | Date/    | Time:        |              |                  | Received B | by                                               |                          | V                                                | C        | Date/Time:                                                                                                                                                                                                |                  |                                       |                                                  |            |             |                                       |          |          |                                     |
| 1~\             | (        |              |          |              | ١.           |                  | 7          |                                                  |                          |                                                  |          | ببالمماح                                                                                                                                                                                                  | 10               | $\sim$                                | Sample Int                                       | tegrity: ( | Check)      |                                       | ×        |          |                                     |
| o fr            | ~ \      | × 50500 h    | •        | 1.701        | 0 18         | . ho             | l \        |                                                  |                          | <b>&gt;&gt;</b>                                  |          | 1001012                                                                                                                                                                                                   | łわ               | 8                                     | Intact:                                          |            |             | On Ice:                               |          | _        | k .                                 |
| Relinguished By |          | y your       | Date/    | g a<br>Time: |              |                  | Received   | W                                                | _                        |                                                  |          | Date/Time:                                                                                                                                                                                                |                  |                                       | 1                                                |            |             |                                       |          | /.       | T (                                 |
|                 |          | J            |          | -            |              |                  |            |                                                  |                          |                                                  |          |                                                                                                                                                                                                           |                  |                                       | Data Becu                                        | irement    | s: (Checl   | d                                     |          | . "      | <i>l</i> \                          |
|                 |          |              |          |              |              |                  |            |                                                  |                          |                                                  |          |                                                                                                                                                                                                           |                  |                                       | No Love P                                        | o          | (Siloti     | All Lough                             | w. 1     | <b>^</b> | NPDES Level IV:                     |
|                 |          |              |          |              |              |                  |            |                                                  |                          |                                                  |          |                                                                                                                                                                                                           |                  |                                       | 140 Level I                                      | v:         | <del></del> | All Level                             | <u> </u> |          | INF DEG LEVELIV.                    |
|                 |          |              |          |              |              |                  |            |                                                  |                          |                                                  |          |                                                                                                                                                                                                           |                  |                                       |                                                  |            | (           |                                       |          |          |                                     |



TestAmerica Laboratories, Inc.

### ANALYTICAL REPORT

PROJECT NO. ITB2186

MWH-Pasadena Boeing

Lot #: F0B230454

Joseph Doak

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Project Manager

March 19, 2010

#### Case Narrative LOT NUMBER: F0B230454

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on February 23, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements, except as noted below.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689**. The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

#### **Observations/Nonconformances**

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

### Radium-226 by GFPC (EPA 903.0 MOD)

The barium carrier recovery is outside the upper control limit (110%). There was physical evidence of matrix interference apparent during the initial preparation of the sample. The QC samples associated with the batch have acceptable carrier recovery indicating the presence of matrix interference for Radium 226 analysis.

The barium sulfate yield is outside upper control limits which may cause a potential low bias result. The yield was truncated at 100% to eliminate a biased result.

#### Affected Samples:

F0B230454 (1): ITB2186-02

#### Radium-228 by GFPC (EPA 904 MOD)

The barium carrier recovery is outside the upper control limit (110%). There was physical evidence of matrix interference apparent during the initial preparation of the sample. The QC samples associated with the batch have acceptable carrier recovery indicating the presence of matrix interference for Radium 228 analysis.

The barium sulfate yield is outside upper control limits which may cause a potential low bias result. The yield was truncated at 100% to eliminate a biased result.

#### Affected Samples:

F0B230454 (1): ITB2186-02

### **METHODS SUMMARY**

### F0B230454

| PARAMETER                              | ANALYTICAL<br>METHOD | PREPARATION<br>METHOD |
|----------------------------------------|----------------------|-----------------------|
| Gamma Spectroscopy - Cesium-137 & Hits | EPA 901.1 MOD        |                       |
| Gross Alpha/Beta EPA 900               | EPA 900.0 MOD        | EPA 900.0             |
| H-3 by Distillation & LSC              | EPA 906.0 MOD        |                       |
| Radium-226 by GFPC                     | EPA 903.0 MOD        |                       |
| Radium-228 by GFPC                     | EPA 904 MOD          |                       |
| Strontium 90 by GFPC                   | EPA 905 MOD          |                       |
| Total Uranium By Laser Ph osphorimetry | ASTM 5174-91         |                       |
| References:                            |                      |                       |

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY

PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

### **SAMPLE SUMMARY**

#### F0B230454

| <u>WO # 8</u> | SAMPLE‡ | CLIENT SAMPLE ID | SAMPLED<br>DATE | SAMP<br>TIME |
|---------------|---------|------------------|-----------------|--------------|
| LV01J         | 001     | ITB2186-02       | 02/20/10        | 07:36        |

#### NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

### TestAmerica Irvine

Client Sample ID: ITB2186-02

### Radiochemistry

Lab Sample ID: F0B230454-001

Work Order: Matrix:

LV01J WATER

Date Collected:

02/20/10 0736

Date Received:

02/23/10 0910

| Parameter        | Result         | Qual   | Total<br>Uncert.<br>(2 o+/-) | RL    | mdc     | Prep<br>Date | Analysis<br>Date |
|------------------|----------------|--------|------------------------------|-------|---------|--------------|------------------|
| Gamma Cs-137 & H | its by EPA 901 | .1 MOD | I.                           | Ci/L  | Batch # | 0055101      | Yld %            |
| Cesium 137       | -10            | U      | 510                          | 20    | 20      | 02/24/10     | 03/12/10         |
| Potassium 40     | -100           | Ü      | 4100                         |       | 200     | 02/24/10     | 03/12/10         |
| Gross Alpha/Beta | EPA 900        |        | r                            | Ci/L  | Batch # | 0062110      | Yld %            |
| Gross Alpha      | 0.74           | U      | 0.84                         | 3.00  | 1.3     | 03/03/10     | 03/07/10         |
| Gross Beta       | 1.67           | J      | 0.76                         | 4.00  | 1.0     | 03/03/10     | 03/07/10         |
| SR-90 BY GFPC E  | PA-905 MOD     |        | r                            | Ci/L  | Batch # | 0055155      | ¥1d % 77         |
| Strontium 90     | 0.40           | U      | 0.33                         | 3.00  | 0.53    | 02/24/10     | 03/05/10         |
| TRITIUM (Distill | ) by EPA 906.0 | MOD    | Į.                           | Ci/L  | Batch # | 0061038      | Yld %            |
| Tritium          | 82             | Ū      | 90                           | 500   | 140     | 03/02/10     | 03/03/10         |
| Total Uranium by | KPA ASTM 5174  | -91    | I                            | Ci/L  | Batch # | 0067296      | Yld %            |
| Total Uranium    | 0.472          | J      | 0.056                        | 0.693 | 0.21    | 03/10/10     | 03/12/10         |
| Radium 226 by E  | PA 903.0 MOD   |        | r                            | Ci/L  | Batch # | 0055153      | Yld % 100        |
| Radium (226)     | 0.116          | J      | 0.059                        | 1.00  | 0.065   | 02/24/10     | 03/19/10         |
| Radium 228 by GF | PC EPA 904 MOD |        |                              | Ci/L  | Batch # | 0055154      | Yld % 97         |
| Radium 228       | 0.30           | U      | 0.36                         | 1.00  | 0.59    | 02/24/10     | 03/12/10         |
|                  |                |        |                              |       |         |              |                  |

### NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is greater than sample detection limit but less than stated reporting limit.

Result is less than the sample detection limit.

### METHOD BLANK REPORT

### Radiochemistry

Client Lot ID:

F0B230454

Matrix:

WATER

| Parameter        | Result         | Qual    | Total<br>Undert.<br>(2 o+/-) | RL      | MDC     |       | Prep<br>Date | Lab Sample ID<br>Analysis<br>Date |
|------------------|----------------|---------|------------------------------|---------|---------|-------|--------------|-----------------------------------|
| Gamma Cs-137 &   | Hits by EPA 90 | 1.1 MOD | pCi/L                        | Batch # | 0055101 | Yld % | F            | 0B240000-101B                     |
| Cesium 137       | -4             | Ū       | 11                           | 20      | 19      |       | 02/24/10     | 03/11/10                          |
| Potassium 40     | -10            | U       | 150                          |         | 220     |       | 02/24/10     | 03/11/10                          |
| Radium 228 by G  | FPC EPA 904 MC | DD D    | pCi/L                        | Batch # | 0055154 | Yld % | 95 F         | 0B240000-154B                     |
| Radium 228       | -0.02          | U       | 0.33                         | 1.00    | 0.57    |       |              | 03/12/10                          |
| SR-90 BY GFPC    | EPA-905 MOD    |         | pCi/L                        | Batch # | 0055155 | Yld % | 84 F         | 0B240000-155B                     |
| Strontium 90     | -0.03          | ū       | 0.26                         | 3.00    | 0.46    |       | 02/24/10     | 03/05/10                          |
| Radium 226 by    | EPA 903.0 MOD  |         | pCi/L                        | Batch # | 0055153 | Yld % | 96 IF        | 0B240000-153B                     |
| Radium (226)     | 0.040          | υ       | 0.037                        | 1.00    | 0.055   |       | 02/24/10     | 03/19/10                          |
| TRITIUM (Distil  | l) by EPA 906. | 0 MOD   | pCi/L                        | Batch # | 0061038 | Yld % | F            | 0C020000-038B                     |
| Tritium          | 112            | Ū       | 95                           | 500     | 140     |       | 03/02/10     | 03/03/10                          |
| Gross Alpha/Beta | a EPA 900      |         | pCi/L                        | Batch # | 0062110 | Yld % | F            | 0C030000-110B                     |
| Gross Alpha      | 0.25           | Ū       | 0.45                         | 2.00    | 0.79    |       |              | 03/08/10                          |
| Gross Beta       | -0.44          | U       | 0.86                         | 4.00    | 1.5     |       |              | 03/08/10                          |
| Total Uranium by | y KPA ASTM 517 | 4-91    | pCi/L                        | Batch # | 0067296 | Yld % | F            | 0С080000-296В                     |
| Total Uranium    | 0.315          | J       | 0.039                        | 0.693   | 0.21    |       | 03/10/10     | 03/12/10                          |

#### NOTE (S)

Data are incomplete without the case narrative.

 $\ensuremath{\mathsf{MDC}}$  is determined using instrument performance only Bold results are greater than the  $\ensuremath{\mathsf{MDC}}$  .

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

### Laboratory Control Sample Report

### Radiochemistry

Client Lot ID:

F0B230454

Matrix:

WATER

|                    |                 |         |       | Total               |       |                | Lab Sample ID |       |                      |  |  |
|--------------------|-----------------|---------|-------|---------------------|-------|----------------|---------------|-------|----------------------|--|--|
| Parameter          | Spike Amount    | Result  |       | Undert.<br>(2 σ+/-) |       | MDC            | % Yld         | % Rec | QC Control<br>Limits |  |  |
| Gamma Cs-137 & Hit | s by EPA 901.1  | MOD     | pCi/L |                     | 901.1 | MOD            |               | F0B2  | 40000-101C           |  |  |
| Americium 241      | 141000          | 142000  |       | 11000               |       | 600            |               | 101   | (87 - 110)           |  |  |
| Cesium 137         | 53100           | 52800   |       | 3100                |       | 300            |               | 99    | (90 - 110)           |  |  |
| Cobalt 60          | 87900           | 86900   |       | 4900                |       | 200            |               | 99    | (89 - 110)           |  |  |
|                    | Batch #:        | 0055101 |       |                     |       | Analysis Date: | 03/12         | 2/10  |                      |  |  |
| TRITIUM (Distill)  | by EPA 906.0 M  | OD      | pCi/L |                     | 906.0 | MOD            |               | F0C0  | 20000-038C           |  |  |
| Tritium            | 4520            | 4270    |       | 450                 |       | 140            |               | 94    | (85 - 112)           |  |  |
|                    | Batch #:        | 0061038 |       |                     |       | Analysis Date: | 03/03         | 3/10  | ,                    |  |  |
| Gross Alpha/Beta E | PA 900          |         | pCi/L |                     | 900.0 | MOD            |               | F0C0  | 30000-110C           |  |  |
| Gross Alpha        | 49.4            | 49.2    |       | 5.4                 |       | 0.9            |               | 100   | (62 - 134)           |  |  |
|                    | Batch #:        | 0062110 |       |                     |       | Analysis Date: | 03/08         | 3/10  |                      |  |  |
| Gross Alpha/Beta E | PA 900          |         | pCi/L |                     | 900.0 | MOD            |               | F0C0  | 30000-110C           |  |  |
| Gross Beta         | 68.0            | 70.0    |       | 5.9                 |       | 1.5            |               | 103   | (58 - 133)           |  |  |
|                    | Batch #:        | 0062110 |       |                     |       | Analysis Date: | 03/08         | 3/10  |                      |  |  |
| Total Uranium by K | PA ASTM 5174-9: | 1.      | pCi/L |                     | 5174- | 91             |               | FOCO  | 80000-296C           |  |  |
| Total Uranium      | 27.7            | 28.6    |       | 3.5                 |       | 0.2            |               | 103   | (90 - 120)           |  |  |
|                    | Batch #:        | 0067296 |       |                     |       | Analysis Date: | 03/12         | 2/10  |                      |  |  |
| Total Uranium by K | PA ASTM 5174-9  | 1.      | pCi/L |                     | 5174- | 91             |               | F0C0  | 80000-296C           |  |  |
| Total Uranium      | 5.54            | 5.62    |       | 0.58                |       | 0.21           |               | 101   | (90 - 120)           |  |  |
|                    | Batch #:        | 0067296 |       |                     |       | Analysis Date: | 03/12         | 710   | ,,                   |  |  |

### Laboratory Control Sample/LCS Duplicate Report

### Radiochemistry

Client Lot ID:

F0B230454

Matrix:

WATER

|                     |                            |                         |       | Total               |                      |                       | Lab                                  | Sample ID   |
|---------------------|----------------------------|-------------------------|-------|---------------------|----------------------|-----------------------|--------------------------------------|-------------|
| Parameter           | Spike Amount               | Result                  |       | Uncert.<br>(2 σ+/-) | % Yld                | % Rec                 | QC Control<br>Limits                 | Precision   |
| Radium 228 by GFF   | C EPA 904 MOD              |                         | pCi/L | 904 M               | OD                   |                       | F0B2                                 | 240000-154C |
| Radium 228<br>Spk   | 6.38<br>2 6.38<br>Batch #: | 5.73<br>6.46<br>0055154 |       | 0.72<br>0.79        | 101<br>96<br>Analysi | 90<br>101<br>s Date:  | (60 - 142)<br>(60 - 142)<br>03/12/10 | 12 %RPD     |
| SR-90 BY GFPC EP    | A-905 MOD                  |                         | pCi/L | 905 M               | IOD CO               |                       | F0B2                                 | 240000-155C |
| Strontium 90 Spk    | 6.79<br>2 6.79<br>Batch #: | 7.04<br>7.20<br>0055155 |       | 0.80<br>0.80        | 84<br>87<br>Analysi  | 104<br>106<br>s Date: | (80 - 130)<br>(80 - 130)<br>03/05/10 | 2 %RPD      |
| Radium 226 by EP    | A 903.0 MOD                |                         | pCi/L | 903.0               | MOD                  |                       | F0B2                                 | 240000-153C |
| Radium (226)<br>Spk | 11.3<br>2 11.3<br>Batch #: | 11.8<br>11.4<br>0055153 |       | 1.0<br>0.99         | 104<br>96<br>Analysi | 105<br>102<br>s Date: | (68 - 136)<br>(68 - 136)<br>03/19/10 | 3 %RPD      |

### MATRIX SPIKE REPORT

### Radiochemistry

Client Lot Id:

F0B230452

Matrix:

WATER

Date Sampled:

02/20/10

Date Received:

02/23/10

|                         |                 |                 | Total               |                             | m + L - 1 | QC Sample ID |                      |  |  |
|-------------------------|-----------------|-----------------|---------------------|-----------------------------|-----------|--------------|----------------------|--|--|
| Parameter               | Spike<br>Amount | Spike<br>Result | Uncert.<br>(2g +/-) | Spike Sample<br>Yld. Result | OHCELL.   | %YLD %REC    | QC Control<br>Limits |  |  |
| Gross Alpha/Beta EPA 90 | 00              |                 | pCi/L               | 900.0 MO                    | D         | F0B230452    | 2-001                |  |  |
| Gross Beta              | 71.6            | 84.5            | 7.1                 | 3.5                         | 1.0       | 113          | (54 - 150)           |  |  |
|                         | Batch #:        | 0062110         | An                  | alysis Date:                | 03/07/10  |              |                      |  |  |
| Gross Alpha/Beta EPA 90 | 00              |                 | pCi/L               | 900.0 MO                    | D         | F0B230452    | 2-001                |  |  |
| Gross Alpha             | 52.0            | 45.6            | 6.4                 | -0.12                       | 0.90      | 88           | (35 - 150)           |  |  |
|                         | Batch #:        | 0062110         | An                  | alysis Date:                | 03/07/10  |              |                      |  |  |
| TRITIUM (Distill) by El | PA 906.0 MC     | D               | pCi/L               | 906.0 MO                    | D         | F0B23045     | 1-001                |  |  |
| Tritium                 | 4520            | 4210            | 450                 | 82                          | 90        | 91           | (62 - 147)           |  |  |
|                         | Batch #:        | 0061038         | An                  | alysis Date:                | 03/03/10  |              |                      |  |  |

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off errors in calculated results.

### MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

### Radiochemistry

Client Lot ID:

F0B230452

Matrix:

WATER

Date Sampled:

02/20/10 1349

Date Received:

02/23/10 0910

| Parameter     |        |                 |                 | Total                     |          |                            |      | Total                    |            | QC Sample ID |                      |  |
|---------------|--------|-----------------|-----------------|---------------------------|----------|----------------------------|------|--------------------------|------------|--------------|----------------------|--|
|               |        | Spike<br>Amount | SPIKE<br>Result | Uncert. Spik (2 o+/-) Yld |          | Spike SAMPLE<br>Yld Result |      | Uncert.<br>(2σ +/-) % ¥1 |            | %Rec         | QC Control<br>Limits |  |
| Total Uranium | by KPA | ASTM 5          |                 | pCi/L                     | 5        | 174-91                     |      |                          | FC         | B2304        | 52-001               |  |
| Total Uranium |        | 27.7            | 28.1            | 3.4                       |          | 0.677                      | J    | 0.074                    |            | 99           | (62 - 150)           |  |
|               | Spk2   | 27.7            | 26.9            | 3.3                       |          | 0.677                      | J    | 0.074<br>Precision       | <b>n</b> : | 95<br>4      | (62 - 150)<br>%RPD   |  |
|               |        | Batch           | #: 0067296      | Ana                       | alysis d | ate:                       | 03/1 | 2/10                     |            |              |                      |  |

#### DUPLICATE EVALUATION REPORT

### Radiochemistry

Client Lot ID:

Matrix:

F0B230454

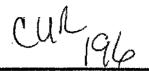
WATER

Date Sampled:

02/20/10

Date Received: 02/23/10

|                      |                  |          | Total                |          |                   |         | Total               |       | QC Sample ID |      |
|----------------------|------------------|----------|----------------------|----------|-------------------|---------|---------------------|-------|--------------|------|
| Parameter            | SAMPLE<br>Result |          | Uncert.<br>(2 o +/-) | % Yld    | DUPLICA<br>Result | œ       | Uncert.<br>(2 g+/-) | % Yld | Precisi      | lon  |
| Gamma Cs-137 & Hits  | by EPA           | 901.1    | MOD                  | pCi/L    | 901.              | 1 MOD   |                     |       | F0B230452-0  | )1   |
| Cesium 137           | -1               | U        | 11                   |          | -1.6              | Ū       | 8.4                 |       | 8            | %RPD |
| Potassium 40         | -30              | Ū        | 270                  |          | -20               | Ü       | 180                 |       | 68           | %RPD |
|                      | В                | Batch #: | 0055101              | (Sample) | 0055              | 101 (Du | uplicate)           |       |              |      |
| TRITIUM (Distill) by | EPA 9            | 06.0 M   | OD                   | pCi/L    | 906.              | 0 MOD   |                     | :     | F0B230452-0  | 01   |
| Tritium              | -79              | Ū        | 52                   |          | -46               | U       | 64                  |       | 53           | %RPD |
|                      | В                | Satch #: | 0061038              | (Sample) | 0061              | 038 (Di | uplicate)           |       |              |      |
| Gross Alpha/Beta EPA | 900              |          |                      | pCi/L    | 900.              | 0 MOD   |                     |       | F0B230452-0  | 01   |
| Gross Alpha          | -0.12            | U        | 0.90                 |          | 0.8               | U       | 1.2                 |       | 269          | %RPD |
| Gross Beta           | 3.5              | J        | 1.0                  |          | 2.12              | J       | 0.89                |       | 49           | %RPD |
|                      | B                | atch #:  | 0062110              | (Sample) | 0062              | 110 (Di | plicate)            |       |              |      |


NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

Result is greater than sample detection limit but less than stated reporting limit.

 $<sup>\</sup>sigma$  Result is less than the sample detection limit. Lot F0B230454-ITB2186



# SUBCONTRACT ORDER TestAmerica Irvine

### ITB2186

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045 Phone :(314) 298-8566

Fax: (314) 298-8757

Project Location: CA - CALIFORNIA

Receipt Temperature:

Ice: Y / N

| Analysis                | Units         | Due        | Expires                   | Interlab Price S  | urch     | Comments                                             |
|-------------------------|---------------|------------|---------------------------|-------------------|----------|------------------------------------------------------|
| Sample ID: ITB2186-02 ( | OUTFALL 009 ( | COMPOSITE) | - <b>Wat</b> s<br>Sampled | l: 02/20/10 07:36 | <b>3</b> |                                                      |
| Gamma Spec-O            | mg/kg         | 03/03/10   | 02/20/11 07:36            | \$200.00          | 50%      | Out St Louis, K-40 and CS-137 only,<br>DO NOT FILTER |
| Gross Alpha-O           | pCi/L         | 03/03/10   | 08/19/10 07:36            | \$90.00           | 50%      | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Gross Beta-O            | pCi/L         | 03/03/10   | 08/19/10 07:36            | \$90.00           | 50%      | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Level 4 Data Package    | N/A           | 03/03/10   | 03/20/10 07:36            | \$0.00            | 0%       |                                                      |
| , Radium 226-O          | pCi/L         | 03/03/10   | 02/20/11 07:36            | \$88.00           | 0%       | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Radium 228-O            | pCi/L         | 03/03/10   | 02/20/11 07:36            | \$84.00           | 0%       | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Strontium 90-O          | pCi/L         | 03/03/10   | 02/20/11 07:36            | \$140.00          | 50%      | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Tritium-O               | pCi/L         | 03/03/10   | 02/20/11 07:36            | \$80.00           | 50%      | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Uranium, Combined-O     | pCi/L         | 03/03/10   | 02/20/11 07:36            | \$100.00          | 50%      | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Containers Supplied:    |               |            |                           |                   |          |                                                      |
| 2.5 gal Poly (I)        | 500 mL Amb    | oer (J)    |                           |                   |          |                                                      |

Released By

Date/Time

Date/Time

Received By

Date/Time

| Page 1 of 2                     | Field readings: Temp $^{\circ}F = 46.8$                                 | Time of readings =  O'O'O' \( \frac{1}{2} \rightarrow \) (Comments                                                                                                                                                                               | k order.                                   | 10 Day: Normal: X  // ( )  NPDES Level IV: X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAIN OF CUSTODY FORM 77 132186 | ANALYSIS REQUIRED                                                       |                                                                                                                                                                                                                                                  |                                            | Date/Time:  19.0.10  24. Hour  28. Hour  29. Hour  48. Hour  5 Day  Norma  Date/Time:  Date/Time:  Date/Time:  Date/Time:  Date/Fig.  No Level (V: All Level IV: NPDE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CHAIN OF C                      | Project: Boeing-SSFL NPDES Routine Outfall 009 GRAB Stormwater at WS-13 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                         | Portion of Outfall 009 for this storm evem | Date/Time:  Date/Time:  Date/Time:    190.40   19.45   2.442 + 1.340     190.40   19.45   2.442 + 1.340     2.442 + 1.340     3.40.10   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14.39.0   14 |
|                                 | Client Name/Address: Project: Boeing-St.  MWH-Arcadia                   | Project Manager: Bronwyn Kelly Phone Number:  Sampler: < Tolin Few Number:  Sample Sample Conteiner of Sampling Description Matrix Type contend Description Matrix Type Contend Sampling Number:  Outfall 009 W 1L Amber 2 7/17   (626) 568-6515 | These Samples are the Grab                 | Relinquished By Date/Time:  Relinquished By Date/Time:  Relinquished By Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                              |                      |                                                                     |                                           |                                  |                |                                |              |                 | •           |             |             |                            |              |                                   |                                    |   |   |                                                             |                                                                                                    |                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |  |
|------------------------------|----------------------|---------------------------------------------------------------------|-------------------------------------------|----------------------------------|----------------|--------------------------------|--------------|-----------------|-------------|-------------|-------------|----------------------------|--------------|-----------------------------------|------------------------------------|---|---|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Page 2 of 2                  |                      |                                                                     | Comments                                  | -5                               |                |                                |              |                 |             |             |             | Unfiltered and unpreserved | analysis     | Only test if first or second rain | Filter win 24hrs of receipt at lab |   |   |                                                             |                                                                                                    | 10 Day:                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NPDES Level IV: X                      |  |
|                              |                      |                                                                     |                                           |                                  |                |                                | <u> </u>     |                 |             |             |             |                            |              |                                   |                                    |   |   |                                                             |                                                                                                    |                           | \$                        | ۷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |  |
|                              | +                    |                                                                     |                                           |                                  |                |                                |              |                 |             |             |             |                            |              |                                   |                                    |   |   | -                                                           | int.                                                                                               | 72 Hour<br>5 Days         |                           | 1<br><u>8</u><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All Level IV:                          |  |
|                              |                      |                                                                     |                                           |                                  | -              | .,                             |              |                 |             |             |             |                            |              |                                   |                                    | - |   | <br>7                                                       | ne eve                                                                                             | Check                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. G                                   |  |
|                              | ANALYSIS BEOUBED     |                                                                     |                                           |                                  |                |                                |              |                 |             | <br>        |             |                            | •            |                                   |                                    |   |   | the composite samples for Outfall 009 for this storm event. | 9 for the sar                                                                                      | Tum-around time: 24 Hour: | Sample Integrify: (Check) | Intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data Requirements: (Check)             |  |
|                              |                      | cn' bp'                                                             | als: Sp' Cd,                              | staM bevi                        | ossiC          | Tolai I                        |              |                 |             |             |             |                            | -,           | 1                                 | ×                                  | - |   | <br>hisst                                                   |                                                                                                    | N 4                       | 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                               |  |
| RM                           |                      |                                                                     |                                           | Ylicity                          | Toù            | сшэ                            |              |                 |             |             | _           |                            |              | +                                 |                                    |   |   | 9 for t                                                     | y Out                                                                                              | 2-06-8                    |                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |  |
| OT.                          |                      | -308.0), K-                                                         | յ Մւցուստ ((                              | (0. <u>1409)</u> 8<br>0 0.108) . | շշ ա           | Nadlu                          |              |                 |             |             |             |                            |              |                                   |                                    |   |   | fall 00                                                     | of 2 ft                                                                                            | 940<br>640                |                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |  |
| HAIN OF CUSTODY FORM         |                      | latoT (0.                                                           | sted esorið<br>7. 16-90 (905<br>10 (903.0 | (0'906) (8                       | :H) u          | րոյքնող                        |              |                 |             |             | ×           |                            |              |                                   |                                    |   |   | <br>les for Out                                             | C Page 1                                                                                           | Date/Time:                | 144 15                    | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -page mile                             |  |
| ž                            |                      | ela                                                                 | ·N, Perchlor                              | 20N+60                           | N ""C          |                                |              |                 |             | ×           | <u> </u>    |                            |              |                                   | -                                  |   |   | <br>samp                                                    | تر<br>اف                                                                                           | با<br>خ<br>بع             |                           | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |  |
| 9<br>F                       | ĺ                    |                                                                     |                                           | sil cong                         |                |                                | <u> </u>     | <u> </u>        | ×           | <del></del> |             |                            |              |                                   | -                                  | _ |   | osite                                                       | order                                                                                              | لمئر                      |                           | $\mathbb{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |  |
| AIN                          |                      | '94' Cn' bp'                                                        | letals: Sb, C                             | verable <i>î</i> v               | увесо          | Total I<br>IT, <sub>t</sub> gH | ×            | ×               |             |             |             |                            |              |                                   |                                    |   |   | COM                                                         | work                                                                                               | ٠<br>کې<br>د ه            |                           | / \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\setminus \setminus$                  |  |
|                              |                      |                                                                     |                                           |                                  | ***            | Bottle #                       | 2A           | 2B              | 3A, 3B      | 4A. 4B      | 5           | 6A                         | 99           |                                   | 8                                  |   |   | of 2 are the                                                | the same                                                                                           | Received By               | Received By               | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |  |
|                              |                      | IPDES<br>1 009<br>VS-13                                             | <u> </u>                                  |                                  |                | Preservative                   | HNO3         | ONH             | None        | None        | None        | None                       | None         | None                              | None                               |   | v | <br>COC Page 2 of 2 are                                     | added to                                                                                           | . j                       | 1/                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·  |  |
|                              | Project              | Boeing-SSFL NPDES Routine Outfall 009 COMPOSITE Stormwater at WS-13 | Market and the second                     | Phone Number:<br>(626) 568-6691  | (626) 568-6515 | Sampling Pate/Time             | 2/20 01/02/2 | 25to a/01/2     |             |             |             | G                          |              | -                                 | 2/22/10 OFE                        |   |   | <br>ŏ                                                       | These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. | 1 3                       |                           | 1. 10.10 1X. 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |  |
| g                            | 4                    | 8 <b>% 3</b> 8                                                      |                                           | 년 86 년                           | 99             | # of<br>Bast                   | 12           | 2               | 2           | 2           | -           | 1                          | ·            |                                   | 12,                                | - |   |                                                             |                                                                                                    | Date/Time:                | Date/Time:                | James | }                                      |  |
| n 6/29/(                     |                      | _                                                                   | h Doal                                    | ₹.€                              |                |                                |              |                 | -           |             |             |                            |              |                                   | <del> </del>                       |   |   |                                                             |                                                                                                    |                           | Da                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                      |  |
| ica versio                   |                      | Suite 200                                                           | ct Josepi                                 | : Bronwyn Kelly                  |                | e Container                    | 1L Poty      | 1L Poty         | 1L Amber    | 500 mL Poly | 500 mL Poly | 2.5 Gal Cube               | 500 ml Amber | - Carroly                         | 1L Poly                            |   |   |                                                             |                                                                                                    | J.                        |                           | 1 0000 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  |
| meri                         | Addres               | dia<br>a Ave,<br>91007                                              | Conta                                     | lanager: Bronv                   | ゔ<br>i         | Sample<br>Matrix               | ¥            | W               | Λħ          | м           | ΑΛ          | M                          |              | ·M                                | M                                  |   |   |                                                             |                                                                                                    | 4                         |                           | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |  |
| Test America version 6/29/09 | Client Name/Address: | MWW-Arcadia<br>618 Michillinda Ave, Suite 200<br>Arcadia, CA 91007  | Test America Contact: Joseph Doak         | Project Manager: Bronwyn Kelly   | r indiano      | Sample .<br>Description        | Outfall 009  | Outfall 009 Dup | Outtall 009 | Outfall 009 | Outfall 009 | Outfall 009                |              | outfall 009                       | Outfall 009                        |   |   |                                                             |                                                                                                    | Helinquished By           | Relinquished By           | Selfnourished By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |  |

| CONDITION UPON RECEIPT FORM Clien: The Think E Quote No: The Jabs Internation  Shipper: Pedix UPS DELL Courier Client Other: Multiple Packages: Y N  Shipping # (s):*  1. Lass Internation  Shipping # (s):*  1. Lass Internation  Shipping incs correspond to Numbered Sample Temp lines  """ For your and "N" for no and "N"." for not applicable:  1. Y N  Numbered shipping lines correspond to Numbered Sample Temp lines  """ For your and your for your appear to be seen'ved in 4°C × 2°C. If not, note contains below. Temperature verticates does NOT affect the following. Metals-Liquid or Rad tester-Liquid or Solids  2. Y N N/A  Do custodly seals on cooler papear to be sample Temp lines  """ Were contrast of cooler flisked after operation below. The papear to be sample to exceed with?  Were contrast of cooler flisked after operating, but before unpacking?  3. N N Sample received with Chain of Custody match sample to 9  N N/A  Sample received with Chain of Custody match sample to be on the container(s)?  N N Sample Text on the container(s)?  N N N/A  Sample received with Chain of Custody match sample to be on the container(s)?  N N Is a sample to on the container(s)?  N N Is a sample to on the container(s)?  N N Is a sample to on the container(s)?  N N Is a sample to on the container(s)?  N N Is a sample to on the container(s)?  N N N/A  N Sample Text on and "N/A."  Was sample to Volve to the container secreted must be verified. EXCEPT VOA, TOX and solts.  The desired to the container secreted must be verified. EXCEPT VOA, TOX and solts.                                                                                                                                                                                                                                                                                                                                                                                | TestAme                                  | erica Loti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #(s): _      | 100ds                | 5045 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | <del></del>          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|
| Client: A JUNI COCKER Not: TB2/B5   TTB2/B6   196  Initiated By: NO Date: 2/3/10   Time: D9/D  Shipping Information  Shipping Information  Shipping If (c):*  1. LB9/1/33 LUS9 6. 1. 2. 6. 7. 2. 7. 2. 7. 2. 7. 2. 7. 3. 8. 8. 9. 4. 9. 5. 10. 5. 10. 5. 10. 5. 10. 5. 10. 5. 10. 5. 10. 5. 10. 10. 5. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                      |
| Client: A JUNI COCKER Not: TB2/B5   TTB2/B6   196  Initiated By: NO Date: 2/3/10   Time: D9/D  Shipping Information  Shipping Information  Shipping If (c):*  1. LB9/1/33 LUS9 6. 1. 2. 6. 7. 2. 7. 2. 7. 2. 7. 2. 7. 3. 8. 8. 9. 4. 9. 5. 10. 5. 10. 5. 10. 5. 10. 5. 10. 5. 10. 5. 10. 5. 10. 10. 5. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| Quote No: TB2185 ITB2186  Date: 203/0 Time: 09/0  Shipping B (s)*  Shipping B (s)*  Sample Temperature (s):**  1. 42892133 4069 6. 1. 2. 6. 2. 7. 2. 7. 3. 8. 3. 8. 4. 9. 4. 9. 5. 10. **Sample Temperature (s):**  Numbrind shipping lines correspond to Numbered Sample Temp lines vertices does NOT affect the following: Meeshel Judie or Solids Jonathian Circle "y" for yes, "Y" for no and "NA" for not applicable):  1. YN Are there custedly seals present on the cooler?  2. YNNA Do custedly seals on cooler appear to be go yn NNA for many seals on cooler appear to be go yn NNA was sample received with Chain of Custedly NN Sample Volume sample UN to be sample Volume sample UN to be sample Volume sample UN to be sample Volume sufficient for 14, YN NA Was Sample received with containers?  NN Is assumple volume sufficient for 14, YN NA Was Internal COGNOrtishare received?  NN Is assumple volume sufficient for 14, YN NA Was Internal COGNOrtishare received?  NN Is assumple volume sufficient for 14, YN NA Was Internal COGNOrtishare received?  NN Is assumple volume sufficient for 14, YN NA Was Internal COGNOrtishare received?  NN Is assumple Volume sufficient for 14, YN NA Was Internal COGNOrtishare received?  NN Is assumple volume sufficient for 14, YN NA Was Internal COGNOrtishare received?  NN Is assumple Volume to the containers received man be verified, EXCEPT VOA, TOX and solu.  OUTCOMER THAN HER SON SAR REQUIRED TO A VIEW THE INITIAL AND THE DATE NATION THE AND THE  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            | ·····                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                       |                      |
| COCCRFA No: TTB2/B5 / TTB2/B6  Intritated By: NO Date: 2/23/\times Time: 09/\times  Shipper: RedEx UPS DEL Courier Client Other: Multiple Packages: Y N  Shipping # (9):*  Shipping # (9):*  Shipping # (9):*  1. 4289133 4049 6. 1. 2 6. 2. 7. 3. 8. 3. 8. 4. 9. 5. 10. **Sample Temperature (s):**  1. 10. **Sample must be received at 4°C-2 2°C-1 find, note contents below. Temperature variance does NOT affect the following. Meaks: Aquid or Nat reser: Jupide or Solids  Time: 09/\times  **Sample from the Company of the Course of Note of the Course of Note of No |                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · -          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| Shipper: FedEx UPS DHL Courier Client Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COC/RFA No:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 196                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| Shipping # (s):*  1. US QLISS \$\frac{1}{2}\$\$ UPS DHL Courier Client Other: Multiple Packages: Y N hipping # (s):*  1. USQLISS \$\frac{1}{2}\$\$ Sample Temperature (s):**  1. USQLISS \$\frac{1}{2}\$\$ Sample Temperature (s):**  1. USQLISS \$\frac{1}{2}\$\$ Sample Temperature (s):**  1. USQLISS \$\frac{1}{2}\$\$ Sample \$\frac{1}{2}\$\$ Sample Temperature (s):**  2. 7. 2. 7. 3. 8. 9. 4. 9. 5. 10.  Numbered shipping lines correspond to Numbered Sample Temp lines versioned toes NOT affect the following: Metale-Liquid or Rad tests-Liquid or Rad tests-Liquid or Rad tests-Liquid or Solids cooler?  2. YNNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |                      | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ Time: <u>09</u>       | 70                   |
| Sample Temperature (s).**  1. #B9 1/33 4069 6. 1. 6.  2. 7.  3. 8. 3. 8.  4. 9. 4. 9.  1. 10.  Numbered shipping lines correspond to Numbered Sample Temp lines  Sample must be received at 4°C ± 2°C. If not, note contents below. Temperature variance does NOT affect the following: Metale-Liquid or Rad tests-Liquid or Solids  10. YN NIA Are there custody seals on cooler appear to be lampered with?  2. YN NNA Do custody seals on cooler appear to be lampered with?  3. DN were contents of cooler frisked after opening, but before unpacking?  4. YN NIA Does the Chain of Custody metals capture to be lampered with Chain of Custody note to gample received with proper pH? (If not, make note below)  5. YN NIA Does the Chain of Custody metals appear to be sample ID's on the container(s)?  6. YN Was sample received with Chain of 11. YN Sample received in proper containers?  7. N Is a sample round sample ID's on the containers received must be verified, EXCEPT VOA, TOX and solls. Sample received with proper phi? (If not, male note below)  3. Sample round in a container (s)?  6. YN Was sample received with Chain of 12. YN NIA Was Internal COOWorkshare received?  7. N Is a sample volume sufficient for 14. YN NIA Was PH taken by original TestAmerica lab? analysis?  6. YN Was sample received with Proper phi? (If ver, note sample ID's below)  4. YN NIA Was PH taken by original TestAmerica lab?  6. YN Was sample received with Proper phi? (If ver, note sample ID's below)  6. YN Was sample received with Chain of 14. YN NIA Was PH taken by original TestAmerica lab?  6. YN Was sample received with Proper phi? (If ver, note sample ID's below)  6. YN NIA Was Internal COOWorkshare received?  7. N Is a sample volume sufficient for 14. YN NIA Was PH taken by original TestAmerica lab?  6. YN NIA Was PH taken by original TestAmerica lab?  6. YN NIA Was PH taken by original TestAmerica lab?  6. YN NIA Was Samples on hold until: Original TestAmerica lab?  6. YN NIA Was Samples on hold until: Original TestAmerica lab?  6. YN NIA Was Samples on ho | Shinner (F                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dultinia Daalmaa        | v Or                 |
| 1. \$4389 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | Sacrification of the country of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iit O        | mer.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| 2. 7. 2. 7. 3. 8. 3. 8. 4. 9. 4. 9. 5. 10.  Numbered shipping lines correspond to Numbered Sample Temp lines  ***Sample must be received at 4*°C * 2*°C- If not, note contents below. Temperature variance does NOT affect the following. Metals-Liquid or Rad tests: Liquid or Rad tests: |                                          | 33 4069 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                       |                      |
| 8. 3. 8. 4. 9. 4. 9. 5. 10. **Sample must be received at 4°C ± 2°C- If not, note contents below. Temperature variance does NOT affect the following: Metals-Liquid or Rad tests- Liquid or Solids Condition (Cicle *Y* for res, *N** for not and *NA** for not applicable): 1. YN Are there existed y seals present on the cooler? 2. YN N/A Do custed y seals on cooler appear to be tampered with? 3. YN Were contents of cooler fisked after opening, but before unpacking? 4. YN Sample received with Chain of Custed y? 5. YN N/A Sample received with Chain of Custed y? 6. YN N/A Sample received broken? 7. YN Was sample received broken? 8. YN Was sample received in proper containers? 8. YN Was sample to be container(s)? 9. YN N/A Sample received in proper containers? 9. YN N/A Sample received broken? 9. YN N/A Was Internal COO Workshare received? 9. YN N/A Was Internal COO Wor |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| 4. 9. 5. 10.  Numbered shipping lines correspond to Numbered Sample Temp lines  **Sample must be received at 4°C ± 2°C. If not, note contents below. Terapenture variance does NOT affect the following: Metals-Liquid or Rad tests. Liquid or Salids or Solids of Solids (Circle "Y" for yes, "N" for no and "N/A" for not applicable):  1. YN Are there custody seals present on the cooler?  2. YNN/A Do custody seals on cooler appear to be tampered with?  3. YN Were contents of cooler frisked after opening, but before unpacking?  4. YN N/A Sample received with Chain of Custody match sample ID's on the containers (s)?  5. YN N/A Does the Chain of Custody match sample ID's on the containers (s)?  6. YN Was sample received broken?  7. YN Was sample received broken?  8. YN N/A Was internal COOWorkshare received?  9. YN N/A Was internal COOWorkshare received?  11. YN N/A Was plit taken by original TestAmerica lab?  12. YN N/A Was plit taken by original TestAmerica lab?  13. YN N/A Was plit taken by original TestAmerica lab?  14. YN N/A Was plit taken by original TestAmerica lab?  15. YN Was plit taken by original TestAmerica lab?  16. YN Was plit taken by original TestAmerica lab?  16. YN Was plit taken by original TestAmerica lab?  17. YN N/A Was plit taken by original TestAmerica lab?  18. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken by original TestAmerica lab?  19. YN N/A Was plit taken |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| **Sample must be received at 4°C ± 2°C- If not, note contents below. Temperature variance does NOT affect the following: Metals-Liquid or Rad tests-Liquid or Rad test |                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| Numbered shipping lines correspond to Numbered Sample Temp lines  **Asample must be received at 4°C ± 2°C. If not, note contents below. Temperature variance does NOT affect the following: Metals-Liquid or Rad tests-Liquid or Solids or Circle °Y" for yes, "N" for no and "N/A" for not applicable):  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| **Sample(s) on hold until:    Order   Park   For yes, "N" for no and "NA" for not applicable):   Are there custody seals present on the cooler?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **San        | nple must be receive | at 4°C ± 2°C- If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nat, note contents belo | w. Temperature       |
| Are there custody seals present on the cooler?  Are there custody seals present on the cooler?  Do custody seals on cooler appear to be tampered with?  Were contents of cooler fisked after opening, but before unpacking?  Were contents of cooler fisked after opening, but before unpacking?  No. Sample received with Chain of Custody?  No. Sample received with Chain of Custody?  No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. Does the Chain of Custody match sample received broken?  No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. No. No. Does the Chain of Custody match sample ID's on the containers?  No. No. No. No. Does the Chain of Custody match sample ID's not the custody match sample ID's below?  No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | varian       | ce does NOT affect   | the following: Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | etals-Liquid or Rad tes | ts- Liquid or Solids |
| tampered with?  Were contents of cooler frisked after opening, but before unpacking?  No Sample received with Chain of Oustody?  Sample received with Chain of Custody?  No N/A Sample received with Chain of Custody match sample ID's on the container(s)?  No N/A Does the Chain of Custody match sample ID's on the container(s)?  No N/A Was ample received broken?  No Was sample received broken?  No N/A Was Internal COO Workshare received?  No N/A Was Internal COO Workshare received?  No N/A Was pH taken by original TestAmerica lab? For Obe AL (Pantox, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and solls. Totes:  Let Let Lo Received Action:  Client Contact Name:  Sample(s) processed "as is"  Sample(s) on hold until:  If released, notify:  Date:  D | J                                        | Are there custody seals present on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.           | YN                   | Are there cus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tody seals present      | on bottles?          |
| opening, but before unpacking?  A. (Y) N Sample received with Chain of Custody?  Does the Chain of Custody?  N N/A Does the Chain of Custody match sample ID's on the container(s)?  N N/A Sample received in proper containers?  Headspace in VOA or TOX liquid samples? (if Yes, note sample ID's below)  Was sample ID's on the container(s)?  N N/A Was Internal COC Workshare received?  N N/A Was pH taken by original TestAmerica lab? For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and solls.  Rotes:  Lag for Does the Chain of Custody match sample ID's below)  Informed by:  Sample volume sufficient for 14. Y N N/A Was pH taken by original TestAmerica lab? For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and solls.  Rotes:  Lag for Does the Chain of Custody match sample in the Company of the  | 2. YNN/A                                 | tampered with?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,           | Y N (N/A)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ear to be            |
| Sample received with Chain of Custody?  Does the Chain of Custody?  Sample received in proper containers?  N N/A Does the Chain of Custody match sample ID's on the container(s)?  N N/A Sample ID's on the container(s)?  N Was sample ID's on the container(s)?  N Was sample received broken?  N Was sample received broken?  N Was sample received broken?  N Was Internal COO Workshare received?  N Was pH taken by original TestAmerica lab?  For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and soils.  Rotes:  Lay for Do Gallerian Allerian Was phu Was PH taken by original TestAmerica lab?  For Do Gallerian Allerian Was phus was Lawrenced with the verified of the containers.  Client Contact Name:  Sample(s) processed "as is"  Sample(s) processed "as is"  Sample(s) on hold until:  If released, notify:  Dote:  Dote: | 3. 🕎 N                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.          | Y N N/A              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | per pH1? (If not,    |
| Sample (D's on the container(s)?  6. Y N Was sample received broken?  7. N Is sample volume sufficient for analysis?  For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and soits.  Notes:    Corrective Action:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4. (Y) N                                 | Sample received with Chain of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11. (        | УN                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ainers?              |
| Is sample volume sufficient for analysis?  For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and soils.  Notes:  Let Jos Doesense Sample(s) processed "as is"  Sample(s) processed "as is"  Sample(s) on hold until:  If released, notify:  Date:  Date: | 5. (Y) N N/A                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.          | Y N WA               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | uid samples?         |
| analysis?    14.   Y N N N   Was pH taken by original TestAmerica lab?  For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and soils.    Jay for 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6. Y (N)                                 | Was sample received broken?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.          | Y) N N/A             | Was Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COC Workshare           | received?            |
| Notes:  Let Jos 20 business day pur workstries. Fire 02-23-/2  Corrective Action:  Client Contact Name:  Sample(s) processed "as is"  Sample(s) on hold until:  If released, notify:  roject Management Review:  Date:  Date:  02-25-/0  HIS FORM MUST BE COMPLETED AT THE TIME THE ITEMS ARE BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMBONE OTHER THAN HE INITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | analysis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-11         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | America lab?         |
| Joy for 20 business daup pur workship. The 02-23/of client Contact Name:    Client Contact Name:   Informed by:     Sample(s) processed "as is"     Sample(s) on hold until:   If released, notify:     troject Management Review:   Date:   02-25-70     HIS FORM MUST BE COMPLETED AT THE TIME THE ITEMS ARE BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMEONE OTHER THAN HE INITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | ANL, Sandia) sites, pH of ALL containers received m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ust be v     | erified, EXCEPT V    | OA, TOX and soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S.                      |                      |
| Orrective Action: Client Contact Name: Sample(s) processed "as is" Sample(s) on hold until: If released, notify: toject Management Review: Date: Date: Date: Date: Date: D2-25-70  HIS FORM MUST BE COMPLETED AT THE TIME THE ITEMS ARE BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMBONE OTHER THAN HE INITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | voies.                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                      | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                      |
| Client Contact Name:    Sample(s) processed "as is"   Sample(s) on hold until:   If released, notify:   toject Management Review:   Date:   O2 - 25 / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Day for                                | e do oceseres day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pe           | a work               | Sures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 75ec                  | 02-23-10             |
| Client Contact Name:    Sample(s) processed "as is"   Sample(s) on hold until:   If released, notify:   toject Management Review:   Date:   O2 - 25 / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| Client Contact Name:    Sample(s) processed "as is"   Sample(s) on hold until:   If released, notify:   toject Management Review:   Date:   O2 - 25 / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| Client Contact Name:    Sample(s) processed "as is"   Sample(s) on hold until:   If released, notify:   toject Management Review:   Date:   O2 - 25 / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ············ |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1                    |
| Client Contact Name:    Sample(s) processed "as is"   Sample(s) on hold until:   If released, notify:   toject Management Review:   Date:   O2 - 25 / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | The state of the s |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ,                    |
| Client Contact Name:    Sample(s) processed "as is"   Sample(s) on hold until:   If released, notify:   toject Management Review:   Date:   O2 - 25 / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| Client Contact Name:    Sample(s) processed "as is"   Sample(s) on hold until:   If released, notify:   toject Management Review:   Date:   O2 - 25 / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u></u>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <u> </u>             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                      |
| Client Contact Name:    Sample(s) processed "as is"   Sample(s) on hold until:   If released, notify:   toject Management Review:   Date:   O2 - 25 / O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Corrective Action:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | ···                  |
| Sample(s) on hold until:  If released, notify:  Date:  Dat | Client Contact N                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1          | nformed by:          | Negrous and the contract of th |                         |                      |
| toject Management Review:  Date:  O2-25-70  HIS FORM MUST BE COMPLETED AT THE TIME THE ITEMS ARE BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMEONE OTHER THAN HE INITIATOR; THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ifrele       | ased, notify:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                      |
| HEINITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      | 02-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 510                     |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HIS FORM MUST BE C<br>HE INITIATOR, THEN | THAT PERSON IS REQUIRED TO APPLY THEIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . INITIA     | L AND THE DATE       | NEXT TO THAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TEM.                    | 1964 15              |



# **APPENDIX G**

# **Section 43**

Outfall 009 – February 27 & 28, 2010 MEC<sup>X</sup> Data Validation Report





# DATA VALIDATION REPORT

# **Boeing SSFL NPDES**

SAMPLE DELIVERY GROUP: ITB2835

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITB2835 Project Manager: B. Kelly

Project Manager: B. Kelly Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

| Client ID                  | Laboratory ID | Sub-<br>Laboratory ID                   | Matrix | Collected               | Method                                                                                                                               |
|----------------------------|---------------|-----------------------------------------|--------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Outfall 009<br>(Composite) | ITB2835-02    | G0C020510-<br>001,<br>F0C020462-<br>001 | Water  | 2/28/2010<br>5:23:00 AM | ASTM 5174-91, 200.8, 200.8 (Diss),<br>245.1, 245.1 (Diss), 1613B, 900.0<br>MOD, 901.1 MOD, 903.0 MOD,<br>904 MOD, 905 MOD, 906.0 MOD |

## **II. Sample Management**

No anomalies were observed regarding sample management. A portion of the samples in several SDGs were received at ambient temperature at TestAmerica-St. Louis; however, the reviewer was unable to determine if the sample in ITB2835 was received at ambient temperature. Due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at TA-West Sacramento and TestAmerica-St. Louis. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

1

# **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

# **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of standards used for the calibration was incorrect                    |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| Е         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| 1         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

# **Qualification Code Reference Table Cont.**

| D         | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р         | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ       | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *11, *111 | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

#### **III. Method Analyses**

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 2, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - O GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - o Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had a detect between the EDL and the RL for total PeCDD reported as an EMPC. The sample result for total PeCDD was also comprised of the same EMPC peak as the method blank total, and was therefore qualified as nondetected, "U," at the level of the EMPC.

• Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. The EMPC qualified as nondetected for method blank contamination was not further qualified as an EMPC. Any isomers reported as EMPCs were qualified as estimated nondetects, "UJ," at the level of the EMPC. Any total results including EMPC peaks were qualified as estimated, "J." Any detects reported below the EDL, or between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

#### B. EPA METHODS 200.8 and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 5, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC<sup>x</sup> Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995.
The CCV recoveries bracketing the cadmium analyses were above the control limit;
however, no qualifications were required as cadmium was not detected. All initial and all
remaining continuing calibration recoveries were within 90-110% for the ICP-MS metals
and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70130%.

- Blanks: Dissolved copper was detected in the method blank at 0.606 μg//L; therefore, dissolved copper detected in the sample was qualified as nondetected, "U," at the level of contamination. Method blanks and CCBs had no detects.
- Interference Check Samples: ICSA/B analyses were performed only for the dissolved analyses. Recoveries were within 80-120%. Cadmium and copper were detected in the ICSA, but the reviewer was unable to determine if the detects were due to low-level contamination of the ICSA solution. There were no target compounds present in the ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration. Copper was not bracketed by an internal standard of lower mass; therefore, the copper result in the sample was qualified as estimated, "J," for detects and, "UJ," for nondetects.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

Copper was detected in the total fraction at a concentration greater than that in the dissolved fraction; however, due to method blank contamination, total copper was qualified as nondetected.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 7, 2010

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: Aliquots for gross alpha and gross beta and total uranium were prepared beyond the five-day holding time for unpreserved aqueous samples; therefore, the results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. The tritium sample was analyzed within 180 days of collection. Aliquots for the remaining analytes were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, the detect for gross alpha was qualified as estimated, "J." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

Blanks: Total uranium was detected in the method blank at 0.315 pCi/L; therefore, the
detects total uranium was qualified as nondetected, "U," at the reporting limit. Tritium and
radium-228 were also detected in the method blanks but neither were detected in the site
sample. There were no other analytes detected in the method blanks or the KPA CCBs.

- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs (radium-226, radium-228, strontium-90) were within laboratory-established control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for tritium, gross alpha/gross beta, cesium-137, and potassium-40. Either the RPDs were within the laboratory-established control limits or the analytes were nondetected in both the sample and the duplicate.
- Matrix Spike/Matrix Spike Duplicate: Matrix spike analyses were performed for gross alpha and gross beta. The recoveries were within the laboratory-established control limits. Method accuracy for the remaining analytes was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. According to the case narrative, total uranium was analyzed at a dilution due to matrix interference. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

The reviewer noted that the total uranium preparation log was not signed as reviewed.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms ITB2835

| Analysis Metho               | d ASTN                                     | 1 5174-                | .91         |                         |                 |                  |                         |                     |
|------------------------------|--------------------------------------------|------------------------|-------------|-------------------------|-----------------|------------------|-------------------------|---------------------|
| Sample Name                  | Outfall 009 (0                             | Composite              | e) Matr     | ix Type:                | WATER           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name:             | ITB2835-02                                 | Sam                    | ple Date:   | 2/28/2010               | 0 5:23:00 AM    | I                |                         |                     |
| Analyte                      | CAS No                                     | Result<br>Value        | RL          | MDL                     | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Uranium                | 7440-61-1                                  | ND                     | 1.39        | 0.43                    | pCi/L           | Jb               | UJ                      | B, H                |
| Analysis Metho               | ed EPA                                     | 200.8                  |             |                         |                 |                  |                         |                     |
| Sample Name                  | Outfall 009 (0                             | Composite              | e) Matr     | іх Туре:                | Water           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name:             | ITB2835-02                                 | Sam                    | ple Date:   | 2/28/2010               | 0 5:23:00 AM    | I                |                         |                     |
| Analyte                      | CAS No                                     | Result<br>Value        | RL          | MDL                     | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Antimony                     | 7440-36-0                                  | 1.3                    | 2.0         | 0.30                    | ug/l            | Ja               | J                       | DNQ                 |
| Cadmium                      | 7440-43-9                                  | 0.13                   | 1.0         | 0.10                    | ug/l            | Ja               | J                       | DNQ                 |
| Copper                       | 7440-50-8                                  | 6.8                    | 2.0         | 0.50                    | ug/l            | В                | J                       | *III                |
| Lead                         | 7439-92-1                                  | 8.9                    | 1.0         | 0.20                    | ug/l            |                  |                         |                     |
| Thallium                     | 7440-28-0                                  | ND                     | 1.0         | 0.20                    | ug/l            |                  | U                       |                     |
| Analysis Metho               | d EPA                                      | 200.8-I                | <i>Diss</i> |                         |                 |                  |                         |                     |
| Sample Name                  | Outfall 009 (                              | Composite              | e) Matr     | ix Type:                | Water           | 1                | alidation Le            | vel: IV             |
| Lab Sample Name:             | ITB2835-02                                 | Sam                    | ple Date:   | 2/28/2010               | 0 5:23:00 AM    | I                |                         |                     |
| Analyte                      | CAS No                                     | Result<br>Value        | RL          | MDL                     | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Antimony                     | 7440-36-0                                  | 1.3                    | 2.0         | 0.30                    | ug/l            | Ja               | J                       | DNQ                 |
| Cadmium                      | 7440-43-9                                  | ND                     | 1.0         | 0.10                    | ug/l            | С                | U                       |                     |
| Copper                       | 7440-50-8                                  | ND                     | 2.7         | 0.50                    | ug/l            |                  | UJ                      | В, *Ш               |
| Lead                         | 7439-92-1                                  | 0.92                   | 1.0         | 0.20                    | ug/l            | Ja               | J                       | DNQ                 |
| Thallium                     | 7440-28-0                                  | ND                     | 1.0         | 0.20                    | ug/l            |                  | U                       |                     |
| Analysis Metho               | ed EPA                                     | 245.1                  |             |                         |                 |                  |                         |                     |
|                              | Outfall 009 (Composite) Matrix Type: Water |                        |             |                         |                 | 7                | alidation Le            | vel: IV             |
| Sample Name                  |                                            |                        |             |                         |                 | г                |                         |                     |
| Sample Name Lab Sample Name: | ITB2835-02                                 | Sam                    | ple Date:   | 2/28/2010               | J 5:23:00 AM    | l                |                         |                     |
| _                            | ITB2835-02 <b>CAS No</b>                   | Sam<br>Result<br>Value | nple Date:  | 2/28/2010<br><b>MDL</b> | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |

Friday, April 09, 2010 Page 1 of 4

# Analysis Method EPA 245.1-Diss

| Commis Nomes                                                                       | Outfall 000 (C                                                                                 | 'ammaaita                                                         | ) Motri                             | v Type                                                         | Water                                                   |                       | Islidation I a                           | vol. IV                            |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|-----------------------|------------------------------------------|------------------------------------|
| Sample Name                                                                        | Outfall 009 (C                                                                                 | -                                                                 |                                     | х Туре:                                                        |                                                         |                       | alidation Le                             | vei: 1v                            |
| Lab Sample Name:                                                                   | ITB2835-02                                                                                     | Sam                                                               | ple Date:                           | 2/28/201                                                       | 0 5:23:00 AM                                            |                       |                                          |                                    |
| Analyte                                                                            | CAS No                                                                                         | Result<br>Value                                                   | RL                                  | MDL                                                            | Result<br>Units                                         | Lab<br>Qualifier      | Validation<br>Qualifier                  | Validation<br>Notes                |
| Mercury                                                                            | 7439-97-6                                                                                      | ND                                                                | 0.20                                | 0.10                                                           | ug/l                                                    |                       | U                                        |                                    |
| Analysis Metho                                                                     | od EPA 9                                                                                       | 900.0 N                                                           | 10D                                 |                                                                |                                                         |                       |                                          |                                    |
| Sample Name                                                                        | Outfall 009 (C                                                                                 | Composite                                                         | ) Matri                             | х Туре:                                                        | WATER                                                   | V                     | alidation Le                             | vel: IV                            |
| Lab Sample Name:                                                                   | ITB2835-02                                                                                     | Sam                                                               | ple Date:                           | 2/28/201                                                       | 0 5:23:00 AM                                            |                       |                                          |                                    |
| Analyte                                                                            | CAS No                                                                                         | Result<br>Value                                                   | RL                                  | MDL                                                            | Result<br>Units                                         | Lab<br>Qualifier      | Validation<br>Qualifier                  | Validation<br>Notes                |
| Gross Alpha                                                                        | 12587-46-1                                                                                     | 2.1                                                               | 3                                   | 1.5                                                            | pCi/L                                                   | Jb                    | J                                        | H, C, DNQ                          |
| Gross Beta                                                                         | 12587-47-2                                                                                     | 1.5                                                               | 4                                   | 1.1                                                            | pCi/L                                                   | Jb                    | J                                        | H, DNQ                             |
| Analysis Metho                                                                     | od EPA 9                                                                                       | 901.1 N                                                           | 10D                                 |                                                                |                                                         |                       |                                          |                                    |
| Sample Name                                                                        | Outfall 009 (C                                                                                 | Composite                                                         | ) Matri                             | х Туре:                                                        | WATER                                                   | V                     | alidation Le                             | vel: IV                            |
| Lab Sample Name:                                                                   | ITB2835-02                                                                                     | Sam                                                               | ple Date:                           | 2/28/201                                                       | 0 5:23:00 AM                                            |                       |                                          |                                    |
| Analyte                                                                            | CAS No                                                                                         | Result                                                            | RL                                  | MDL                                                            | Result                                                  | Lab                   | Validation                               |                                    |
|                                                                                    |                                                                                                | Value                                                             |                                     |                                                                | Units                                                   | Qualifier             | Qualifier                                | Notes                              |
| Cesium 137                                                                         | 10045-97-3                                                                                     | -1.6                                                              | 20                                  | 12                                                             | Dnits pCi/L                                             | <b>Qualifier</b><br>U | Qualifier<br>U                           | Notes                              |
|                                                                                    | 10045-97-3<br>13966-00-2                                                                       |                                                                   | 20                                  | 12<br>220                                                      |                                                         |                       |                                          | Notes                              |
|                                                                                    | 13966-00-2                                                                                     | -1.6                                                              | 0                                   |                                                                | pCi/L                                                   | U                     | U                                        | Notes                              |
| Potassium 40                                                                       | 13966-00-2                                                                                     | -1.6<br>-80<br>903.0 M                                            | 0<br><b>10D</b>                     |                                                                | pCi/L                                                   | U<br>U                | U                                        |                                    |
| Potassium 40  Analysis Metho                                                       | 13966-00-2<br>od EPA 9                                                                         | -1.6<br>-80<br>903.0 M                                            | 0 MOD Matri                         | 220<br><b>x Type:</b>                                          | pCi/L<br>pCi/L                                          | U<br>U                | U<br>U                                   |                                    |
| Analysis Metho Sample Name Lab Sample Name:                                        | 13966-00-2<br>od EPA 9<br>Outfall 009 (C                                                       | -1.6<br>-80<br>903.0 M                                            | 0 MOD Matri                         | 220<br><b>x Type:</b>                                          | pCi/L pCi/L WATER                                       | U<br>U                | U<br>U                                   |                                    |
| Analysis Metho Sample Name Lab Sample Name: Analyte                                | 13966-00-2<br>od EPA 9<br>Outfall 009 (C<br>ITB2835-02                                         | -1.6<br>-80<br>203.0 M<br>Composite<br>Sam<br>Result              | 0  MOD  Matri ple Date:             | 220<br><b>x Type:</b><br>2/28/201                              | pCi/L pCi/L WATER 0 5:23:00 AM Result                   | U<br>U<br>V           | U U Validation Le                        | vel: IV<br>Validation              |
| Potassium 40  Analysis Metho  Sample Name  Lab Sample Name:  Analyte  Radium (226) | 13966-00-2  od EPA 9  Outfall 009 (C  ITB2835-02  CAS No  13982-63-3                           | -1.6 -80 PO3.0 M Composite Sam Result Value                       | 0 MOD Matri ple Date: RL            | 220<br>x Type:<br>2/28/201<br>MDL                              | pCi/L pCi/L WATER 0 5:23:00 AM Result Units             | U U Lab Qualifier     | U U Validation Le Validation Qualifier   | vel: IV<br>Validation              |
| Potassium 40  Analysis Metho  Sample Name  Lab Sample Name:  Analyte  Radium (226) | 13966-00-2  od EPA 9  Outfall 009 (C  ITB2835-02  CAS No  13982-63-3                           | -1.6 -80 203.0 M Composite Sam Result Value 0.09                  | 0 MOD Matri ple Date: RL            | 220<br>x Type:<br>2/28/201<br>MDL                              | pCi/L pCi/L WATER 0 5:23:00 AM Result Units             | U U V Lab Qualifier U | U U Validation Le Validation Qualifier   | vel: IV<br>Validation<br>Notes     |
| Analysis Metho Sample Name Lab Sample Name: Analyte Radium (226) Analysis Metho    | 13966-00-2  od EPA 9  Outfall 009 (C  ITB2835-02  CAS No  13982-63-3  od EPA 9                 | -1.6 -80 PO3.0 M Composite Sam Result Value 0.09 PO4 MC Composite | 0 MOD Matri ple Date: RL 1 DD Matri | 220<br><b>Ex Type:</b> 2/28/201 <b>MDL</b> 0.13 <b>x Type:</b> | pCi/L pCi/L  WATER 0 5:23:00 AM  Result Units pCi/L     | U U Lab Qualifier U   | U U Validation Le Validation Qualifier U | vel: IV<br>Validation<br>Notes     |
| Sample Name Lab Sample Name: Analyte Radium (226) Analysis Metho Sample Name       | 13966-00-2  od EPA 9  Outfall 009 (C  ITB2835-02  CAS No  13982-63-3  od EPA 9  Outfall 009 (C | -1.6 -80 PO3.0 M Composite Sam Result Value 0.09 PO4 MC Composite | 0 MOD Matri ple Date: RL 1 DD Matri | 220<br><b>Ex Type:</b> 2/28/201 <b>MDL</b> 0.13 <b>x Type:</b> | pCi/L pCi/L WATER 0 5:23:00 AM Result Units pCi/L WATER | U U Lab Qualifier U   | U U Validation Le Validation Qualifier U | vel: IV  Validation Notes  vel: IV |

Friday, April 09, 2010 Page 2 of 4

# Analysis Method EPA 905 MOD

| Sample Name      | Outfall 009 (C | Composite)      | Matri     | x Type:  | WATER           | 7                | Validation Le           | evel: IV            |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | ITB2835-02     | Samp            | ole Date: | 2/28/201 | 0 5:23:00 AM    | Į.               |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Strontium 90     | 10098-97-2     | 0.24            | 3         | 0.39     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9       | 906.0 M         | IOD       |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | Composite)      | Matri     | x Type:  | WATER           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name: | ITB2835-02     | Samp            | ole Date: | 2/28/201 | 0 5:23:00 AM    | Į.               |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Tritium          | 10028-17-8     | 49              | 500       | 130      | pCi/L           | U                | U                       |                     |

Friday, April 09, 2010 Page 3 of 4

# Analysis Method EPA-5 1613B

| Sample Name         | Outfall 009 (C | omposite        | ) Matri   | x Type:   | WATER           | 7                | alidation Le            | vel: IV             |
|---------------------|----------------|-----------------|-----------|-----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:    | ITB2835-02     | Sam             | ple Date: | 2/28/2010 | 5:23:00 AM      | I                |                         |                     |
| Analyte             | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| 1,2,3,4,6,7,8-HpCDD | 35822-46-9     | 0.0001          | 0.000049  | 0.000014  | ug/L            |                  |                         |                     |
| 1,2,3,4,6,7,8-HpCDF | 67562-39-4     | ND              | 1.8e-005  | 0.0000043 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,4,7,8,9-HpCDF | 55673-89-7     | ND              | 0.000049  | 0.0000065 | ug/L            |                  | U                       |                     |
| 1,2,3,4,7,8-HxCDD   | 39227-28-6     | ND              | 0.000049  | 0.0000067 | ug/L            |                  | U                       |                     |
| 1,2,3,4,7,8-HxCDF   | 70648-26-9     | ND              | 0.000049  | 0.0000028 | ug/L            |                  | U                       |                     |
| 1,2,3,6,7,8-HxCDD   | 57653-85-7     | ND              | 0.000049  | 0.0000065 | ug/L            |                  | U                       |                     |
| 1,2,3,6,7,8-HxCDF   | 57117-44-9     | ND              | 0.000049  | 0.0000024 | ug/L            |                  | U                       |                     |
| 1,2,3,7,8,9-HxCDD   | 19408-74-3     | ND              | 8.1e-006  | 0.0000053 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,7,8,9-HxCDF   | 72918-21-9     | ND              | 0.000049  | 0.0000027 | ug/L            |                  | U                       |                     |
| 1,2,3,7,8-PeCDD     | 40321-76-4     | ND              | 0.000049  | 0.0000049 | ug/L            |                  | U                       |                     |
| 1,2,3,7,8-PeCDF     | 57117-41-6     | ND              | 0.000049  | 0.0000026 | ug/L            |                  | U                       |                     |
| 2,3,4,6,7,8-HxCDF   | 60851-34-5     | ND              | 2.1e-006  | 0.0000025 | ug/L            | J, Q             | UJ                      | *III                |
| 2,3,4,7,8-PeCDF     | 57117-31-4     | ND              | 0.000049  | 0.0000032 | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDD        | 1746-01-6      | ND              | 0.0000097 | 0.0000018 | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDF        | 51207-31-9     | ND              | 0.0000097 | 0.0000017 | ug/L            |                  | U                       |                     |
| OCDD                | 3268-87-9      | 0.00088         | 0.000097  | 0.000019  | ug/L            |                  |                         |                     |
| OCDF                | 39001-02-0     | 5.4e-005        | 0.000097  | 0.0000083 | ug/L            | J                | J                       | DNQ                 |
| Total HpCDD         | 37871-00-4     | 0.00029         | 0.000049  | 0.000014  | ug/L            |                  |                         |                     |
| Total HpCDF         | 38998-75-3     | 4.6e-005        | 4.6e-005  | 0.0000052 | ug/L            | J, Q             | J                       | DNQ, *III           |
| Total HxCDD         | 34465-46-8     | 5.2e-005        | 5.2e-005  | 0.0000053 | ug/L            | J, Q             | J                       | *III                |
| Total HxCDF         | 55684-94-1     | 1.4e-005        | 1.4e-005  | 0.0000024 | ug/L            | J, Q             | J                       | DNQ, *III           |
| Total PeCDD         | 36088-22-9     | ND              | 0.000049  | 0.0000049 | ug/L            | J, Ba            | U                       | В                   |
| Total PeCDF         | 30402-15-4     | ND              | 0.000049  | 0.0000021 | ug/L            |                  | U                       |                     |
| Total TCDD          | 41903-57-5     | ND              | 0.0000097 | 0.0000018 | ug/L            |                  | U                       |                     |
| Total TCDF          | 55722-27-5     | ND              | 0.0000097 | 0.0000015 | ug/L            |                  | U                       |                     |

Friday, April 09, 2010 Page 4 of 4

# **APPENDIX G**

# **Section 44**

Outfall 009 – February 27 & 28, 2010 Test America Analytical Laboratory Report





#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/27/10-02/28/10

Received: 02/27/10 Issued: 03/24/10 13:16

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

Some analytes are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

Complete final report.



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2835 Received: 02/27/10

Attention: Bronwyn Kelly

**MATRIX** 

Water

Sampled: 02/27/10-02/28/10

LABORATORY ID

ITB2835-02

**CLIENT ID** ITB2835-01 Outfall 009

Outfall 009 (Composite)

Water

Reviewed By:

**TestAmerica Irvine** 

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: ITB2835 Received: 02/27/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                              | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-01 (Outfall 009 - |           |         | Sample       | ed: 02/27/1        | 0                |                    |                   |                  |                    |
| Reporting Units: mg/l                |           |         |              |                    |                  |                    |                   |                  |                    |
| Hexane Extractable Material (Oil &   | EPA 1664A | 10C1221 | 1.3          | 4.7                | ND               | 1                  | 03/10/10          | 03/10/10         |                    |
| Grease)                              |           |         |              |                    |                  |                    |                   |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 02/27/10-02/28/10

Arcadia, CA 91007

Report Number: ITB2835 Received: 02/27/10

#### **METALS**

| Analyte                                                 | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result |             | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------------------------|-----------|---------|--------------|--------------------|------------------|-------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 (Composite) - Water) |           |         |              |                    | Sample           | ed: 02/28/1 | 10                |                  |                    |
| Reporting Units: ug/l                                   |           |         |              |                    |                  |             |                   |                  |                    |
| Mercury                                                 | EPA 245.1 | 10C0382 | 0.10         | 0.20               | ND               | 1           | 03/03/10          | 03/03/10         |                    |
| Antimony                                                | EPA 200.8 | 10C0076 | 0.30         | 2.0                | 1.3              | 1           | 03/01/10          | 03/03/10         | Ja                 |
| Cadmium                                                 | EPA 200.8 | 10C0076 | 0.10         | 1.0                | 0.13             | 1           | 03/01/10          | 03/03/10         | Ja                 |
| Copper                                                  | EPA 200.8 | 10C0076 | 0.50         | 2.0                | 6.8              | 1           | 03/01/10          | 03/02/10         | В                  |
| Lead                                                    | EPA 200.8 | 10C0076 | 0.20         | 1.0                | 8.9              | 1           | 03/01/10          | 03/02/10         |                    |
| Thallium                                                | EPA 200.8 | 10C0076 | 0.20         | 1.0                | ND               | 1           | 03/01/10          | 03/02/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Received: 02/27/10

Report Number: ITB2835

#### **DISSOLVED METALS**

| Analyte                                                 | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 (Composite) - Water) |                |         |              |                    | Sample           | ed: 02/28/1        | 10                |                  |                    |
| Reporting Units: ug/l                                   |                |         |              |                    |                  |                    |                   |                  |                    |
| Mercury                                                 | EPA 245.1-Diss | 10C0102 | 0.10         | 0.20               | ND               | 1                  | 03/01/10          | 03/01/10         |                    |
| Antimony                                                | EPA 200.8-Diss | 10C0170 | 0.30         | 2.0                | 1.3              | 1                  | 03/02/10          | 03/03/10         | Ja                 |
| Cadmium                                                 | EPA 200.8-Diss | 10C0170 | 0.10         | 1.0                | ND               | 1                  | 03/02/10          | 03/02/10         | C                  |
| Copper                                                  | EPA 200.8-Diss | 10C0170 | 0.50         | 2.0                | 2.7              | 1                  | 03/02/10          | 03/02/10         |                    |
| Lead                                                    | EPA 200.8-Diss | 10C0170 | 0.20         | 1.0                | 0.92             | 1                  | 03/02/10          | 03/02/10         | Ja                 |
| Thallium                                                | EPA 200.8-Diss | 10C0170 | 0.20         | 1.0                | ND               | 1                  | 03/02/10          | 03/02/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2835 Received: 02/27/10

Attention: Bronwyn Kelly

#### **INORGANICS**

| Analyte                                                 | Method             | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------------------------|--------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 (Composite) - Water) |                    |         |              |                    | Sample           | ed: 02/28/1        | 10                |                  |                    |
| Reporting Units: mg/l                                   |                    |         |              |                    |                  |                    |                   |                  |                    |
| Chloride                                                | EPA 300.0          | 10B3357 | 0.25         | 0.50               | 3.8              | 1                  | 02/28/10          | 02/28/10         |                    |
| Nitrate/Nitrite-N                                       | EPA 300.0          | 10B3357 | 0.15         | 0.26               | 0.42             | 1                  | 02/28/10          | 02/28/10         |                    |
| Sulfate                                                 | EPA 300.0          | 10B3357 | 0.20         | 0.50               | 5.5              | 1                  | 02/28/10          | 02/28/10         |                    |
| Total Dissolved Solids                                  | SM2540C            | 10C0449 | 1.0          | 10                 | 79               | 1                  | 03/04/10          | 03/04/10         |                    |
| Sample ID: ITB2835-02 (Outfall 009 (Co                  | omposite) - Water) |         |              |                    | Sample           | ed: 02/28/1        | 10                |                  |                    |
| Reporting Units: ug/l                                   |                    |         |              |                    |                  |                    |                   |                  |                    |
| Perchlorate                                             | EPA 314.0          | 10C0163 | 0.90         | 4.0                | ND               | 1                  | 03/02/10          | 03/02/10         |                    |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Routine Outfall 009

Report Number: ITB2835

Sampled: 02/27/10-02/28/10

Received: 02/27/10

### EPA-5 1613B

| Analyte                                | Method             | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|--------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 (C  | omposite) - Water) |       |              |                    | Sample           | d: 02/28/1         | 10                |                  |                    |
| Reporting Units: ug/L                  |                    |       |              |                    | -                |                    |                   |                  |                    |
| 1,2,3,4,6,7,8-HpCDD                    | EPA-5 1613B        | 64219 | 0.000014     | 0.000049           | 0.0001           | 0.97               | 03/05/10          | 03/09/10         |                    |
| 1,2,3,4,6,7,8-HpCDF                    | EPA-5 1613B        | 64219 | 0.000004     | 3 0.000049         | 1.8e-005         | 0.97               | 03/05/10          | 03/09/10         | J, Q               |
| 1,2,3,4,7,8,9-HpCDF                    | EPA-5 1613B        | 64219 | 0.000006     | 5 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 1,2,3,4,7,8-HxCDD                      | EPA-5 1613B        | 64219 | 0.000006     | 7 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 1,2,3,4,7,8-HxCDF                      | EPA-5 1613B        | 64219 | 0.000002     | 8 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 1,2,3,6,7,8-HxCDD                      | EPA-5 1613B        | 64219 | 0.000006     | 5 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 1,2,3,6,7,8-HxCDF                      | EPA-5 1613B        | 64219 | 0.0000024    | 4 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 1,2,3,7,8,9-HxCDD                      | EPA-5 1613B        | 64219 | 0.000005     | 3 0.000049         | 8.1e-006         | 0.97               | 03/05/10          | 03/09/10         | J, Q               |
| 1,2,3,7,8,9-HxCDF                      | EPA-5 1613B        | 64219 | 0.000002     | 7 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 1,2,3,7,8-PeCDD                        | EPA-5 1613B        | 64219 | 0.0000049    | 9 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 1,2,3,7,8-PeCDF                        | EPA-5 1613B        | 64219 | 0.000002     | 6 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 2,3,4,6,7,8-HxCDF                      | EPA-5 1613B        | 64219 |              | 5 0.000049         | 2.1e-006         | 0.97               | 03/05/10          | 03/09/10         | J, Q               |
| 2,3,4,7,8-PeCDF                        | EPA-5 1613B        | 64219 | 0.000003     | 2 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 2,3,7,8-TCDD                           | EPA-5 1613B        | 64219 | 0.000001     | 8 0.0000097        | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| 2,3,7,8-TCDF                           | EPA-5 1613B        | 64219 |              | 7 0.0000097        | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| OCDD                                   | EPA-5 1613B        | 64219 | 0.000019     | 0.000097           | 0.00088          | 0.97               | 03/05/10          | 03/09/10         |                    |
| OCDF                                   | EPA-5 1613B        | 64219 |              | 3 0.000097         | 5.4e-005         | 0.97               | 03/05/10          | 03/09/10         | J                  |
| Total HpCDD                            | EPA-5 1613B        | 64219 |              | 0.000049           | 0.00029          | 0.97               | 03/05/10          | 03/09/10         |                    |
| Total HpCDF                            | EPA-5 1613B        | 64219 |              | 2 0.000049         | 4.6e-005         | 0.97               | 03/05/10          | 03/09/10         | J, Q               |
| Total HxCDD                            | EPA-5 1613B        | 64219 |              | 3 0.000049         | 5.2e-005         | 0.97               | 03/05/10          | 03/09/10         | J, Q               |
| Total HxCDF                            | EPA-5 1613B        | 64219 |              | 4 0.000049         | 1.4e-005         | 0.97               | 03/05/10          | 03/09/10         | J, Q               |
| Total PeCDD                            | EPA-5 1613B        | 64219 |              | 9 0.000049         | 1.2e-005         | 0.97               | 03/05/10          | 03/09/10         | J, Ba              |
| Total PeCDF                            | EPA-5 1613B        | 64219 |              | 1 0.000049         | ND               | 0.97               | 03/05/10          | 03/09/10         | ,                  |
| Total TCDD                             | EPA-5 1613B        | 64219 | 0.000001     | 8 0.0000097        | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| Total TCDF                             | EPA-5 1613B        | 64219 | 0.000001     | 5 0.0000097        | ND               | 0.97               | 03/05/10          | 03/09/10         |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23 | 2-140%)            |       |              |                    | 64 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28 |                    |       |              |                    | 71 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26 |                    |       |              |                    | 59 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-1 |                    |       |              |                    | 69 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1 | 52%)               |       |              |                    | 76 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-1 | 30%)               |       |              |                    | 79 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1 | 23%)               |       |              |                    | 77 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1 | 47%)               |       |              |                    | 65 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-18. |                    |       |              |                    | 59 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-185 | 5%)                |       |              |                    | 56 %             |                    |                   |                  |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1 | 36%)               |       |              |                    | 73 %             |                    |                   |                  |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-178 | 3%)                |       |              |                    | 53 %             |                    |                   |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164%)  | )                  |       |              |                    | 58 %             |                    |                   |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%)  |                    |       |              |                    | 53 %             |                    |                   |                  |                    |
| Surrogate: 13C-OCDD (17-157%)          |                    |       |              |                    | 62 %             |                    |                   |                  |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-197) | %)                 |       |              |                    | 89 %             |                    |                   |                  |                    |
| Track Arman Strategy                   |                    |       |              |                    |                  |                    |                   |                  |                    |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: ITB2835

Sampled: 02/27/10-02/28/10

Received: 02/27/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

#### **ASTM 5174-91**

| Analyte                            | Method               | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|----------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 | (Composite) - Water) |       |              |                    | Sample           | d: 02/28/1         | 10                |                  |                    |
| Reporting Units: pCi/L             |                      |       |              |                    |                  |                    |                   |                  |                    |
| Total Uranium                      | ASTM 5174-91         | 67296 | 0.43         | 1.39               | 0.609            | 1                  | 03/10/10          | 03/12/10         | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2835 Received: 02/27/10

Attention: Bronwyn Kelly

#### **EPA 900.0 MOD**

| Analyte                          | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 0 |               |       | Sample       | ed: 02/28/1        | 10               |                    |                   |                  |                    |
| Reporting Units: pCi/L           |               |       |              |                    |                  |                    |                   |                  |                    |
| Gross Alpha                      | EPA 900.0 MOD | 68099 | 1.5          | 3                  | 2.1              | 1                  | 03/09/10          | 03/18/10         | Jb                 |
| Gross Beta                       | EPA 900.0 MOD | 68099 | 1.1          | 4                  | 1.5              | 1                  | 03/09/10          | 03/18/10         | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2835 Received: 02/27/10

Attention: Bronwyn Kelly

#### **EPA 901.1 MOD**

| Analyte                          | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 0 |               |       |              | Sample             | d: 02/28/1       | 10                 |                   |                  |                    |
| Reporting Units: pCi/L           |               |       |              |                    |                  |                    |                   |                  |                    |
| Cesium 137                       | EPA 901.1 MOD | 61272 | 12           | 20                 | -1.6             | 1                  | 03/02/10          | 03/17/10         | U                  |
| Potassium 40                     | EPA 901.1 MOD | 61272 | 220          | NA                 | -80              | 1                  | 03/02/10          | 03/17/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: ITB2835 Received: 02/27/10

#### **EPA 903.0 MOD**

| Analyte                                                 | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 (Composite) - Water) |               |       |              |                    | Sample           | d: 02/28/1         | 10                |                  |                    |
| Reporting Units: pCi/L                                  |               |       |              |                    |                  |                    |                   |                  |                    |
| Radium (226)                                            | EPA 903.0 MOD | 61258 | 0.13         | 1                  | 0.09             | 1                  | 03/02/10          | 03/18/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: ITB2835

Attention: Bronwyn Kelly

Arcadia, CA 91007

Received: 02/27/10

Sampled: 02/27/10-02/28/10

#### **EPA 904 MOD**

| Analyte                                                 | Method      | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------------------------|-------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 (Composite) - Water) |             |       |              |                    | Sample           | d: 02/28/1         | 10                |                  |                    |
| Reporting Units: pCi/L<br>Radium 228                    | EPA 904 MOD | 61259 | 0.44         | 1                  | 0.22             | 1                  | 03/02/10          | 03/18/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835

Received: 02/27/10

#### **EPA 905 MOD**

| Analyte                            | Method      | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 |             |       | Sample       | ed: 02/28/1        | 10               |                    |                   |                  |                    |
| Reporting Units: pCi/L             |             |       |              |                    |                  |                    |                   |                  |                    |
| Strontium 90                       | EPA 905 MOD | 61262 | 0.39         | 3                  | 0.24             | 1                  | 03/02/10          | 03/11/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

Received: 02/27/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: ITB2835

Attention: Bronwyn Kelly

Arcadia, CA 91007

#### **EPA 906.0 MOD**

| Analyte                                                 | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB2835-02 (Outfall 009 (Composite) - Water) |               |       |              |                    | Sample           | ed: 02/28/1        | 10                |                  |                    |
| Reporting Units: pCi/L<br>Tritium                       | EPA 906.0 MOD | 67136 | 130          | 500                | 49               | 1                  | 03/08/10          | 03/09/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2835 Received: 02/27/10

Attention: Bronwyn Kelly

#### SHORT HOLD TIME DETAIL REPORT

| Sample ID: Outfall 009 (Composite) (ITB28 | Hold Time<br>(in days)<br>35-02) - Water | Date/Time<br>Sampled | Date/Time<br>Received | Date/Time<br>Extracted | Date/Time<br>Analyzed |
|-------------------------------------------|------------------------------------------|----------------------|-----------------------|------------------------|-----------------------|
| EPA 300.0                                 | 2                                        | 02/28/2010 05:23     | 02/27/2010 17:25      | 02/28/2010 17:45       | 02/28/2010 19:37      |
| Filtration                                | 1                                        | 02/28/2010 05:23     | 02/27/2010 17:25      | 02/28/2010 15:00       | 02/28/2010 15:00      |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835

Received: 02/27/10

## METHOD BLANK/QC DATA

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                                    | Result  | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------|---------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 10C1221 Extracted: 03/10/10         | _       |                    |     |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/10/2010 (10C1221-B      | LK1)    |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | ND      | 5.0                | 1.4 | mg/l  |                |                  |      |                |     |              |                    |
| LCS Analyzed: 03/10/2010 (10C1221-BS       | 1)      |                    |     |       |                |                  |      |                |     |              | MNR1               |
| Hexane Extractable Material (Oil & Grease) | 19.3    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 96   | 78-114         |     |              |                    |
| LCS Dup Analyzed: 03/10/2010 (10C122       | 1-BSD1) |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 19.6    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 98   | 78-114         | 2   | 11           |                    |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835 Received: 02/27/10

## METHOD BLANK/QC DATA

#### **METALS**

|                                        |               | Reporting  |      |       | Spike | Source     |         | %REC   |     | RPD   | Data       |
|----------------------------------------|---------------|------------|------|-------|-------|------------|---------|--------|-----|-------|------------|
| Analyte                                | Result        | Limit      | MDL  | Units | Level | Result     | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10C0076 Extracted: 03/01/10     | )             |            |      |       |       |            |         |        |     |       |            |
|                                        |               |            |      |       |       |            |         |        |     |       |            |
| Blank Analyzed: 03/02/2010-03/03/2010  | (10C0076-BI   | LK1)       |      |       |       |            |         |        |     |       |            |
| Antimony                               | ND            | 2.0        | 0.30 | ug/l  |       |            |         |        |     |       |            |
| Cadmium                                | ND            | 1.0        | 0.10 | ug/l  |       |            |         |        |     |       |            |
| Copper                                 | 0.606         | 2.0        | 0.50 | ug/l  |       |            |         |        |     |       | Ja         |
| Lead                                   | ND            | 1.0        | 0.20 | ug/l  |       |            |         |        |     |       |            |
| Thallium                               | ND            | 1.0        | 0.20 | ug/l  |       |            |         |        |     |       |            |
| LCS Analyzed: 03/02/2010-03/03/2010 (1 | 10C0076-BS1   | )          |      |       |       |            |         |        |     |       |            |
| Antimony                               | 77.6          | 2.0        | 0.30 | ug/l  | 80.0  |            | 97      | 85-115 |     |       |            |
| Cadmium                                | 79.1          | 1.0        | 0.10 | ug/l  | 80.0  |            | 99      | 85-115 |     |       |            |
| Copper                                 | 86.5          | 2.0        | 0.50 | ug/l  | 80.0  |            | 108     | 85-115 |     |       |            |
| Lead                                   | 82.4          | 1.0        | 0.20 | ug/l  | 80.0  |            | 103     | 85-115 |     |       |            |
| Thallium                               | 84.7          | 1.0        | 0.20 | ug/l  | 80.0  |            | 106     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 03/02/2010-03/0 | 3/2010 (10C0  | 0076-MS1)  |      |       | Sou   | ırce: ITB2 | 2772-01 |        |     |       |            |
| Antimony                               | 77.9          | 2.0        | 0.30 | ug/l  | 80.0  | 0.463      | 97      | 70-130 |     |       |            |
| Cadmium                                | 75.8          | 1.0        | 0.10 | ug/l  | 80.0  | 0.142      | 95      | 70-130 |     |       |            |
| Copper                                 | 85.5          | 2.0        | 0.50 | ug/l  | 80.0  | 2.38       | 104     | 70-130 |     |       |            |
| Lead                                   | 81.1          | 1.0        | 0.20 | ug/l  | 80.0  | 0.372      | 101     | 70-130 |     |       |            |
| Thallium                               | 84.3          | 1.0        | 0.20 | ug/l  | 80.0  | ND         | 105     | 70-130 |     |       |            |
| Matrix Spike Analyzed: 03/02/2010-03/0 | 3/2010 (10C0  | 0076-MS2)  |      |       | Sou   | ırce: ITB2 | 2772-06 |        |     |       |            |
| Antimony                               | 79.4          | 2.0        | 0.30 | ug/l  | 80.0  | 0.471      | 99      | 70-130 |     |       |            |
| Cadmium                                | 76.6          | 1.0        | 0.10 | ug/l  | 80.0  | ND         | 96      | 70-130 |     |       |            |
| Copper                                 | 86.3          | 2.0        | 0.50 | ug/l  | 80.0  | 2.90       | 104     | 70-130 |     |       |            |
| Lead                                   | 77.6          | 1.0        | 0.20 | ug/l  | 80.0  | 0.300      | 97      | 70-130 |     |       |            |
| Thallium                               | 81.3          | 1.0        | 0.20 | ug/l  | 80.0  | ND         | 102     | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 03/02/2010  | -03/03/2010 ( | 10C0076-MS | SD1) |       | Sou   | ırce: ITB2 | 2772-01 |        |     |       |            |
| Antimony                               | 79.5          | 2.0        | 0.30 | ug/l  | 80.0  | 0.463      | 99      | 70-130 | 2   | 20    |            |
| Cadmium                                | 77.4          | 1.0        | 0.10 | ug/l  | 80.0  | 0.142      | 97      | 70-130 | 2   | 20    |            |
| Copper                                 | 85.6          | 2.0        | 0.50 | ug/l  | 80.0  | 2.38       | 104     | 70-130 | 0.2 | 20    |            |
| Lead                                   | 77.7          | 1.0        | 0.20 | ug/l  | 80.0  | 0.372      | 97      | 70-130 | 4   | 20    |            |
| Thallium                               | 80.9          | 1.0        | 0.20 | ug/l  | 80.0  | ND         | 101     | 70-130 | 4   | 20    |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835

Received: 02/27/10

### METHOD BLANK/QC DATA

#### **METALS**

| Analyte                                | Result     | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10C0382 Extracted: 03/03/10     | -          |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/03/2010 (10C0382-B  | LK1)       |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | ND         | 0.20               | 0.10 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/03/2010 (10C0382-BS   | 1)         |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | 7.92       | 0.20               | 0.10 | ug/l  | 8.00           |                  | 99      | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 03/03/2010 (10C | 0382-MS1)  |                    |      |       | Sou            | rce: ITB2        | 2842-01 |                |     |              |                    |
| Mercury                                | 7.64       | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 96      | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/03/2010  | (10C0382-M | SD1)               |      |       | Sou            | rce: ITB2        | 2842-01 |                |     |              |                    |
| Mercury                                | 7.71       | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 96      | 70-130         | 0.9 | 20           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835 Received: 02/27/10

## METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

| Analyte                                              | Result      | Reporting<br>Limit | MDL  | Units | Spike<br>Level     | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------------|-------------|--------------------|------|-------|--------------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 10C0102 Extracted: 03/01/10                   | _           |                    |      |       |                    |                  |      |                |     |              |                    |
| Blank Analyzed: 03/01/2010 (10C0102-B                | LK1)        |                    |      |       |                    |                  |      |                |     |              |                    |
| Mercury                                              | ND          | 0.20               | 0.10 | ug/l  |                    |                  |      |                |     |              |                    |
| LCS Analyzed: 03/01/2010 (10C0102-BS)                | 1)          |                    |      |       |                    |                  |      |                |     |              |                    |
| Mercury                                              | 8.33        | 0.20               | 0.10 | ug/l  | 8.00               |                  | 104  | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 03/01/2010 (10C0102-MS1)      |             |                    |      |       | Sou                |                  |      |                |     |              |                    |
| Mercury                                              | 7.92        | 0.20               | 0.10 | ug/l  | 8.00               | ND               | 99   | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/01/2010 (10C0102-MSD1) |             |                    |      |       | Source: ITB2742-01 |                  |      |                |     |              |                    |
| Mercury                                              | 7.89        | 0.20               | 0.10 | ug/l  | 8.00               | ND               | 99   | 70-130         | 0.5 | 20           |                    |
| Batch: 10C0170 Extracted: 03/02/10                   | _           |                    |      |       |                    |                  |      |                |     |              |                    |
| Blank Analyzed: 03/02/2010-03/03/2010 (10C0170-BLK1) |             |                    |      |       |                    |                  |      |                |     |              |                    |
| Antimony                                             | ND          | 2.0                | 0.30 | ug/l  |                    |                  |      |                |     |              |                    |
| Cadmium                                              | ND          | 1.0                | 0.10 | ug/l  |                    |                  |      |                |     |              |                    |
| Copper                                               | ND          | 2.0                | 0.50 | ug/l  |                    |                  |      |                |     |              |                    |
| Lead                                                 | ND          | 1.0                | 0.20 | ug/l  |                    |                  |      |                |     |              |                    |
| Thallium                                             | ND          | 1.0                | 0.20 | ug/l  |                    |                  |      |                |     |              |                    |
| LCS Analyzed: 03/02/2010-03/03/2010 (1               | 0C0170-BS1) |                    |      |       |                    |                  |      |                |     |              |                    |
| Antimony                                             | 78.7        | 2.0                | 0.30 | ug/l  | 80.0               |                  | 98   | 85-115         |     |              |                    |
| Cadmium                                              | 78.9        | 1.0                | 0.10 | ug/l  | 80.0               |                  | 99   | 85-115         |     |              |                    |
| Copper                                               | 81.1        | 2.0                | 0.50 | ug/l  | 80.0               |                  | 101  | 85-115         |     |              |                    |
| Lead                                                 | 79.7        | 1.0                | 0.20 | ug/l  | 80.0               |                  | 100  | 85-115         |     |              |                    |
| Thallium                                             | 82.1        | 1.0                | 0.20 | ug/l  | 80.0               |                  | 103  | 85-115         |     |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835 Received: 02/27/10

## METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

| Analyte                                                         | Result | Reporting<br>Limit | MDL  | Units              | Spike<br>Level | Source<br>Result |     | %REC<br>Limits | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------------------------------|--------|--------------------|------|--------------------|----------------|------------------|-----|----------------|------|--------------|--------------------|
| <b>Batch: 10C0170 Extracted: 03/02/10</b>                       | _      |                    |      |                    |                |                  |     |                |      |              |                    |
| Matrix Spike Analyzed: 03/02/2010-03/03/2010 (10C0170-MS1)      |        |                    |      | Sou                | rce: ITB2      | 2772-06          |     |                |      |              |                    |
| Antimony                                                        | 80.3   | 2.0                | 0.30 | ug/l               | 80.0           | 0.432            | 100 | 70-130         |      |              |                    |
| Cadmium                                                         | 92.3   | 1.0                | 0.10 | ug/l               | 80.0           | ND               | 115 | 70-130         |      |              |                    |
| Copper                                                          | 82.5   | 2.0                | 0.50 | ug/l               | 80.0           | 1.33             | 101 | 70-130         |      |              |                    |
| Lead                                                            | 77.7   | 1.0                | 0.20 | ug/l               | 80.0           | ND               | 97  | 70-130         |      |              |                    |
| Thallium                                                        | 79.7   | 1.0                | 0.20 | ug/l               | 80.0           | ND               | 100 | 70-130         |      |              |                    |
| Matrix Spike Dup Analyzed: 03/02/2010-03/03/2010 (10C0170-MSD1) |        |                    |      | Source: ITB2772-06 |                |                  |     |                |      |              |                    |
| Antimony                                                        | 80.3   | 2.0                | 0.30 | ug/l               | 80.0           | 0.432            | 100 | 70-130         | 0.02 | 20           |                    |
| Cadmium                                                         | 93.8   | 1.0                | 0.10 | ug/l               | 80.0           | ND               | 117 | 70-130         | 2    | 20           |                    |
| Copper                                                          | 83.0   | 2.0                | 0.50 | ug/l               | 80.0           | 1.33             | 102 | 70-130         | 0.7  | 20           |                    |
| Lead                                                            | 78.1   | 1.0                | 0.20 | ug/l               | 80.0           | ND               | 98  | 70-130         | 0.5  | 20           |                    |
| Thallium                                                        | 81.2   | 1.0                | 0.20 | ug/l               | 80.0           | ND               | 102 | 70-130         | 2    | 20           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835

Received: 02/27/10

## METHOD BLANK/QC DATA

#### **INORGANICS**

| Analyte                                   | Result     | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source    | %REC    | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|------------|--------------------|------|-------|----------------|-----------|---------|--------|------|--------------|--------------------|
| •                                         |            | Limit              | WIDE | Cints | Level          | Result    | /ore    | Limits | KI D | Limit        | Quanners           |
| <b>Batch: 10B3357 Extracted: 02/28/10</b> | -          |                    |      |       |                |           |         |        |      |              |                    |
| Blank Analyzed: 02/28/2010 (10B3357-Bl    | LK1)       |                    |      |       |                |           |         |        |      |              |                    |
| Chloride                                  | ND         | 0.50               | 0.25 | mg/l  |                |           |         |        |      |              |                    |
| Nitrate/Nitrite-N                         | ND         | 0.26               | 0.15 | mg/l  |                |           |         |        |      |              |                    |
| Sulfate                                   | ND         | 0.50               | 0.20 | mg/l  |                |           |         |        |      |              |                    |
| LCS Analyzed: 02/28/2010 (10B3357-BS1     | 1)         |                    |      |       |                |           |         |        |      |              |                    |
| Chloride                                  | 4.92       | 0.50               | 0.25 | mg/l  | 5.00           |           | 98      | 90-110 |      |              |                    |
| Sulfate                                   | 10.5       | 0.50               | 0.20 | mg/l  | 10.0           |           | 105     | 90-110 |      |              |                    |
| Matrix Spike Analyzed: 02/28/2010 (10B    | 3357-MS1)  |                    |      |       | Sou            | rce: ITB2 | 2835-02 |        |      |              |                    |
| Chloride                                  | 9.18       | 0.50               | 0.25 | mg/l  | 5.00           | 3.82      | 107     | 80-120 |      |              |                    |
| Sulfate                                   | 16.6       | 0.50               | 0.20 | mg/l  | 10.0           | 5.52      | 110     | 80-120 |      |              |                    |
| Matrix Spike Analyzed: 03/01/2010 (10B    | 3357-MS2)  |                    |      |       | Sou            | rce: ITB2 | 2836-02 |        |      |              |                    |
| Chloride                                  | 17.7       | 0.50               | 0.25 | mg/l  | 5.00           | 11.6      | 121     | 80-120 |      |              | M1                 |
| Sulfate                                   | 21.7       | 0.50               | 0.20 | mg/l  | 10.0           | 11.0      | 107     | 80-120 |      |              |                    |
| Matrix Spike Dup Analyzed: 02/28/2010     | (10B3357-M | SD1)               |      |       | Sou            | rce: ITB2 | 2835-02 |        |      |              |                    |
| Chloride                                  | 9.08       | 0.50               | 0.25 | mg/l  | 5.00           | 3.82      | 105     | 80-120 | 1    | 20           |                    |
| Sulfate                                   | 17.6       | 0.50               | 0.20 | mg/l  | 10.0           | 5.52      | 120     | 80-120 | 6    | 20           |                    |
| Batch: 10C0163 Extracted: 03/02/10        | _          |                    |      |       |                |           |         |        |      |              |                    |
| Blank Analyzed: 03/02/2010 (10C0163-B     | LK1)       |                    |      |       |                |           |         |        |      |              |                    |
| Perchlorate                               | ND         | 4.0                | 0.90 | ug/l  |                |           |         |        |      |              |                    |
| LCS Analyzed: 03/02/2010 (10C0163-BS)     | 1)         |                    |      |       |                |           |         |        |      |              |                    |
| Perchlorate                               | 26.2       | 4.0                | 0.90 | ug/l  | 25.0           |           | 105     | 85-115 |      |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835

Received: 02/27/10

## METHOD BLANK/QC DATA

#### **INORGANICS**

|                                         |             | Reporting |      |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|-----------------------------------------|-------------|-----------|------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                 | Result      | Limit     | MDL  | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10C0163 Extracted: 03/02/10      | -           |           |      |       |       |           |         |        |     |       |            |
| Matrix Spike Analyzed: 03/02/2010 (10Co | 0163-MS1)   |           |      |       | Sou   | rce: ITC( | 0070-01 |        |     |       |            |
| Perchlorate                             | 34.0        | 4.0       | 0.90 | ug/l  | 25.0  | 6.00      | 112     | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 03/02/2010   | (10C0163-MS | SD1)      |      |       | Sou   | rce: ITC( | 0070-01 |        |     |       |            |
| Perchlorate                             | 32.7        | 4.0       | 0.90 | ug/l  | 25.0  | 6.00      | 107     | 80-120 | 4   | 20    |            |
| Batch: 10C0449 Extracted: 03/04/10      | -           |           |      |       |       |           |         |        |     |       |            |
| Blank Analyzed: 03/04/2010 (10C0449-Bl  | LK1)        |           |      |       |       |           |         |        |     |       |            |
| Total Dissolved Solids                  | ND          | 10        | 1.0  | mg/l  |       |           |         |        |     |       |            |
| LCS Analyzed: 03/04/2010 (10C0449-BS1   | 1)          |           |      |       |       |           |         |        |     |       |            |
| Total Dissolved Solids                  | 1000        | 10        | 1.0  | mg/l  | 1000  |           | 100     | 90-110 |     |       |            |
| Duplicate Analyzed: 03/04/2010 (10C0449 | 9-DUP1)     |           |      |       | Sou   | rce: ITB2 | 2775-01 |        |     |       |            |
| Total Dissolved Solids                  | 1480        | 20        | 2.0  | mg/l  |       | 1500      |         |        | 1   | 10    |            |

%REC



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITB2835

Reporting

Sampled: 02/27/10-02/28/10

RPD

Data

Received: 02/27/10

## METHOD BLANK/QC DATA

#### **EPA-5 1613B**

Spike

Source

|                                    |            | Reporting | g         |       | Spike | Source |      | %REC   |     | KPD   | Data       |
|------------------------------------|------------|-----------|-----------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result     | Limit     | MDL       | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 64219 Extracted: 03/05/1    | .0_        |           |           |       |       |        |      |        |     |       |            |
|                                    |            |           |           |       |       |        |      |        |     |       |            |
| Blank Analyzed: 03/09/2010 (G0C05  | 50000219B) |           |           |       | Sou   | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | ND         | 0.00005   | 0.000016  | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,6,7,8-HpCDF                | ND         | 0.00005   | 0.0000034 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | ND         | 0.00005   | 0.0000055 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | ND         | 0.00005   | 0.0000048 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | ND         | 0.00005   | 0.0000025 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,6,7,8-HxCDD                  | ND         | 0.00005   | 0.0000048 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | ND         | 0.00005   | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8,9-HxCDD                  | ND         | 0.00005   | 0.0000039 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | ND         | 0.00005   | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8-PeCDD                    | ND         | 0.00005   | 0.000004  | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8-PeCDF                    | ND         | 0.00005   | 0.0000031 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | ND         | 0.00005   | 0.000002  | ug/L  |       |        |      | -      |     |       |            |
| 2,3,4,7,8-PeCDF                    | ND         | 0.00005   | 0.0000036 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDD                       | ND         | 0.00001   | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDF                       | ND         | 0.00001   | 0.0000016 | ug/L  |       |        |      | -      |     |       |            |
| OCDD                               | ND         | 0.0001    | 0.000017  | ug/L  |       |        |      | -      |     |       |            |
| OCDF                               | ND         | 0.0001    | 0.0000083 | ug/L  |       |        |      | -      |     |       |            |
| Total HpCDD                        | ND         | 0.00005   | 0.000016  | ug/L  |       |        |      | -      |     |       |            |
| Total HpCDF                        | ND         | 0.00005   | 0.0000034 | ug/L  |       |        |      | -      |     |       |            |
| Total HxCDD                        | ND         | 0.00005   | 0.0000039 | ug/L  |       |        |      | -      |     |       |            |
| Total HxCDF                        | ND         | 0.00005   | 0.000002  | ug/L  |       |        |      | -      |     |       |            |
| Total PeCDD                        | 1e-005     | 0.00005   | 0.000004  | ug/L  |       |        |      | -      |     |       | J, $Q$     |
| Total PeCDF                        | ND         | 0.00005   | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| Total TCDD                         | ND         | 0.00001   | 0.0000022 | ug/L  |       |        |      | -      |     |       |            |
| Total TCDF                         | ND         | 0.00001   | 0.0000016 | ug/L  |       |        |      | -      |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.0012     |           |           | ug/L  | 0.002 |        | 61   | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.0015     |           |           | ug/L  | 0.002 |        | 73   | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.0011     |           |           | ug/L  | 0.002 |        | 57   | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.0013     |           |           | ug/L  | 0.002 |        | 67   | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.0013     |           |           | ug/L  | 0.002 |        | 66   | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.0015     |           |           | ug/L  | 0.002 |        | 76   | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.0014     |           |           | ug/L  | 0.002 |        | 72   | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.0014     |           |           | ug/L  | 0.002 |        | 69   | 29-147 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.001      |           |           | ug/L  | 0.002 |        | 50   | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00098    |           |           | ug/L  | 0.002 |        | 49   | 24-185 |     |       |            |
|                                    |            |           |           |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager

%REC



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

RPD

Data

Report Number: ITB2835 Received: 02/27/10

Source

## METHOD BLANK/QC DATA

#### **EPA-5 1613B**

Spike

Reporting

| Analyte                            | Result       | Limit   | MDL       | Units | Level  | Result | %REC | Limits | RPD | Limit | Qualifiers |
|------------------------------------|--------------|---------|-----------|-------|--------|--------|------|--------|-----|-------|------------|
| Batch: 64219 Extracted: 03/05/10   | 0            |         |           |       |        |        |      |        |     |       |            |
|                                    | <del>_</del> |         |           |       |        |        |      |        |     |       |            |
| Blank Analyzed: 03/09/2010 (G0C05  | 0000219B)    |         |           |       | Sou    | rce:   |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0015       |         |           | ug/L  | 0.002  |        | 73   | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.00095      |         |           | ug/L  | 0.002  |        | 48   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.00094      |         |           | ug/L  | 0.002  |        | 47   | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.00081      |         |           | ug/L  | 0.002  |        | 40   | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                | 0.0021       |         |           | ug/L  | 0.004  |        | 52   | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00069      |         |           | ug/L  | 0.0008 |        | 87   | 35-197 |     |       |            |
| LCS Analyzed: 03/09/2010 (G0C0500  | 000219C)     |         |           |       | Sou    | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.000991     | 0.00005 | 0.00002   | ug/L  | 0.001  |        | 99   | 70-140 |     |       |            |
| 1,2,3,4,6,7,8-HpCDF                | 0.000953     | 0.00005 | 0.0000068 | ug/L  | 0.001  |        | 95   | 82-122 |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | 0.000998     | 0.00005 | 0.0000096 | ug/L  | 0.001  |        | 100  | 78-138 |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | 0.00105      | 0.00005 | 0.0000063 | ug/L  | 0.001  |        | 105  | 70-164 |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | 0.000993     | 0.00005 | 0.0000042 | ug/L  | 0.001  |        | 99   | 72-134 |     |       |            |
| 1,2,3,6,7,8-HxCDD                  | 0.00101      | 0.00005 | 0.0000059 | ug/L  | 0.001  |        | 101  | 76-134 |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | 0.00102      | 0.00005 | 0.0000036 | ug/L  | 0.001  |        | 102  | 84-130 |     |       |            |
| 1,2,3,7,8,9-HxCDD                  | 0.000988     | 0.00005 | 0.0000048 | ug/L  | 0.001  |        | 99   | 64-162 |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | 0.00102      | 0.00005 | 0.0000036 | ug/L  | 0.001  |        | 102  | 78-130 |     |       |            |
| 1,2,3,7,8-PeCDD                    | 0.000934     | 0.00005 | 0.0000075 | ug/L  | 0.001  |        | 93   | 70-142 |     |       |            |
| 1,2,3,7,8-PeCDF                    | 0.00101      | 0.00005 | 0.0000034 | ug/L  | 0.001  |        | 101  | 80-134 |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | 0.000967     | 0.00005 | 0.0000033 | ug/L  | 0.001  |        | 97   | 70-156 |     |       |            |
| 2,3,4,7,8-PeCDF                    | 0.00102      | 0.00005 | 0.0000037 | ug/L  | 0.001  |        | 102  | 68-160 |     |       |            |
| 2,3,7,8-TCDD                       | 0.000183     | 0.00001 | 0.000002  | ug/L  | 0.0002 |        | 91   | 67-158 |     |       |            |
| 2,3,7,8-TCDF                       | 0.000199     | 0.00001 | 0.0000017 | ug/L  | 0.0002 |        | 100  | 75-158 |     |       |            |
| OCDD                               | 0.00196      | 0.0001  | 0.000025  | ug/L  | 0.002  |        | 98   | 78-144 |     |       |            |
| OCDF                               | 0.00191      | 0.0001  | 0.000013  | ug/L  | 0.002  |        | 95   | 63-170 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00141      |         |           | ug/L  | 0.002  |        | 71   | 26-166 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00153      |         |           | ug/L  | 0.002  |        | 76   | 21-158 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.00133      |         |           | ug/L  | 0.002  |        | 67   | 20-186 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00138      |         |           | ug/L  | 0.002  |        | 69   | 21-193 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00148      |         |           | ug/L  | 0.002  |        | 74   | 19-202 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00164      |         |           | ug/L  | 0.002  |        | 82   | 25-163 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00155      |         |           | ug/L  | 0.002  |        | 77   | 21-159 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00145      |         |           | ug/L  | 0.002  |        | 72   | 17-205 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.00123      |         |           | ug/L  | 0.002  |        | 61   | 21-227 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00122      |         |           | ug/L  | 0.002  |        | 61   | 21-192 |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00165      |         |           | ug/L  | 0.002  |        | 82   | 22-176 |     |       |            |
| T                                  |              |         |           |       |        |        |      |        |     |       |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager

%REC

RPD

Data



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835 Received: 02/27/10

Source

Spike

## METHOD BLANK/QC DATA

#### **EPA-5 1613B**

Reporting

| Analyte                            | Result       | Limit   | MDL       | Units | Level  | Result | %REC | Limits | RPD  | Limit | Qualifiers |
|------------------------------------|--------------|---------|-----------|-------|--------|--------|------|--------|------|-------|------------|
| Batch: 64219 Extracted: 03/05/10   | 0            |         |           |       |        |        |      |        |      |       |            |
|                                    | _            |         |           |       |        |        |      |        |      |       |            |
| LCS Analyzed: 03/09/2010 (G0C0500  | 000219C)     |         |           |       | Sou    | rce:   |      |        |      |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.00125      |         |           | ug/L  | 0.002  |        | 63   | 13-328 |      |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.00107      |         |           | ug/L  | 0.002  |        | 53   | 20-175 |      |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.000951     |         |           | ug/L  | 0.002  |        | 48   | 22-152 |      |       |            |
| Surrogate: 13C-OCDD                | 0.00238      |         |           | ug/L  | 0.004  |        | 59   | 13-199 |      |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.000717     |         |           | ug/L  | 0.0008 |        | 90   | 31-191 |      |       |            |
| LCS Dup Analyzed: 03/09/2010 (G00  | C050000219L) |         |           |       | Sou    | rce:   |      |        |      |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00111      | 0.00005 | 0.000022  | ug/L  | 0.001  |        | 111  | 70-140 | 11   | 50    |            |
| 1,2,3,4,6,7,8-HpCDF                | 0.00104      | 0.00005 | 0.0000087 | ug/L  | 0.001  |        | 104  | 82-122 | 8.7  | 50    |            |
| 1,2,3,4,7,8,9-HpCDF                | 0.00105      | 0.00005 | 0.000013  | ug/L  | 0.001  |        | 105  | 78-138 | 4.8  | 50    |            |
| 1,2,3,4,7,8-HxCDD                  | 0.001        | 0.00005 | 0.0000071 | ug/L  | 0.001  |        | 100  | 70-164 | 5    | 50    |            |
| 1,2,3,4,7,8-HxCDF                  | 0.00104      | 0.00005 | 0.0000064 | ug/L  | 0.001  |        | 104  | 72-134 | 4.8  | 50    |            |
| 1,2,3,6,7,8-HxCDD                  | 0.00101      | 0.00005 | 0.0000068 | ug/L  | 0.001  |        | 101  | 76-134 | 0.27 | 50    |            |
| 1,2,3,6,7,8-HxCDF                  | 0.00106      | 0.00005 | 0.0000055 | ug/L  | 0.001  |        | 106  | 84-130 | 3.8  | 50    |            |
| 1,2,3,7,8,9-HxCDD                  | 0.00095      | 0.00005 | 0.0000055 | ug/L  | 0.001  |        | 95   | 64-162 | 3.9  | 50    |            |
| 1,2,3,7,8,9-HxCDF                  | 0.00105      | 0.00005 | 0.0000058 | ug/L  | 0.001  |        | 105  | 78-130 | 2.8  | 50    |            |
| 1,2,3,7,8-PeCDD                    | 0.000991     | 0.00005 | 0.0000075 | ug/L  | 0.001  |        | 99   | 70-142 | 6    | 50    |            |
| 1,2,3,7,8-PeCDF                    | 0.00105      | 0.00005 | 0.0000058 | ug/L  | 0.001  |        | 105  | 80-134 | 3.6  | 50    |            |
| 2,3,4,6,7,8-HxCDF                  | 0.001        | 0.00005 | 0.0000052 | ug/L  | 0.001  |        | 100  | 70-156 | 3.6  | 50    |            |
| 2,3,4,7,8-PeCDF                    | 0.00105      | 0.00005 | 0.0000066 | ug/L  | 0.001  |        | 105  | 68-160 | 3.2  | 50    |            |
| 2,3,7,8-TCDD                       | 0.000186     | 0.00001 | 0.0000023 | ug/L  | 0.0002 |        | 93   | 67-158 | 1.7  | 50    |            |
| 2,3,7,8-TCDF                       | 0.000212     | 0.00001 | 0.000002  | ug/L  | 0.0002 |        | 106  | 75-158 | 6.2  | 50    |            |
| OCDD                               | 0.00229      | 0.0001  | 0.000041  | ug/L  | 0.002  |        | 115  | 78-144 | 16   | 50    |            |
| OCDF                               | 0.00217      | 0.0001  | 0.000021  | ug/L  | 0.002  |        | 108  | 63-170 | 13   | 50    |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.001        |         |           | ug/L  | 0.002  |        | 50   | 26-166 |      |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00119      |         |           | ug/L  | 0.002  |        | 59   | 21-158 |      |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.001        |         |           | ug/L  | 0.002  |        | 50   | 20-186 |      |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00113      |         |           | ug/L  | 0.002  |        | 56   | 21-193 |      |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00117      |         |           | ug/L  | 0.002  |        | 59   | 19-202 |      |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00127      |         |           | ug/L  | 0.002  |        | 64   | 25-163 |      |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00122      |         |           | ug/L  | 0.002  |        | 61   | 21-159 |      |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00113      |         |           | ug/L  | 0.002  |        | 57   | 17-205 |      |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.000927     |         |           | ug/L  | 0.002  |        | 46   | 21-227 |      |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00872      |         |           | ug/L  | 0.002  |        | 44   | 21-192 |      |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00127      |         |           | ug/L  | 0.002  |        | 64   | 22-176 |      |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.000905     |         |           | ug/L  | 0.002  |        | 45   | 13-328 |      |       |            |
| 770                                |              |         |           |       |        |        |      |        |      |       |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835 Received: 02/27/10

## METHOD BLANK/QC DATA

#### **EPA-5 1613B**

| Analyte                            | Result     | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result |    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------|------------|--------------------|-----|-------|----------------|------------------|----|----------------|-----|--------------|--------------------|
| Batch: 64219 Extracted: 03/05/10   |            |                    |     |       |                |                  |    |                |     |              |                    |
| LCS Dup Analyzed: 03/09/2010 (G0C0 | 50000219L) |                    |     |       | Sou            | rce:             |    |                |     |              |                    |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.000855   |                    |     | ug/L  | 0.002          |                  | 43 | 20-175         |     |              |                    |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.000762   |                    |     | ug/L  | 0.002          |                  | 38 | 22-152         |     |              |                    |
| Surrogate: 13C-OCDD                | 0.00168    |                    |     | ug/L  | 0.004          |                  | 42 | 13-199         |     |              |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.000666   |                    |     | ug/L  | 0.0008         |                  | 83 | 31-191         |     |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835 Received: 02/27/10

## METHOD BLANK/QC DATA

#### **ASTM 5174-91**

|                                         |              | Reporting |      |       | Spike | Source    |          | %REC   |     | RPD   | Data       |
|-----------------------------------------|--------------|-----------|------|-------|-------|-----------|----------|--------|-----|-------|------------|
| Analyte                                 | Result       | Limit     | MDL  | Units | Level | Result    | %REC     | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 67296 Extracted: 03/10/10</b> |              |           |      |       |       |           |          |        |     |       |            |
| Matrix Spike Dup Analyzed: 03/12/2010   | (F0B23045200 | 01D)      |      |       | Sou   | rce: F0B2 | 23045200 | 1      |     |       |            |
| Total Uranium                           | 26.9         | 0.7       | 0.2  | pCi/L | 27.7  | 0.677     | 95       | 62-150 | 4   | 20    |            |
| Matrix Spike Analyzed: 03/12/2010 (F0B  | 230452001S)  |           |      |       | Sou   | rce: F0B2 | 23045200 | 1      |     |       |            |
| Total Uranium                           | 28.1         | 0.7       | 0.2  | pCi/L | 27.7  | 0.677     | 99       | 62-150 |     |       |            |
| Blank Analyzed: 03/12/2010 (F0C080000   | 296B)        |           |      |       | Sou   | rce:      |          |        |     |       |            |
| Total Uranium                           | 0.315        | 0.693     | 0.21 | pCi/L |       |           |          | -      |     |       | Jb         |
| LCS Analyzed: 03/12/2010 (F0C0800002    | 96C)         |           |      |       | Sou   | rce:      |          |        |     |       |            |
| Total Uranium                           | 28.6         | 0.7       | 0.2  | pCi/L | 27.7  |           | 103      | 90-120 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835 Received: 02/27/10

## METHOD BLANK/QC DATA

#### **EPA 900.0 MOD**

| Analyte                                       | Result      | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------------|-------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 68099 Extracted: 03/09/10              |             |                    |      |       |                |                  |         |                |     |              |                    |
| Matrix Spike Analyzed: 03/14/2010 (F0C        | 020462001S) |                    |      |       | Sou            | rce: ITB2        | 2835-02 |                |     |              |                    |
| Gross Alpha                                   | 47.1        | 3                  | 1.1  | pCi/L | 49.4           | 2.1              | 91      | 35-150         |     |              |                    |
| Gross Beta                                    | 74.2        | 4                  | 1    | pCi/L | 68             | 1.5              | 107     | 54-150         |     |              |                    |
| <b>Duplicate Analyzed: 03/18/2010 (F0C020</b> | 462001X)    |                    |      |       | Sou            | rce: ITB2        | 2835-02 |                |     |              |                    |
| Gross Alpha                                   | 1.89        | 3                  | 1.1  | pCi/L |                | 2.1              |         | -              |     |              | Jb                 |
| Gross Beta                                    | 1.52        | 4                  | 0.94 | pCi/L |                | 1.5              |         | -              |     |              | Jb                 |
| Blank Analyzed: 03/15/2010 (F0C090000         | 099B)       |                    |      |       | Sou            | rce:             |         |                |     |              |                    |
| Gross Alpha                                   | 0.66        | 2                  | 0.85 | pCi/L |                |                  |         | -              |     |              | U                  |
| Gross Beta                                    | 0.69        | 4                  | 1    | pCi/L |                |                  |         | -              |     |              | U                  |
| LCS Analyzed: 03/15/2010 (F0C0900000)         | 99C)        |                    |      |       | Sou            | rce:             |         |                |     |              |                    |
| Gross Alpha                                   | 51.5        | 3                  | 1    | pCi/L | 49.4           |                  | 104     | 62-134         |     |              |                    |
| Gross Beta                                    | 63.9        | 4                  | 0.8  | pCi/L | 68             |                  | 94      | 58-133         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835 Received: 02/27/10

## METHOD BLANK/QC DATA

#### **EPA 901.1 MOD**

| Analyte                                 | Result    | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|-----------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| <b>Batch: 61272 Extracted: 03/02/10</b> |           |                    |     |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/16/2010 (F0C02000    | 0272B)    |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Cesium 137                              | 1.4       | 20                 | 12  | pCi/L |                |                  |         | -              |     |              | U                  |
| Potassium 40                            | -60       | NA                 | 220 | pCi/L |                |                  |         | -              |     |              | U                  |
| LCS Analyzed: 03/17/2010 (F0C0200002    | 272C)     |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Americium 241                           | 146000    | NA                 | 600 | pCi/L | 141000         |                  | 103     | 87-110         |     |              |                    |
| Cobalt 60                               | 85500     | NA                 | 200 | pCi/L | 87900          |                  | 97      | 89-110         |     |              |                    |
| Cesium 137                              | 52300     | 20                 | 300 | pCi/L | 53100          |                  | 98      | 90-110         |     |              |                    |
| Duplicate Analyzed: 03/17/2010 (F0C02   | 0462001X) |                    |     |       | Sou            | rce: ITB2        | 2835-02 |                |     |              |                    |
| Cesium 137                              | 1.6       | 20                 | 16  | pCi/L |                | -1.6             |         | -              |     |              | U                  |
| Potassium 40                            | -80       | NA                 | 200 | pCi/L |                | -80              |         | -              |     |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835

Received: 02/27/10

## METHOD BLANK/QC DATA

#### **EPA 903.0 MOD**

| Analyte  Batch: 61258 Extracted: 03/02/10             | Result                  | Reporting<br>Limit | MDL  | Units | Spike<br>Level     | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------------|-------------------------|--------------------|------|-------|--------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 03/18/2010 (F0C02000)<br>Radium (226) | 0.079                   | 1                  | 0.15 | pCi/L | Sou                | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 03/18/2010 (F0C0200002)<br>Radium (226) | <b>258C)</b> 12.4       | 1                  | 0.1  | pCi/L | <b>Sou</b><br>11.3 | rce:             | 110  | 68-136         |     |              |                    |
| LCS Dup Analyzed: 03/18/2010 (F0C02) Radium (226)     | 0 <b>000258L)</b><br>12 | 1                  | 0.1  | pCi/L | <b>Sou</b> : 11.3  | rce:             | 107  | 68-136         | 3   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Received: 02/27/10

Report Number: ITB2835

## METHOD BLANK/QC DATA

#### **EPA 904 MOD**

| Analyte Batch: 61259 Extracted: 03/02/10             | Result            | Reporting<br>Limit | MDL  | Units | Spike<br>Level    | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------------|-------------------|--------------------|------|-------|-------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 03/18/2010 (F0C020000)<br>Radium 228 | <b>259B)</b> 0.47 | 1                  | 0.3  | pCi/L | Sou               | rce:             |      | -              |     |              | Jb                 |
| LCS Analyzed: 03/18/2010 (F0C0200002) Radium 228     | <b>59C)</b> 6.04  | 1                  | 0.42 | pCi/L | <b>Sou</b> : 6.37 | rce:             | 95   | 60-142         |     |              |                    |
| LCS Dup Analyzed: 03/18/2010 (F0C020)<br>Radium 228  | <b>000259L)</b>   | 1                  | 0.33 | pCi/L | <b>Sou</b> : 6.37 | rce:             | 94   | 60-142         | 0.5 | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: ITB2835

Sampled: 02/27/10-02/28/10

Received: 02/27/10

## METHOD BLANK/QC DATA

#### **EPA 905 MOD**

| Analyte  Batch: 61262 Extracted: 03/02/10             | Result               | Reporting<br>Limit | MDL  | Units | Spike<br>Level    | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------------|----------------------|--------------------|------|-------|-------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 03/11/2010 (F0C020000<br>Strontium 90 | <b>262B)</b> 0.15    | 3                  | 0.37 | pCi/L | Sour              | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 03/11/2010 (F0C0200002<br>Strontium 90  | <b>62C)</b><br>6.99  | 3                  | 0.33 | pCi/L | <b>Sou</b> : 6.79 | rce:             | 103  | 80-130         |     |              |                    |
| LCS Dup Analyzed: 03/11/2010 (F0C020<br>Strontium 90  | <b>000262L)</b> 6.53 | 3                  | 0.35 | pCi/L | <b>Sou</b> : 6.79 | rce:             | 96   | 80-130         | 7   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835

Received: 02/27/10

## METHOD BLANK/QC DATA

#### **EPA 906.0 MOD**

| Analyte Batch: 67136 Extracted: 03/08/10 | Result       | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------|--------------|--------------------|-----|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 03/09/2010 (F0C020   | 0462001X)    |                    |     |       | Sour           | rce: ITB2        | 2835-02  |                |     |              |                    |
| Tritium                                  | 86           | 500                | 130 | pCi/L |                | 49               |          | -              |     |              | U                  |
| Matrix Spike Analyzed: 03/09/2010 (F0C   | C020465001S) |                    |     |       | Sour           | rce: F0C(        | 02046500 | 1              |     |              |                    |
| Tritium                                  | 4260         | 500                | 130 | pCi/L | 4520           | 130              | 92       | 62-147         |     |              |                    |
| Blank Analyzed: 03/09/2010 (F0C080000    | 136B)        |                    |     |       | Sour           | rce:             |          |                |     |              |                    |
| Tritium                                  | 163          | 500                | 130 | pCi/L |                |                  |          | -              |     |              | Jb                 |
| LCS Analyzed: 03/09/2010 (F0C0800001     | 36C)         |                    |     |       | Sour           | rce:             |          |                |     |              |                    |
| Tritium                                  | 4700         | 500                | 130 | pCi/L | 4520           |                  | 104      | 85-112         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2835 Received: 02/27/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

## DATA QUALIFIERS AND DEFINITIONS

| В | Analyte was detected in the associated Method Blank. |
|---|------------------------------------------------------|
|---|------------------------------------------------------|

C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not

impacted.

**J** Estimated result. Result is less than the reporting limit.

Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

**Jb** Result is greater than sample detection limit but less than stated reporting limit.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

**Q** Estimated maximum possible concentration (EMPC).

U Result is less than the sample detection limit.

**ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 02/27/10-02/28/10

Report Number: ITB2835

Received: 02/27/10

#### **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EDD + Level 4  | Water  | N/A   | N/A        |
| EPA 1664A      | Water  | X     | X          |
| EPA 200.8-Diss | Water  | X     | X          |
| EPA 200.8      | Water  | X     | X          |
| EPA 245.1-Diss | Water  | X     | X          |
| EPA 245.1      | Water  | X     | X          |
| EPA 300.0      | Water  | X     | X          |
| EPA 314.0      | Water  | X     | X          |
| Filtration     | Water  | N/A   | N/A        |
| SM2540C        | Water  | X     |            |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

#### TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Method Performed: ASTM 5174-91

Samples: ITB2835-02

Method Performed: EPA 900.0 MOD

Samples: ITB2835-02

Method Performed: EPA 901.1 MOD

Samples: ITB2835-02

Method Performed: EPA 903.0 MOD

Samples: ITB2835-02

Method Performed: EPA 904 MOD

Samples: ITB2835-02

Method Performed: EPA 905 MOD

Samples: ITB2835-02

Method Performed: EPA 906.0 MOD

Samples: ITB2835-02

#### **TestAmerica Irvine**

Kathleen A. Robb For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/27/10-02/28/10

Project ID: Routine Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITB2835 Received: 02/27/10

Attention: Bronwyn Kelly

#### **TestAmerica West Sacramento**

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITB2835-02

#### **TestAmerica Irvine**

Sampler:

Sample

Description

Outfall 009

Relinquished By

Relinguished By

CHAIN OF CUSTODY FORM Page 1 of 2 Client Name/Address: Project: ANALYSIS REQUIRED Boeing-SSFL NPDES MWH-Arcadia Routine Outfall 009 618 Michillinda Ave, Suite 200 Field readings: GRAB Arcadia, CA 91007 Stormwater at WS-13 Test America Contact: Joseph Doak Temp °F = 53.6 Grease (1664-HEM) Project Manager: Bronwyn Kelly Phone Number: Time of readings = (626) 568-6691 Fax Number: 5 Dawson 0630 (626) 568-6515 Sampling Date/Time ∞ Sample Container # of Preservative Bottle # ō Comments Matrix Type Cont. 2/27/10 8630 1A, 1B 1L Amber HÇI These Samples are the Grab Portion of Outfall 009 for this storm event. Composite samples will follow and are to be added to this work order. Turn-around time: (Check) Received By

Data Requirements: (Check)

No Level IV: \_\_\_\_\_ All Level IV: \_\_\_\_ NPDES Level IV:

| Client Name/A                 | Address           |                   |               | Project           | •              |                  | ······································ |                                     |                          |                        |                  |                                                                                                                                                                                                           | +                   | ANIA                                   | LYSIS                | DEO                 | IIDED    |                |     |          |                                                         | 1              |
|-------------------------------|-------------------|-------------------|---------------|-------------------|----------------|------------------|----------------------------------------|-------------------------------------|--------------------------|------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|----------------------|---------------------|----------|----------------|-----|----------|---------------------------------------------------------|----------------|
| MWH-Arca                      |                   |                   |               |                   | -SSFL I        | NPDES            |                                        |                                     | Γ                        | <b>-</b>               | Τ                | <del></del> 1                                                                                                                                                                                             | +                   | ANA                                    | L 1 313              | חבענ                | חשות     | T T            | 1   | T        |                                                         | 4              |
| 618 Michillind<br>Arcadia, CA | a Ave, S<br>91007 |                   |               | Routin<br>COMP    | e Outfa        | il 009           |                                        | Cd, Cu, Pb,                         |                          | orate                  |                  | Gross Alpha(900.0), Gross Beta(900.0),<br>Tritium (H-3) (906.0), Sr-90 (905.0), Total<br>Combined Radium 226 (903.0 or 903.1) &<br>Radium 228 (904.0), Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) |                     | l, Cu, Pb,                             |                      |                     |          |                |     |          |                                                         |                |
| Test America                  | Contact           | : Joseph Do       | ak            |                   |                |                  |                                        | Metals: Sb,                         | leners)                  | NO3+NO2-N, Perchlorate |                  | , Gross Bet<br>), Sr-90 (90<br>226 (903.0<br>), Uranium<br>or 901.1)                                                                                                                                      |                     | Total Dissolved Metals: Sb, Cd, Hg, Tl |                      |                     |          |                |     |          | High Flow<br>Comments                                   | :              |
| Project Manaç                 | ger: Bro          | nwyn Kelly        |               |                   | Numbe          |                  |                                        | able 1                              | cong                     | NO N                   |                  | 906.0<br>906.0<br>lium 3                                                                                                                                                                                  | Į.                  | , Met                                  |                      |                     |          |                |     |          | •                                                       |                |
| Sampler: 5                    |                   |                   |               | Fax Nu<br>(626) 5 | 68-651         |                  |                                        | Total Recoverable Metals:<br>Hg, TI | TCDD (and all congeners) | SO <sub>4</sub> , NO3- |                  | Gross Alpha(900.0), (<br>Tritium (H-3) (906.0),<br>Combined Radium 22<br>Radium 228 (904.0),<br>40, CS-137 (901.0 or                                                                                      | Chronic Toxicity    | Dissolve                               |                      |                     |          |                |     | <u>.</u> |                                                         |                |
| Sample<br>Description         | Sample<br>Matrix  | Container<br>Type | # of<br>Cont. |                   | pling<br>/Time | Preservative     | Bottle #                               | Total<br>Hg, J                      | TCD                      | <del>၂</del> င်        | TDS              | Gros<br>Tritiu<br>Com<br>Radii<br>40, C                                                                                                                                                                   | <b>a</b>            | Total<br>Hg, J                         |                      |                     |          |                |     |          |                                                         |                |
| Outfall 009                   | W                 | 1L Poly           | 1             | यथ                | 100523         | HNO <sub>3</sub> | 2A                                     | х                                   |                          |                        |                  |                                                                                                                                                                                                           |                     |                                        |                      |                     |          |                |     |          |                                                         | ]              |
| Outfall 009 Dup               | w                 | 1L Poly           | 1             |                   |                | HNO <sub>3</sub> | 2B                                     | х                                   |                          |                        |                  |                                                                                                                                                                                                           |                     |                                        |                      |                     |          | _              |     |          |                                                         |                |
| Outfall 009                   | w                 | 1L Amber          | 2             |                   |                | None             | 3A, 3B                                 |                                     | х                        |                        |                  |                                                                                                                                                                                                           |                     |                                        |                      |                     |          |                |     |          |                                                         | ]              |
| Outfall 009                   | w                 | 500 mL Poly       | 2             |                   | (45)           | None             | 4A, 4B                                 |                                     |                          | х                      |                  |                                                                                                                                                                                                           |                     |                                        |                      |                     |          |                |     |          |                                                         | ]              |
| Outfall 009                   | w                 | 500 mL Poly       | 1             | ,                 | V              | None             | 5                                      |                                     | -                        |                        | х                |                                                                                                                                                                                                           |                     |                                        |                      |                     |          |                |     |          |                                                         | ]              |
| Outfall 009                   | w                 | 2.5 Gal Cube      | 1             | 2/24/10           | )              | None             | 6A                                     |                                     |                          |                        |                  | ×                                                                                                                                                                                                         | Ц                   |                                        |                      |                     |          |                |     |          | Unfiltered and unpreserved                              |                |
|                               |                   | 500 ml Amber      | 1             |                   | 0523           | None             | 6B                                     |                                     |                          |                        |                  |                                                                                                                                                                                                           |                     | <u> </u>                               |                      |                     |          |                |     |          | analysis                                                | 3              |
| Outfall 009                   | W                 | -1 Gal Poly       | -1-           | <del> </del>      |                | None             | 7                                      | <u> </u>                            |                          |                        |                  |                                                                                                                                                                                                           | ╁                   |                                        |                      |                     |          |                | ├   | <u> </u> | Only test if first or second rain<br>events of the year | <del>-</del> - |
| Outfall 009                   | w                 | 1L Poly           | 1             | 40010             | 0523           | None             | . 8                                    |                                     |                          |                        |                  |                                                                                                                                                                                                           |                     | х                                      |                      |                     |          |                |     |          | Filter w/in 24hrs of receipt at lab                     |                |
|                               |                   |                   |               |                   |                |                  |                                        |                                     |                          |                        |                  |                                                                                                                                                                                                           |                     |                                        |                      |                     |          |                |     |          |                                                         | ]              |
|                               |                   |                   |               |                   |                |                  |                                        |                                     |                          |                        |                  |                                                                                                                                                                                                           |                     |                                        |                      |                     |          |                |     |          |                                                         | ]              |
|                               |                   |                   |               |                   |                |                  |                                        |                                     |                          |                        |                  |                                                                                                                                                                                                           |                     |                                        |                      |                     |          |                |     |          |                                                         | ]              |
|                               |                   |                   |               | <b>T</b> 1        |                |                  |                                        |                                     |                          |                        |                  | s for Outfall 00                                                                                                                                                                                          |                     |                                        |                      |                     |          |                |     |          |                                                         | -              |
| Relinquished By               | <del></del>       |                   | Date/         |                   | musti          | oe added t       | Received B                             |                                     | K Ord                    | erto                   |                  | Page 1 of 2 for ate/Time:                                                                                                                                                                                 | or C                | uttali υ                               |                      | tne sa<br>und time: |          | ent.           |     |          |                                                         | 4              |
| 4/1/1/A                       | 1/1               | 7                 | 1             | /                 |                |                  | neceived b                             | ^2/\\                               | +                        |                        |                  | 1 /                                                                                                                                                                                                       | ,,                  |                                        | 1                    |                     |          | 72 Hour        | :   |          | 10 Day:                                                 |                |
| willy                         | 11 21             | 100               | 128           | 7/0               | [[:]:          |                  | 1                                      | De                                  | la                       | ام                     | 27               | 28/10 11                                                                                                                                                                                                  | <i> </i> : <i>/</i> | <i>ڪ</i>                               | 24 Hour:<br>48 Hour: |                     |          | 5 Day:         |     | -        | Normal:X_                                               |                |
| Relinquished By               |                   | つ · /             | Date/         | Time:             |                | 7.000            | Received B                             | у                                   |                          | 7                      | <del>- (</del> D | ate/fime:                                                                                                                                                                                                 |                     |                                        |                      |                     |          |                |     |          |                                                         |                |
| X 2                           | e la              | ce 2/2            | 4             | 10/               | 3:4            | 5                |                                        |                                     |                          | V                      |                  |                                                                                                                                                                                                           |                     |                                        |                      | Integrity: (        | Check)   | On Ice:        | X   |          | 4.3                                                     |                |
| Relinquished By               |                   |                   | Date/         |                   |                |                  | Received B                             | у                                   |                          |                        | D                | ate/Time:                                                                                                                                                                                                 |                     |                                        | •                    |                     |          |                | •   |          |                                                         |                |
|                               |                   |                   |               |                   |                |                  |                                        |                                     |                          | )                      | $\mathcal{L}$    | 128/10                                                                                                                                                                                                    | r                   | 3:45                                   | Data Re<br>No Leve   | quirement           | s: (Chec | k)<br>All Leve | HV: |          | NPDES Level IV:                                         |                |



TestAmerica Laboratories, Inc.

## ANALYTICAL REPORT

PROJECT NO. ITB2835

MWH-Pasadena Boeing

Lot #: F0C020462

Joseph Doak

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Kay Clay
Project Manager

March 23, 2010

#### Case Narrative LOT NUMBER: F0C020462

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on March 2, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements. except as noted on the following page.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689**. The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

#### **Observations/Nonconformances**

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

#### **Total Uranium by Laser Ph Osphorimetry (ASTM 5174-91)**

The samples were analyzed at a dilution due to the presence of matrix interferences which caused low sample correlations (R squared). The reporting limit has been adjusted for the dilution.

#### Affected Samples:

F0C020462 (1): ITB2835-02

## **METHODS SUMMARY**

#### F0C020462

| PARAMETER                              | ANALYTICAL<br>METHOD | PREPARATION<br>METHOD |
|----------------------------------------|----------------------|-----------------------|
| Gamma Spectroscopy - Cesium-137 & Hits | EPA 901.1 MOD        |                       |
| Gross Alpha/Beta EPA 900               | EPA 900,0 MOD        | EPA 900.0             |
| H-3 by Distillation & LSC              | EPA 906.0 MOD        |                       |
| Radium-226 by GFPC                     | EPA 903.0 MOD        |                       |
| Radium-228 by GFPC                     | EPA 904 MOD          |                       |
| Strontium 90 by GFPC                   | EPA 905 MOD          |                       |
| Total Uranium By Laser Ph osphorimetry | ASTM 5174-91         |                       |
| References:                            |                      |                       |
| ASTM Annual Book Of ASTM Standards.    |                      |                       |

"EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

EPA

## SAMPLE SUMMARY

#### F0C020462

| WO # SAMPLE# CLIENT SAMPLE ID | SAMPLED<br>DATE | SAMP<br>TIME |
|-------------------------------|-----------------|--------------|
| LV7MQ 001 ITB2835-02          | 02/26/10        |              |
| MOTE (C).                     |                 |              |

#### NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

### TestAmerica Irvine

#### Client Sample ID: ITB2835-02

## Radiochemistry

Lab Sample ID: F0C020462-001

LV7MO

Work Order: Matrix:

WATER

Date Collected:

02/26/10 0000

Date Received:

03/02/10 0915

| Parameter         | Result        | Qual   | Total<br>Uncert.<br>(2 g+/-) | RL   | mdc     | Prep<br>Date | Analysis<br>Date |
|-------------------|---------------|--------|------------------------------|------|---------|--------------|------------------|
| Gamma Cs-137 & Hi | ts by EPA 901 | .1 MOD | pC                           | i/L  | Batch # | 0061272      | Yld %            |
| Cesium 137        | -1.6          | υ      | 6.8                          | 20.0 | 12      | 03/02/10     | 03/17/10         |
| Potassium 40      | -80           | U      | 440                          |      | 220     | 03/02/10     | 03/17/10         |
| Gross Alpha/Beta  | EPA 900       |        | pC                           | :i/L | Batch # | 0068099      | Yld %            |
| Gross Alpha       | 2.1           | J      | 1,2                          | 3.0  | 1.5     | 03/09/10     | 03/18/10         |
| Gross Beta        | 1.50          | J      | 0.79                         | 4.00 | 1.1     | 03/09/10     | 03/18/10         |
| SR-90 BY GFPC EP  | A-905 MOD     |        | pC                           | i/L  | Batch # | 0061262      | Yld % 72         |
| Strontium 90      | 0.24          | υ      | 0.24                         | 3.00 | 0,39    | 03/02/10     | 03/11/10         |
| TRITIUM (Distill) | by EPA 906.0  | MOD    | po                           | ci/L | Batch # | 0067136      | Yld %            |
| Tritium           | 49            | U      | 79                           | 500  | 130     | 03/08/10     | 03/09/10         |
| Total Uranium by  | KPA ASTM 5174 | -91    | p(                           | Ci/L | Batch # | 0067296      | Yld %            |
| -                 | 0.609         | J      | 0.076                        | 1,39 | 0.43    | 03/10/10     | 03/12/10         |
| Radium 226 by EF  | A 903.0 MOD   |        | p(                           | Ci/L | Batch # | 0061258      | Yld % 87         |
| -                 | 0.090         | υ      | 0,087                        | 1.00 | 0.13    | 03/02/10     | 03/18/10         |
| Radium 228 by GFE | C EPA 904 MOD | )      | po                           | Ci/L | Batch # | 0061259      | Yld % 80         |
| Radium 228        | 0.22          | υ      | 0.27                         | 1.00 | 0.44    | 03/02/10     | 03/18/10         |

#### NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is greater than sample detection limit but less than stated reporting limit.

v Result is less than the sample detection limit. F0C0020462

#### METHOD BLANK REPORT

## Radiochemistry

Client Lot ID:

F0C020462

Matrix:

WATER

| Parameter      | Result          | Qual     | Total<br>Uncert.<br>(2 g+/-) | RL      | MDC     |       | Prep<br>Date | Lab Sample ID<br>Analysis<br>Date |
|----------------|-----------------|----------|------------------------------|---------|---------|-------|--------------|-----------------------------------|
| Radium 226 by  | EPA 903.0 MOD   |          | pCi/L                        | Batch # | 0061258 | Yld % | 102 E        | OC020000-258B                     |
| Radium (226)   | 0.079           | υ        | 0.096                        | 1.00    | 0.15    |       | 03/02/10     | 03/18/10                          |
| Radium 228 by  | GFPC EPA 904 MC | DD       | pCi/L                        | Batch # | 0061259 | Yld % | 98 I         | F0C020000-259B                    |
| Radium 228     | 0.47            | J        | 0.22                         | 1.00    | 0.30    |       | 03/02/10     | 03/18/10                          |
| SR-90 BY GFPC  | EPA-905 MOD     |          | pCi/L                        | Batch # | 0061262 | Yld % | 76 I         | F0C020000-262B                    |
| Strontium 90   | 0.15            | U        | 0.22                         | 3,00    | 0.37    |       | 03/02/10     | 03/11/10                          |
| Gamma Cs-137 & | Hits by EPA 90  | 01.1 MOD | pCi/L                        | Batch # | 0061272 | Yld % | I            | F0C020000-272B                    |
| Cesium 137     | 1,4             | ט        | 6.8                          | 20.0    | 12      |       | 03/02/10     | 03/16/10                          |
| Potassium 40   | -60             | U        | 270                          |         | 220     |       | 03/02/10     | 03/16/10                          |
| TRITIUM (Disti | 11) by EPA 906. | O MOD    | pCi/L                        | Batch # | 0067136 | Yld % | 1            | F0C080000-136B                    |
| Tritium        | 1.63            | J        | 99                           | 500     | 130     |       | 03/08/10     | 03/09/10                          |
| Gross Alpha/Be | ta EPA 900      |          | pCi/L                        | Batch # | 0068099 | Yld % | ]            | F0C090000-099B                    |
| Gross Alpha    | 0.66            | υ        | 0.59                         | 2.00    | 0.85    |       | 03/09/10     | 03/15/10                          |
| Gross Beta     | 0.69            | υ        | 0.65                         | 4.00    | 1.0     |       | 03/09/10     | 03/15/10                          |
| Total Uranium  | by KPA ASTM 51  | 74-91    | pCi/L                        | Batch # | 0067296 | Yld % | )            | F0C080000-296B                    |
| Total Uranium  | 0.315           | J        | 0.039                        | 0.693   | 0.21    |       | 03/10/10     | 03/12/10                          |

#### NOTE(S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

## Laboratory Control Sample Report

## Radiochemistry

Client Lot ID:

F0C020462

Matrix:

WATER

|                      |               |         | Tota           | 1     |                | Lab Sample ID |                        |  |  |
|----------------------|---------------|---------|----------------|-------|----------------|---------------|------------------------|--|--|
| Parameter            | Spike Amount  | Result  | Unce<br>(2 σ - |       | MDC            | % Yld % Re    | QC Control<br>C Limits |  |  |
| Gamma Cs-137 & Hits  | by EPA 901.1  | MOD     | pCi/L          | 901.1 | MOD            |               | F0C020000-272C         |  |  |
| Americium 241        | 141000        | 146000  | 1100           | 0     | 600            | 103           | (87 - 110)             |  |  |
| Cesium 137           | 53100         | 52300   | 3000           | )     | 300            | 98            | (90 - 110)             |  |  |
| Cobalt 60            | 87900         | 85500   | 4800           | )     | 200            | 97            | (89 - 110)             |  |  |
|                      | Batch #:      | 0061272 |                |       | Analysis Date: | 03/17/10      |                        |  |  |
| TRITIUM (Distill) by | y EPA 906.0 M | OD      | pCi/L          | 906.0 | MOD            |               | F0C080000-136C         |  |  |
| Tritium              | 4520          | 4700    | 480            |       | 130            | 104           | (85 - 112)             |  |  |
|                      | Batch #:      | 0067136 |                |       | Analysis Date: | 03/09/10      |                        |  |  |
| Total Uranium by KP. | A ASTM 5174-9 | 1       | pCi/L          | 5174- | 91             |               | F0C080000-296C         |  |  |
| Total Uranium        | 27.7          | 28.6    | 3,5            |       | 0.2            | 103           | (90 - 120)             |  |  |
|                      | Batch #:      | 0067296 |                |       | Analysis Date: | 03/12/10      |                        |  |  |
| Total Uranium by KP. | A ASTM 5174-9 | 1       | pCi/L          | 5174- | 91             |               | F0C080000-296C         |  |  |
| Total Uranium        | 5,54          | 5.62    | 0,58           | }     | 0.21           | 101           | (90 - 120)             |  |  |
|                      | Batch #:      | 0067296 |                |       | Analysis Date: | 03/12/10      |                        |  |  |
| Gross Alpha/Beta EP. | A 900         |         | pCi/L          | 900.0 | MOD            | <del></del>   | F0C090000-099C         |  |  |
| Gross Beta           | 68.0          | 63.9    | 5.4            |       | 0.8            | 94            | (58 - 133)             |  |  |
|                      | Batch #:      | 0068099 |                |       | Analysis Date: | 03/15/10      |                        |  |  |
| Gross Alpha/Beta EP. | A 900         |         | pCi/L          | 900.0 | MOD            |               | F0C090000-099C         |  |  |
| Gross Alpha          | 49.4          | 51.5    | 5,8            |       | 1.0            | 104           | (62 - 134)             |  |  |
|                      | Batch #:      | 0068099 |                |       | Analysis Date: | 03/15/10      |                        |  |  |

## Laboratory Control Sample/LCS Duplicate Report

## Radiochemistry

Client Lot ID:

F0C020462

Matrix:

WATER

|                  |      |              |         |       | Total               |          |       | Lab                  | Sample ID |      |
|------------------|------|--------------|---------|-------|---------------------|----------|-------|----------------------|-----------|------|
| Parameter        |      | Spike Amount | Result  |       | Uncert.<br>(2 σ+/~) | % Yld    | % Rec | QC Control<br>Limits | Precisi   | on   |
| Radium 226 by E  | EPA  | 903.0 MOD    |         | pCi/L | 903.                | 0 MOD    |       | F0C0                 | 20000-25  | 8C   |
| Radium (226)     |      | 11.3         | 12.4    |       | 1.2                 | 104      | 110   | (68 - 136)           |           |      |
| Spl              | k 2  | 11.3         | 12.0    |       | 1.2                 | 105      | 107   | (68 - 136)           | 3         | %RPD |
|                  |      | Batch #:     | 0061258 |       |                     | Analysis | Date: | 03/18/10             |           |      |
| Radium 228 by GF | PC   | EPA 904 MOD  |         | pCi/L | 904                 | MOD      |       | FOCO                 | 20000-25  | 9C   |
| Radium 228       |      | 6.37         | 6.04    |       | 0.73                | 99       | 95    | (60 - 142)           |           |      |
| Spl              | k 2  | 6.37         | 6.00    |       | 0.71                | 103      | 94    | (60 - 142)           | 0.5       | %RPD |
|                  |      | Batch #:     | 0061259 |       |                     | Analysis | Date: | 03/18/10             |           |      |
| SR-90 BY GFPC B  | EPA- | 905 MOD      |         | pCi/L | 905                 | MOD      |       | FOCO                 | 20000-26  | 52C  |
| Strontium 90     |      | 6.79         | 6.99    |       | 0.80                | 77       | 103   | (80 - 130)           |           |      |
| Spl              | k 2  | 6.79         | 6.53    |       | 0.76                | 77       | 96    | (80 - 130)           | 7         | %RPD |
|                  |      | Batch #:     | 0061262 |       |                     | Analysis | Date. | 03/11/10             |           |      |

#### MATRIX SPIKE REPORT

#### Radiochemistry

Client Lot Id: Matrix:

F0C020462

WATER

Date Sampled:

02/26/10

Date Received:

03/02/10

|                         | Spike      | Spike   | Total<br>Uncert.     | Spike Sample | Total<br>Undert. | QC Sample | QC Control |
|-------------------------|------------|---------|----------------------|--------------|------------------|-----------|------------|
| Parameter               | Amount     | Result  | (2 <sub>0</sub> +/-) | Yld. Result  |                  | %YLD %REC | Limits     |
| Gross Alpha/Beta EPA 90 | 0          |         | pCi/L                | 900.0 MC     | )D               | F0C020462 | -001       |
| Gross Alpha             | 49.4       | 47.1    | 5.5                  | 2.1          | 1.2              | 91        | (35 - 150) |
|                         | Batch #:   | 0068099 | An                   | alysis Date: | 03/14/10         |           |            |
| Gross Alpha/Beta EPA 90 | 0          | 1,441   | pCi/L                | 900.0 MC     | מי               | F0C020462 | -001       |
| Gross Beta              | 68.0       | 74.2    | 6.2                  | 1.50         | 0.79             | 107       | (54 - 150) |
|                         | Batch #:   | 0068099 | An                   | alysis Date: | 03/14/10         |           |            |
| TRITIUM (Distill) by EF | A 906.0 MO | D       | pCi/L                | 906.0 MC     | Œ                | F0C020465 | 5-001      |
| Tritium                 | 4520       | 4260    | 450                  | 130          | 92               | 92        | (62 - 147) |
|                         | Batch #:   | 0067136 | An                   | alysis Date: | 03/09/10         |           |            |

#### NOTE (S)

Calculations are performed before rounding to avoid round-off errors in calculated results.

Data are incomplete without the case narrative.

#### MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

## Radiochemistry

Client Lot ID: F0B230452

Matrix:

WATER

Date Sampled:

02/20/10 1349

Date Received:

02/23/10 0910

|               |        |                 |                 | Total<br>Uncert.<br>(2 <sub>G</sub> +/-) | Spike SAMPLE<br>Yld Result |        | Total | QC Sample ID        |     |         |                      |
|---------------|--------|-----------------|-----------------|------------------------------------------|----------------------------|--------|-------|---------------------|-----|---------|----------------------|
| Parameter     |        | Spike<br>Amount | SPIKE<br>Result |                                          |                            |        |       | Uncert. (2 o +/-) % | Yld | %Rea    | QC Control<br>Limits |
| Total Uranium | by KPA | ASTM 5          |                 | pCi/L                                    | 5                          | 174-91 |       |                     | P(  | B2304   | 52-001               |
| Total Uranium |        | 27.7            | 28.1            | 3.4                                      |                            | 0.677  | J     | 0.074               |     | 99      | (62 ~ 150)           |
|               | Spk2   | 27.7            | 26.9            | 3,3                                      |                            | 0.677  | J     | 0.074<br>Precisio   | n;  | 95<br>4 | (62 - 150)<br>%RPD   |
|               |        | Bato            | #: 0067296      | Ana                                      | alysis d                   | ate:   | 03/1  | 2/10                |     |         |                      |

#### DUPLICATE EVALUATION REPORT

#### Radiochemistry

Client Lot ID:

F0C020462

Matrix:

WATER

Date Sampled:

02/26/10

Date Received:

03/02/10

| •                    |                |          | Total                |          |                   |         | Total             |       | QC Sample ID |      |
|----------------------|----------------|----------|----------------------|----------|-------------------|---------|-------------------|-------|--------------|------|
| Parameter            | SAMPI<br>Resul |          | Uncert,<br>(2 o +/-) | % Yld    | DUPLICA<br>Result | TE      | Uncert. (2 g +/-) | % Yld | Precisio     | n    |
| Gamma Cs-137 & Hits  | by E           | A 901.1  | MOD                  | pCi/L    | 901.              | 1 MOD   |                   |       | F0C020462-00 | 1.   |
| Cesium 137           | -1,6           | υ        | 6.8                  |          | 1.6               | U       | 8.4               |       | 5730         | %RPD |
| Potassium 40         | -80            | U        | 440                  |          | -80               | U       | 3300              |       | 2            | %RPD |
|                      |                | Batch #: | 0061272              | (Sample) | 0061              | 272 (Du | plicate)          |       |              |      |
| TRITIUM (Distill) by | EPA            | 906.0 M  | OD                   | pCi/L    | 906.              | 0 MOD   |                   |       | F0C020462-00 | 1.   |
| Tritium              | 49             | U        | 79                   |          | 86                | U       | 84                |       | 55           | %RPD |
|                      |                | Batch #: | 0067136              | (Sample) | 0067              | 136 (Du | plicate)          |       |              |      |
| Gross Alpha/Beta EPA | A 900          |          |                      | pCi/L    | 900.              | 0 MOD   |                   | ·     | F0C020462-00 | 1.   |
| Gross Alpha          | 2.1            | J        | 1.2                  |          | 1.89              | J       | 0.97              |       | 9            | %RPD |
| Gross Beta           | 1,50           | J        | 0.79                 |          | 1.52              | J       | 0.70              |       | 1            | %RPD |
|                      |                | Batch #: | 0068099              | (Sample) | 0068              | 099 (Du | plicate)          |       |              |      |

NOTE(S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

In Result is greater than sample detection limit but less than stated reporting limit. Full 1000020462



## SUBCONTRACT ORDER TestAmerica Irvine

## ITB2835

F0C020462

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045 Phone :(314) 298-8566

Fax: (314) 298-8757

Project Location: CA - CALIFORNIA

Receipt Temperature:\_\_

Id

Ice: Y / N

| Sample ID: ITB2835-02 (Ou |                | npoone) - Trui | Sampled:       | 02/26/10 00:00 | )   |                                                   |
|---------------------------|----------------|----------------|----------------|----------------|-----|---------------------------------------------------|
| Gamma Spec-O ✓            | mg/kg          | 03/10/10       | 02/26/11 00:00 | \$200.00       | 50% | Out St Louis, K-40 and CS-137 only, DO NOT FILTER |
| Gross Alpha-O y           | pCi/L          | 03/10/10       | 08/25/10 00:00 | \$90.00        | 50% | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Gross Beta-O≺             | p <b>C</b> i/L | 03/10/10       | 08/25/10 00:00 | \$90,00        | 50% | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Level 4 Data Package - Ou | it N/A ·       | 03/10/10       | 03/26/10 00:00 | \$0.00         | 0%  |                                                   |
| Radium 226-O y            | pCi/L          | 03/10/10       | 02/26/11 00:00 | \$88.00        | 0%  | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Radium 228-O /            | pCi/L          | 03/10/10       | 02/26/11 00:00 | \$84.00        | 0%  | Out St Louis, Boeing permit, DO NO FILTER!        |
| Strontium 90-O d          | pCi/L          | 03/10/10       | 02/26/11 00:00 | \$140.00       | 50% | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Tritium-O ✓               | pCi/L          | 03/10/10       | 02/26/11 00:00 | \$80.00        | 50% | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Uranium, Combined-O 1/    | pCi/L          | 03/10/10       | 02/26/11 00:00 | \$100.00       | 50% | Out St Louis, Boeing permit, DO NO FILTER!        |
| Containers Supplied:      |                |                |                |                |     |                                                   |
| 2.5 gal Poly (I)          | 500 mL Amb     | er (J)         |                |                |     |                                                   |

3/1/10 17:000 Released By Date/Time

Date/Time

Received By

3/1/0 17:00 Date/Time

Date/lime Page 1 of 1

Released By

| TestAme                                  | erico Loti                                                           | #(s):                              | FOCO20                                 | 157,468                                                                                                                 |  |  |  |  |
|------------------------------------------|----------------------------------------------------------------------|------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| THE LEADER IN ENVIRONMENTAL TESTING      |                                                                      |                                    | لِــــــــــلِــــــــــــــــــــــــ | Hab                                                                                                                     |  |  |  |  |
|                                          | `                                                                    | ٠                                  |                                        | 464                                                                                                                     |  |  |  |  |
|                                          | UPON RECEIPT FORM                                                    | <u> </u>                           |                                        | 405                                                                                                                     |  |  |  |  |
|                                          | TA IIV.no                                                            | _                                  |                                        | 466                                                                                                                     |  |  |  |  |
| Quote No:<br>COC/RFA No:                 | 777310001                                                            |                                    | 304                                    |                                                                                                                         |  |  |  |  |
| Initiated By:                            | AB                                                                   | D                                  | ate: 3 -                               | 3-10 Time: 9:15                                                                                                         |  |  |  |  |
|                                          | Shipp                                                                | ing In                             | <u>formation</u>                       |                                                                                                                         |  |  |  |  |
|                                          | edE UPS DHL Courier Clien                                            | nt O                               | ther:                                  | Multiple Packages: Y N                                                                                                  |  |  |  |  |
| Shipping # (s):*                         | (AD - A/A                                                            |                                    |                                        | Sample Temperature (s);**                                                                                               |  |  |  |  |
| 1. 4289 2                                |                                                                      |                                    |                                        | 1. 5 6.                                                                                                                 |  |  |  |  |
| 2                                        | <u> </u>                                                             |                                    | ··-                                    | 2. Onbut 7.                                                                                                             |  |  |  |  |
| 3                                        | <u> </u>                                                             |                                    |                                        | 3 8                                                                                                                     |  |  |  |  |
| 4                                        | <u>5054</u> 9.                                                       | -                                  |                                        | 4. 9.                                                                                                                   |  |  |  |  |
| 5.                                       | 10.                                                                  |                                    |                                        | 510.                                                                                                                    |  |  |  |  |
| *Numbered shipping lines                 | s correspond to Numbered Sample Temp lines                           | **San                              | nple must be receive                   | d at 4°C ± 2°C- If not, note contents below. Temperature<br>the following: Metals-Liquid or Rad tests- Liquid or Solids |  |  |  |  |
| Condition (Circle "Y"                    | for yes, "N" for no and "N/A" for not applicable):                   | Yarian                             | ICE 0002 140-1 \$11601.                | me tonowing: Metals-Liquid of Rad tests- Liquid of Solids                                                               |  |  |  |  |
| 1. Y N                                   | Are there custody seals present on the cooler?                       | 8,                                 | Y (N)                                  | Are there custody seals present on bottles?                                                                             |  |  |  |  |
| 2. Y N N/A                               | Do custody seals on cooler appear to be tampered with?               | 9.                                 | Y N M                                  | Do custody seals on bottles appear to be tampered with?                                                                 |  |  |  |  |
| 3. (Ý) N                                 | Were contents of cooler frisked after opening, but before unpacking? | 10.                                | Y N NA                                 | Was sample received with proper pH <sup>1</sup> ? (If not, make note below)                                             |  |  |  |  |
| 4. (Ŷ) N                                 | Sample received with Chain of Custody?                               | 11.                                | N P                                    | Sample received in proper containers?                                                                                   |  |  |  |  |
| 5. (Y) N N/A                             | Does the Chain of Custody match sample ID's on the container(s)?     | 12.                                | Y N NA                                 | Headspace in VOA or TOX liquid samples? (If Yes, note sample D's below)                                                 |  |  |  |  |
| 6. Y (b)                                 | Was sample received broken?                                          | 13.                                | y n n/a                                | Was Internal COC/Workshare received?                                                                                    |  |  |  |  |
| 7. (Q) N                                 | Is sample volume sufficient for analysis?                            | i                                  | I —                                    | Was pH taken by original TestAmerica lab?                                                                               |  |  |  |  |
| Notes: C.C.                              | ANL, Sandin) sites, pH of ALL containers received m                  | ust be v                           | erified, EXCEPT VO                     | OA, TOX and soils.                                                                                                      |  |  |  |  |
| 1100001                                  | 7 7 7 7 7 7 7 7                                                      | טונר                               | DA INC                                 |                                                                                                                         |  |  |  |  |
|                                          | 2837                                                                 |                                    | · · · · · · · · · · · · · · · · · · ·  | <u> </u>                                                                                                                |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·    | 129251                                                               | ***                                |                                        | 2.10                                                                                                                    |  |  |  |  |
|                                          | 2009                                                                 |                                    | <u> </u>                               | 1100 1000                                                                                                               |  |  |  |  |
|                                          | 2751 5 didnot                                                        | <u> 792</u>                        |                                        | of ws w coc                                                                                                             |  |  |  |  |
|                                          | 2766                                                                 |                                    |                                        |                                                                                                                         |  |  |  |  |
|                                          | <i></i>                                                              |                                    | A - A - VM-1                           |                                                                                                                         |  |  |  |  |
|                                          |                                                                      | . ·                                |                                        |                                                                                                                         |  |  |  |  |
| Corrective Action:                       |                                                                      |                                    | ,                                      |                                                                                                                         |  |  |  |  |
| ☐ Client Contact N☐ Sample(s) proces     |                                                                      | Informed by:                       |                                        |                                                                                                                         |  |  |  |  |
| ☐ Sample(s) on hol<br>Project Management | ld until:                                                            | If released, notify:  Date: 3-4-10 |                                        |                                                                                                                         |  |  |  |  |
| THIS FORM MUST BE C                      |                                                                      | NG CH                              | ECKED IN. IF AN                        | Y ITEM IS COMPLETED BY SOMEONE OTHER THAN                                                                               |  |  |  |  |

THE INITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.

ADMIN-0004, REVISED 10/21/08 \Sisvio1\QA\FORMS\ST-LOUIS\ADMIN\Admin004 rev11.doc



## **APPENDIX G**

## **Section 45**

Outfall 009 – March 6 & 7, 2010

MECX Data Validation Report





# DATA VALIDATION REPORT

# **Boeing SSFL NPDES**

SAMPLE DELIVERY GROUP: ITC0793

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SPG: SSFL NPDES
SDG: ITC0793

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITC0793
Project Manager: B. Kelly

Matrix: Water
QC Level: IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

**Table 1. Sample Identification** 

| Client ID                      | Laboratory ID | Sub-<br>Laboratory ID                   | Matrix | Collected              | Method                                                                                                          |
|--------------------------------|---------------|-----------------------------------------|--------|------------------------|-----------------------------------------------------------------------------------------------------------------|
| Outfall 009<br>(COMPOSITE<br>) | ITC0793-02    | G0C090500-<br>001,<br>F0C090518-<br>001 | Water  | 3/7/2010<br>9:17:00 AM | ASTM 5174-91, 245.1, 245.1 (Diss),<br>1613B, 900.0 MOD, 901.1 MOD,<br>903.0 MOD, 904 MOD, 905 MOD,<br>906.0 MOD |

## **II. Sample Management**

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-St. Louis above the control limit at ambient temperature; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at TestAmercia-West Sacramento and TestAmerica-St. Louis. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Revision 0

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITC0793

# **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITC0793

# **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of<br>standards used for the calibration<br>was incorrect              |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| E         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| 1         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITC0793

# **Qualification Code Reference Table Cont.**

| D         | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р         | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ       | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *11, *111 | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

#### **III. Method Analyses**

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 9, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - O GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - o Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for all target compounds except 2,3,7,8-TCDD and total TCDD, and 1,2,3,7,8-PeCDD and total PeCDD. Most method blank results were reported as EMPCs; however, due to the extent of the method blank contamination, it was the reviewer's professional opinion that the EMPC results also be utilized to qualify sample results. The method blank concentration

for OCDD was insufficient to qualify the sample result. Sample results for all remaining isomers also present in the method blank, and for total HpCDF were qualified as nondetected, "U," at the levels of contamination. Results for total HxCDD and total HxCDF were qualified as estimated, "J," as only a portion of the total was considered method blank contamination. The laboratory flagged 2,3,4,6,7,8-HxCDF as method blank contamination in error, therefore, the result was not qualified.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of LCS results. The EMPCs qualified as nondetected for method blank contamination were not further qualified as EMPCs. Totals PeCDD, HpCDD, and PeCDF were comprised only of EMPC peaks, and were therefore qualified as estimated nondetects, "UJ," at the level of the EMPC. Any remaining totals also containing EMPC peaks were qualified as estimated, "J." Any detects reported below the EDL, or between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

#### B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks Date Reviewed: April 8, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

Holding Times: The analytical holding time, 28 days for mercury, was met.

- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. The CRI recoveries were above the control limit; however, mercury was not detected in the site sample.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG/. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: April 13, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

 Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.

 Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, the results for these analytes were qualified as estimated, "UJ," for nondetects and, "J," for detects. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Total Uranium was detected in the method blank at 0.315 pCi/L; therefore, total
  uranium detected in the sample was qualified as nondetected, "U," at the reporting limit.
  There were no other analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs (radium-226, radium-228, strontium-90) were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD or matrix spike analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
  data package. The sample results and MDAs reported on the sample result form were
  verified against the raw data and no calculation or transcription errors were noted. Any
  detects between the MDA and the reporting limit were qualified as estimated, "J," and

coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

The reviewer noted that the total uranium preparation log was not signed as having been reviewed.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - o Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms ITC0793

| Sample Name      | Outfall 009 (C | OMPOS           | TE Matri    | х Туре:  | WATER           | V                | alidation Le            | vel: IV             |
|------------------|----------------|-----------------|-------------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | ITC0793-02     |                 |             |          | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Uranium    | 7440-61-1      | ND              | 0.693       | 0.21     | pCi/L           | Jb               | U                       | В                   |
| Analysis Metho   | od EPA 2       | 245.1           |             |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | OMPOS           | TE Matri    | x Type:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITC0793-02     | Sam             | ple Date:   | 3/7/2010 | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20        | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | od EPA 2       | 245.1-L         | <i>Diss</i> |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | OMPOS           | TE Matri    | x Type:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITC0793-02     | Sam             | ple Date:   | 3/7/2010 | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury          | 7439-97-6      | ND              | 0.20        | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho   | od EPA 9       | 000.0 N         | 10D         |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | OMPOS           | TE Matri    | x Type:  | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITC0793-02     | Sam             | ple Date:   | 3/7/2010 | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Gross Alpha      | 12587-46-1     | 0.6             | 3           | 1        | pCi/L           | U                | UJ                      | С                   |
| Gross Beta       | 12587-47-2     | 1.38            | 4           | 1.5      | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9       | 901.1 M         | 10D         |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | OMPOS           | TE Matri    | x Type:  | WATER           | V                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITC0793-02     | Sam             | ple Date:   | 3/7/2010 | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL          | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
|                  |                |                 |             |          |                 |                  |                         |                     |
| Cesium 137       | 10045-97-3     | 0               | 20          | 9        | pCi/L           | U                | U                       |                     |

Thursday, April 15, 2010 Page 1 of 3

# Analysis Method EPA 903.0 MOD

| Sample Name      | Outfall 009 (C | COMPOS          | TE Matri  | іх Туре: | WATER           | V                | alidation Le            | vel: IV             |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | ITC0793-02     | Sam             | ple Date: | 3/7/2010 | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium (226)     | 13982-63-3     | 0.064           | 1         | 0.056    | pCi/L           | Jb               | J                       | C, DNQ              |
| Analysis Metho   | od EPA 9       | 904 MC          | )D        |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | COMPOS          | ITE Matri | ix Type: | WATER           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITC0793-02     | Sam             | ple Date: | 3/7/2010 | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium 228       | 15262-20-1     | 0.43            | 1         | 0.44     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9       | 905 MC          | DD        |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | COMPOS          | ITE Matri | іх Туре: | WATER           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITC0793-02     | Sam             | ple Date: | 3/7/2010 | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Strontium 90     | 10098-97-2     | 0.01            | 3         | 0.46     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9       | 906.0 N         | 10D       |          |                 |                  |                         |                     |
| Sample Name      | Outfall 009 (C | COMPOS          | ITE Matri | іх Туре: | WATER           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name: | ITC0793-02     | Sam             | ple Date: | 3/7/2010 | 9:17:00 AM      |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Tritium          | 10028-17-8     | 100             | 500       | 150      | pCi/L           | U                | U                       |                     |

Thursday, April 15, 2010 Page 2 of 3

# Analysis Method EPA-5 1613B

| Sample Name         | Outfall 009 (COMPOSITE Matrix Type: WATER |                         |           |            | WATER           | 7                | alidation Le            | vel: IV             |
|---------------------|-------------------------------------------|-------------------------|-----------|------------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:    | ITC0793-02                                | ITC0793-02 Sample Date: |           | 3/7/2010 9 | :17:00 AM       |                  |                         |                     |
| Analyte             | CAS No                                    | Result<br>Value         | RL        | MDL        | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| 1,2,3,4,6,7,8-HpCDD | 35822-46-9                                | ND                      | 0.00005   | 0.0000007  | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,4,6,7,8-HpCDF | 67562-39-4                                | ND                      | 0.0000062 | 0.0000004  | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,4,7,8,9-HpCDF | 55673-89-7                                | ND                      | 0.0000012 | 0.0000007  | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,4,7,8-HxCDD   | 39227-28-6                                | ND                      | 0.0000009 | 0.0000002  | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,4,7,8-HxCDF   | 70648-26-9                                | ND                      | 0.00005   | 0.0000000  | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,6,7,8-HxCDD   | 57653-85-7                                | ND                      | 0.0000018 | 0.0000001  | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,6,7,8-HxCDF   | 57117-44-9                                | ND                      | 0.000001  | 0.0000000  | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,7,8,9-HxCDD   | 19408-74-3                                | ND                      | 0.0000018 | 0.0000001  | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,7,8,9-HxCDF   | 72918-21-9                                | ND                      | 0.0000007 | 0.0000000  | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,7,8-PeCDD     | 40321-76-4                                | ND                      | 0.00005   | 0.0000005  | ug/L            |                  | U                       |                     |
| 1,2,3,7,8-PeCDF     | 57117-41-6                                | ND                      | 0.00005   | 0.0000000  | ug/L            |                  | U                       |                     |
| 2,3,4,6,7,8-HxCDF   | 60851-34-5                                | ND                      | 0.00005   | 0.0000000  | ug/L            | J, Ba            | U                       | В                   |
| 2,3,4,7,8-PeCDF     | 57117-31-4                                | ND                      | 0.00005   | 0.0000000  | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDD        | 1746-01-6                                 | ND                      | 0.00001   | 0.0000000  | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDF        | 51207-31-9                                | ND                      | 0.00001   | 0.0000000  | ug/L            |                  | U                       |                     |
| OCDD                | 3268-87-9                                 | 0.00029                 | 0.0001    | 0.0000011  | ug/L            | Ba               |                         |                     |
| OCDF                | 39001-02-0                                | ND                      | 0.0001    | 0.0000005  | ug/L            | J, Ba            | U                       | В                   |
| Total HpCDD         | 37871-00-4                                | ND                      | 0.00005   | 0.0000007  | ug/L            | J, Ba            | UJ                      | *III                |
| Total HpCDF         | 38998-75-3                                | ND                      | 0.000016  | 0.0000004  | ug/L            | J, Q, Ba         | U                       | В                   |
| Total HxCDD         | 34465-46-8                                | 0.00001                 | 0.00001   | 0.0000001  | ug/L            | J, Q, Ba         | J                       | B, DNQ, *III        |
| Total HxCDF         | 55684-94-1                                | 0.000009                | 0.0000097 | 0.0000000  | ug/L            | J, Q, Ba         | J                       | B, DNQ, *III        |
| Total PeCDD         | 36088-22-9                                | ND                      | 0.0000018 | 0.0000005  | ug/L            | J, Q             | UJ                      | *III                |
| Total PeCDF         | 30402-15-4                                | ND                      | 0.0000011 | 0.0000000  | ug/L            | J, Q, Ba         | UJ                      | *III                |
| Total TCDD          | 41903-57-5                                | ND                      | 0.00001   | 0.0000000  | ug/L            |                  | U                       |                     |
| Total TCDF          | 55722-27-5                                | ND                      | 0.00001   | 0.0000000  | ug/L            |                  | U                       |                     |

Thursday, April 15, 2010 Page 3 of 3



# APPENDIX G

# **Section 46**

Outfall 009 – March 6 & 7, 2010 Test America Analytical Laboratory Report





#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 03/06/10-03/07/10

Received: 03/08/10 Issued: 04/06/10 16:53

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 4 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

There are no other anomalies associated with this project.

LABORATORY ID CLIENT ID MATRIX
ITC0793-01 Outfall 009 (GRAB) Water

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793

Received: 03/08/10

LABORATORY ID

**CLIENT ID** 

MATRIX Water

ITC0793-02

Outfall 009 (COMPOSITE)

Reviewed By:

TestAmerica Irvine

Debby Wilson For Heather Clark Project Manager

Debby Wilson



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0793 Received: 03/08/10

Attention: Bronwyn Kelly

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                               | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-01 (Outfall 009 (G |           |         |              | Sample             | ed: 03/06/1      | 10                 |                   |                  |                    |
| Reporting Units: mg/l                 |           |         |              |                    |                  |                    |                   |                  |                    |
| Hexane Extractable Material (Oil &    | EPA 1664A | 10C1956 | 1.4          | 4.9                | ND               | 1                  | 03/16/10          | 03/16/10         |                    |
| Grease)                               |           |         |              |                    |                  |                    |                   |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0793 Received: 03/08/10

Attention: Bronwyn Kelly

#### **METALS**

| Analyte                              | Method          | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|-----------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 ( | COMPOSITE) - Wa | iter)   |              |                    | Sample           | ed: 03/07/1        | 10                |                  |                    |
| Reporting Units: ug/l                |                 |         |              |                    |                  |                    |                   |                  |                    |
| Mercury                              | EPA 245.1       | 10C2010 | 0.10         | 0.20               | ND               | 1                  | 03/16/10          | 03/16/10         |                    |
| Antimony                             | EPA 200.8       | 10C1320 | 0.30         | 2.0                | 0.79             | 1                  | 03/10/10          | 03/11/10         | J                  |
| Cadmium                              | EPA 200.8       | 10C1320 | 0.10         | 1.0                | ND               | 1                  | 03/10/10          | 03/12/10         |                    |
| Copper                               | EPA 200.8       | 10C1320 | 0.50         | 2.0                | 3.2              | 1                  | 03/10/10          | 03/11/10         |                    |
| Lead                                 | EPA 200.8       | 10C1320 | 0.20         | 1.0                | 1.1              | 1                  | 03/10/10          | 03/11/10         |                    |
| Thallium                             | EPA 200.8       | 10C1320 | 0.20         | 1.0                | ND               | 1                  | 03/10/10          | 03/12/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0793 Received: 03/08/10

Attention: Bronwyn Kelly

#### **DISSOLVED METALS**

| Analyte                            | Method            | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 | (COMPOSITE) - Wat | er)     |              |                    | Sample           | ed: 03/07/1        | 10                |                  |                    |
| Reporting Units: ug/l              |                   |         |              |                    |                  |                    |                   |                  |                    |
| Mercury                            | EPA 245.1-Diss    | 10C2011 | 0.10         | 0.20               | ND               | 1                  | 03/16/10          | 03/16/10         |                    |
| Antimony                           | EPA 200.8-Diss    | 10C1740 | 0.30         | 2.0                | 0.79             | 1                  | 03/14/10          | 03/16/10         | J                  |
| Cadmium                            | EPA 200.8-Diss    | 10C1740 | 0.10         | 1.0                | ND               | 1                  | 03/14/10          | 03/16/10         |                    |
| Copper                             | EPA 200.8-Diss    | 10C1740 | 0.50         | 2.0                | 2.8              | 1                  | 03/14/10          | 03/16/10         | В                  |
| Lead                               | EPA 200.8-Diss    | 10C1740 | 0.20         | 1.0                | ND               | 1                  | 03/14/10          | 03/16/10         |                    |
| Thallium                           | EPA 200.8-Diss    | 10C1740 | 0.20         | 1.0                | ND               | 1                  | 03/14/10          | 03/16/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0793 Received: 03/08/10

Attention: Bronwyn Kelly

#### **INORGANICS**

| Analyte                                | Method        | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|---------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 (CC | MPOSITE) - Wa | iter)   |              |                    | Sample           | ed: 03/07/1        | 10                |                  |                    |
| Reporting Units: mg/l                  |               |         |              |                    |                  |                    |                   |                  |                    |
| Chloride                               | EPA 300.0     | 10C0921 | 0.25         | 0.50               | 7.8              | 1                  | 03/08/10          | 03/08/10         |                    |
| Nitrate/Nitrite-N                      | EPA 300.0     | 10C0921 | 0.15         | 0.26               | 0.26             | 1                  | 03/08/10          | 03/08/10         |                    |
| Sulfate                                | EPA 300.0     | 10C0921 | 0.20         | 0.50               | 12               | 1                  | 03/08/10          | 03/08/10         |                    |
| <b>Total Dissolved Solids</b>          | SM2540C       | 10C1348 | 1.0          | 10                 | 120              | 1                  | 03/11/10          | 03/11/10         |                    |



MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 03/06/10-03/07/10

Arcadia, CA 91007 Report Number: ITC0793 Received: 03/08/10

Attention: Bronwyn Kelly

#### EPA-5 1613B

| Analyte                                | Method           | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result |            | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|------------------|-------|--------------|--------------------|------------------|------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 (C  | COMPOSITE) - Wat | er)   |              |                    | Campla           | d: 03/07/1 |                   | ٠                |                    |
| Reporting Units: ug/L                  | COMI OSITE) Wat  | (1)   |              |                    | Sample           | u. 03/0//  | 10                |                  |                    |
| 1,2,3,4,6,7,8-HpCDD                    | EPA-5 1613B      | 70198 | 0.0000007    | 0 00005            | 0.000025         | 0.99       | 03/11/10          | 03/15/10         | J, Ba              |
| 1,2,3,4,6,7,8-HpCDF                    | EPA-5 1613B      |       | 0.0000004    |                    | 0.0000062        |            | 03/11/10          | 03/15/10         | J, Q, Ba           |
| 1,2,3,4,7,8,9-HpCDF                    | EPA-5 1613B      |       | 0.0000007    |                    | 0.0000012        |            | 03/11/10          | 03/15/10         | J, Q, Ba           |
| 1,2,3,4,7,8-HxCDD                      | EPA-5 1613B      |       | 0.0000002    |                    | 0.00000099       |            | 03/11/10          | 03/15/10         | J, Q, Ba           |
| 1,2,3,4,7,8-HxCDF                      | EPA-5 1613B      |       | 0.0000000    |                    | 0.0000014        |            | 03/11/10          | 03/15/10         | J, Ba              |
| 1,2,3,6,7,8-HxCDD                      | EPA-5 1613B      |       | 0.0000001    |                    | 0.0000018        |            | 03/11/10          | 03/15/10         | J, Q, Ba           |
| 1,2,3,6,7,8-HxCDF                      | EPA-5 1613B      | 70198 | 0.0000000    | 2 0.00005          | 0.000001         | 0.99       | 03/11/10          | 03/15/10         | J, Q, Ba           |
| 1,2,3,7,8,9-HxCDD                      | EPA-5 1613B      |       | 0.0000001    |                    | 0.0000018        |            | 03/11/10          | 03/15/10         | J, Q, Ba           |
| 1,2,3,7,8,9-HxCDF                      | EPA-5 1613B      | 70198 | 0.0000000    | 3 0.00005          | 0.00000076       | 0.99       | 03/11/10          | 03/15/10         | J, Q, Ba           |
| 1,2,3,7,8-PeCDD                        | EPA-5 1613B      | 70198 | 0.0000005    | 7 0.00005          | ND               | 0.99       | 03/11/10          | 03/15/10         |                    |
| 1,2,3,7,8-PeCDF                        | EPA-5 1613B      | 70198 | 0.0000000    | 4 0.00005          | ND               | 0.99       | 03/11/10          | 03/15/10         |                    |
| 2,3,4,6,7,8-HxCDF                      | EPA-5 1613B      | 70198 | 0.0000000    | 2 0.00005          | 0.0000013        | 0.99       | 03/11/10          | 03/15/10         | J, Ba              |
| 2,3,4,7,8-PeCDF                        | EPA-5 1613B      | 70198 | 0.00000000   | 4 0.00005          | ND               | 0.99       | 03/11/10          | 03/15/10         |                    |
| 2,3,7,8-TCDD                           | EPA-5 1613B      | 70198 | 0.0000000    | 3 0.00001          | ND               | 0.99       | 03/11/10          | 03/15/10         |                    |
| 2,3,7,8-TCDF                           | EPA-5 1613B      | 70198 | 0.0000000    | 3 0.00001          | ND               | 0.99       | 03/11/10          | 03/15/10         |                    |
| OCDD                                   | EPA-5 1613B      | 70198 | 0.0000011    | 0.0001             | 0.00029          | 0.99       | 03/11/10          | 03/15/10         | Ba                 |
| OCDF                                   | EPA-5 1613B      | 70198 | 0.0000005    | 5 0.0001           | 0.000017         | 0.99       | 03/11/10          | 03/15/10         | J, Ba              |
| Total HpCDD                            | EPA-5 1613B      | 70198 | 0.0000007    | 0.00005            | 0.000061         | 0.99       | 03/11/10          | 03/15/10         | J, Ba              |
| Total HpCDF                            | EPA-5 1613B      | 70198 | 0.0000004    | 9 0.00005          | 0.000016         | 0.99       | 03/11/10          | 03/15/10         | J, Q, Ba           |
| Total HxCDD                            | EPA-5 1613B      | 70198 | 0.0000001    | 8 0.00005          | 0.00001          | 0.99       | 03/11/10          | 03/15/10         | J, Q, Ba           |
| Total HxCDF                            | EPA-5 1613B      | 70198 | 0.0000000    | 2 0.00005          | 0.0000097        | 0.99       | 03/11/10          | 03/15/10         | J, Q, Ba           |
| Total PeCDD                            | EPA-5 1613B      | 70198 | 0.0000005    | 7 0.00005          | 0.0000018        | 0.99       | 03/11/10          | 03/15/10         | J, Q               |
| Total PeCDF                            | EPA-5 1613B      | 70198 | 0.0000000    | 3 0.00005          | 0.0000011        | 0.99       | 03/11/10          | 03/15/10         | J, Q, Ba           |
| Total TCDD                             | EPA-5 1613B      | 70198 | 0.0000000    | 3 0.00001          | ND               | 0.99       | 03/11/10          | 03/15/10         |                    |
| Total TCDF                             | EPA-5 1613B      | 70198 | 0.0000000    | 3 0.00001          | ND               | 0.99       | 03/11/10          | 03/15/10         |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2  | 3-140%)          |       |              |                    | 66 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28 | 8-143%)          |       |              |                    | 64 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (20 |                  |       |              |                    | 60 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-  |                  |       |              |                    | 70 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-  |                  |       |              |                    | 67 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-  |                  |       |              |                    | 62 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-  |                  |       |              |                    | 62 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-  |                  |       |              |                    | 60 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-18  |                  |       |              |                    | 55 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-18  |                  |       |              |                    | 48 %             |            |                   |                  |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-  |                  |       |              |                    | 64 %             |            |                   |                  |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-17  | · ·              |       |              |                    | 48 %             |            |                   |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164%   |                  |       |              |                    | 56 %             |            |                   |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%)  | )                |       |              |                    | 52 %             |            |                   |                  |                    |
| Surrogate: 13C-OCDD (17-157%)          | 70 ()            |       |              |                    | 65 %             |            |                   |                  |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-197  | (%)              |       |              |                    | 91 %             |            |                   |                  |                    |

#### **TestAmerica Irvine**

Debby Wilson For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793

Received: 03/08/10

#### **ASTM 5174-91**

| Analyte                               | Method       | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result |   | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------|--------------|-------|--------------|--------------------|------------------|---|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 (C |              |       | Sample       | ed: 03/07/1        | 10               |   |                   |                  |                    |
| Reporting Units: pCi/L                |              |       |              |                    |                  |   |                   |                  |                    |
| Total Uranium                         | ASTM 5174-91 | 67296 | 0.21         | 0.693              | 0.485            | 1 | 03/10/10          | 03/12/10         | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

#### **EPA 900.0 MOD**

| Analyte                            | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 |               |       | Sample       | ed: 03/07/1        | 10               |                    |                   |                  |                    |
| Reporting Units: pCi/L             |               |       |              |                    |                  |                    |                   |                  |                    |
| Gross Alpha                        | EPA 900.0 MOD | 70220 | 1            | 3                  | 0.6              | 1                  | 03/11/10          | 03/14/10         | U                  |
| Gross Beta                         | EPA 900.0 MOD | 70220 | 1.5          | 4                  | 1.38             | 1                  | 03/11/10          | 03/14/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793

Received: 03/08/10

#### **EPA 901.1 MOD**

| Analyte                           | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 00 |               |       | Sample       | d: 03/07/1         | 10               |                    |                   |                  |                    |
| Reporting Units: pCi/L            |               |       |              |                    |                  |                    |                   |                  |                    |
| Cesium 137                        | EPA 901.1 MOD | 69127 | 9            | 20                 | ND               | 1                  | 03/10/10          | 03/20/10         | U                  |
| Potassium 40                      | EPA 901.1 MOD | 69127 | 210          | NA                 | -20              | 1                  | 03/10/10          | 03/20/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 03/06/10-03/07/10

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: ITC0793 Received: 03/08/10

#### **EPA 903.0 MOD**

| Analyte                               | Method            | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result |             | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------|-------------------|-------|--------------|--------------------|------------------|-------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 (C | COMPOSITE) - Wate | er)   |              |                    | Sample           | ed: 03/07/1 | 10                |                  |                    |
| Reporting Units: pCi/L                |                   |       |              |                    |                  |             |                   |                  |                    |
| Radium (226)                          | EPA 903.0 MOD     | 69101 | 0.056        | 1                  | 0.064            | 1           | 03/10/10          | 04/02/10         | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Received: 03/08/10

Report Number: ITC0793

#### **EPA 904 MOD**

| Analyte                              | Method           | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 ( | COMPOSITE) - Wat | er)   |              |                    | Sample           | d: 03/07/1         | 10                |                  |                    |
| Reporting Units: pCi/L               |                  |       |              |                    |                  |                    |                   |                  |                    |
| Radium 228                           | EPA 904 MOD      | 69102 | 0.44         | 1                  | 0.43             | 1                  | 03/10/10          | 03/19/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 03/06/10-03/07/10

Arcadia, CA 91007

Report Number: ITC0793

Received: 03/08/10

#### **EPA 905 MOD**

| Analyte                              | Method           | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 ( | COMPOSITE) - Wat | er)   |              |                    | Sample           | ed: 03/07/1        | 10                |                  |                    |
| Reporting Units: pCi/L               |                  |       |              |                    |                  |                    |                   |                  |                    |
| Strontium 90                         | EPA 905 MOD      | 69104 | 0.46         | 3                  | 0.01             | 1                  | 03/10/10          | 03/20/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 03/06/10-03/07/10

Arcadia, CA 91007

Report Number: ITC0793

Received: 03/08/10

#### **EPA 906.0 MOD**

| Analyte                            | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITC0793-02 (Outfall 009 |               |       | Sample       | ed: 03/07/1        | 10               |                    |                   |                  |                    |
| Reporting Units: pCi/L<br>Tritium  | EPA 906.0 MOD | 77060 | 150          | 500                | 100              | 1                  | 03/18/10          | 03/24/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Report Number: ITC0793

Sampled: 03/06/10-03/07/10

Received: 03/08/10

#### SHORT HOLD TIME DETAIL REPORT

|                                 | Hold Time               | Date/Time        | Date/Time        | Date/Time        | Date/Time        |
|---------------------------------|-------------------------|------------------|------------------|------------------|------------------|
|                                 | (in days)               | Sampled          | Received         | Extracted        | Analyzed         |
| Sample ID: Outfall 009 (COMPOSI | TE) (ITC0793-02) - Wate | er               |                  |                  |                  |
| EPA 300.0                       | 2                       | 03/07/2010 09:17 | 03/08/2010 03:45 | 03/08/2010 14:00 | 03/08/2010 14:36 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793

Received: 03/08/10

# METHOD BLANK/QC DATA

#### HEXANE EXTRACTABLE MATERIAL

| Analyte                                    | Result   | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------|----------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 10C1956 Extracted: 03/16/10         | <u>_</u> |                    |     |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/16/2010 (10C1956-B      | LK1)     |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | ND       | 5.0                | 1.4 | mg/l  |                |                  |      |                |     |              |                    |
| LCS Analyzed: 03/16/2010 (10C1956-BS       | 1)       |                    |     |       |                |                  |      |                |     |              | MNR1               |
| Hexane Extractable Material (Oil & Grease) | 19.7     | 5.0                | 1.4 | mg/l  | 20.0           |                  | 98   | 78-114         |     |              |                    |
| LCS Dup Analyzed: 03/16/2010 (10C195       | 6-BSD1)  |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 19.4     | 5.0                | 1.4 | mg/l  | 20.0           |                  | 97   | 78-114         | 2   | 11           |                    |

%REC

RPD

Data



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

Spike Source

# METHOD BLANK/QC DATA

#### **METALS**

Reporting

|                                        |               | Reporting  |             |       | Spike | Source   |         | %REC   |     | KPD   | Data       |
|----------------------------------------|---------------|------------|-------------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result        | Limit      | MDL         | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10C1320 Extracted: 03/10/10     | <u>)</u>      |            |             |       |       |          |         |        |     |       |            |
|                                        |               |            |             |       |       |          |         |        |     |       |            |
| Blank Analyzed: 03/11/2010-03/12/2010  | (10C1320-BL   | K1)        |             |       |       |          |         |        |     |       |            |
| Antimony                               | ND            | 2.0        | 0.30        | ug/l  |       |          |         |        |     |       |            |
| Cadmium                                | ND            | 1.0        | 0.10        | ug/l  |       |          |         |        |     |       |            |
| Copper                                 | ND            | 2.0        | 0.50        | ug/l  |       |          |         |        |     |       |            |
| Lead                                   | ND            | 1.0        | 0.20        | ug/l  |       |          |         |        |     |       |            |
| Thallium                               | ND            | 1.0        | 0.20        | ug/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 03/11/2010-03/12/2010 (1 | 10C1320-BS1   | )          |             |       |       |          |         |        |     |       |            |
| Antimony                               | 76.5          | 2.0        | 0.30        | ug/l  | 80.0  |          | 96      | 85-115 |     |       |            |
| Cadmium                                | 79.4          | 1.0        | 0.10        | ug/l  | 80.0  |          | 99      | 85-115 |     |       |            |
| Copper                                 | 78.4          | 2.0        | 0.50        | ug/l  | 80.0  |          | 98      | 85-115 |     |       |            |
| Lead                                   | 80.3          | 1.0        | 0.20        | ug/l  | 80.0  |          | 100     | 85-115 |     |       |            |
| Thallium                               | 79.7          | 1.0        | 0.20        | ug/l  | 80.0  |          | 100     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 03/11/2010-03/1 | 2/2010 (10C1  | 320-MS1)   |             |       | Sou   | rce: ITC | 0790-03 |        |     |       |            |
| Antimony                               | 78.5          | 2.0        | 0.30        | ug/l  | 80.0  | 0.353    | 98      | 70-130 |     |       |            |
| Cadmium                                | 81.1          | 1.0        | 0.10        | ug/l  | 80.0  | ND       | 101     | 70-130 |     |       |            |
| Copper                                 | 79.6          | 2.0        | 0.50        | ug/l  | 80.0  | 1.76     | 97      | 70-130 |     |       |            |
| Lead                                   | 75.7          | 1.0        | 0.20        | ug/l  | 80.0  | 0.316    | 94      | 70-130 |     |       |            |
| Thallium                               | 75.5          | 1.0        | 0.20        | ug/l  | 80.0  | ND       | 94      | 70-130 |     |       |            |
| Matrix Spike Analyzed: 03/11/2010-03/1 | 2/2010 (10C1  | 320-MS2)   |             |       | Sou   | rce: ITC | 0791-03 |        |     |       |            |
| Antimony                               | 78.9          | 2.0        | 0.30        | ug/l  | 80.0  | 0.397    | 98      | 70-130 |     |       |            |
| Cadmium                                | 81.3          | 1.0        | 0.10        | ug/l  | 80.0  | ND       | 102     | 70-130 |     |       |            |
| Copper                                 | 79.8          | 2.0        | 0.50        | ug/l  | 80.0  | 1.36     | 98      | 70-130 |     |       |            |
| Lead                                   | 75.1          | 1.0        | 0.20        | ug/l  | 80.0  | 0.231    | 94      | 70-130 |     |       |            |
| Thallium                               | 76.2          | 1.0        | 0.20        | ug/l  | 80.0  | ND       | 95      | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 03/11/2010  | -03/12/2010 ( | 10C1320-MS | <b>D</b> 1) |       | Sou   | rce: ITC | 0790-03 |        |     |       |            |
| Antimony                               | 79.1          | 2.0        | 0.30        | ug/l  | 80.0  | 0.353    | 98      | 70-130 | 0.7 | 20    |            |
| Cadmium                                | 78.2          | 1.0        | 0.10        | ug/l  | 80.0  | ND       | 98      | 70-130 | 4   | 20    |            |
| Copper                                 | 79.1          | 2.0        | 0.50        | ug/l  | 80.0  | 1.76     | 97      | 70-130 | 0.6 | 20    |            |
| Lead                                   | 73.6          | 1.0        | 0.20        | ug/l  | 80.0  | 0.316    | 92      | 70-130 | 3   | 20    |            |
| Thallium                               | 73.8          | 1.0        | 0.20        | ug/l  | 80.0  | ND       | 92      | 70-130 | 2   | 20    |            |

#### **TestAmerica Irvine**

Debby Wilson For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

#### **METALS**

| Analyte                                | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|--------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10C2010 Extracted: 03/16/10     | _            |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/16/2010 (10C2010-B  | LK1)         |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | ND           | 0.20               | 0.10 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/16/2010 (10C2010-BS)  | 1)           |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | 8.36         | 0.20               | 0.10 | ug/l  | 8.00           |                  | 105     | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 03/16/2010 (10C | 2010-MS1)    |                    |      |       | Sou            | rce: ITC         | 1476-01 |                |     |              |                    |
| Mercury                                | 8.41         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 105     | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/16/2010  | (10C2010-MSI | <b>D1</b> )        |      |       | Sou            | rce: ITC         | 1476-01 |                |     |              |                    |
| Mercury                                | 8.38         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 105     | 70-130         | 0.5 | 20           |                    |



MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793

Received: 03/08/10

# METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

|                                        |            | Reporting |      |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10C1740 Extracted: 03/14/10     | )          |           |      |       |       |          |         |        |     |       |            |
|                                        |            |           |      |       |       |          |         |        |     |       |            |
| Blank Analyzed: 03/16/2010 (10C1740-B  | LK1)       |           |      |       |       |          |         |        |     |       |            |
| Antimony                               | ND         | 2.0       | 0.30 | ug/l  |       |          |         |        |     |       |            |
| Cadmium                                | ND         | 1.0       | 0.10 | ug/l  |       |          |         |        |     |       |            |
| Copper                                 | 0.692      | 2.0       | 0.50 | ug/l  |       |          |         |        |     |       | J          |
| Lead                                   | ND         | 1.0       | 0.20 | ug/l  |       |          |         |        |     |       |            |
| Thallium                               | ND         | 1.0       | 0.20 | ug/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 03/16/2010 (10C1740-BS   | 1)         |           |      |       |       |          |         |        |     |       |            |
| Antimony                               | 84.4       | 2.0       | 0.30 | ug/l  | 80.0  |          | 105     | 85-115 |     |       |            |
| Cadmium                                | 81.0       | 1.0       | 0.10 | ug/l  | 80.0  |          | 101     | 85-115 |     |       |            |
| Copper                                 | 82.0       | 2.0       | 0.50 | ug/l  | 80.0  |          | 103     | 85-115 |     |       |            |
| Lead                                   | 83.1       | 1.0       | 0.20 | ug/l  | 80.0  |          | 104     | 85-115 |     |       |            |
| Thallium                               | 82.8       | 1.0       | 0.20 | ug/l  | 80.0  |          | 103     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 03/16/2010 (100 | C1740-MS1) |           |      |       | Sou   | rce: ITC | 1128-01 |        |     |       |            |
| Antimony                               | 85.2       | 2.0       | 0.30 | ug/l  | 80.0  | ND       | 107     | 70-130 |     |       |            |
| Cadmium                                | 77.6       | 1.0       | 0.10 | ug/l  | 80.0  | ND       | 97      | 70-130 |     |       |            |
| Copper                                 | 76.4       | 2.0       | 0.50 | ug/l  | 80.0  | 1.11     | 94      | 70-130 |     |       |            |
| Lead                                   | 78.0       | 1.0       | 0.20 | ug/l  | 80.0  | ND       | 97      | 70-130 |     |       |            |
| Thallium                               | 78.4       | 1.0       | 0.20 | ug/l  | 80.0  | ND       | 98      | 70-130 |     |       |            |
| Matrix Spike Analyzed: 03/16/2010 (100 | C1740-MS2) |           |      |       | Sou   | rce: ITC | 1128-02 |        |     |       |            |
| Antimony                               | 85.1       | 2.0       | 0.30 | ug/l  | 80.0  | ND       | 106     | 70-130 |     |       |            |
| Cadmium                                | 77.7       | 1.0       | 0.10 | ug/l  | 80.0  | ND       | 97      | 70-130 |     |       |            |
| Copper                                 | 77.2       | 2.0       | 0.50 | ug/l  | 80.0  | 2.21     | 94      | 70-130 |     |       |            |
| Lead                                   | 76.7       | 1.0       | 0.20 | ug/l  | 80.0  | ND       | 96      | 70-130 |     |       |            |
| Thallium                               | 76.9       | 1.0       | 0.20 | ug/l  | 80.0  | ND       | 96      | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 03/16/2010  | (10C1740-M | SD1)      |      |       | Sou   | rce: ITC | 1128-01 |        |     |       |            |
| Antimony                               | 86.0       | 2.0       | 0.30 | ug/l  | 80.0  | ND       | 108     | 70-130 | 0.9 | 20    |            |
| Cadmium                                | 79.0       | 1.0       | 0.10 | ug/l  | 80.0  | ND       | 99      | 70-130 | 2   | 20    |            |
| Copper                                 | 77.6       | 2.0       | 0.50 | ug/l  | 80.0  | 1.11     | 96      | 70-130 | 2   | 20    |            |
| Lead                                   | 78.3       | 1.0       | 0.20 | ug/l  | 80.0  | ND       | 98      | 70-130 | 0.4 | 20    |            |
| Thallium                               | 77.9       | 1.0       | 0.20 | ug/l  | 80.0  | ND       | 97      | 70-130 | 0.6 | 20    |            |

#### **TestAmerica Irvine**

Debby Wilson For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

| Analyte                                | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|--------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10C2011 Extracted: 03/16/10     | -            |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 03/16/2010 (10C2011-B  | LK1)         |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | ND           | 0.20               | 0.10 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 03/16/2010 (10C2011-BS   | 1)           |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | 8.65         | 0.20               | 0.10 | ug/l  | 8.00           |                  | 108     | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 03/16/2010 (10C | 2011-MS1)    |                    |      |       | Sou            | rce: ITC         | 1128-01 |                |     |              |                    |
| Mercury                                | 8.49         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 106     | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 03/16/2010  | (10C2011-MSI | D1)                |      |       | Sou            | rce: ITC         | 1128-01 |                |     |              |                    |
| Mercury                                | 8.36         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 104     | 70-130         | 2   | 20           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

#### **INORGANICS**

|                                                      |            | Reporting |      |                    | Spike              | Source |      | %REC   |      | RPD   | Data       |
|------------------------------------------------------|------------|-----------|------|--------------------|--------------------|--------|------|--------|------|-------|------------|
| Analyte                                              | Result     | Limit     | MDL  | Units              | Level              | Result | %REC | Limits | RPD  | Limit | Qualifiers |
| Batch: 10C0921 Extracted: 03/08/10                   | _          |           |      |                    |                    |        |      |        |      |       |            |
|                                                      | _          |           |      |                    |                    |        |      |        |      |       |            |
| Blank Analyzed: 03/08/2010 (10C0921-Bl               | LK1)       |           |      |                    |                    |        |      |        |      |       |            |
| Chloride                                             | ND         | 0.50      | 0.25 | mg/l               |                    |        |      |        |      |       |            |
| Nitrate/Nitrite-N                                    | ND         | 0.26      | 0.15 | mg/l               |                    |        |      |        |      |       |            |
| Sulfate                                              | ND         | 0.50      | 0.20 | mg/l               |                    |        |      |        |      |       |            |
| LCS Analyzed: 03/08/2010 (10C0921-BS1                | l)         |           |      |                    |                    |        |      |        |      |       |            |
| Chloride                                             | 4.95       | 0.50      | 0.25 | mg/l               | 5.00               |        | 99   | 90-110 |      |       |            |
| Sulfate                                              | 10.3       | 0.50      | 0.20 | mg/l               | 10.0               |        | 103  | 90-110 |      |       |            |
| Matrix Spike Analyzed: 03/08/2010 (10C               | C0921-MS1) |           |      |                    | Source: ITC0793-02 |        |      |        |      |       |            |
| Chloride                                             | 12.9       | 0.50      | 0.25 | mg/l               | 5.00               | 7.84   | 102  | 80-120 |      |       |            |
| Sulfate                                              | 22.1       | 0.50      | 0.20 | mg/l               | 10.0               | 11.7   | 103  | 80-120 |      |       |            |
| Matrix Spike Analyzed: 03/08/2010 (10C0921-MS2)      |            |           |      | Source: ITC0878-02 |                    |        |      |        |      |       |            |
| Chloride                                             | 11.8       | 0.50      | 0.25 | mg/l               | 5.00               | 6.58   | 104  | 80-120 |      |       |            |
| Sulfate                                              | 31.2       | 0.50      | 0.20 | mg/l               | 10.0               | 20.3   | 109  | 80-120 |      |       |            |
| Matrix Spike Dup Analyzed: 03/08/2010 (10C0921-MSD1) |            |           |      |                    | Source: ITC0793-02 |        |      |        |      |       |            |
| Chloride                                             | 12.9       | 0.50      | 0.25 | mg/l               | 5.00               | 7.84   | 101  | 80-120 | 0.07 | 20    |            |
| Sulfate                                              | 22.0       | 0.50      | 0.20 | mg/l               | 10.0               | 11.7   | 103  | 80-120 | 0.1  | 20    |            |
| Batch: 10C1348 Extracted: 03/11/10                   | _          |           |      |                    |                    |        |      |        |      |       |            |
| Blank Analyzed: 03/11/2010 (10C1348-Bl               | LK1)       |           |      |                    |                    |        |      |        |      |       |            |
| Total Dissolved Solids                               | ND         | 10        | 1.0  | mg/l               |                    |        |      |        |      |       |            |
| LCS Analyzed: 03/11/2010 (10C1348-BS)                | 1)         |           |      |                    |                    |        |      |        |      |       |            |
| Total Dissolved Solids                               | 998        | 10        | 1.0  | mg/l               | 1000               |        | 100  | 90-110 |      |       |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

#### **INORGANICS**

|                                               |        | Reporting |     |                    | Spike | Source |      | %REC   |     | RPD   | Data       |
|-----------------------------------------------|--------|-----------|-----|--------------------|-------|--------|------|--------|-----|-------|------------|
| Analyte                                       | Result | Limit     | MDL | Units              | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 10C1348 Extracted: 03/11.              | /10_   |           |     |                    |       |        |      |        |     |       |            |
| Duplicate Analyzed: 03/11/2010 (10C1348-DUP1) |        |           |     | Source: ITC0719-01 |       |        |      |        |     |       |            |
| Total Dissolved Solids                        | 293    | 10        | 1.0 | mg/l               |       | 290    |      |        | 1   | 10    |            |

%REC

RPD

Data



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

Source

Spike

# METHOD BLANK/QC DATA

#### **EPA-5 1613B**

Reporting

|                                    |            | Keporung | 5          |       | Spike   | Source |      | OKEC   |     | KI D  | Data       |
|------------------------------------|------------|----------|------------|-------|---------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result     | Limit    | MDL        | Units | Level   | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 70198 Extracted: 03/11/2    | 10         |          |            |       |         |        |      |        |     |       |            |
| Blank Analyzed: 03/15/2010 (G0C1   | 10000198B) |          |            |       | Sou     | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.0000033  | 0.00005  | 0.00000074 | ug/L  |         |        |      | -      |     |       | J, Q       |
| 1,2,3,4,6,7,8-HpCDF                | 0.0000024  | 0.00005  | 0.00000082 | ug/L  |         |        |      | -      |     |       | J, Q       |
| 1,2,3,4,7,8,9-HpCDF                | 0.0000016  | 0.00005  | 0.000001   | ug/L  |         |        |      | -      |     |       | J          |
| 1,2,3,4,7,8-HxCDD                  | 0.0000011  | 0.00005  | 0.00000071 | ug/L  |         |        |      | -      |     |       | J, Q       |
| 1,2,3,4,7,8-HxCDF                  | 0.0000018  | 0.00005  | 0.00000021 | ug/L  |         |        |      | -      |     |       | J          |
| 1,2,3,6,7,8-HxCDD                  | 0.0000015  | 0.00005  | 0.00000065 | ug/L  |         |        |      | -      |     |       | J          |
| 1,2,3,6,7,8-HxCDF                  | 0.000001   | 0.00005  | 0.0000002  | ug/L  |         |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8,9-HxCDD                  | 0.0000012  | 0.00005  | 0.00000061 | ug/L  |         |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8,9-HxCDF                  | 0.0000015  | 0.00005  | 0.00000022 | ug/L  |         |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8-PeCDD                    | ND         | 0.00005  | 0.0000032  | ug/L  |         |        |      | -      |     |       |            |
| 1,2,3,7,8-PeCDF                    | 0.0000012  | 0.00005  | 0.00000004 | ug/L  |         |        |      | -      |     |       | J          |
| 2,3,4,6,7,8-HxCDF                  | 0.0000016  | 0.00005  | 0.00000019 | ug/L  |         |        |      | -      |     |       | J          |
| 2,3,4,7,8-PeCDF                    | 0.0000008  | 0.00005  | 0.00000004 | ug/L  |         |        |      | -      |     |       | J, Q       |
| 2,3,7,8-TCDD                       | ND         | 0.00001  | 0.00000003 | ug/L  |         |        |      | -      |     |       |            |
| 2,3,7,8-TCDF                       | 0.00000086 | 0.00001  | 0.00000004 | ug/L  |         |        |      | -      |     |       | J          |
| OCDD                               | 0.000017   | 0.0001   | 0.00000084 | ug/L  |         |        |      | -      |     |       | J          |
| OCDF                               | 0.0000061  | 0.0001   | 0.00000067 | ug/L  |         |        |      | -      |     |       | J          |
| Total HpCDD                        | 0.000006   | 0.00005  | 0.00000074 | ug/L  |         |        |      | -      |     |       | J, Q       |
| Total HpCDF                        | 0.000004   | 0.00005  | 0.00000082 | ug/L  |         |        |      | -      |     |       | J, Q       |
| Total HxCDD                        | 0.0000039  | 0.00005  | 0.00000061 | ug/L  |         |        |      | -      |     |       | J, Q       |
| Total HxCDF                        | 0.0000063  | 0.00005  | 0.00000019 | ug/L  |         |        |      | -      |     |       | J, Q       |
| Total PeCDD                        | ND         | 0.00005  | 0.0000032  | ug/L  |         |        |      | -      |     |       |            |
| Total PeCDF                        | 0.0000024  | 0.00005  | 0.00000004 | ug/L  |         |        |      | -      |     |       | J, Q       |
| Total TCDD                         | ND         | 0.00001  | 0.00000003 | ug/L  |         |        |      | -      |     |       |            |
| Total TCDF                         | 0.00000086 | 0.00001  | 0.00000004 | ug/L  |         |        |      | -      |     |       | J          |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.0015     |          |            | ug/L  | 0.00200 |        | 73   | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.0014     |          |            | ug/L  | 0.00200 |        | 69   | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.0014     |          |            | ug/L  | 0.00200 |        | 69   | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.0015     |          |            | ug/L  | 0.00200 |        | 74   | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.0014     |          |            | ug/L  | 0.00200 |        | 70   | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.0014     |          |            | ug/L  | 0.00200 |        | 71   | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.0013     |          |            | ug/L  | 0.00200 |        | 67   | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.0013     |          |            | ug/L  | 0.00200 |        | 66   | 29-147 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.0012     |          |            | ug/L  | 0.00200 |        | 61   | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.001      |          |            | ug/L  | 0.00200 |        | 52   | 24-185 |     |       |            |
|                                    |            |          |            |       |         |        |      |        |     |       |            |

#### **TestAmerica Irvine**

Debby Wilson For Heather Clark Project Manager

%REC

RPD

Data



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

Source

# METHOD BLANK/QC DATA

#### **EPA-5 1613B**

Spike

Reporting

| Analyte                            | Result                                       | Limit   | MDL        | Units | Level    | Result | %REC | Limits | RPD | Limit | Qualifiers |
|------------------------------------|----------------------------------------------|---------|------------|-------|----------|--------|------|--------|-----|-------|------------|
| Batch: 70198 Extracted: 03/11/10   | <u>)                                    </u> |         |            |       |          |        |      |        |     |       |            |
| Blank Analyzed: 03/15/2010 (G0C110 | 0000198B)                                    |         |            |       | Sou      | rce:   |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0014                                       |         |            | ug/L  | 0.00200  |        | 70   | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.0011                                       |         |            | ug/L  | 0.00200  |        | 53   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.0011                                       |         |            | ug/L  | 0.00200  |        | 57   | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.001                                        |         |            | ug/L  | 0.00200  |        | 52   | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                | 0.0029                                       |         |            | ug/L  | 0.00400  |        | 74   | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00074                                      |         |            | ug/L  | 0.000800 |        | 92   | 35-197 |     |       |            |
| LCS Analyzed: 03/15/2010 (G0C1100  | 000198C)                                     |         |            |       | Sou      | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00106                                      | 0.00005 | 0.0000016  | ug/L  | 0.00100  |        | 106  | 70-140 |     |       | Ва         |
| 1,2,3,4,6,7,8-HpCDF                | 0.00106                                      | 0.00005 | 0.0000021  | ug/L  | 0.00100  |        | 106  | 82-122 |     |       | Ba         |
| 1,2,3,4,7,8,9-HpCDF                | 0.0011                                       | 0.00005 | 0.0000029  | ug/L  | 0.00100  |        | 110  | 78-138 |     |       | Ba         |
| 1,2,3,4,7,8-HxCDD                  | 0.00104                                      | 0.00005 | 0.00000032 | ug/L  | 0.00100  |        | 104  | 70-164 |     |       | Ba         |
| 1,2,3,4,7,8-HxCDF                  | 0.00108                                      | 0.00005 | 0.00000001 | ug/L  | 0.00100  |        | 108  | 72-134 |     |       | Ва         |
| 1,2,3,6,7,8-HxCDD                  | 0.000997                                     | 0.00005 | 0.0000003  | ug/L  | 0.00100  |        | 100  | 76-134 |     |       | Ва         |
| 1,2,3,6,7,8-HxCDF                  | 0.00109                                      | 0.00005 | 0.00000001 | ug/L  | 0.00100  |        | 109  | 84-130 |     |       | Ва         |
| 1,2,3,7,8,9-HxCDD                  | 0.000993                                     | 0.00005 | 0.00000028 | ug/L  | 0.00100  |        | 99   | 64-162 |     |       | Ва         |
| 1,2,3,7,8,9-HxCDF                  | 0.00108                                      | 0.00005 | 0.00000001 | ug/L  | 0.00100  |        | 108  | 78-130 |     |       | Ва         |
| 1,2,3,7,8-PeCDD                    | 0.000957                                     | 0.00005 | 0.0000021  | ug/L  | 0.00100  |        | 96   | 70-142 |     |       |            |
| 1,2,3,7,8-PeCDF                    | 0.00106                                      | 0.00005 | 0.0000011  | ug/L  | 0.00100  |        | 106  | 80-134 |     |       | Ва         |
| 2,3,4,6,7,8-HxCDF                  | 0.00109                                      | 0.00005 | 0.00000001 | ug/L  | 0.00100  |        | 109  | 70-156 |     |       | Ва         |
| 2,3,4,7,8-PeCDF                    | 0.00108                                      | 0.00005 | 0.0000012  | ug/L  | 0.00100  |        | 108  | 68-160 |     |       | Ва         |
| 2,3,7,8-TCDD                       | 0.000201                                     | 0.00001 | 0.00000002 | ug/L  | 0.000200 |        | 100  | 67-158 |     |       |            |
| 2,3,7,8-TCDF                       | 0.000195                                     | 0.00001 | 0.00000002 | ug/L  | 0.000200 |        | 98   | 75-158 |     |       | Ва         |
| OCDD                               | 0.00204                                      | 0.0001  | 0.0000015  | ug/L  | 0.00200  |        | 102  | 78-144 |     |       | Ва         |
| OCDF                               | 0.00194                                      | 0.0001  | 0.00000081 | ug/L  | 0.00200  |        | 97   | 63-170 |     |       | Ва         |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00181                                      |         |            | ug/L  | 0.00200  |        | 91   | 26-166 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00175                                      |         |            | ug/L  | 0.00200  |        | 88   | 21-158 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.0017                                       |         |            | ug/L  | 0.00200  |        | 85   | 20-186 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00195                                      |         |            | ug/L  | 0.00200  |        | 98   | 21-193 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00182                                      |         |            | ug/L  | 0.00200  |        | 91   | 19-202 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00167                                      |         |            | ug/L  | 0.00200  |        | 84   | 25-163 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00164                                      |         |            | ug/L  | 0.00200  |        | 82   | 21-159 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00169                                      |         |            | ug/L  | 0.00200  |        | 85   | 17-205 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.00151                                      |         |            | ug/L  | 0.00200  |        | 76   | 21-227 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00129                                      |         |            | ug/L  | 0.00200  |        | 65   | 21-192 |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00174                                      |         |            | ug/L  | 0.00200  |        | 87   | 22-176 |     |       |            |

#### **TestAmerica Irvine**

Debby Wilson For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

## **EPA-5 1613B**

| Analyte                                 | Result   | Reporting<br>Limit | g<br>MDL  | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|----------|--------------------|-----------|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| <b>Batch: 70198 Extracted: 03/11/10</b> |          |                    |           |       |                |                  |      |                |     |              |                    |
| LCS Analyzed: 03/15/2010 (G0C110000     | 0198C)   |                    |           |       | Sour           | rce:             |      |                |     |              |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF          | 0.00132  |                    |           | ug/L  | 0.00200        |                  | 66   | 13-328         |     |              |                    |
| Surrogate: 13C-2,3,7,8-TCDD             | 0.00145  |                    |           | ug/L  | 0.00200        |                  | 73   | 20-175         |     |              |                    |
| Surrogate: 13C-2,3,7,8-TCDF             | 0.00137  |                    |           | ug/L  | 0.00200        |                  | 68   | 22-152         |     |              |                    |
| Surrogate: 13C-OCDD                     | 0.00375  |                    |           | ug/L  | 0.00400        |                  | 94   | 13-199         |     |              |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD           | 0.000741 |                    |           | ug/L  | 0.000800       |                  | 93   | 31-191         |     |              |                    |
| Blank Analyzed: 03/16/2010 (G0C1100     | 098RE1)  |                    |           |       | Sour           | rce:             |      |                |     |              |                    |
| 2,3,7,8-TCDF                            | ND       | 0.00001            | 0.0000026 | ug/L  |                |                  |      | -              |     |              |                    |
| Surrogate: 13C-2,3,7,8-TCDF             | 0.0012   |                    |           | ug/L  | 0.00200        |                  | 58   | 24-169         |     |              |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD           | 0.0007   |                    |           | ug/L  | 0.000800       |                  | 87   | 35-197         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793

Received: 03/08/10

# METHOD BLANK/QC DATA

#### **ASTM 5174-91**

|                                         |              | Reporting |      |       | Spike | Source    |          | %REC   |     | RPD   | Data       |
|-----------------------------------------|--------------|-----------|------|-------|-------|-----------|----------|--------|-----|-------|------------|
| Analyte                                 | Result       | Limit     | MDL  | Units | Level | Result    | %REC     | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 67296 Extracted: 03/10/10</b> |              |           |      |       |       |           |          |        |     |       |            |
| Matrix Spike Dup Analyzed: 03/12/2010   | (F0B23045200 | 1D)       |      |       | Sou   | rce: F0B2 | 23045200 | 1      |     |       |            |
| Total Uranium                           | 26.9         | 0.7       | 0.2  | pCi/L | 27.7  | 0.677     | 95       | 62-150 | 4   | 20    |            |
| Matrix Spike Analyzed: 03/12/2010 (F0B  | 230452001S)  |           |      |       | Sou   | rce: F0B2 | 23045200 | 1      |     |       |            |
| Total Uranium                           | 28.1         | 0.7       | 0.2  | pCi/L | 27.7  | 0.677     | 99       | 62-150 |     |       |            |
| Blank Analyzed: 03/12/2010 (F0C080000   | 296B)        |           |      |       | Sou   | rce:      |          |        |     |       |            |
| Total Uranium                           | 0.315        | 0.693     | 0.21 | pCi/L |       |           |          | -      |     |       | Jb         |
| LCS Analyzed: 03/12/2010 (F0C0800002    | 96C)         |           |      |       | Sou   | rce:      |          |        |     |       |            |
| Total Uranium                           | 5.62         | 0.69      | 0.21 | pCi/L | 5.54  |           | 101      | 90-120 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

#### **EPA 900.0 MOD**

| Analyte                                 | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|--------------|--------------------|------|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| <b>Batch: 70220 Extracted: 03/11/10</b> |              |                    |      |       |                |                  |          |                |     |              |                    |
| Matrix Spike Analyzed: 03/14/2010 (F0C  | C090509001S) |                    |      |       | Sou            | rce: F0C         | )9050900 | 1              |     |              |                    |
| Gross Alpha                             | 47.4         | 3                  | 2.6  | pCi/L | 59.9           | 0.3              | 79       | 35-150         |     |              |                    |
| Gross Beta                              | 87           | 4                  | 2.2  | pCi/L | 82.4           | 3.9              | 101      | 54-150         |     |              |                    |
| Duplicate Analyzed: 03/14/2010 (F0C090  | )509001X)    |                    |      |       | Sou            | rce: F0C         | 9050900  | 1              |     |              |                    |
| Gross Alpha                             | 1.9          | 3                  | 2.1  | pCi/L |                | 0.3              |          | -              |     |              | U                  |
| Gross Beta                              | 4.8          | 4                  | 2.1  | pCi/L |                | 3.9              |          | -              |     |              |                    |
| Blank Analyzed: 03/14/2010 (F0C110000   | 220B)        |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Gross Alpha                             | -0.16        | 3                  | 0.79 | pCi/L |                |                  |          | -              |     |              | U                  |
| Gross Beta                              | 0.37         | 4                  | 1.5  | pCi/L |                |                  |          | -              |     |              | U                  |
| LCS Analyzed: 03/14/2010 (F0C1100002    | 20C)         |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Gross Alpha                             | 31.9         | 3                  | 0.8  | pCi/L | 49.4           |                  | 64       | 62-134         |     |              |                    |
| Gross Beta                              | 53           | 4                  | 1.5  | pCi/L | 67.9           |                  | 78       | 58-133         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

## **EPA 901.1 MOD**

| Analyte Batch: 69127 Extracted: 03/10/10 | Result     | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------|------------|--------------------|-----|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 03/20/2010 (F0C0)    | 90509001X) |                    |     |       | Sou            | rce: F0C         | 09050900 | 1              |     |              |                    |
| Cesium 137                               | -0.3       | 20                 | 13  | pCi/L |                | 4.5              |          | -              |     |              | U                  |
| Potassium 40                             | -50        | NA                 | 220 | pCi/L |                | -50              |          | -              |     |              | U                  |
| Blank Analyzed: 03/21/2010 (F0C10000     | 00127B)    |                    |     |       | Sou            | rce:             |          |                |     |              |                    |
| Cesium 137                               | 1.9        | 20                 | 14  | pCi/L |                |                  |          | -              |     |              | U                  |
| Potassium 40                             | 12         | NA                 | 210 | pCi/L |                |                  |          | -              |     |              | U                  |
| LCS Analyzed: 03/21/2010 (F0C100000      | 0127C)     |                    |     |       | Sou            | rce:             |          |                |     |              |                    |
| Americium 241                            | 131000     | NA                 | 500 | pCi/L | 141000         |                  | 93       | 87-110         |     |              |                    |
| Cobalt 60                                | 79200      | NA                 | 200 | pCi/L | 87800          |                  | 90       | 89-110         |     |              |                    |
| Cesium 137                               | 48400      | 20                 | 200 | pCi/L | 53100          |                  | 91       | 90-110         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793

Received: 03/08/10

# METHOD BLANK/QC DATA

## **EPA 903.0 MOD**

| Analyte  Batch: 69101 Extracted: 03/10/10              | Result                  | Reporting<br>Limit | MDL   | Units | Spike<br>Level     | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------------------|-------------------------|--------------------|-------|-------|--------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 04/02/2010 (F0C100000)<br>Radium (226) | 0.025                   | 1                  | 0.051 | pCi/L | Sour               | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 04/02/2010 (F0C1000001<br>Radium (226)   | <b>01C)</b><br>10.6     | 1                  | 0.05  | pCi/L | <b>Sou</b> : 11.3  | rce:             | 94   | 68-136         |     |              |                    |
| LCS Dup Analyzed: 04/02/2010 (F0C100 Radium (226)      | <b>000101L)</b><br>10.1 | 1                  | 0.05  | pCi/L | <b>Sou</b><br>11.3 | rce:             | 89   | 68-136         | 6   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

#### **EPA 904 MOD**

| Analyte                                 | Result    | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|-----------|--------------------|------|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| <b>Batch: 69102 Extracted: 03/10/10</b> |           |                    |      |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 03/19/2010 (F0C10000    | 0102B)    |                    |      |       | Sou            | rce:             |      |                |     |              |                    |
| Radium 228                              | 0.19      | 1                  | 0.39 | pCi/L |                |                  |      | -              |     |              | U                  |
| LCS Analyzed: 03/19/2010 (F0C100000)    | 102C)     |                    |      |       | Sour           | rce:             |      |                |     |              |                    |
| Radium 228                              | 7.41      | 1                  | 0.36 | pCi/L | 6.37           |                  | 116  | 60-142         |     |              |                    |
| LCS Dup Analyzed: 03/19/2010 (F0C10     | 0000102L) |                    |      |       | Sour           | rce:             |      |                |     |              |                    |
| Radium 228                              | 7.87      | 1                  | 0.42 | pCi/L | 6.37           |                  | 124  | 60-142         | 6   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

## **EPA 905 MOD**

| Analyte  Batch: 69104 Extracted: 03/10/10             | Result               | Reporting<br>Limit | MDL  | Units | Spike<br>Level    | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------------|----------------------|--------------------|------|-------|-------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 03/20/2010 (F0C100000<br>Strontium 90 | <b>104B)</b> 0.01    | 3                  | 0.43 | pCi/L | Sour              | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 03/20/2010 (F0C1000001<br>Strontium 90  | <b>04C)</b><br>6.64  | 3                  | 0.4  | pCi/L | <b>Sou</b> : 6.79 | rce:             | 98   | 80-130         |     |              |                    |
| LCS Dup Analyzed: 03/20/2010 (F0C100 Strontium 90     | <b>000104L)</b> 6.75 | 3                  | 0.39 | pCi/L | <b>Sou</b> : 6.79 | rce:             | 99   | 80-130         | 2   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Report Number: ITC0793 Received: 03/08/10

# METHOD BLANK/QC DATA

# **EPA 906.0 MOD**

| Analyte Batch: 77060 Extracted: 03/18/10      | Result       | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------------|--------------|--------------------|-----|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| <b>Duplicate Analyzed: 03/23/2010 (F0C090</b> | 509001X)     |                    |     |       | Sour           | rce: F0C0        | 09050900 | 1              |     |              |                    |
| Tritium                                       | -26          | 500                | 150 | pCi/L |                | 34               |          | -              |     |              | U                  |
| Matrix Spike Analyzed: 03/24/2010 (F0C        | (090512001S) |                    |     |       | Sour           | rce: F0C0        | 09051200 | 1              |     |              |                    |
| Tritium                                       | 4170         | 500                | 150 | pCi/L | 4510           | -17              | 93       | 62-147         |     |              |                    |
| Blank Analyzed: 03/23/2010 (F0C180000         | 060B)        |                    |     |       | Sour           | rce:             |          |                |     |              |                    |
| Tritium                                       | 83           | 500                | 150 | pCi/L |                |                  |          | -              |     |              | U                  |
| LCS Analyzed: 03/23/2010 (F0C1800000          | 60C)         |                    |     |       | Sour           | rce:             |          |                |     |              |                    |
| Tritium                                       | 4450         | 500                | 150 | pCi/L | 4510           |                  | 99       | 85-112         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0793 Received: 03/08/10

Attention: Bronwyn Kelly

## DATA QUALIFIERS AND DEFINITIONS

**B** Analyte was detected in the associated Method Blank.

Ba Method blank contamination. The associated method blank contains the target analyte at a reportable level.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

**Jb** Result is greater than sample detection limit but less than stated reporting limit.

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

**Q** Estimated maximum possible concentration (EMPC).

U Result is less than the sample detection limit.

**ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 03/06/10-03/07/10

Received: 03/08/10

Report Number: ITC0793

# **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EPA 1664A      | Water  | X     | X          |
| EPA 200.8-Diss | Water  | X     | X          |
| EPA 200.8      | Water  | X     | X          |
| EPA 245.1-Diss | Water  | X     | X          |
| EPA 245.1      | Water  | X     | X          |
| EPA 300.0      | Water  | X     | X          |
| SM2540C        | Water  | X     |            |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

#### TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Method Performed: ASTM 5174-91 Samples: ITC0793-02

EPA 900.0 MOD Method Performed:

Samples: ITC0793-02

Method Performed: EPA 901.1 MOD

Samples: ITC0793-02

Method Performed: EPA 903.0 MOD

Samples: ITC0793-02

Method Performed: EPA 904 MOD

Samples: ITC0793-02

Method Performed: EPA 905 MOD

Samples: ITC0793-02

Method Performed: EPA 906.0 MOD

Samples: ITC0793-02

### **TestAmerica West Sacramento**

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B

Samples: ITC0793-02

#### **TestAmerica Irvine**

Debby Wilson For Heather Clark Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 03/06/10-03/07/10

Project ID: Routine Outfall 009 MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITC0793 Received: 03/08/10

Attention: Bronwyn Kelly

#### **TestAmerica Irvine**

|                                         |                   |                   |                                | Field readings:   |                     |                                   | 7:15 = 1 duie 1 | H 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | )<br>F                         | Time of readings = | 212          |                              |                | Comments              |                |  |  |  |         |  |  |  | order.                                                                  | ,                                       | 10 Day.           | Normal           |                   | ,                                 |                 | NPDES Level IV:                         |
|-----------------------------------------|-------------------|-------------------|--------------------------------|-------------------|---------------------|-----------------------------------|-----------------|-----------------------------------------|--------------------------------|--------------------|--------------|------------------------------|----------------|-----------------------|----------------|--|--|--|---------|--|--|--|-------------------------------------------------------------------------|-----------------------------------------|-------------------|------------------|-------------------|-----------------------------------|-----------------|-----------------------------------------|
|                                         | ANALYSIS REQUIRED |                   |                                |                   |                     |                                   |                 |                                         |                                |                    |              |                              |                |                       |                |  |  |  |         |  |  |  | wand are to be added to this work                                       | Date/Tigle:   Turn-eround time: (Check) | 24 Hour. 72 Hour. | 48 Hour. 5 Day.  |                   | Sample Integrity: (Check) Intact: |                 | Data Requirements: (Check) No Level IV: |
|                                         | ANA               |                   |                                |                   |                     |                                   |                 |                                         |                                |                    |              |                              |                |                       |                |  |  |  |         |  |  |  |                                                                         |                                         |                   | m r/c X, 2 / X   | Date/Time:        |                                   | Date/Time:      |                                         |
|                                         |                   |                   |                                | -, -              |                     |                                   | (V              | <br>V3H                                 | 1-1/9                          | 161                | ) ə:<br>——   | sea.                         | ei<br>G        | Bottle #              | 1A, 1B X       |  |  |  |         |  |  |  | These Samples are the Grab Portion of Outfall 009 for this storm event. | Received By                             | 1                 |                  | Received By       |                                   | Received By     |                                         |
| *************************************** | i                 | IPDES             | 600                            |                   | WS-13               |                                   |                 |                                         |                                |                    |              |                              |                | Preservative          | ξ              |  |  |  |         |  |  |  | tion of Out                                                             | 11/15                                   | 1                 |                  | J                 |                                   |                 |                                         |
| Project                                 | r reject.         | Boeing-SSFL NPDES | Routine Outfall 009            | GRAB              | Stormwater at WS-13 |                                   |                 |                                         | Phone Number:                  | (626) 568-6691     | Con Number   | rax Number.<br>(ege) een een | 1 60-006 (070) | Sampling<br>Date/Time | 0hhl elf.9/s   |  |  |  |         |  |  |  | the Grab Por                                                            | J. J.                                   | 10 11 1           |                  | ne.               |                                   | ne:             |                                         |
|                                         |                   |                   |                                |                   |                     | <u>~</u>                          |                 |                                         | Γ                              |                    |              |                              |                | # of<br>Cont.         | 2              |  |  |  | $\perp$ |  |  |  | 96 are                                                                  | Date/Time                               | Y)                | $\setminus \mid$ | Date/Time.        |                                   | Date/Time:      |                                         |
| .sc                                     | j                 |                   | Suite 200                      |                   | -                   | ct: Joseph Do                     |                 |                                         | ronwyn Kelly                   | •                  | DAWSON       |                              | L              | x Type                | 1L Amber       |  |  |  |         |  |  |  | These Sample                                                            | M                                       | 4/1               |                  | <u>а</u>          |                                   | ۵               |                                         |
| Client Name/Address:                    |                   | MWH-Arcadia       | 618 Michillinda Ave, Suite 200 | Arcadia, CA 91007 | C T                 | lest America Contact: Joseph Doak |                 |                                         | Project Manager: Bronwyn Kelly |                    | Sampler C DA | ?                            | Γ              | Description Matrix    | Outfall 009 VV |  |  |  |         |  |  |  |                                                                         | Relinquished By                         | 1/////            | JUMUI A          | Relinquished By / |                                   | Relinquished By |                                         |

|   |                      |                 |                   |                                |               |                     |            |                                   |             | Comments                                          |                                | 7                         | 3            | THE STATE OF THE S |                   |                         |                                 |             |                |             |             |             |                                         | haveasons but baselini | analysis     | Only test if first or second rain | Filter w/m 24hrs of receipt at lab |  |   |                                                                     |                                       |                          | Z 2000            | to Oak      | Normal:                                   |                | +                    |                 |                 | `                          |
|---|----------------------|-----------------|-------------------|--------------------------------|---------------|---------------------|------------|-----------------------------------|-------------|---------------------------------------------------|--------------------------------|---------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|---------------------------------|-------------|----------------|-------------|-------------|-------------|-----------------------------------------|------------------------|--------------|-----------------------------------|------------------------------------|--|---|---------------------------------------------------------------------|---------------------------------------|--------------------------|-------------------|-------------|-------------------------------------------|----------------|----------------------|-----------------|-----------------|----------------------------|
|   | ANALYSIS REQUIRED    |                 | 77.               |                                |               |                     |            |                                   |             |                                                   |                                | a a said                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |                                 |             |                |             |             |             |                                         |                        |              |                                   |                                    |  |   | norm avent                                                          | 2 for Outfall 009 for the same event  | Tun-around time: (Check) | 24 Hour. 72 Hour. |             | 48 Hour.                                  |                | e Integrity: (Check) | Intact: On los: |                 | Data Requirements: (Check) |
|   | ANA                  | L               | -                 | 18.<br>K-                      | (1.1          | 206                 | (9)        | (90)<br>(0.6)<br>(0.6)            | 06.<br>106. | Gra<br>1, Sc.<br>1, Ur<br>1, 90<br>1, 90<br>1, 90 | (0.8<br>1.0)<br>10.0           | 006<br>>06<br>>06<br>0.10 | (e)<br>(e)   | 5-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ani<br>r-8<br>ric | inini<br>idini<br>i, CS | (1) (1) (1) (1) (1) (1) (1) (1) |             |                |             |             | >           | <b>\</b>                                |                        | ×            | *                                 | ×                                  |  |   | of 2 are the composite samples for Outfall 009 for this storm event | ď                                     | ൱                        | 13/1/10           |             |                                           | Date/Time:     |                      |                 | Date/Time:      |                            |
| 2 |                      |                 | - '(              | ad                             | 'n            |                     |            |                                   | (\$.        | elal<br>ians                                      | Бu                             | တ                         | 115          | pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e) (              | oa:                     | H<br>T                          | ×           | ×              | ×           | ×           |             |                                         |                        |              |                                   |                                    |  |   | e composite sam                                                     | to the same wark order for COC Page 1 |                          |                   | \<br>\<br>\ | N. A. | <i>\</i>       |                      |                 |                 |                            |
|   | i                    | 1_              |                   | *********                      |               |                     |            |                                   |             | -                                                 |                                |                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | # ofthog                | -                               | 2A          | 28             | 3A, 3B      | 4A, 4B      |             | ,                                       | ₩                      | 69           | -                                 | 80                                 |  |   | of 2 are th                                                         | to the sam                            | Received By              | <<br>_            | 1           |                                           | Neceived Hy    |                      |                 | Received By     |                            |
|   | 1                    | מטטמו           | ずしに               | 6001                           | ÷             | NS.13               |            |                                   |             |                                                   |                                |                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                | Draepolofalo            | DAISMA MICOL 1                  | HNO         | HNO            | None        | None        | a do N      | alioki                                  | None                   | None         | None                              | None                               |  |   | COC Page 2                                                          |                                       | \                        | 1415              |             | 7                                         |                |                      |                 |                 |                            |
|   | Project:             | A LINCO COLLOCA | Doeing-Sort NPUES | Routine Outfall 009            | COMPOSITE     | Stormwater at WS-13 |            |                                   |             |                                                   | Phone Number:                  | (626) 568-6691            | 200 200 /2-2 | Fax Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (626) 568-6515    | Sampling                | Date/Time                       | 中國學         |                | 3           |             |             | -                                       | 3/7/10                 | £ 160°.      |                                   | साम्बर्धान                         |  |   | Ö                                                                   | These must be added                   | ne:                      |                   | 21112       | -                                         | <br>           |                      |                 | ne:             |                            |
|   |                      |                 |                   |                                |               |                     |            | ¥.                                |             |                                                   |                                |                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | JO #                    | 3                               | 1           | -              | 2           | 2           | 1-          | - 1                                     | -                      | -            | 7                                 | -                                  |  |   |                                                                     |                                       | Date/Time:               |                   |             | Oate Time                                 | 200            |                      |                 | Date/Time:      |                            |
|   |                      |                 |                   | uite 200                       |               |                     | 4          | oosebu no                         |             |                                                   | wyn Kelly                      | ,                         | Ç            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Container               | ype                             | 1L Poly     | 1L Poly        | 1L Amber    | 500 mL Poly | Spo ml Poly | , , , , , , , , , , , , , , , , , , , , | 2.5 Gel Cube           | 500 ml Amber | 4 Gal Poly                        | 1L Poly                            |  |   |                                                                     |                                       |                          | 1                 | Ĵ           | }                                         | ~              |                      |                 | -               |                            |
|   | dress:               | ,               | ns.               | Ave, Si                        | 700           | 3                   | 4004       | ontact.                           |             |                                                   | r. Bror                        |                           | Ą            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Sample                  | Matrix                          | ₹           | 3              | ₹           | ≥           | 3           | :                                       | ≥                      | :            | *                                 | ≩                                  |  | ļ |                                                                     |                                       | ,                        | 1                 | 2           | 1                                         |                |                      |                 |                 |                            |
|   | Client Name/Address: | TOUCH ANALY     | MINVER-AFCAGIA    | 618 Michillinda Ave, Suite 200 | Arradia CA 91 | ביים שמומי לים      | Toot Among | Test America Contact. Joseph Doak |             |                                                   | Project Manager: Bronwyn Kelly | ,                         |              | Sampler: 4121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                 |                         | Description                     | Outfall 009 | Outail 009 Dup | Outfall 009 | Outfall 009 | Outfall 009 |                                         | Outfall 009            |              | Outfall 000                       | Outfall 009                        |  |   |                                                                     |                                       | Relinquished By          | Chille T          | 1 Jane      | Relinquished By                           | to policies to |                      |                 | Relinquished By |                            |

CHAIN OF CUSTODY FORM TTC 0793

| Client Name/A         | ddress:          |                   |               | Project:              |              |             |                   |       |              |          |       |      |          | ANA     | LYSIS    | REQU        | IRED        |         |            |        |                    |
|-----------------------|------------------|-------------------|---------------|-----------------------|--------------|-------------|-------------------|-------|--------------|----------|-------|------|----------|---------|----------|-------------|-------------|---------|------------|--------|--------------------|
| MWH-Arcad             |                  |                   |               | Boeing-SSFL           |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
| 618 Michillinda       |                  | uite 200          |               | Routine Outfa         | all 009      |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
| Arcadia, CA 9         | 1007             |                   |               | GRAB                  |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        | Field readings:    |
| L                     |                  |                   |               | Stormwater at         | WS-13        |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
| Test America          | Contact:         | Joseph Do         | ak            |                       |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        | Temp °F = 51,2     |
|                       |                  |                   |               |                       |              |             | =                 |       |              |          |       |      |          |         |          | Ì           |             |         |            |        | 1611b 1 - 3112     |
|                       |                  |                   |               |                       |              |             | Grease (1664-HEM) |       |              |          |       |      |          |         |          |             |             |         |            |        | pH = 7,0           |
| Project Manag         | er: Bron         | nwyn Kelly        |               | Phone Numbe           | er:          |             | 4                 |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   |               | (626) 568-669         | 1            |             | (16               |       |              |          |       |      |          |         |          |             |             |         |            |        | Time of readings = |
| Sampler: S            | Dan              | 50V1              |               | Fax Number:           |              |             | 3Se               |       |              |          |       |      |          |         |          |             |             |         |            |        | 3/0/10             |
|                       |                  |                   |               | (626) 568-651         | 5            |             | Gre               |       |              |          |       |      |          |         |          |             |             |         |            |        | '' (440            |
| Sample<br>Description | Sample<br>Matrix | Container<br>Type | # of<br>Cont. | Sampling<br>Date/Time | Preservative | Bottle #    | Oil & C           |       |              |          |       |      |          |         |          |             | :           |         |            |        | Comments           |
| Outfail 009           | w                | 1L Amber          | 2             | 3/6/10 1440           | нсі          | 1A, 1B      | X                 |       |              | -        |       |      |          |         |          |             |             |         |            |        | <u> </u>           |
|                       |                  |                   | 1             | 101                   |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   |               |                       |              |             |                   |       | ļ            |          |       |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   | <u> </u>      | -                     | 1            |             |                   |       | <del> </del> | -        |       |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   | †             |                       |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   |               |                       |              |             | <u> </u>          |       |              |          |       |      |          |         |          |             |             |         |            |        | 137                |
|                       |                  |                   |               |                       |              |             |                   |       |              |          |       |      |          |         |          |             | <del></del> |         |            |        | 2/0/10             |
|                       |                  |                   |               |                       |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   |               |                       |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        | 6-10               |
|                       |                  |                   |               |                       |              |             |                   |       |              |          | ,     |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   |               |                       |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   |               |                       |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
|                       |                  |                   |               |                       |              |             |                   |       |              |          |       |      |          |         |          |             |             |         |            |        |                    |
|                       | Th               | ese Sampl         | es ar         | e the Grab Po         |              |             | this s            | storm | event.       |          |       | samp | les wil  | l follo | w and    | are to      | be ad       | ded to  | this v     | vork c | order.             |
| Relinquished By       |                  | // <sup>5</sup>   | ate/Ti        | ime:                  | 1 1415       | Received B  | 1                 |       |              | Date/Ti  | ne: / | 1    | .14      |         |          | und time:   |             |         |            |        | <b>V</b>           |
| SMINT                 | TV               | 1//               | 3/6/          | 37                    | 10           | 1           | .) (              | •     |              | $\sim$ ( |       | 7/7  | 1        |         | i        |             |             |         |            |        | 10 Day:            |
| Relinquished By       |                  |                   | ate//         | mel:                  |              | Received By | ( )               |       | <u> </u>     | Date/Ti  | me:   |      | 100      |         |          |             |             | - Duj.  |            |        |                    |
| 1 X T                 | V                | \                 |               | / , ì                 | 1645         | ,           |                   |       |              |          |       |      |          |         | Sample I | ntegrity: ( | Check)      |         |            |        |                    |
| 1                     | L_               | _ h               | ر )ر          | 1-5/7/12              | , (0, (2)    | 50,         | 20                | of t  | cic          | 191      | e     | 3    | 711      | 0       | Intact:  |             | ,           | On Ice: | <u>X</u> _ |        |                    |
| Relinquished By       | 9/               |                   | ate/Ti        | irrie:                | 345          | Received By | 7                 | 1     | <u> </u>     | Date/Ti  | ne:   |      | <u> </u> |         |          |             |             |         | -          |        |                    |
| 20                    | ) P              | ec Fi             | id            | ge 3/8/               | (0)          | Au          |                   | 3     | 3/8          | 110      | >     | 03   | 45       |         |          | quirement   |             |         | IV:        |        | NPDES Level IV:    |

| nments                                    |
|-------------------------------------------|
| ى<br>ك                                    |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
| and unpreserved                           |
| inalysis                                  |
| irst or second rain                       |
| hrs of receipt at lab                     |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
| IV:                                       |
| fi aa |



TestAmerica Laboratories, Inc.

# **ANALYTICAL REPORT**

PROJECT NO. ITC0793

MWH-Pasadena Boeing

Lot #: F0C090518

Kathleen Robb

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

**Lýnň Fussner** Project Manager

April 5, 2010

#### Case Narrative LOT NUMBER: F0C090518

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on March 9, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements, except as noted below.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

#### **Observations/Nonconformances**

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

#### Radium-226 by GFPC (EPA 903.0 MOD)

There was insufficient sample volume to perform MS/MSD analysis. A LCS/LCSD was performed to demonstrate accuracy and replicate precision.

#### Affected Samples:

F0C090518 (1): ITC0793-02

#### Radium-228 by GFPC (EPA 904 MOD)

There was insufficient sample volume to perform MS/MSD analysis. A LCS/LCSD was performed to demonstrate accuracy and replicate precision.

#### Affected Samples:

F0C090518 (1): ITC0793-02

# **METHODS SUMMARY**

#### F0C090518

| PARAMETER | }                                      | ANALYTICAL<br>METHOD           | PREPARATION<br>METHOD |
|-----------|----------------------------------------|--------------------------------|-----------------------|
| _         | ectroscopy - Cesium-137 & Hits         | EPA 901.1 MOD                  | TT3 000 0             |
| -         | pha/Beta EPA 900<br>istillation & LSC  | EPA 900.0 MOD<br>EPA 906.0 MOD | EPA 900.0             |
| -         | 26 by GFPC                             | EPA 903.0 MOD                  |                       |
| Radium-22 | 28 by GFPC                             | EPA 904 MOD                    |                       |
| Strontium | n 90 by GFPC                           | EPA 905 MOD                    |                       |
| Total Ura | anium By Laser Ph osphorimetry         | ASTM 5174-91                   |                       |
| Reference | es:                                    |                                |                       |
| ASTM      | Annual Book Of ASTM Standards.         |                                |                       |
| EPA       | "EASTERN ENVIRONMENTAL RADIATION FACIL | ITY RADIOCHEMISTRY             |                       |

PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

# SAMPLE SUMMARY

#### F0C090518

| WO # SAMPLE# CLIENT SAMPLE ID | SAMPLED<br>DATE | SAMP<br>TIME |
|-------------------------------|-----------------|--------------|
| LWFXM 001 ITC0793-02          | 03/07/10        | 09:17        |
| NORE (C).                     |                 |              |

#### NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

# TestAmerica Irvine

Client Sample ID: ITC0793-02

#### Radiochemistry

Lab Sample ID: F0C090518-001

Matrix:

Work Order:

WATER

LWFXM

Date Collected:

03/07/10 0917

Date Received:

03/09/10 0915

| Total |  |
|-------|--|

| Parameter         | Result         | Qual.  | Undert,<br>(2 g+/-) | RL.   | mdc     | Prep<br>Date | Analysis<br>Date |
|-------------------|----------------|--------|---------------------|-------|---------|--------------|------------------|
| Gamma Cs-137 & Hi | its by EPA 901 | .1 MOD | р                   | Ci/L  | Batch # | 0069127      | Yld %            |
| Cesium 137        | 0.0            | α      | 4.7                 | 20.0  | 9.0     | 03/10/10     | 03/20/10         |
| Potassium 40      | -20            | Ū      | 130                 |       | 210     | 03/10/10     | 03/20/10         |
| Gross Alpha/Beta  | EPA 900        |        | р                   | Ci/L  | Batch # | 0070220      | Yld %            |
| Gross Alpha       | 0.60           | U      | 0.65                | 3.00  | 1.0     | 03/11/10     | 03/14/10         |
| Gross Beta        | 1.38           | U      | 0.98                | 4.00  | 1.5     | 03/11/10     | 03/14/10         |
| SR-90 BY GFPC EI  | PA-905 MOD     |        | р                   | Ci/L  | Batch # | 0069104      | Yld % 84         |
| Strontium 90      | 0.01           | U      | 0.26                | 3.00  | 0.46    | 03/10/10     | 03/20/10         |
| TRITIUM (Distill) | by EPA 906.0   | MOD    | p                   | Ci/L  | Batch # | 0077060      | Yld %            |
| Tritium           | 100            | Ŭ      | 97                  | 500   | 150     | 03/18/10     | 03/24/10         |
| Total Uranium by  | KPA ASTM 5174  | -91    | р                   | Ci/L  | Batch # | 0067296      | Yld %            |
| Total Uranium     | 0.485          | J      | 0.059               | 0.693 | 0.21    | 03/10/10     | 03/12/10         |
| Dadium 226 by El  | PA 903.0 MOD   |        | p                   | Ci/L  | Batch # | 0069101      | Yld % 94         |
| RAGIUM 220 DY E   |                |        | 0.042               | 1.00  | 0.056   | 03/10/10     | 04/02/10         |
| Radium (226)      | 0.064          | J      | 0.042               | 1.00  |         | 03/10/10     | 04/02/30         |
| -                 |                |        |                     | Ci/L  |         | 0069102      |                  |

#### NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

#### METHOD BLANK REPORT

## Radiochemistry

Client Lot ID:

F0C090518

Matrix:

WATER

| Parameter       | Result         | Qual     | Total<br>Undert.<br>(2 g+/-) | RL      | MDC     |       | Prep<br>Date | Lab Sample ID<br>Analysis<br>Date |
|-----------------|----------------|----------|------------------------------|---------|---------|-------|--------------|-----------------------------------|
| Total Uranium b | by KPA ASTM 51 | 74-91    | pCi/L                        | Batch # | 0067296 | Yld % | H.           | 0C080000-296B                     |
| Total Uranium   | 0.315          | J        | 0.039                        | 0.693   | 0.21    |       | 03/10/10     | 03/12/10                          |
| Radium 226 by   | EPA 903.0 MOD  |          | pCi/L                        | Batch # | 0069101 | Yld % | 105 F        | 0C100000-101B                     |
| Radium (226)    | 0.025          | U        | 0.031                        | 1.00    | 0.051   |       | 03/10/10     | 04/02/10                          |
| Radium 228 by G | FPC EPA 904 M  | מכ       | pCi/L                        | Batch # | 0069102 | Yld % | 91 F         | 0C100000-102B                     |
| Radium 228      | 0.19           | U        | 0.24                         | 1.00    | 0.39    |       | 03/10/10     | 03/19/10                          |
| SR-90 BY GFPC   | EPA-905 MOD    |          | pCi/L                        | Batch # | 0069104 | Yld % | 83 F         | OC100000-104B                     |
| Strontium 90    | 0.01           | מ        | 0.24                         | 3.00    | 0.43    |       | 03/10/10     | 03/20/10                          |
| Gamma Cs-137 &  | Hits by EPA 9  | 01.1 MOD | pCi/L                        | Batch # | 0069127 | Yld % | F            | 0C100000-127B                     |
| Cesium 137      | 1.9            | U        | 7,6                          | 20.0    | 14      |       | 03/10/10     | 03/21/10                          |
| Potassium 40    | 12             | Ū        | 93                           |         | 210     |       | 03/10/10     | 03/21/10                          |
| Gross Alpha/Bet | a EPA 900      |          | pCi/L                        | Batch # | 0070220 | Yld % | F            | 0C110000-220B                     |
| Gross Alpha     | -0.16          | ប        | 0.35                         | 3.00    | 0.79    |       | 03/11/10     | 03/14/10                          |
| Gross Beta      | 0.37           | U        | 0.91                         | 4.00    | 1.5     |       | 03/11/10     | 03/14/10                          |
| TRITIUM (Distil | L1) by EPA 906 | .0 MOD   | pCi/L                        | Batch # | 0077060 | Yld % | F            | 0C180000-060B                     |
| Tritium         | 83             | U        | 94                           | 500     | 150     |       | 03/18/10     | 03/23/10                          |

## NOTE (S)

 $\ensuremath{\mathsf{MDC}}$  is determined using instrument performance only Bold results are greater than the  $\ensuremath{\mathsf{MDC}}$  .

Data are incomplete without the case narrative.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

# Laboratory Control Sample Report

# Radiochemistry

Client Lot ID:

F0C090518

Matrix:

WATER

|                    |                |         | Total              |              | Lal         | Sample ID            |
|--------------------|----------------|---------|--------------------|--------------|-------------|----------------------|
| Parameter          | Spike Amount   | Result  | Uncert.<br>(2 σ+/- | 100          | % Yld % Rec | QC Control<br>Limits |
| Total Uranium by K | PA ASTM 5174-9 | 1       | pCi/L              | 5174-91      | FOC         | 080000-296C          |
| Total Uranium      | 27.7           | 28.6    | 3.5                | 0.2          | 103         | (90 - 120)           |
|                    | Batch #:       | 0067296 |                    | Analysis Dat | e: 03/12/10 |                      |
| Total Uranium by K | PA ASTM 5174-9 | 1       | pCi/L              | 5174-91      | FOC         | 080000-296C          |
| Total Uranium      | 5.54           | 5.62    | 0.58               | 0.21         | 101         | (90 - 120)           |
|                    | Batch #:       | 0067296 |                    | Analysis Dat | e: 03/12/10 |                      |
| Gamma Cs-137 & Hit | s by EPA 901.1 | MOD     | pCi/L              | 901.1 MOD    | FOC         | 100000-127C          |
| Americium 241      | 141000         | 131000  | 10000              | 500          | 93          | (87 - 110)           |
| Cesium 137         | 53100          | 48400   | 2800               | 200          | 91          | (90 - 110)           |
| Cobalt 60          | 87800          | 79200   | 4400               | 200          | 90          | (89 - 110)           |
|                    | Batch #:       | 0069127 |                    | Analysis Dat | e: 03/21/10 |                      |
| Gross Alpha/Beta E | PA 900         |         | pCi/L              | 900.0 MOD    | FOC         | 110000-220C          |
| Gross Alpha        | 49.4           | 31.9    | 3.8                | 0.8          | 64          | (62 - 134)           |
|                    | Batch #:       | 0070220 | •                  | Analysis Dat | e: 03/14/10 |                      |
| Gross Alpha/Beta E | PA 900         |         | pCi/L              | 900.0 MOD    | FOC         | 110000-220C          |
| Gross Beta         | 67.9           | 53.0    | 4.7                | 1.5          | 78          | (58 - 133)           |
|                    | Batch #:       | 0070220 |                    | Analysis Dat | e: 03/14/10 |                      |
| TRITIUM (Distill)  | by EPA 906.0 M | OD      | pCi/L              | 906.0 MOD    | FOC         | 180000-060C          |
| Tritium            | 4510           | 4450    | 470                | 150          | 99          | (85 - 112)           |
|                    | Batch #:       | 0077060 |                    | Analysis Dat | e: 03/23/10 |                      |

# Laboratory Control Sample/LCS Duplicate Report

# Radiochemistry

Client Lot ID:

F0C090518

Matrix:

WATER

|               |       |                          |                         |          | Total               |                       |                       | Lab                                  | Sample I | D    |
|---------------|-------|--------------------------|-------------------------|----------|---------------------|-----------------------|-----------------------|--------------------------------------|----------|------|
| Parameter     |       | Spike Amount             | Result                  |          | Uncert.<br>(2 g+/-) | % Yld                 | % Rec                 | QC Control<br>Limits                 | Preci    | sion |
| Radium 226 by | EPA   | 903.0 MOD                |                         | pCi/L    | 903.0               | MOD                   |                       | F0C1                                 | L00000-: | 101C |
| Radium (226)  | Spk 2 | 11.3<br>11.3<br>Batch #: | 10.6                    |          | 0.92<br>0.87        | 106<br>101<br>Analysi | 94<br>89              | (68 - 136)<br>(68 - 136)             | 6        | %RPD |
| Radium 228 by | GFPC  |                          | 0069101                 | pCi/L    | 904 M               |                       | s bate;               | 04/02/10<br>F0C1                     | L00000-: | 102C |
| Radium 228    | Spk 2 | 6.37<br>6.37<br>Batch #: | 7.41<br>7.87<br>0069102 | <u>.</u> | 0.83                | 99<br>85<br>Analysi   | 116<br>124<br>s Date: | (60 - 142)<br>(60 - 142)<br>03/19/10 | 6        | %RPD |
| SR-90 BY GFPC | EPA-  | -905 MOD                 |                         | pCi/L    | 905 M               | 1OD                   |                       | F0C1                                 | L00000-: | 104C |
| Strontium 90  | Spk 2 | 6.79<br>6.79<br>Batch #: | 6.64<br>6.75<br>0069104 |          | 0.80<br>0.80        | 87<br>90<br>Analysi   | 98<br>99<br>s Date:   | (80 - 130)<br>(80 - 130)<br>03/20/10 | 2        | %RPD |

#### MATRIX SPIKE REPORT

## Radiochemistry

Client Lot Id:

F0C090512

Matrix:

WATER

Date Sampled:

03/07/10

Date Received:

03/09/10

|                          |                 |                 | Maka 1                      |                           | m-+-1     | QC Sample | ∍ ID                 |
|--------------------------|-----------------|-----------------|-----------------------------|---------------------------|-----------|-----------|----------------------|
| Parameter                | Spike<br>Amount | Spike<br>Result | Total<br>Uncert.<br>(2g+/-) | Spike Sampl<br>Yld. Resul | UIICUI L. | %YLD %REC | QC Control<br>Limits |
| TRITIUM (Distill) by EP. | A 906.0 MC      | D               | pCi/L                       | 906.0 M                   | (OD       | F0C090512 | 2-001                |
| Tritium                  | 4510            | 4170            | 440                         | -17                       | 74        | 93        | (62 - 147)           |
|                          | Batch #:        | 0077060         | An                          | alysis Date:              | 03/24/10  |           |                      |
| Gross Alpha/Beta EPA 90  | 0               |                 | pCi/L                       | 900.0 M                   | OD        | F0C090509 | 9-001                |
| Gross Alpha              | 59.9            | 47.4            | 6.6                         | 0.3                       | 1.1       | 79        | (35 - 150)           |
|                          | Batch #:        | 0070220         | An                          | alysis Date:              | 03/14/10  |           |                      |
| Gross Alpha/Beta EPA 90  | 0               |                 | pCi/L                       | 900.0 M                   | OD        | F0C090509 | 9-001                |
| Gross Beta               | 82.4            | 87.0            | 7.4                         | 3.9                       | 1.4       | 101       | (54 - 150)           |
|                          | Batch #:        | 0070220         | An                          | alysis Date:              | 03/14/10  |           |                      |

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off errors in calculated results.

# MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

# Radiochemistry

Client Lot ID:

Matrix:

F0B230452

WATER

Date Sampled:

02/20/10 1349

Date Received:

02/23/10 0910

|               |        |                 |                                       | Total               |              |                  |      | Total               |       | QC Samp | le ID                |
|---------------|--------|-----------------|---------------------------------------|---------------------|--------------|------------------|------|---------------------|-------|---------|----------------------|
| Parameter     |        | Spike<br>Amount | SPIKE<br>Result                       | Uncert.<br>(2 o+/-) | Spike<br>Yld | SAMPLE<br>Result |      | Uncert.<br>(2σ +/-) | % Yld | *Rec    | QC Control<br>Limits |
| Total Uranium | by KPA | ASTM 5          | · · · · · · · · · · · · · · · · · · · | pCi/L               | 5            | 174-91           |      | ·                   | FC    | B2304   | 52-001               |
| Total Uranium |        | 27.7            | 28.1                                  | 3.4                 |              | 0.677            | J    | 0.074               |       | 99      | (62 - 150)           |
|               | Spk2   | 27.7            | 26.9                                  | 3.3                 |              | 0.677            | J    | 0.074<br>Precis     | ion:  | 95<br>4 | (62 - 150)<br>%RPD   |
|               |        | Batol           | 1#: 0067296                           | Ana                 | alysis d     | ate:             | 03/1 | 2/10                |       |         |                      |

#### DUPLICATE EVALUATION REPORT

## Radiochemistry

Client Lot ID:

F0C090518

Date Sampled:

03/07/10

Matrix:

WATER

Date Received: 03/09/10

|                    |                  | Tota1   |                           |          |                     | Total               |       | QC Sample ID |      |
|--------------------|------------------|---------|---------------------------|----------|---------------------|---------------------|-------|--------------|------|
| Parameter          | SAMPLE<br>Result |         | Uncert.<br>(2 \sigma +/-) | % ¥ld    | DUPLICATE<br>Result | Uncert.<br>(2 g+/-) | % Yld | Precisio     | on   |
| Gamma Cs-137 & Hit | ts by EPA        | 901.1   | MOD                       | pCi/L    | 901.1 MOD           |                     | F     | 0C090509-00  | 1    |
| Cesium 137         | 4.5              | U       | 9.4                       |          | -0.3 U              | 7.3                 |       | 232          | %RPD |
| Potassium 40       | -50              | U       | 360                       |          | -50 U               | 200                 |       | 8            | %RPD |
|                    | В                | atch #: | 0069127                   | (Sample) | 0069127 (Du         | plicate)            |       |              |      |
| Gross Alpha/Beta E | EPA 900          |         |                           | pCi/L    | 900.0 MOD           |                     | F     | 0C090509-00  | 1    |
| Gross Alpha        | 0.3              | U       | 1.1                       |          | 1.9 U               | 1.5                 |       | 143          | %RPD |
| Gross Beta         | 3.9              | J       | 1.4                       |          | 4.8                 | 1.5                 |       | 22           | %RPD |
|                    | В                | atch #: | 0070220                   | (Sample) | 0070220 (Du         | plicate)            |       |              |      |
| TRITIUM (Distill)  | by EPA 9         | 06.0 M  | OD                        | pCi/L    | 906.0 MOD           |                     | F     | 0C090509-00  | 1    |
| Tritium            | 34               | υ       | 87                        |          | <b>-26</b> Ŭ        | 72                  |       | 1480         | %RPD |
|                    | В                | atch #: | 0077060                   | (Sample) | 0077060 (Du         | plicate)            |       |              |      |

#### NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.



SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045 Phone :(314) 298-8566

Fax: (314) 298-8757

Project Location: CA - CALIFORNIA

Receipt Temperature:

°C

Ice: Y / N

| Analysis              | Units            | Due          | Expires          | Interlab Price S  | urch | Comments                                             |
|-----------------------|------------------|--------------|------------------|-------------------|------|------------------------------------------------------|
| Sample ID: ITC0793-02 | (Outfall 009 (CO | MPOSITE) - W | ater)<br>Sampled | l: 03/07/10 09:1: | 7    |                                                      |
| EDD + Level 4         | N/A              | 03/17/10     | 04/04/10 09:17   |                   | 0%   | Excel EDD email to pm,Include Std logs for LvI IV    |
| • Gamma Spec-O        | mg/kg            | 03/17/10     | 03/07/11 09:17   | 7 \$200.00        | 50%  | Out St Louis, K-40 and CS-137 only,<br>DO NOT FILTER |
| Gross Alpha-O         | pCi/L            | 03/17/10     | 09/03/10 09:17   | 7 \$90.00         | 50%  | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Gross Beta-O          | pCi/L            | 03/17/10     | 09/03/10 09:17   | 7 \$90.00         | 50%  | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Radium 226-O          | pCi/L            | 03/17/10     | 03/07/11 09:17   | 7 \$88.00         | 0%   | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Radium 228-O          | pCi/L            | 03/17/10     | 03/07/11 09:17   | 7 \$84.00         | 0%   | Out St Louis, Boeing permit, DO NOT FILTERI          |
| , Strontium 90-0      | pCi/L            | 03/17/10     | 03/07/11 09:17   | 7 \$140.00        | 50%  | Out St Louis, Boeing permit, DO NOT FILTER!          |
| , Tritium-O           | pCi/L            | 03/17/10     | 03/07/11 09:17   | 7 \$80.00         | 50%  | Out St Louis, Boeing permit, DO NOT FILTER!          |
| Containers Supplied:  |                  |              |                  |                   |      |                                                      |
| 2.5 gal Poly (H)      | 500 mL Aml       | oer (l)      |                  |                   |      |                                                      |

Date/Time

Received By

Page 1 of 1

Released By

| TestAmerica Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #(s): <u>FOCO90</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 509: 523                                                                                                                 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 510) 506                                                                                                                 |  |  |  |  |  |
| the leader in Environmental Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 510)                                                                                                                     |  |  |  |  |  |
| CONDITION UPON RECEIPT FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 518                                                                                                                      |  |  |  |  |  |
| Client: TA Arvine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 526                                                                                                                      |  |  |  |  |  |
| Quote No 85044.77.7635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                          |  |  |  |  |  |
| COC/RFA.No. helse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| Initiated By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:10 Time: 0915                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ping Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ent Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Multiple Packages: Y N                                                                                                   |  |  |  |  |  |
| Shipping #(s):*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Temperature (s):**                                                                                                |  |  |  |  |  |
| 1, <u>4289 2133 6598</u> 6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| وسام بسيسي الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| 49.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49                                                                                                                       |  |  |  |  |  |
| 5 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 510                                                                                                                      |  |  |  |  |  |
| *Numbered shipping lines correspond to Numbered Sample Temp lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **Sample must be receive<br>variance does NOT affect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ad at 4°C ± 2°C. If not, note confents below. Temperature<br>the following: Metals-Liquid of Rad tests. Liquid or Solids |  |  |  |  |  |
| Condition (Circle "Y" for yes, "N" for no and "N/A" for not applicable):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| Are there custody seals present on the cooler?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8. Y (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Are there custody seals present on bottles?                                                                              |  |  |  |  |  |
| 2. YN N/A Do custody seals on cooler appear to be tampered with?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9. Y N 📆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Do custody seals on bottles appear to be tampered with?                                                                  |  |  |  |  |  |
| 3. Were contents of cooler frisked after opening, but before unpacking?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10. Y N NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Was sample received with proper pH <sup>1</sup> ? (If not, make note below)                                              |  |  |  |  |  |
| 4. (Y) N Sample received with Chain of Custody?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11, Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample received in proper containers?                                                                                    |  |  |  |  |  |
| 5. N N/A Does the Chain of Custody match sample ID's on the container(s)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12. Y N N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Headspace in VOA or TOX liquid samples? (If Yas, note sample ID's below)                                                 |  |  |  |  |  |
| 6. Y N Was sample received broken?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13, (Y), N N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Was Internal COC/Workshare received?                                                                                     |  |  |  |  |  |
| 7. Is sample volume sufficient for analysis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14. (Y <sub>2</sub> ) N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Was pH taken by original TestAmerica lab?                                                                                |  |  |  |  |  |
| For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be vorified, EXCEPT VOA, TOX and soils.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| Notes: ITC 0630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| 464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| 774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
| 1710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - In the second |                                                                                                                          |  |  |  |  |  |
| Corrective Action:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                          |  |  |  |  |  |
| ☐ Client Contact Name: ☐ Sample(s) processed "as is"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Informed by: _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |  |  |  |  |  |
| ☐ Sample(s) on hold until:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | If released, notify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                          |  |  |  |  |  |
| Project Management Review Amal John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-13-10                                                                                                                  |  |  |  |  |  |
| THE RESTREET OF THE PROPERTY O | THIS FORM MUST BE COMPLETED AT THE TIME THE ITEMS ARE BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMEONE OTHER THAN THE INITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |  |  |  |  |  |
| ADMIN-0004, REVISED 10/21/08 \\Shvr01\QA\FORMS\ST-LOUIS\ADMIN\Admin004 rev11.doc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |  |  |  |  |  |

F0C090518

# **APPENDIX G**

# **Section 47**

Outfall 009 – January 18 & 19, 2010 MEC<sup>X</sup> Data Validation Report





# DATA VALIDATION REPORT

# **Boeing SSFL NPDES**

SAMPLE DELIVERY GROUP: ITA1480

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES
SDG ITA1480

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITA1480
Project Manager: B. Kelly

Matrix: Water
QC Level: IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

| Clie                 | ent ID | Laboratory ID | Sub-Laboratory ID               | Matrix | Collected               | Method                                                                                                        |
|----------------------|--------|---------------|---------------------------------|--------|-------------------------|---------------------------------------------------------------------------------------------------------------|
| Outfa<br>010<br>(Com |        | HTA1480-02    | F0A220437-001,<br>G0A210563-001 | WATER  | 1/19/2010<br>2:30:00 PM | ASTM 5174-91, 245.1, 245.1-Diss,<br>1613B, 900.0 MOD, 901.1 MOD,<br>903.0 MOD, 904 MOD, 905 MOD,<br>906.0 MOD |

#### II. Sample Management

No anomalies were observed regarding sample management. The sample receipt temperature was noted by TestAmerica-St Louis as "ambient"; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. No custody seals were present on the sample coolers sent to TestAmerica-St. Louis. Custody seals were present upon receipt at TestAmerica-West Sacramento. As the samples were delivered to the remaining laboratories by courier, no custody seals were necessary. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Revision 0

DATA VALIDATION REPORT

Project: SSFL NPDES
SDG ITA1480

# **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

DATA VALIDATION REPORT Project: SSFL NPDES SDG ITA1480

# **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of<br>standards used for the calibration<br>was incorrect              |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| Е         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| I         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

Revision 0

Project: SSFL NPDES
DATA VALIDATION REPORT SDG ITA1480

# **Qualification Code Reference Table Cont.**

| D      | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р      | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ    | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *  , * | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

DATA VALIDATION REPORT Project: SSFL NPDES
SDG ITA1480

# III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: February 25, 2010

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - o Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Ocontinuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for more than half of all compounds, including all of the HxCDD isomers and total HxCDD, 1,2,3,6,7,8-HpCDD and total HpCDD, OCDD, total HxCDF and all of the HxCDF isomers except 1,2,3,4,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF and total HpCDF, and OCDF. Any sample detects for

DATA VALIDATION REPORT Project: SSFL NPDES SDG ITA1480

individual target compound isomers present at concentrations less than five times the method blank concentrations were qualified as nondetected, "U," at the RL. Several detects in the method blank did not meet ratio criteria and were reported as EMPCs; however, due to the extent of contamination present in the method blank, it was the reviewer's professional opinion that those results be utilized to qualify applicable sample results. Results for totals that included peaks meeting ratio criteria that were not present in the method blank were qualified as estimated, "J," as only a portion of the total was considered method blank contamination. The concentrations of 1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8-HpCDF in the method blank were insufficient to qualify the sample results or associated totals.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample detects. The laboratory calculated and reported compound-specific detection limits. Several detects for individual isomers were reported as EMPCs. As ratio criteria were not met, the results were qualified as estimated nondetects, "UJ," at the reported concentration levels. Any reported totals that included EMPCs were qualified as estimated, "J." Any detects between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

DATA VALIDATION REPORT

Project: SSFL NPDES
SDG ITA1480

# B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks

Date Reviewed: March 1, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1 and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and the initial and continuing calibration recoveries were within 85-115%. The CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

DATA VALIDATION REPORT

Project: SSFL NPDES
SDG ITA1480

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 1, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
  for gross alpha and gross beta and total uranium were prepared beyond the five-day
  analytical holding time for unpreserved samples; therefore, results for these analytes
  were qualified as estimated, "J," for detects and, "UJ," for nondetects. Aliquots for
  radium-226, radium-228, strontium-90, and gamma spectroscopy were prepared within
  the five-day holding time for unpreserved aqueous samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as estimated, "UJ." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Tritium was detected in the method blank at 250 pci/L; therefore, tritium detected in the sample was qualified as nondetected, "U," at the reporting limit. There were no other analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

DATA VALIDATION REPORT Project: SSFL NPDES
SDG ITA1480

 Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
  data package. The sample results and MDAs reported on the sample result form were
  verified against the raw data and no calculation or transcription errors were noted. Any
  detects between the MDA and the reporting limit were qualified as estimated, "J," and
  coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
  valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms: ITA1480

| Analysis Metho     | od ASTM         | 5174-           | 91        |          |                 |                  |                         |                     |
|--------------------|-----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Sample Name        | Outfall 010 (C  | omp)            | Matri     | х Туре:  | WATER           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name:   | ITA1480-02      | Sam             | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Uranium      | 7440-61-1       | 0.213           | 1         | 0.31     | ug/L            | U                | UJ                      | Н                   |
| Analysis Metho     | od EPA 2        | 45.1            |           |          |                 |                  |                         |                     |
| Sample Name        | Outfall 010 (C  | omp)            | Matri     | x Type:  | Water           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name:   | ITA1480-02      | Sam             | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury            | 7439-97-6       | ND              | 0.20      | 0.10     | ug/l            |                  | U                       |                     |
| Analysis Metho     | od EPA 2        | 45.1-D          | iss       |          |                 |                  |                         |                     |
| Sample Name        | Outfall 010 (C  | omp)            | Matri     | x Type:  | Water           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name:   | ITA1480-02      | Sam             | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury, dissolved | 7439-97-6       | ND              | 0.20      | 0.10     | ug/l            | С                | U                       |                     |
| Analysis Metho     | od EPA 9        | 00.0 M          | 10D       |          |                 |                  |                         |                     |
| Sample Name        | Outfall 010 (C  | omp)            | Matri     | x Type:  | WATER           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name:   | ITA1480-02      | Sam             | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Gross Alpha        | 12587-46-1      | 1.2             | 3         | 1.9      | pCi/L           | U                | UJ                      | H, C                |
| Gross Beta         | 12587-47-2      | 3.61            | 4         | 1.2      | pCi/L           | Jb               | J                       | H, DNQ              |
| Analysis Metho     | od EPA 9        | 01.1 M          | IOD       |          |                 |                  |                         |                     |
| Sample Name        | Outfall 010 (Co | omp)            | Matri     | x Type:  | WATER           | 7                | Validation Le           | evel: IV            |
| Lab Sample Name:   | ITA1480-02      | Sam             | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Cesium 137         | 10045-97-3      | 2.3             | 20        | 18       | pCi/L           | U                | U                       |                     |
| Potassium 40       | 13966-00-2      | -50             | 0         | 290      | pCi/L           | U                | U                       |                     |

Monday, March 15, 2010 Page 1 of 3

# Analysis Method EPA 903.0 MOD

| Sample Name      | Outfall 010 (C | omp)            | Matri     | x Type:  | WATER           | 7                | Validation Le           | vel: IV             |
|------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | ITA1480-02     | Samj            | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium (226)     | 13982-63-3     | 0.03            | 1         | 0.23     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9       | 04 MO           | DD        |          |                 |                  |                         |                     |
| Sample Name      | Outfall 010 (C | omp)            | Matri     | x Type:  | WATER           | 7                | Validation Le           | vel: IV             |
| Lab Sample Name: | ITA1480-02     | Samj            | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium 228       | 15262-20-1     | -0.37           | 1         | 1.1      | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9       | 05 MO           | D         |          |                 |                  |                         |                     |
| Sample Name      | Outfall 010 (C | omp)            | Matri     | х Туре:  | WATER           | V                | Validation Le           | vel: IV             |
| Lab Sample Name: | ITA1480-02     | Samj            | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Strontium-90     | 10098-97-2     | 0.13            | 3         | 0.4      | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9       | 06.0 M          | IOD       |          |                 |                  |                         |                     |
| Sample Name      | Outfall 010 (C | omp)            | Matri     | х Туре:  | WATER           | 7                | Validation Le           | vel: IV             |
| Lab Sample Name: | ITA1480-02     | Samj            | ple Date: | 1/19/201 | 0 2:30:00 PM    |                  |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Tritium          | 10028-17-8     | 410             | 500       | 140      | pCi/L           | Jb               | U                       | В                   |

Monday, March 15, 2010 Page 2 of 3

# Analysis Method EPA-5 1613B

| Sample Name         | Outfall 010 (Co | omp)            | Matrix    | Type:     | WATER           | Validation Level: IV |                         |                     |  |
|---------------------|-----------------|-----------------|-----------|-----------|-----------------|----------------------|-------------------------|---------------------|--|
| Lab Sample Name:    | ITA1480-02      | Samp            | le Date:  | 1/19/2010 | 2:30:00 PM      |                      |                         |                     |  |
| Analyte             | CAS No          | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| 1,2,3,4,6,7,8-HpCDD | 35822-46-9      | 0.000079        | 0.000048  | 0.000008  | ug/L            | В                    |                         |                     |  |
| 1,2,3,4,6,7,8-HpCDF | 67562-39-4      | 0.000038        | 0.000048  | 0.000005  | ug/L            | J, B                 | J                       | DNQ                 |  |
| 1,2,3,4,7,8,9-HpCDF | 55673-89-7      | 0.000025        | 0.000048  | 0.000008  | ug/L            | J                    | J                       | DNQ                 |  |
| 1,2,3,4,7,8-HxCDD   | 39227-28-6      | ND              | 0.000048  | 0.000006  | ug/L            | J, B                 | U                       | В                   |  |
| 1,2,3,4,7,8-HxCDF   | 70648-26-9      | 0.000023        | 0.000048  | 0.000006  | ug/L            | J                    | J                       | DNQ                 |  |
| 1,2,3,6,7,8-HxCDD   | 57653-85-7      | ND              | 0.000048  | 0.000005  | ug/L            | J, B                 | U                       | В                   |  |
| 1,2,3,6,7,8-HxCDF   | 57117-44-9      | ND              | 0.000048  | 0.000005  | ug/L            | J, B                 | U                       | В                   |  |
| 1,2,3,7,8,9-HxCDD   | 19408-74-3      | 0.000016        | 0.000048  | 0.000004  | ug/L            | J, B                 | J                       | DNQ                 |  |
| 1,2,3,7,8,9-HxCDF   | 72918-21-9      | ND              | 0.000048  | 0.000005  | ug/L            | J, B                 | U                       | В                   |  |
| 1,2,3,7,8-PeCDD     | 40321-76-4      | ND              | 0.000016  | 0.000007  | ug/L            | J, Q                 | UJ                      | *III                |  |
| 1,2,3,7,8-PeCDF     | 57117-41-6      | ND              | 0.000013  | 0.000004  | ug/L            | J, Q                 | UJ                      | *III                |  |
| 2,3,4,6,7,8-HxCDF   | 60851-34-5      | ND              | 0.000048  | 0.000004  | ug/L            | J, B                 | U                       | В                   |  |
| 2,3,4,7,8-PeCDF     | 57117-31-4      | ND              | 0.000014  | 0.000004  | ug/L            | J, Q                 | UJ                      | *III                |  |
| 2,3,7,8-TCDD        | 1746-01-6       | ND              | 0.0000028 | 0.000003  | ug/L            | J, Q                 | UJ                      | *III                |  |
| 2,3,7,8-TCDF        | 51207-31-9      | ND              | 0.0000096 | 0.000003  | ug/L            |                      | U                       |                     |  |
| OCDD                | 3268-87-9       | 0.00074         | 0.000096  | 0.000015  | ug/L            | В                    |                         |                     |  |
| OCDF                | 39001-02-0      | 0.00012         | 0.000096  | 0.000009  | ug/L            | В                    |                         |                     |  |
| Total HpCDD         | 37871-00-4      | 0.00017         | 0.000048  | 0.000008  | ug/L            | В                    |                         |                     |  |
| Total HpCDF         | 38998-75-3      | 0.000094        | 0.000048  | 0.000005  | ug/L            | J, B                 |                         |                     |  |
| Total HxCDD         | 34465-46-8      | 0.000053        | 0.000048  | 0.000004  | ug/L            | J, B                 | J                       | B, DNQ              |  |
| Total HxCDF         | 55684-94-1      | 0.00008         | 0.000048  | 0.000004  | ug/L            | J, B                 | J                       | B, DNQ              |  |
| Total PeCDD         | 36088-22-9      | ND              | 0.000021  | 0.000007  | ug/L            | J, Q                 | UJ                      | *III                |  |
| Total PeCDF         | 30402-15-4      | 0.000029        | 0.000029  | 0.000003  | ug/L            | J, Q                 | J                       | *III,DNQ            |  |
| Total TCDD          | 41903-57-5      | ND              | 0.0000028 | 0.000003  | ug/L            | J, Q                 | UJ                      | *III                |  |
| Total TCDF          | 55722-27-5      | ND              | 0.0000096 | 0.000003  | ug/L            |                      | U                       |                     |  |

Monday, March 15, 2010 Page 3 of 3



# **APPENDIX G**

# **Section 48**

Outfall 010 – January 18 & 19, 2010
Test America Analytical Laboratory Report







# LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 01/18/10-01/19/10

Received: 01/19/10 Revised: 04/02/10 15:45

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 15 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 3°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: Final revised report to provide corrected units and .pdf file for Radchem.

 LABORATORY ID
 CLIENT ID
 MATRIX

 ITA1480-01
 Outfall 010 (Grab)
 Water

 ITA1480-02
 Outfall 010 (Comp)
 Water

Reviewed By:

**TestAmerica Irvine** 

Kathleen A. Robb For Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10-01/19/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Report Number: ITA1480 Received: 01/19/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

### HEXANE EXTRACTABLE MATERIAL

| Analyte                              | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-01 (Outfall 010 ( |           |         |              | Sample             | ed: 01/18/1      | 10                 |                   |                  |                    |
| Reporting Units: mg/l                |           |         |              |                    |                  |                    |                   |                  |                    |
| Hexane Extractable Material (Oil &   | EPA 1664A | 10A2388 | 1.3          | 4.7                | ND               | 1                  | 01/26/10          | 01/26/10         |                    |
| Grease)                              |           |         |              |                    |                  |                    |                   |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Sampled: 01/18/10-01/19/10

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: ITA1480 Received: 01/19/10

# **METALS**

| Analyte                            | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 |           |         |              | Sample             | d: 01/19/1       | .0                 |                   |                  |                    |
| Reporting Units: ug/l              |           |         |              |                    |                  |                    |                   |                  |                    |
| Mercury                            | EPA 245.1 | 10A1830 | 0.10         | 0.20               | ND               | 1                  | 01/20/10          | 01/20/10         |                    |
| Antimony                           | EPA 200.8 | 10A1800 | 0.30         | 2.0                | 0.43             | 1                  | 01/20/10          | 01/25/10         | Ja                 |
| Cadmium                            | EPA 200.8 | 10A1800 | 0.10         | 1.0                | ND               | 1                  | 01/20/10          | 01/25/10         |                    |
| Copper                             | EPA 200.8 | 10A1800 | 0.50         | 2.0                | 4.0              | 1                  | 01/20/10          | 01/25/10         |                    |
| Lead                               | EPA 200.8 | 10A1800 | 0.20         | 1.0                | 1.7              | 1                  | 01/20/10          | 01/25/10         |                    |
| Thallium                           | EPA 200.8 | 10A1800 | 0.20         | 1.0                | ND               | 1                  | 01/20/10          | 01/25/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10-01/19/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1480 Received: 01/19/10

Attention: Bronwyn Kelly

### **DISSOLVED METALS**

| Analyte                            | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 |                |         | Sample       | d: 01/19/1         | 10               |                    |                   |                  |                    |
| Reporting Units: ug/l              |                |         |              |                    |                  |                    |                   |                  |                    |
| Mercury                            | EPA 245.1-Diss | 10A2023 | 0.10         | 0.20               | ND               | 1                  | 01/21/10          | 01/21/10         | C                  |
| Antimony                           | EPA 200.8-Diss | 10A1999 | 0.30         | 2.0                | 0.41             | 1                  | 01/21/10          | 01/25/10         | Ja                 |
| Cadmium                            | EPA 200.8-Diss | 10A1999 | 0.10         | 1.0                | ND               | 1                  | 01/21/10          | 01/25/10         |                    |
| Copper                             | EPA 200.8-Diss | 10A1999 | 0.50         | 2.0                | 1.9              | 1                  | 01/21/10          | 01/25/10         | Ja                 |
| Lead                               | EPA 200.8-Diss | 10A1999 | 0.20         | 1.0                | ND               | 1                  | 01/21/10          | 01/25/10         | C                  |
| Thallium                           | EPA 200.8-Diss | 10A1999 | 0.20         | 1.0                | ND               | 1                  | 01/21/10          | 01/25/10         | C                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10-01/19/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1480 Received: 01/19/10

Attention: Bronwyn Kelly

# **INORGANICS**

| Analyte                              | Method         | Batch   | MDL<br>Limit      | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|----------------|---------|-------------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 ( | Comp) - Water) |         | Sampled: 01/19/10 |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l                |                |         |                   |                    |                  |                    |                   |                  |                    |
| Chloride                             | EPA 300.0      | 10A1808 | 0.25              | 0.50               | 6.8              | 1                  | 01/20/10          | 01/20/10         |                    |
| Nitrate/Nitrite-N                    | EPA 300.0      | 10A1808 | 0.15              | 0.26               | 0.71             | 1                  | 01/20/10          | 01/20/10         |                    |
| Sulfate                              | EPA 300.0      | 10A1808 | 0.20              | 0.50               | 5.2              | 1                  | 01/20/10          | 01/20/10         |                    |
| <b>Total Dissolved Solids</b>        | SM2540C        | 10A1916 | 1.0               | 10                 | 100              | 1                  | 01/21/10          | 01/21/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

Report Number: ITA1480

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Attention: Bronwyn Kelly

Sampled: 01/18/10-01/19/10

Received: 01/19/10

### **ASTM 5174-91**

| Analyte                              | Method       | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|--------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 ( |              |       |              | Sample             | d: 01/19/1       | 10                 |                   |                  |                    |
| Reporting Units: pCi/L               |              |       |              |                    |                  |                    |                   |                  |                    |
| Total Uranium                        | ASTM 5174-91 | 35029 | 0.21         | 0.693              | 0.148            | 1                  | 02/04/10          | 02/08/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Report Number: ITA1480 Received: 01/19/10

Attention: Bronwyn Kelly

Sampled: 01/18/10-01/19/10

# **EPA 900.0 MOD**

| Analyte                                            | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 (Comp) - Water) |               |       |              |                    | Sample           | ed: 01/19/1        | 10                |                  |                    |
| Reporting Units: pCi/L                             |               |       |              |                    |                  |                    |                   |                  |                    |
| Gross Alpha                                        | EPA 900.0 MOD | 25415 | 1.9          | 3                  | 1.2              | 1                  | 01/25/10          | 01/29/10         | U                  |
| Gross Beta                                         | EPA 900.0 MOD | 25415 | 1.2          | 4                  | 3.61             | 1                  | 01/25/10          | 01/29/10         | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

# **EPA 901.1 MOD**

| Analyte                                            | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 (Comp) - Water) |               |       |              |                    | Sample           | ed: 01/19/1        | 10                |                  |                    |
| Reporting Units: pCi/L                             |               |       |              |                    |                  |                    |                   |                  |                    |
| Cesium 137                                         | EPA 901.1 MOD | 23036 | 18           | 20                 | 2.3              | 1                  | 01/23/10          | 01/26/10         | U                  |
| Potassium 40                                       | EPA 901.1 MOD | 23036 | 290          | NA                 | -50              | 1                  | 01/23/10          | 01/26/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10-01/19/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Report Number: ITA1480

Arcadia, CA 91007 Attention: Bronwyn Kelly Received: 01/19/10

# **EPA 903.0 MOD**

| Analyte                                            | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 (Comp) - Water) |               |       |              |                    | Sample           | d: 01/19/1         | 10                |                  |                    |
| Reporting Units: pCi/L                             |               |       |              |                    |                  |                    |                   |                  |                    |
| Radium (226)                                       | EPA 903.0 MOD | 22145 | 0.23         | 1                  | 0.03             | 1                  | 01/22/10          | 02/08/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10-01/19/10

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Report Number: ITA1480

Arcadia, CA 91007 Attention: Bronwyn Kelly Received: 01/19/10

# **EPA 904 MOD**

| Analyte                            | Method      | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 |             |       | Sample       | ed: 01/19/1        | 10               |                    |                   |                  |                    |
| Reporting Units: pCi/L             |             |       |              |                    |                  |                    |                   |                  |                    |
| Radium 228                         | EPA 904 MOD | 22148 | 1.1          | 1                  | -0.37            | 1                  | 01/22/10          | 02/08/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: ITA1480

Sampled: 01/18/10-01/19/10

Received: 01/19/10

# **EPA 905 MOD**

| Analyte                            | Method      | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 |             |       | Sample       | ed: 01/19/1        | 10               |                    |                   |                  |                    |
| Reporting Units: pCi/L             |             |       |              |                    |                  |                    |                   |                  |                    |
| Strontium 90                       | EPA 905 MOD | 22149 | 0.4          | 3                  | 0.13             | 1                  | 01/22/10          | 02/01/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Sampled: 01/18/10-01/19/10

Arcadia, CA 91007

Report Number: ITA1480

Received: 01/19/10

# **EPA 906.0 MOD**

| Analyte                              | Method        | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|---------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010 ( |               |       | Sample       | d: 01/19/1         | 10               |                    |                   |                  |                    |
| Reporting Units: pCi/L<br>Tritium    | EPA 906.0 MOD | 28080 | 140          | 500                | 410              | 1                  | 01/28/10          | 01/29/10         | Jb                 |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Report Number: ITA1480

Sampled: 01/18/10-01/19/10

Received: 01/19/10

# EPA-5 1613B

| Analyte                              | Method                                  | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|-----------------------------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1480-02 (Outfall 010   | (Comp) - Water)                         |       |              |                    | Sample           | <b>d:</b> 01/19/2  | 10                |                  |                    |
| Reporting Units: ug/L                | ( · · · · · · · · · · · · · · · · · · · |       |              |                    | Sample           | u. 01/15/          | 10                |                  |                    |
| 1,2,3,4,6,7,8-HpCDD                  | EPA-5 1613B                             | 26267 | 0.000008     | 8 0.000048         | 0.000079         | 0.96               | 01/26/10          | 02/02/10         | В                  |
| 1,2,3,4,6,7,8-HpCDF                  | EPA-5 1613B                             | 26267 | 0.000005     | 7 0.000048         | 0.000038         | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| 1,2,3,4,7,8,9-HpCDF                  | EPA-5 1613B                             | 26267 | 0.000008     | 8 0.000048         | 0.000025         | 0.96               | 01/26/10          | 02/02/10         | J                  |
| 1,2,3,4,7,8-HxCDD                    | EPA-5 1613B                             | 26267 | 0.0000062    | 2 0.000048         | 0.00002          | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| 1,2,3,4,7,8-HxCDF                    | EPA-5 1613B                             | 26267 | 0.000006     | 2 0.000048         | 0.000023         | 0.96               | 01/26/10          | 02/02/10         | J                  |
| 1,2,3,6,7,8-HxCDD                    | EPA-5 1613B                             | 26267 | 0.000005     | 8 0.000048         | 0.000018         | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| 1,2,3,6,7,8-HxCDF                    | EPA-5 1613B                             | 26267 | 0.000005     | 3 0.000048         | 0.000018         | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| 1,2,3,7,8,9-HxCDD                    | EPA-5 1613B                             | 26267 | 0.000004     | 8 0.000048         | 0.000016         | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| 1,2,3,7,8,9-HxCDF                    | EPA-5 1613B                             | 26267 | 0.000005     | 5 0.000048         | 0.000018         | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| 1,2,3,7,8-PeCDD                      | EPA-5 1613B                             | 26267 | 0.0000079    | 9 0.000048         | 0.000016         | 0.96               | 01/26/10          | 02/02/10         | J, Q               |
| 1,2,3,7,8-PeCDF                      | EPA-5 1613B                             | 26267 | 0.000004     | 1 0.000048         | 0.000013         | 0.96               | 01/26/10          | 02/02/10         | J, Q               |
| 2,3,4,6,7,8-HxCDF                    | EPA-5 1613B                             | 26267 | 0.000004     | 7 0.000048         | 0.000021         | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| 2,3,4,7,8-PeCDF                      | EPA-5 1613B                             | 26267 | 0.000004     | 8 0.000048         | 0.000014         | 0.96               | 01/26/10          | 02/02/10         | J, Q               |
| 2,3,7,8-TCDD                         | EPA-5 1613B                             | 26267 | 0.000003     | 0.0000096          | 0.0000028        | 0.96               | 01/26/10          | 02/02/10         | J, Q               |
| 2,3,7,8-TCDF                         | EPA-5 1613B                             | 26267 | 0.000003     | 3 0.0000096        | ND               | 0.96               | 01/26/10          | 02/02/10         |                    |
| OCDD                                 | EPA-5 1613B                             | 26267 | 0.000015     | 0.000096           | 0.00074          | 0.96               | 01/26/10          | 02/02/10         | В                  |
| OCDF                                 | EPA-5 1613B                             | 26267 | 0.000009     | 6 0.000096         | 0.00012          | 0.96               | 01/26/10          | 02/02/10         | В                  |
| Total HpCDD                          | EPA-5 1613B                             | 26267 | 0.000008     | 8 0.000048         | 0.00017          | 0.96               | 01/26/10          | 02/02/10         | В                  |
| Total HpCDF                          | EPA-5 1613B                             | 26267 | 0.000005     | 7 0.000048         | 0.000094         | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| Total HxCDD                          | EPA-5 1613B                             | 26267 | 0.000004     | 8 0.000048         | 0.000053         | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| Total HxCDF                          | EPA-5 1613B                             | 26267 |              | 7 0.000048         | 0.00008          | 0.96               | 01/26/10          | 02/02/10         | J, B               |
| Total PeCDD                          | EPA-5 1613B                             | 26267 |              | 9 0.000048         | 0.000021         | 0.96               | 01/26/10          | 02/02/10         | J, Q               |
| Total PeCDF                          | EPA-5 1613B                             | 26267 |              | 7 0.000048         | 0.000029         | 0.96               | 01/26/10          | 02/02/10         | J, Q               |
| Total TCDD                           | EPA-5 1613B                             | 26267 |              | 0.0000096          | 0.0000028        | 0.96               | 01/26/10          | 02/02/10         | J, Q               |
| Total TCDF                           | EPA-5 1613B                             | 26267 | 0.000003     | 3 0.0000096        | ND               | 0.96               | 01/26/10          | 02/02/10         |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD ( | (23-140%)                               |       |              |                    | 72 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF ( |                                         |       |              |                    | 83 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF ( |                                         |       |              |                    | 74 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (3. |                                         |       |              |                    | 71 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (20 |                                         |       |              |                    | 66 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (20 |                                         |       |              |                    | 71 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (20 |                                         |       |              |                    | 67 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29 |                                         |       |              |                    | 70 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-  |                                         |       |              |                    | 61 %             |                    |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-1 |                                         |       |              |                    | 61 %             |                    |                   |                  |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28 |                                         |       |              |                    | 77 %             |                    |                   |                  |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-1 |                                         |       |              |                    | 62 %             |                    |                   |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164  |                                         |       |              |                    | 61 %             |                    |                   |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDF (24-169  | %)                                      |       |              |                    | 45 %             |                    |                   |                  |                    |
| Surrogate: 13C-OCDD (17-157%)        |                                         |       |              |                    | 70 %             |                    |                   |                  |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-1) | 97%)                                    |       |              |                    | 104 %            |                    |                   |                  |                    |
| Tost A marias Irvina                 |                                         |       |              |                    |                  |                    |                   |                  |                    |

### **TestAmerica Irvine**

Kathleen A. Robb For Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200 Sampled: 01/18/10-01/19/10

Arcadia, CA 91007 Report Number: ITA1480 Received: 01/19/10

Attention: Bronwyn Kelly

### SHORT HOLD TIME DETAIL REPORT

| Sample ID: Outfall 010 (Comp) (ITA1480-02) | Hold Time<br>(in days)<br>) - Water | Date/Time<br>Sampled | Date/Time<br>Received | Date/Time<br>Extracted | Date/Time<br>Analyzed |
|--------------------------------------------|-------------------------------------|----------------------|-----------------------|------------------------|-----------------------|
| EPA 300.0                                  | 2                                   | 01/19/2010 14:30     | 01/19/2010 19:00      | 01/20/2010 17:15       | 01/20/2010 18:27      |
| Filtration                                 | 1                                   | 01/19/2010 14:30     | 01/19/2010 19:00      | 01/20/2010 16:50       | 01/20/2010 16:53      |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

# METHOD BLANK/QC DATA

# HEXANE EXTRACTABLE MATERIAL

| Analyte                                    | Result                                       | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------|----------------------------------------------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10A2388 Extracted: 01/26/10         | <u>)                                    </u> |                    |     |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 01/26/2010 (10A2388-B      | LK1)                                         |                    |     |       |                |                  |         |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | ND                                           | 5.0                | 1.4 | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 01/26/2010 (10A2388-BS       | 1)                                           |                    |     |       |                |                  |         |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 20.3                                         | 5.0                | 1.4 | mg/l  | 20.0           |                  | 102     | 78-114         |     |              |                    |
| LCS Dup Analyzed: 01/26/2010 (10A238       | 8-BSD1)                                      |                    |     |       |                |                  |         |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 20.7                                         | 5.0                | 1.4 | mg/l  | 20.0           |                  | 104     | 78-114         | 2   | 11           |                    |
| Matrix Spike Analyzed: 01/26/2010 (10A     | .2388-MS1)                                   |                    |     |       | Sou            | rce: ITA2        | 2111-01 |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 23.5                                         | 4.8                | 1.3 | mg/l  | 19.1           | 3.33             | 106     | 78-114         |     |              |                    |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

# METHOD BLANK/QC DATA

### **METALS**

|                                        |            | Reporting |      |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10A1800 Extracted: 01/20/10     |            |           |      |       |       |          |         |        |     |       |            |
|                                        |            |           |      |       |       |          |         |        |     |       |            |
| Blank Analyzed: 01/25/2010 (10A1800-B  | LK1)       |           |      |       |       |          |         |        |     |       |            |
| Antimony                               | ND         | 2.0       | 0.30 | ug/l  |       |          |         |        |     |       |            |
| Cadmium                                | ND         | 1.0       | 0.10 | ug/l  |       |          |         |        |     |       |            |
| Copper                                 | ND         | 2.0       | 0.50 | ug/l  |       |          |         |        |     |       |            |
| Lead                                   | ND         | 1.0       | 0.20 | ug/l  |       |          |         |        |     |       |            |
| Thallium                               | ND         | 1.0       | 0.20 | ug/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 01/25/2010 (10A1800-BS   | 1)         |           |      |       |       |          |         |        |     |       |            |
| Antimony                               | 73.9       | 2.0       | 0.30 | ug/l  | 80.0  |          | 92      | 85-115 |     |       |            |
| Cadmium                                | 74.1       | 1.0       | 0.10 | ug/l  | 80.0  |          | 93      | 85-115 |     |       |            |
| Copper                                 | 73.8       | 2.0       | 0.50 | ug/l  | 80.0  |          | 92      | 85-115 |     |       |            |
| Lead                                   | 74.3       | 1.0       | 0.20 | ug/l  | 80.0  |          | 93      | 85-115 |     |       |            |
| Thallium                               | 73.9       | 1.0       | 0.20 | ug/l  | 80.0  |          | 92      | 85-115 |     |       |            |
| Matrix Spike Analyzed: 01/25/2010 (10A | 1800-MS1)  |           |      |       | Sou   | rce: ITA | 1401-01 |        |     |       |            |
| Antimony                               | 81.2       | 2.0       | 0.30 | ug/l  | 80.0  | 2.44     | 98      | 70-130 |     |       |            |
| Cadmium                                | 77.9       | 1.0       | 0.10 | ug/l  | 80.0  | ND       | 97      | 70-130 |     |       |            |
| Copper                                 | 86.3       | 2.0       | 0.50 | ug/l  | 80.0  | 6.94     | 99      | 70-130 |     |       |            |
| Lead                                   | 118        | 1.0       | 0.20 | ug/l  | 80.0  | 39.4     | 98      | 70-130 |     |       |            |
| Thallium                               | 78.6       | 1.0       | 0.20 | ug/l  | 80.0  | 0.228    | 98      | 70-130 |     |       |            |
| Matrix Spike Analyzed: 01/25/2010 (10A | 1800-MS2)  |           |      |       | Sou   | rce: ITA | 1478-01 |        |     |       |            |
| Antimony                               | 73.2       | 4.0       | 0.60 | ug/l  | 80.0  | 0.938    | 90      | 70-130 |     |       |            |
| Cadmium                                | 80.5       | 2.0       | 0.20 | ug/l  | 80.0  | 0.628    | 100     | 70-130 |     |       |            |
| Copper                                 | 101        | 4.0       | 1.0  | ug/l  | 80.0  | 19.2     | 102     | 70-130 |     |       |            |
| Lead                                   | 130        | 2.0       | 0.40 | ug/l  | 80.0  | 47.6     | 103     | 70-130 |     |       |            |
| Thallium                               | 81.9       | 2.0       | 0.40 | ug/l  | 80.0  | 0.594    | 102     | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 01/25/2010  | (10A1800-M | SD1)      |      |       | Sou   | rce: ITA | 1401-01 |        |     |       |            |
| Antimony                               | 81.3       | 2.0       | 0.30 | ug/l  | 80.0  | 2.44     | 99      | 70-130 | 0.2 | 20    |            |
| Cadmium                                | 79.0       | 1.0       | 0.10 | ug/l  | 80.0  | ND       | 99      | 70-130 | 1   | 20    |            |
| Copper                                 | 87.7       | 2.0       | 0.50 | ug/l  | 80.0  | 6.94     | 101     | 70-130 | 2   | 20    |            |
| Lead                                   | 120        | 1.0       | 0.20 | ug/l  | 80.0  | 39.4     | 101     | 70-130 | 2   | 20    |            |
| Thallium                               | 81.2       | 1.0       | 0.20 | ug/l  | 80.0  | 0.228    | 101     | 70-130 | 3   | 20    |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

# METHOD BLANK/QC DATA

### **METALS**

| Analyte                                | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|--------------|--------------------|------|-------|----------------|------------------|---------|----------------|------|--------------|--------------------|
| Batch: 10A1830 Extracted: 01/20/10     | _            |                    |      |       |                |                  |         |                |      |              |                    |
| Blank Analyzed: 01/20/2010 (10A1830-B  | LK1)         |                    |      |       |                |                  |         |                |      |              |                    |
| Mercury                                | ND           | 0.20               | 0.10 | ug/l  |                |                  |         |                |      |              |                    |
| LCS Analyzed: 01/20/2010 (10A1830-BS)  | 1)           |                    |      |       |                |                  |         |                |      |              |                    |
| Mercury                                | 8.22         | 0.20               | 0.10 | ug/l  | 8.00           |                  | 103     | 85-115         |      |              |                    |
| Matrix Spike Analyzed: 01/20/2010 (10A | 1830-MS1)    |                    |      |       | Sou            | rce: ITA         | 1359-01 |                |      |              |                    |
| Mercury                                | 8.18         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 102     | 70-130         |      |              |                    |
| Matrix Spike Dup Analyzed: 01/20/2010  | (10A1830-MSI | <b>D1</b> )        |      |       | Sou            | rce: ITA         | 1359-01 |                |      |              |                    |
| Mercury                                | 8.18         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 102     | 70-130         | 0.08 | 20           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

# METHOD BLANK/QC DATA

### **DISSOLVED METALS**

| Analyte                                | Result     | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10A1999 Extracted: 01/21/10     |            |                    |      |       |                |                  |         |                |     |              |                    |
| Daten. 10A1999 Extracted. 01/21/10     | _          |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 01/25/2010 (10A1999-B  | LK1)       |                    |      |       |                |                  |         |                |     |              |                    |
| Antimony                               | ND         | 2.0                | 0.30 | ug/l  |                |                  |         |                |     |              |                    |
| Cadmium                                | ND         | 1.0                | 0.10 | ug/l  |                |                  |         |                |     |              |                    |
| Copper                                 | ND         | 2.0                | 0.50 | ug/l  |                |                  |         |                |     |              |                    |
| Lead                                   | ND         | 1.0                | 0.20 | ug/l  |                |                  |         |                |     |              |                    |
| Thallium                               | ND         | 1.0                | 0.20 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 01/25/2010 (10A1999-BS)  | 1)         |                    |      |       |                |                  |         |                |     |              |                    |
| Antimony                               | 80.9       | 2.0                | 0.30 | ug/l  | 80.0           |                  | 101     | 85-115         |     |              |                    |
| Cadmium                                | 79.9       | 1.0                | 0.10 | ug/l  | 80.0           |                  | 100     | 85-115         |     |              |                    |
| Copper                                 | 84.4       | 2.0                | 0.50 | ug/l  | 80.0           |                  | 106     | 85-115         |     |              |                    |
| Lead                                   | 88.1       | 1.0                | 0.20 | ug/l  | 80.0           |                  | 110     | 85-115         |     |              |                    |
| Thallium                               | 86.6       | 1.0                | 0.20 | ug/l  | 80.0           |                  | 108     | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 01/25/2010 (10A | 1999-MS1)  |                    |      |       | Sou            | rce: ITA1        | 1358-02 |                |     |              |                    |
| Antimony                               | 79.8       | 2.0                | 0.30 | ug/l  | 80.0           | ND               | 100     | 70-130         |     |              |                    |
| Cadmium                                | 78.2       | 1.0                | 0.10 | ug/l  | 80.0           | 0.217            | 98      | 70-130         |     |              |                    |
| Copper                                 | 86.7       | 2.0                | 0.50 | ug/l  | 80.0           | 4.63             | 103     | 70-130         |     |              |                    |
| Lead                                   | 91.4       | 1.0                | 0.20 | ug/l  | 80.0           | 5.21             | 108     | 70-130         |     |              |                    |
| Thallium                               | 85.9       | 1.0                | 0.20 | ug/l  | 80.0           | 0.290            | 107     | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 01/25/2010  | (10A1999-M | SD1)               |      |       | Sou            | rce: ITA         | 1358-02 |                |     |              |                    |
| Antimony                               | 80.7       | 2.0                | 0.30 | ug/l  | 80.0           | ND               | 101     | 70-130         | 1   | 20           |                    |
| Cadmium                                | 79.1       | 1.0                | 0.10 | ug/l  | 80.0           | 0.217            | 99      | 70-130         | 1   | 20           |                    |
| Copper                                 | 85.7       | 2.0                | 0.50 | ug/l  | 80.0           | 4.63             | 101     | 70-130         | 1   | 20           |                    |
| Lead                                   | 91.0       | 1.0                | 0.20 | ug/l  | 80.0           | 5.21             | 107     | 70-130         | 0.5 | 20           |                    |
| Thallium                               | 86.1       | 1.0                | 0.20 | ug/l  | 80.0           | 0.290            | 107     | 70-130         | 0.3 | 20           |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

# METHOD BLANK/QC DATA

### **DISSOLVED METALS**

| Analyte                                | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|--------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10A2023 Extracted: 01/21/10     | -            |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 01/21/2010 (10A2023-Bl | LK1)         |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | ND           | 0.20               | 0.10 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 01/21/2010 (10A2023-BS)  | 1)           |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                | 8.84         | 0.20               | 0.10 | ug/l  | 8.00           |                  | 110     | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 01/21/2010 (10A | 2023-MS1)    |                    |      |       | Sou            | rce: ITA         | 1481-02 |                |     |              |                    |
| Mercury                                | 8.85         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 111     | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 01/21/2010  | (10A2023-MSI | <b>D1</b> )        |      |       | Sou            | rce: ITA         | 1481-02 |                |     |              |                    |
| Mercury                                | 8.92         | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 111     | 70-130         | 0.8 | 20           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480

Received: 01/19/10

# METHOD BLANK/QC DATA

# **INORGANICS**

| Analyte                                | Result      | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|-------------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10A1808 Extracted: 01/20/10     |             |                    |      |       |                |                  |         |                |     |              | •                  |
| Batch. 10A1000 Extracted. 01/20/10     | _           |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 01/20/2010 (10A1808-B  | LK1)        |                    |      |       |                |                  |         |                |     |              |                    |
| Chloride                               | ND          | 0.50               | 0.25 | mg/l  |                |                  |         |                |     |              |                    |
| Nitrate/Nitrite-N                      | ND          | 0.26               | 0.15 | mg/l  |                |                  |         |                |     |              |                    |
| Sulfate                                | ND          | 0.50               | 0.20 | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 01/20/2010 (10A1808-BS)  | 1)          |                    |      |       |                |                  |         |                |     |              |                    |
| Chloride                               | 4.93        | 0.50               | 0.25 | mg/l  | 5.00           |                  | 99      | 90-110         |     |              |                    |
| Sulfate                                | 9.94        | 0.50               | 0.20 | mg/l  | 10.0           |                  | 99      | 90-110         |     |              |                    |
| Matrix Spike Analyzed: 01/20/2010 (10A | 1808-MS1)   |                    |      |       | Sou            | rce: ITA         | 1585-01 |                |     |              |                    |
| Chloride                               | 95.2        | 5.0                | 2.5  | mg/l  | 50.0           | 45.0             | 100     | 80-120         |     |              |                    |
| Sulfate                                | 179         | 5.0                | 2.0  | mg/l  | 100            | 78.1             | 101     | 80-120         |     |              |                    |
| Matrix Spike Analyzed: 01/20/2010 (10A | 1808-MS2)   |                    |      |       | Sou            | rce: ITA         | 1659-01 |                |     |              |                    |
| Chloride                               | 42.2        | 2.5                | 1.2  | mg/l  | 5.00           | 38.4             | 77      | 80-120         |     |              | MHA                |
| Sulfate                                | 70.0        | 2.5                | 1.0  | mg/l  | 10.0           | 62.1             | 79      | 80-120         |     |              | MHA                |
| Matrix Spike Dup Analyzed: 01/20/2010  | (10A1808-MS | SD1)               |      |       | Sou            | rce: ITA         | 1585-01 |                |     |              |                    |
| Chloride                               | 96.7        | 5.0                | 2.5  | mg/l  | 50.0           | 45.0             | 103     | 80-120         | 2   | 20           |                    |
| Sulfate                                | 181         | 5.0                | 2.0  | mg/l  | 100            | 78.1             | 103     | 80-120         | 1   | 20           |                    |
| Batch: 10A1916 Extracted: 01/21/10     | -           |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 01/21/2010 (10A1916-B  | LK1)        |                    |      |       |                |                  |         |                |     |              |                    |
| Total Dissolved Solids                 | ND          | 10                 | 1.0  | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 01/21/2010 (10A1916-BS)  | 1)          |                    |      |       |                |                  |         |                |     |              |                    |
| Total Dissolved Solids                 | 990         | 10                 | 1.0  | mg/l  | 1000           |                  | 99      | 90-110         |     |              |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

# METHOD BLANK/QC DATA

# **INORGANICS**

|                                         |           | Reporting |     |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|-----------------------------------------|-----------|-----------|-----|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                 | Result    | Limit     | MDL | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 10A1916 Extracted: 01/21/</b> | 10        |           |     |       |       |          |         |        |     |       |            |
| Duplicate Analyzed: 01/21/2010 (10A1)   | 916-DUP1) |           |     |       | Sou   | rce: ITA | 1658-01 |        |     |       |            |
| Total Dissolved Solids                  | 489       | 10        | 1.0 | mg/l  |       | 494      |         |        | 1   | 10    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480

Received: 01/19/10

# METHOD BLANK/QC DATA

### **ASTM 5174-91**

| Analyte                                               | Result  | Reporting<br>Limit | MDL  | Units | Spike<br>Level       | Source<br>Result     | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------------|---------|--------------------|------|-------|----------------------|----------------------|------|----------------|-----|--------------|--------------------|
| <b>Batch: 35029 Extracted: 02/04/10</b>               |         |                    |      |       |                      |                      |      |                |     |              |                    |
| Matrix Spike Dup Analyzed: 02/08/2010 (F0A200486001D) |         |                    |      |       | Source: F0A200486001 |                      |      |                |     |              |                    |
| Total Uranium                                         | 29.2    | 0.7                | 0.2  | pCi/L | 27.7                 | -0.0334              | 105  | 62-150         | 2   | 20           |                    |
| Matrix Spike Analyzed: 02/08/2010 (F0A200486001S)     |         |                    |      |       |                      | Source: F0A200486001 |      |                |     |              |                    |
| Total Uranium                                         | 28.8    | 0.7                | 0.2  | pCi/L | 27.7                 | -0.0334              | 104  | 62-150         |     |              |                    |
| Blank Analyzed: 02/08/2010 (F0B040000029B)            |         |                    |      |       | Source:              |                      |      |                |     |              |                    |
| Total Uranium                                         | -0.0623 | 0.693              | 0.21 | pCi/L |                      |                      |      | -              |     |              | U                  |
| LCS Analyzed: 02/08/2010 (F0B0400000                  | 29C)    |                    |      |       | Sou                  | rce:                 |      |                |     |              |                    |
| Total Uranium                                         | 29.2    | 0.7                | 0.2  | pCi/L | 27.7                 |                      | 105  | 90-120         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Report Number: ITA1480

Sampled: 01/18/10-01/19/10

Received: 01/19/10

# METHOD BLANK/QC DATA

# **EPA 900.0 MOD**

| Analyte                                           | Result | Reporting<br>Limit | MDL     | Units | Spike<br>Level       | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------------------|--------|--------------------|---------|-------|----------------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 25415 Extracted: 01/25/10                  |        |                    |         |       |                      |                  |      |                |     |              |                    |
| Matrix Spike Analyzed: 01/29/2010 (F0A200486001S) |        |                    |         |       | Source: F0A200486001 |                  |      |                |     |              |                    |
| Gross Alpha                                       | 6.9    | 3                  | 1       | pCi/L | 49.4                 | 0.98             | 12   | 35-150         |     |              | а                  |
| Gross Beta                                        | 10     | 4                  | 1.6     | pCi/L | 68.1                 | 0.83             | 14   | 54-150         |     |              | a                  |
| Duplicate Analyzed: 01/29/2010 (F0A200486001X)    |        |                    |         |       | Source: F0A200486001 |                  |      |                |     |              |                    |
| Gross Alpha                                       | 0.71   | 3                  | 1.4     | pCi/L |                      | 0.98             |      | -              |     |              | Jb                 |
| Gross Beta                                        | 1.6    | 4                  | 1.6     | pCi/L |                      | 0.83             |      | -              |     |              | Jb                 |
| Blank Analyzed: 01/29/2010 (F0A250000415B)        |        |                    | Source: |       |                      |                  |      |                |     |              |                    |
| Gross Alpha                                       | -0.03  | 3                  | 0.71    | pCi/L |                      |                  |      | -              |     |              | U                  |
| Gross Beta                                        | -0.26  | 4                  | 1.5     | pCi/L |                      |                  |      | -              |     |              | U                  |
| LCS Analyzed: 01/29/2010 (F0A2500004              | 15C)   |                    |         |       | Sou                  | rce:             |      |                |     |              |                    |
| Gross Alpha                                       | 45.4   | 3                  | 0.9     | pCi/L | 49.4                 |                  | 92   | 62-134         |     |              |                    |
| Gross Beta                                        | 73.4   | 4                  | 1.6     | pCi/L | 68.1                 |                  | 108  | 58-133         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

# METHOD BLANK/QC DATA

# **EPA 901.1 MOD**

| Analyte  Batch: 23036 Extracted: 01/23/10      | Result | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------|--------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 01/26/2010 (F0A210532001X) |        |                    |     | Sour  | rce: F0A       | 21053200         | 1    |                |     |              |                    |
| Cesium 137                                     | -1.4   | 20                 | 18  | pCi/L |                | -2.3             |      | -              |     |              | U                  |
| Potassium 40                                   | -60    | NA                 | 250 | pCi/L |                | -30              |      | -              |     |              | U                  |
| Blank Analyzed: 01/26/2010 (F0A230000036B)     |        |                    |     | Sou   | rce:           |                  |      |                |     |              |                    |
| Cesium 137                                     | -0.4   | 20                 | 12  | pCi/L |                |                  |      | -              |     |              | U                  |
| Potassium 40                                   | -70    | NA                 | 210 | pCi/L |                |                  |      | -              |     |              | U                  |
| LCS Analyzed: 01/26/2010 (F0A230000036C)       |        |                    |     |       | Sou            | rce:             |      |                |     |              |                    |
| Americium 241                                  | 132000 | NA                 | 500 | pCi/L | 141000         |                  | 93   | 87-110         |     |              |                    |
| Cobalt 60                                      | 79000  | NA                 | 200 | pCi/L | 87900          |                  | 90   | 89-110         |     |              |                    |
| Cesium 137                                     | 48200  | 20                 | 200 | pCi/L | 53100          |                  | 91   | 90-110         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

## METHOD BLANK/QC DATA

#### **EPA 903.0 MOD**

| Analyte                              | Result    | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------|-----------|--------------------|------|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 22145 Extracted: 01/22/10     |           |                    |      |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 02/08/2010 (F0A22000 | 0145B)    |                    |      |       | Sou            | rce:             |      |                |     |              |                    |
| Radium (226)                         | 0.111     | 1                  | 0.13 | pCi/L |                |                  |      | -              |     |              | U                  |
| LCS Analyzed: 02/08/2010 (F0A220000) | 145C)     |                    |      |       | Sou            | rce:             |      |                |     |              |                    |
| Radium (226)                         | 10.7      | 1                  | 0.1  | pCi/L | 11.3           |                  | 95   | 68-136         |     |              |                    |
| LCS Dup Analyzed: 02/08/2010 (F0A22  | 0000145L) |                    |      |       | Sou            | rce:             |      |                |     |              |                    |
| Radium (226)                         | 11.2      | 1                  | 0.2  | pCi/L | 11.3           |                  | 100  | 68-136         | 5   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

## METHOD BLANK/QC DATA

#### **EPA 904 MOD**

| Analyte  Batch: 22148 Extracted: 01/22/10            | Result                | Reporting<br>Limit | MDL  | Units | Spike<br>Level    | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------------|-----------------------|--------------------|------|-------|-------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 02/08/2010 (F0A220000)<br>Radium 228 | 0148B)<br>0.22        | 1                  | 0.59 | pCi/L | Sour              | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 02/08/2010 (F0A2200001<br>Radium 228   | <b>48C)</b> 8.22      | 1                  | 0.61 | pCi/L | <b>Sou</b> 1 6.45 | rce:             | 127  | 60-142         |     |              |                    |
| LCS Dup Analyzed: 02/08/2010 (F0A220 Radium 228      | <b>0000148L)</b> 7.58 | 1                  | 0.57 | pCi/L | <b>Sou</b> 1 6.45 | rce:             | 118  | 60-142         | 8   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480

Received: 01/19/10

## METHOD BLANK/QC DATA

#### **EPA 905 MOD**

| Analyte  Batch: 22149 Extracted: 01/22/10             | Result                  | Reporting<br>Limit | MDL  | Units | Spike<br>Level    | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------------|-------------------------|--------------------|------|-------|-------------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 02/01/2010 (F0A220000<br>Strontium 90 | <b>149B)</b><br>-0.01   | 3                  | 0.38 | pCi/L | Sour              | rce:             |      | -              |     |              | U                  |
| LCS Analyzed: 02/01/2010 (F0A2200001<br>Strontium 90  | <b>49C)</b><br>6.74     | 3                  | 0.39 | pCi/L | <b>Sou</b> 1 6.81 | rce:             | 99   | 80-130         |     |              |                    |
| LCS Dup Analyzed: 02/01/2010 (F0A220 Strontium 90     | <b>000149L)</b><br>6.99 | 3                  | 0.38 | pCi/L | <b>Sou</b> : 6.81 | rce:             | 103  | 80-130         | 4   | 40           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

## METHOD BLANK/QC DATA

#### **EPA 906.0 MOD**

| Analyte  Batch: 28080 Extracted: 01/28/10 | Result      | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|-------------|--------------------|-----|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 01/29/2010 (F0A200    | 0486001X)   |                    |     |       | Sour           | rce: F0A2        | 20048600 | 1              |     |              |                    |
| Tritium                                   | -49         | 500                | 140 | pCi/L |                | 99               |          | -              |     |              | U                  |
| Matrix Spike Analyzed: 01/29/2010 (F0A    | 200494001S) |                    |     |       | Sour           | rce: F0A2        | 20049400 | 1              |     |              |                    |
| Tritium                                   | 4350        | 500                | 140 | pCi/L | 4540           | 64               | 94       | 62-147         |     |              |                    |
| Blank Analyzed: 01/28/2010 (F0A280000     | 080B)       |                    |     |       | Sour           | rce:             |          |                |     |              |                    |
| Tritium                                   | 250         | 500                | 140 | pCi/L |                |                  |          | -              |     |              | Jb                 |
| LCS Analyzed: 01/28/2010 (F0A2800000      | 80C)        |                    |     |       | Sour           | rce:             |          |                |     |              |                    |
| Tritium                                   | 4680        | 500                | 140 | pCi/L | 4540           |                  | 103      | 85-112         |     |              |                    |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Report Number: ITA1480

Sampled: 01/18/10-01/19/10

Received: 01/19/10

## METHOD BLANK/QC DATA

#### **EPA-5 1613B**

|                                         |          | Reporting | -         |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|-----------------------------------------|----------|-----------|-----------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                                 | Result   | Limit     | MDL       | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 26267 Extracted: 01/26/10</b> |          |           |           |       |       |        |      |        |     |       |            |
| Blank Analyzed: 02/02/2010 (G0A2600)    | 00267B)  |           |           |       | Sou   | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                     | 7.9e-006 | 0.00005   | 0.0000056 | ug/L  |       |        |      | _      |     |       | J          |
| 1,2,3,4,6,7,8-HpCDF                     | 6.9e-006 | 0.00005   | 0.0000044 | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,4,7,8,9-HpCDF                     | ND       | 0.00005   | 0.0000071 | ug/L  |       |        |      | _      |     |       |            |
| 1,2,3,4,7,8-HxCDD                       | 4.6e-006 | 0.00005   | 0.0000048 | ug/L  |       |        |      | _      |     |       | J          |
| 1,2,3,4,7,8-HxCDF                       | ND       | 0.00005   | 0.0000039 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,6,7,8-HxCDD                       | 6.5e-006 | 0.00005   | 0.0000041 | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,6,7,8-HxCDF                       | 5.7e-006 | 0.00005   | 0.0000034 | ug/L  |       |        |      | -      |     |       | J          |
| 1,2,3,7,8,9-HxCDD                       | 2.7e-006 | 0.00005   | 0.0000033 | ug/L  |       |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8,9-HxCDF                       | 2.2e-006 | 0.00005   | 0.0000036 | ug/L  |       |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8-PeCDD                         | ND       | 0.00005   | 0.0000067 | ug/L  |       |        |      | -      |     |       |            |
| 1,2,3,7,8-PeCDF                         | ND       | 0.00005   | 0.0000038 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,4,6,7,8-HxCDF                       | 6e-006   | 0.00005   | 0.0000031 | ug/L  |       |        |      | -      |     |       | J, Q       |
| 2,3,4,7,8-PeCDF                         | ND       | 0.00005   | 0.0000042 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDD                            | ND       | 0.00001   | 0.0000027 | ug/L  |       |        |      | -      |     |       |            |
| 2,3,7,8-TCDF                            | ND       | 0.00001   | 0.000002  | ug/L  |       |        |      | -      |     |       |            |
| OCDD                                    | 2e-005   | 0.0001    | 0.0000089 | ug/L  |       |        |      | -      |     |       | J, Q       |
| OCDF                                    | 1.6e-005 | 0.0001    | 0.0000089 | ug/L  |       |        |      | -      |     |       | J          |
| Total HpCDD                             | 7.9e-006 | 0.00005   | 0.0000056 | ug/L  |       |        |      | -      |     |       | J          |
| Total HpCDF                             | 6.9e-006 | 0.00005   | 0.0000044 | ug/L  |       |        |      | -      |     |       | J          |
| Total HxCDD                             | 1.4e-005 | 0.00005   | 0.0000035 | ug/L  |       |        |      | -      |     |       | J, Q       |
| Total HxCDF                             | 1.4e-005 | 0.00005   | 0.0000031 | ug/L  |       |        |      | -      |     |       | J, Q       |
| Total PeCDD                             | ND       | 0.00005   | 0.0000067 | ug/L  |       |        |      | -      |     |       |            |
| Total PeCDF                             | ND       | 0.00005   | 0.0000026 | ug/L  |       |        |      | -      |     |       |            |
| Total TCDD                              | ND       | 0.00001   | 0.0000027 | ug/L  |       |        |      | -      |     |       |            |
| Total TCDF                              | ND       | 0.00001   | 0.000002  | ug/L  |       |        |      | -      |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD      | 0.0018   |           |           | ug/L  | 0.002 |        | 91   | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF      | 0.0021   |           |           | ug/L  | 0.002 |        | 104  | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF      | 0.0019   |           |           | ug/L  | 0.002 |        | 93   | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD        | 0.0017   |           |           | ug/L  | 0.002 |        | 83   | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF        | 0.0015   |           |           | ug/L  | 0.002 |        | 77   | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD        | 0.0018   |           |           | ug/L  | 0.002 |        | 88   | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF        | 0.0017   |           |           | ug/L  | 0.002 |        | 85   | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF        | 0.0017   |           |           | ug/L  | 0.002 |        | 85   | 29-147 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD          | 0.0013   |           |           | ug/L  | 0.002 |        | 65   | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF          | 0.0013   |           |           | ug/L  | 0.002 |        | 66   | 24-185 |     |       |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Joseph Doak Project Manager

%REC

RPD

Data



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

Source

## METHOD BLANK/QC DATA

#### **EPA-5 1613B**

Spike

Reporting

| Analyte                            | Result       | Limit   | MDL       | Units | Level  | Result | %REC | Limits | RPD | Limit | Qualifiers |
|------------------------------------|--------------|---------|-----------|-------|--------|--------|------|--------|-----|-------|------------|
| Batch: 26267 Extracted: 01/26/1    | <u>0_</u>    |         |           |       |        |        |      |        |     |       |            |
|                                    | <del>_</del> |         |           |       |        |        |      |        |     |       |            |
| Blank Analyzed: 02/02/2010 (G0A26  | 0000267B)    |         |           |       | Sou    | irce:  |      |        |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0019       |         |           | ug/L  | 0.002  |        | 93   | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.0014       |         |           | ug/L  | 0.002  |        | 69   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.0012       |         |           | ug/L  | 0.002  |        | 61   | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.0012       |         |           | ug/L  | 0.002  |        | 60   | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                | 0.0036       |         |           | ug/L  | 0.004  |        | 89   | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00077      |         |           | ug/L  | 0.0008 |        | 96   | 35-197 |     |       |            |
| LCS Analyzed: 02/02/2010 (G0A260   | 000267C)     |         |           |       | Sou    | ırce:  |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00102      | 0.00005 | 0.0000092 | ug/L  | 0.001  |        | 102  | 70-140 |     |       |            |
| 1,2,3,4,6,7,8-HpCDF                | 0.00108      | 0.00005 | 0.0000073 | ug/L  | 0.001  |        | 108  | 82-122 |     |       |            |
| 1,2,3,4,7,8,9-HpCDF                | 0.00111      | 0.00005 | 0.0000012 | ug/L  | 0.001  |        | 111  | 78-138 |     |       |            |
| 1,2,3,4,7,8-HxCDD                  | 0.00103      | 0.00005 | 0.0000078 | ug/L  | 0.001  |        | 103  | 70-164 |     |       |            |
| 1,2,3,4,7,8-HxCDF                  | 0.00114      | 0.00005 | 0.0000051 | ug/L  | 0.001  |        | 114  | 72-134 |     |       |            |
| 1,2,3,6,7,8-HxCDD                  | 0.000964     | 0.00005 | 0.0000063 | ug/L  | 0.001  |        | 96   | 76-134 |     |       |            |
| 1,2,3,6,7,8-HxCDF                  | 0.00102      | 0.00005 | 0.0000045 | ug/L  | 0.001  |        | 102  | 84-130 |     |       |            |
| 1,2,3,7,8,9-HxCDD                  | 0.000912     | 0.00005 | 0.0000055 | ug/L  | 0.001  |        | 91   | 64-162 |     |       |            |
| 1,2,3,7,8,9-HxCDF                  | 0.00102      | 0.00005 | 0.0000046 | ug/L  | 0.001  |        | 102  | 78-130 |     |       |            |
| 1,2,3,7,8-PeCDD                    | 0.000999     | 0.00005 | 0.0000085 | ug/L  | 0.001  |        | 100  | 70-142 |     |       |            |
| 1,2,3,7,8-PeCDF                    | 0.00104      | 0.00005 | 0.0000054 | ug/L  | 0.001  |        | 104  | 80-134 |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | 0.00104      | 0.00005 | 0.000004  | ug/L  | 0.001  |        | 104  | 70-156 |     |       |            |
| 2,3,4,7,8-PeCDF                    | 0.00106      | 0.00005 | 0.000006  | ug/L  | 0.001  |        | 106  | 68-160 |     |       |            |
| 2,3,7,8-TCDD                       | 0.000175     | 0.00001 | 0.0000038 | ug/L  | 0.0002 |        | 88   | 67-158 |     |       |            |
| 2,3,7,8-TCDF                       | 0.0002       | 0.00001 | 0.0000027 | ug/L  | 0.0002 |        | 100  | 75-158 |     |       |            |
| OCDD                               | 0.002        | 0.0001  | 0.0000021 | ug/L  | 0.002  |        | 100  | 78-144 |     |       |            |
| OCDF                               | 0.00214      | 0.0001  | 0.000001  | ug/L  | 0.002  |        | 107  | 63-170 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00169      |         |           | ug/L  | 0.002  |        | 84   | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00191      |         |           | ug/L  | 0.002  |        | 96   | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.00165      |         |           | ug/L  | 0.002  |        | 83   | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.00133      |         |           | ug/L  | 0.002  |        | 66   | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00139      |         |           | ug/L  | 0.002  |        | 69   | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00175      |         |           | ug/L  | 0.002  |        | 88   | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00162      |         |           | ug/L  | 0.002  |        | 81   | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00161      |         |           | ug/L  | 0.002  |        | 80   | 29-147 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.00124      |         |           | ug/L  | 0.002  |        | 62   | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00123      |         |           | ug/L  | 0.002  |        | 62   | 24-185 |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00171      |         |           | ug/L  | 0.002  |        | 86   | 28-136 |     |       |            |
| TD                                 |              |         |           |       |        |        |      |        |     |       |            |

#### **TestAmerica Irvine**

Kathleen A. Robb For Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

## METHOD BLANK/QC DATA

## EPA-5 1613B

|                                     |          | Reporting |     |       | Spike  | Source |      | %REC   |     | RPD   | Data       |
|-------------------------------------|----------|-----------|-----|-------|--------|--------|------|--------|-----|-------|------------|
| Analyte                             | Result   | Limit     | MDL | Units | Level  | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 26267 Extracted: 01/26/10    |          |           |     |       |        |        |      |        |     |       |            |
|                                     |          |           |     |       |        |        |      |        |     |       |            |
| LCS Analyzed: 02/02/2010 (G0A260000 | 267C)    |           |     |       | Sou    | rce:   |      |        |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF      | 0.00127  |           |     | ug/L  | 0.002  |        | 63   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD         | 0.00116  |           |     | ug/L  | 0.002  |        | 58   | 25-164 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF         | 0.00112  |           |     | ug/L  | 0.002  |        | 56   | 24-169 |     |       |            |
| Surrogate: 13C-OCDD                 | 0.00318  |           |     | ug/L  | 0.004  |        | 80   | 17-157 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD       | 0.000752 |           |     | ug/L  | 0.0008 |        | 94   | 35-197 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 010

Sampled: 01/18/10-01/19/10

Report Number: ITA1480 Received: 01/19/10

## **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

|            |          |                                          |       |        |     | Compliance |  |
|------------|----------|------------------------------------------|-------|--------|-----|------------|--|
| LabNumber  | Analysis | Analyte                                  | Units | Result | MRL | Limit      |  |
| ITA1480-01 | 1664-HEM | Hexane Extractable Material (Oil & Greas | mg/l  | 0      | 4.7 | 15         |  |

## **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

| LabNumber  | Analysis                     | Analyte                | Units | Result | MRL  | Compliance<br>Limit |
|------------|------------------------------|------------------------|-------|--------|------|---------------------|
| Labitumber | Marysis                      | rmaryte                | Cints | Result | WIKE | Dinit               |
| ITA1480-02 | Antimony-200.8               | Antimony               | ug/l  | 0.43   | 2.0  | 6                   |
| ITA1480-02 | Cadmium-200.8                | Cadmium                | ug/l  | 0.072  | 1.0  | 4                   |
| ITA1480-02 | Chloride - 300.0             | Chloride               | mg/l  | 6.81   | 0.50 | 150                 |
| ITA1480-02 | Copper-200.8                 | Copper                 | ug/l  | 4.01   | 2.0  | 14                  |
| ITA1480-02 | Lead-200.8                   | Lead                   | ug/l  | 1.71   | 1.0  | 5.2                 |
| ITA1480-02 | Nitrogen, NO3+NO2 -N EPA 300 | 0.0 Nitrate/Nitrite-N  | mg/l  | 0.71   | 0.26 | 10                  |
| ITA1480-02 | Sulfate-300.0                | Sulfate                | mg/l  | 5.16   | 0.50 | 250                 |
| ITA1480-02 | TDS - SM2540C                | Total Dissolved Solids | mg/l  | 100    | 10   | 850                 |
| ITA1480-02 | Thallium-200.8               | Thallium               | ug/l  | 0.0060 | 1.0  | 2                   |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10-01/19/10

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1480 Received: 01/19/10

Attention: Bronwyn Kelly

#### **DATA QUALIFIERS AND DEFINITIONS**

| a | Spiked analyt | e outside of state | d QC limits. |
|---|---------------|--------------------|--------------|
|---|---------------|--------------------|--------------|

- **B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- **J** Estimated result. Result is less than the reporting limit.
- **Ja** Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- **Jb** Result is greater than sample detection limit but less than stated reporting limit.
- **MHA** Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- **Q** Estimated maximum possible concentration (EMPC).
- U Result is less than the sample detection limit.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Report Number: ITA1480

Sampled: 01/18/10-01/19/10

Received: 01/19/10

#### **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EDD + Level 4  | Water  | N/A   | N/A        |
| EPA 1664A      | Water  | X     | X          |
| EPA 200.8-Diss | Water  | X     | X          |
| EPA 200.8      | Water  | X     | X          |
| EPA 245.1-Diss | Water  | X     | X          |
| EPA 245.1      | Water  | X     | X          |
| EPA 300.0      | Water  | X     | X          |
| Filtration     | Water  | N/A   | N/A        |
| SM2540C        | Water  | X     |            |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

#### **TestAmerica St. Louis**

13715 Rider Trail North - Earth City, MO 63045

Method Performed: ASTM 5174-91

Samples: ITA1480-02

Method Performed: EPA 900.0 MOD

Samples: ITA1480-02

Method Performed: EPA 901.1 MOD

Samples: ITA1480-02

Method Performed: EPA 903.0 MOD

Samples: ITA1480-02

Method Performed: EPA 904 MOD

Samples: ITA1480-02

Method Performed: EPA 905 MOD

Samples: ITA1480-02

Method Performed: EPA 906.0 MOD

Samples: ITA1480-02

## **TestAmerica Irvine**

Kathleen A. Robb For Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/18/10-01/19/10

Project ID: Routine Outfall 010

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ITA1480 Received: 01/19/10

Attention: Bronwyn Kelly

#### **TestAmerica West Sacramento**

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITA1480-02

#### **TestAmerica Irvine**

| Client Name/Address:                                                                                     |                         | P. P.              | Project:                                                          |                                                                       | <b>,</b>      |                                              | )<br>5 |            | AN                                    | ANALYSIS REQUIRED                    | 1480                  | 5                  |
|----------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|----------------------------------------------|--------|------------|---------------------------------------|--------------------------------------|-----------------------|--------------------|
| MWVH-Arcadia<br>618 Michillinda Ave, Suite 200<br>Arcadia, CA 91007<br>Test America Contact: Joseph Doak | uite 200<br>Joseph Doak |                    | Boeing-SSFL NPDES Routine Outfall 010 GRAB Stormwater at Building | Boeing-SSFL NPDES Routine Outfall 010 GRAB Stormwater at Building 203 | <b>S</b>      |                                              |        |            |                                       |                                      |                       | Field readings:    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               | HEW)                                         |        |            |                                       |                                      |                       | 9 = Hd             |
| Project Manager: Bronwyn Kelly Mahan Chell                                                               | nwyn Kelly              | (62 P              | Phone Number:<br>(626) 568-6691                                   | er.                                                                   |               | -4991)                                       |        |            | · · · · · · · · · · · · · · · · · · · |                                      |                       | Time of readings = |
| Sampler: Emily Alfano                                                                                    | Lano                    | Fa)<br>(62         | Fax Number: (626) 568-6515                                        | 15                                                                    |               | Grease                                       |        |            |                                       |                                      |                       | 70ko               |
| Sample Sample<br>Description Matrix                                                                      | Container<br>Type       | # of<br>Cont.      | Sampling<br>Date/Time                                             | Preservative                                                          | Bottle #      | & IiO                                        |        |            |                                       |                                      |                       | Comments           |
| Outfall 010 W                                                                                            | 1L Amber                | 2 1/4              | 1/43/10 0588)1                                                    | HCI                                                                   | 1A, 1B        | ×                                            |        |            |                                       |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               |                                              |        |            |                                       |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               |                                              |        |            |                                       |                                      |                       |                    |
|                                                                                                          |                         | /                  |                                                                   |                                                                       |               |                                              |        |            |                                       |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       | and a         |                                              |        |            |                                       |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       | ,             | <u>,                                    </u> |        |            |                                       |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               |                                              | 7      | 118/10     |                                       |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               |                                              |        | ,          |                                       |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               |                                              |        |            | ,<br>/<br>/                           |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               |                                              |        |            | /                                     |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               |                                              |        |            |                                       |                                      |                       |                    |
|                                                                                                          |                         |                    |                                                                   |                                                                       |               |                                              |        |            |                                       |                                      | /                     |                    |
|                                                                                                          |                         |                    | 40.0                                                              |                                                                       | #5-11 040 f4: |                                              |        | 1          |                                       |                                      |                       | a Crack            |
| Relinquished By                                                                                          | Date/Time: Received By  | Mile:              | o o o o o                                                         | 0 10 10 10                                                            | Received      |                                              |        | -1         | Samples Will 101                      | Date/Time: Turn-around time: (Check) | k)                    |                    |
| Surth                                                                                                    |                         | 9-81-1             | <b>&amp;</b>                                                      | 16:20                                                                 | 444           | Ø,                                           |        | 0-11-10    | B:91                                  | 24 Hour                              | 72 Hour<br>5 Day:     | 10 Day:            |
| Relinquing By All My                                                                                     | W Care                  | Date/Time: 1-(8-1) |                                                                   | (9:4)                                                                 | Received By   |                                              |        | Date/Time: |                                       | Sample Integrity: (Check)            | On toe:               |                    |
| Relinfluished By                                                                                         | Date                    | Date/Time:         |                                                                   |                                                                       | Received By   | 10                                           | 1      | Date/Time: |                                       | Data Requirements: (Check)           | ack)<br>All Level IV: | NPDES Level IV:    |
|                                                                                                          |                         | Ų                  |                                                                   |                                                                       |               |                                              |        |            | I                                     |                                      |                       |                    |

CHAIN OF CUSTODY FORM

Page <del>2 of 2</del>

COC <del>Page 2 of 2 a</del>ge the composite samples for Outfall 010 for this storm event.

These must be added to the same work order for COC Page 1 of 2 for Outfall 010 for the same event. Celt mal 3 Only test if first or second rain events of the year Filter w/in 24hrs of receipt at lab Unfiltered and unpreserved Comments NPDES Level IV: Lat was Normal: All Level IV: 72 Hour: 5 Day: Data Requirements: (Check) ANALYSIS REQUIRED furn-around time: (Check) Sample Integrity: (Check) No Level IV: 24 Hour: 1-19-10 14:50 × Total Dissolved Metals: Sb, Cd, Cu, Pb, Chronic Toxicity 40, CS-137 (901.0 or 901.1) Radium 228 (904.0), Uranium (908.0), K-& (1.809 to 0.809) 8SZ muibsA banidmoC Date/Time: TotoT, (0.309) 06-78, (0.309) (E-H) muitin Gross Alpha(900.0), Gross Beta(900.0), LDS × CI-' 20th NO3+NO2-N × TCDD (and all congeners) ІТ , ВН Total Recoverable Metals: Sb, Cd, Cu, Pb, Received By Received By -f3r Bottle # 3A, 3B 4A, 4B 8 28 βĄ eB œ Stormwater at Building 203 Preservative Ş HNO3 HNO3 None None None None None None Boeing-SSFL NPDES **Page** Routine Outfall 010 (626) 568-6515 Phone Number (626) 568-6691 COMPOSITE Fax Number: Sampling Date/Time Project: 49-10 Date/Time: Date/Time: Sort. Test America Contact: Joseph Doak 500 mL Poly 500 ml Amber 500 mL Poly 2.5 Gal Cube Project Manager: Bronwyn Kelly 1L Amber Container + Cat Pot 1L Poly 1L Poly 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 1L Poly Type Sampler: < Dense Sample Matrix Client Name/Address: ≥ ≥ ≥ ≥ ≥ ≥ ≥ MWH-Arcadia Outfall 010 Dup Relinquished By Relinquished By Outfall 010 Description Outfall 010 Outfall 010 Outfall 010 Outfall 010 Outfall 010 Outfall 010

|          | :                    | Comments                                                                                                 |                                                                        |                       |                | Hole            | Holel       | Hole)       | Holot       | Holel        | Holed Holed Holed | Hold Hold Unfiltered and unpreserved analysis | Hold Hold Unfilered and unpreserved analysis Only test if first or second rain events of the year | Hold Hold Unfiltered and unpreserved analysis Only test if first or second rain events of the year Filter win 24hrs of receipt at lab | Hale | Hold Hold analysis analysis est if first or second rain events of the year with 24hrs of receipt at lab | Hold Hold and unpreserved analysis test if first or second rain events of the year win 24hrs of receipt at lab | Hold Hold analysis test if first or second rain events of the year with 24hrs of receipt at lab | Hold Hold and unpreserved analysis esents of the year with 24hrs of receipt at lab | Hold Hold and unpreserved analysis est if first or second rain events of the year win 24hrs of receipt at lab | Hold Hold and unpreserved analysis lest if first or second rain events of the year win 24hrs of receipt at lab | Hold Hold analysis analysis are if first or second rain events of the year with 24ns of receipt at lab | Hold Hold analysis rest if first or second rain events of the year win 24hrs or receipt at lab | Hold Hold analysis test if first or second rain events of the year with 24 hrs of receipt at lab Hold |
|----------|----------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|----------------|-----------------|-------------|-------------|-------------|--------------|-------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|          |                      |                                                                                                          |                                                                        |                       |                |                 |             |             |             | Š            |                   | Only                                          | Filter                                                                                            |                                                                                                                                       |      |                                                                                                         |                                                                                                                |                                                                                                 |                                                                                    | 10 Day:                                                                                                       |                                                                                                                |                                                                                                        | `                                                                                              |                                                                                                       |
|          |                      |                                                                                                          |                                                                        |                       |                |                 |             |             |             |              |                   |                                               |                                                                                                   |                                                                                                                                       |      |                                                                                                         |                                                                                                                | ent.                                                                                            | ;                                                                                  | 72 Hour.<br>5 Day:                                                                                            |                                                                                                                | On Ice:                                                                                                |                                                                                                | ≎                                                                                                     |
|          | ANALYSIS REQUIRED    |                                                                                                          |                                                                        |                       |                |                 |             |             |             |              |                   |                                               |                                                                                                   |                                                                                                                                       |      |                                                                                                         | vent.                                                                                                          | the same eve                                                                                    | Turn-around time: (Check)                                                          |                                                                                                               |                                                                                                                | Sample Integrity: (Check) Intact:                                                                      |                                                                                                | Data Requirements: (Check)                                                                            |
|          | ANALYSIS             | als: Sb, Cd, Cu, Pb,                                                                                     |                                                                        | Total I<br>IT ,gH     |                |                 |             |             |             |              |                   |                                               | ×                                                                                                 |                                                                                                                                       |      |                                                                                                         | this storm e                                                                                                   | fall 010 for 1                                                                                  | Tum-aro                                                                            | 24 Hour.                                                                                                      |                                                                                                                | Sample<br>Intact:                                                                                      | ]                                                                                              | Data Re                                                                                               |
| <b>*</b> |                      | 226 (903.0 or 903.1) &<br>), Uranium (908.0), K-<br>ir 901.1)                                            |                                                                        | Radiu<br>40, CS       |                |                 |             |             |             | >            | <u> </u>          | *                                             |                                                                                                   |                                                                                                                                       |      |                                                                                                         | COC Page 2 of 2 are the composite samples for Outfall 010 for this storm event.                                | same work order for CQC Page 1 of 2 for Outfall 010 for the same event.                         |                                                                                    | v 16:20                                                                                                       |                                                                                                                | 'n                                                                                                     |                                                                                                |                                                                                                       |
| **       |                      | Gross Beta(900.0),<br>lsto-7 (0.509 09-12),                                                              | (0.80e) (£-H) n                                                        | nuitinT               |                |                 |             |             | ×           |              |                   |                                               |                                                                                                   |                                                                                                                                       |      |                                                                                                         | nples for Ou                                                                                                   | CQC Page                                                                                        | // Date/Time:                                                                      | 01-81-10                                                                                                      | Date/Time:                                                                                                     |                                                                                                        | Date/Time:                                                                                     |                                                                                                       |
|          |                      |                                                                                                          | ) (snd all conge                                                       |                       |                |                 | ×           | ×           |             |              |                   |                                               |                                                                                                   |                                                                                                                                       |      | CRAB                                                                                                    | <del>nposite</del> sar                                                                                         | k order for                                                                                     | ,                                                                                  | And And                                                                                                       |                                                                                                                | )                                                                                                      |                                                                                                | _                                                                                                     |
|          |                      | Netals: Sb, Cd, Cu, Pb,                                                                                  |                                                                        | Total<br>IT ,gH       | ×              | ×               |             |             |             |              |                   |                                               |                                                                                                   |                                                                                                                                       |      |                                                                                                         | he eer                                                                                                         | ne wor                                                                                          | <u>,</u>                                                                           | $\mathcal{L}$                                                                                                 | \<br>\<br>\<br>\<br>\                                                                                          |                                                                                                        | \                                                                                              | \                                                                                                     |
|          |                      | <b>33</b>                                                                                                |                                                                        | Bottle #              | λ2<br>Α        | 2B              | 3A, 3B      | 4A, 4B      | 9           | 6A           | 6B                | 7                                             | 8                                                                                                 |                                                                                                                                       |      |                                                                                                         | 2 of 2 are t                                                                                                   |                                                                                                 | Received By                                                                        | 1                                                                                                             | Received By                                                                                                    |                                                                                                        | Received By                                                                                    | _                                                                                                     |
|          |                      | NPDES all 010 CARA Building 2                                                                            | - T                                                                    | Preservative          | HNO3           | HNO3            | None        | None        | None        | None         | None              | None                                          | None                                                                                              |                                                                                                                                       |      |                                                                                                         | OC Page 2                                                                                                      | be added                                                                                        |                                                                                    | (6:w                                                                                                          |                                                                                                                | 19:a                                                                                                   |                                                                                                |                                                                                                       |
|          | Project:             | Boeing-SSFL NPDES<br>Routine Outfall 010<br><del>COMPOSITE - んぱん</del> な<br>Stormwater at Building 203   | Phone Number:<br>(626) 568-6691<br>Fax Number:<br>(626) 568-6515       | Sampling<br>Date/Time | CRSCO (1/24/1) |                 |             |             | <b>→</b>    | 1/5/10 1962  | 200 21) 0         |                                               | (/Ledio 0380)                                                                                     |                                                                                                                                       | i    |                                                                                                         | S                                                                                                              | These must be added to the                                                                      |                                                                                    |                                                                                                               |                                                                                                                |                                                                                                        |                                                                                                |                                                                                                       |
|          | Pr.                  |                                                                                                          | Ph<br>(62<br>Fa)                                                       | # of<br>Cont.         | 1 1            | -               | 2           | 2           | -           | 1            | -                 | +                                             | 1 1/4                                                                                             |                                                                                                                                       |      |                                                                                                         |                                                                                                                | Ť                                                                                               | t€/Time:                                                                           | 9-81-1                                                                                                        | Date/Time:                                                                                                     | (1-16-10)                                                                                              | Date/Time:                                                                                     |                                                                                                       |
|          |                      | e 200<br>oseph Doal                                                                                      | yn Kelly<br>elk<br>Paro                                                |                       | 1L Poly        | 1L Poly         | 1L Amber    | 500 mL Poly | 500 mL Poly | 2.5 Gal Cube | 500 ml Amber      | 4 Gal Poly                                    | 1L Poly                                                                                           |                                                                                                                                       |      |                                                                                                         |                                                                                                                |                                                                                                 | 7                                                                                  | <u>, ,</u>                                                                                                    | No.                                                                                                            |                                                                                                        | ď                                                                                              |                                                                                                       |
|          | ddress:              | lia<br>1 Ave, Suil<br>1007<br>Contact: J                                                                 | Lan Ch                                                                 | Sample<br>Matrix      | 3              | W               | <b>X</b>    | W 5         | W 51        | 2            |                   | *                                             | 8                                                                                                 |                                                                                                                                       |      |                                                                                                         |                                                                                                                |                                                                                                 | 7                                                                                  | 2=                                                                                                            | 1                                                                                                              | B                                                                                                      | 7                                                                                              |                                                                                                       |
|          | Client Name/Address: | MWWH-Arcadia<br>618 Michillinda Ave, Suite 200<br>Arcadia, CA 91007<br>Test America Contact: Joseph Doak | Project Manager: Bronwyn Kelly<br>Mybon Chell<br>Sampler: Emily Alfano | Sample<br>Description | Outfall 010    | Outfall 010 Dup | Outfall 010 | Outfall 010 | Ontfall 010 | O. 10        |                   | 1 Outfall 010                                 | Outfall 010                                                                                       |                                                                                                                                       |      |                                                                                                         |                                                                                                                |                                                                                                 | Relinquished By                                                                    | 4/M/C                                                                                                         | Relinquish d By                                                                                                | Nath                                                                                                   | Relinquished By                                                                                |                                                                                                       |



TestAmerica Laboratories, Inc.

## ANALYTICAL REPORT

REVISED

PROJECT NO. ITA1480

MWH-Pasadena Boeing

Lot #: F0A220437

Joseph Doak

TestAmerica Trvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Project Manager

March 17, 2010

## Case Narrative LOT NUMBER: F0A220437 Revised 03-17-10

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on January 22, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements except as noted below.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Report revised to report the KPA uranium results in pCi/L.

#### **Observations/Nonconformances**

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

#### Gross Alpha/Beta (EPA 900.0 MOD)

The gross alpha and beta matrix spike are outside lower control limits due to possible matrix interference. Method performance is demonstrated by acceptable LCS recovery

#### **Affected Samples:**

F0A220437 (1): ITA1480-02

## **METHODS SUMMARY**

#### F0A220437

| PARAMETER                              | ANALYTICAL<br>METHOD | PREPARATION<br>METHOD |
|----------------------------------------|----------------------|-----------------------|
| Gamma Spectroscopy - Cesium-137 & Hits | EPA 901.1 MOD        |                       |
| Gross Alpha/Beta EPA 900               | EPA 900.0 MOD        | EPA 900.0             |
| H-3 by Distillation & LSC              | EPA 906.0 MOD        |                       |
| Radium-226 by GFPC                     | EPA 903.0 MOD        |                       |
| Radium-228 by GFPC                     | EPA 904 MOD          |                       |
| Strontium 90 by GFPC                   | EPA 905 MOD          |                       |
| Total Uranium By Laser Ph osphorimetry | ASTM 5174-91         |                       |
| References:                            |                      |                       |

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY

PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

## **SAMPLE SUMMARY**

#### F0A220437

| WO # SAMPLE# | CLIENT SAMPLE ID | SAMPLED<br>DATE | SAMP<br>TIME |
|--------------|------------------|-----------------|--------------|
| LTLAM 001    | ITA1480-02       | 01/19/10        | 14:30        |
| NOTE(S).     |                  |                 |              |

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results,
- Results noted as "ND" were not detected at or above the stated limit,
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

## TestAmerica Irvine

#### Client Sample ID: ITA1480-02

#### Radiochemistry

Lab Sample ID: F0A220437-001

Work Order:

Matrix:

LTLAM WATER Date Collected:

01/19/10 1430

Date Received:

01/22/10 0930

| Parameter        | Result          | Qual  | Total<br>Uncert.<br>(2 c+/-) | RL       | mdc      | Prep<br>Date | Analysis<br>Date |
|------------------|-----------------|-------|------------------------------|----------|----------|--------------|------------------|
| Gamma Cs-137 & H | its by EPA 901. | 1 MOD | pC                           | i/L      | Batch #  | 0023036      | Yld %            |
| Cesium 137       | 2.3             | U     | 9.9                          | 20.0     | 18       | 01/23/10     | 01/26/10         |
| Potassium 40     | -50             | U     | 380                          |          | 290      | 01/23/10     | 01/26/10         |
| Gross Alpha/Beta | EPA 900         |       | pQ                           | :i/L     | Batch #  | 0025415      | Yld %            |
| Gross Alpha      | 1.2             | U     | 1.2                          | 3.0      | 1.9      | 01/25/10     | 01/29/10         |
| Gross Beta       | 3.61            | J     | 0.97                         | 4.00     | 1.2      | 01/25/10     | 01/29/10         |
| SR-90 BY GFPC E  | PA-905 MOD      |       | pQ                           | i/L      | Batch #  | 0022149      | Yld % 72         |
| Strontium 90     | 0.13            | ט     | 0.24                         | 3.00     | 0.40     | 01/22/10     | 02/01/10         |
| TRITIUM (Distill | ) by EPA 906.0  | MOD   | pC                           | i/L      | Batch #  | 0028080      | Yld %            |
| Tritium          | 41.0            | J     | 140                          | 500      | 140      | 01/28/10     | 01/29/10         |
| Total Uranium by | KPA ASTM 5174-  | 91    | pC                           | i/L      | Batch #  | 0035029      | Yld %            |
| Total Uranium    | 0.148           | Ū     | 0.017                        | 0.693    | 0.21     | 02/04/10     | 02/08/10         |
| Radium 226 by E  | PA 903.0 MOD    |       | pC                           | i/L      | Batch #  | 0022145      | Yld % 59         |
| Radium (226)     | 0.03            | υ     | 0.12                         | 1.00     | 0.23     | 01/22/10     | 02/08/10         |
|                  |                 |       |                              | i/L      | Patch #  | 0022148      | Yld % 54         |
| Radium 228 by GF | PC EPA 904 MOD  |       | pς                           | · T / TI | Dalcii # | 0022140      | TTO 9 34         |

#### NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is greater than sample detection limit but less than stated reporting limit.

#### METHOD BLANK REPORT

#### Radiochemistry

Client Lot ID:

F0A220437

Matrix:

WATER

| Parameter       | Result         | Qual     | Total<br>Uncert.<br>(2 c+/-) | RL      | MDC     |       | Prep<br>Date | Lab Sample ID<br>Analysis<br>Date |
|-----------------|----------------|----------|------------------------------|---------|---------|-------|--------------|-----------------------------------|
| Total Uranium b | y KPA ASTM 517 | 4-91     | pCi/L                        | Batch # | 0035029 | Yld % | F            | 0B040000-029B                     |
| Total Uranium   | -0.0623        | υ        | 0.0075                       | 0.693   | 0.21    |       | 02/04/10     | 02/08/10                          |
| Radium 226 by   | EPA 903.0 MOD  |          | pCi/L                        | Batch # | 0022145 | Yld % | 108 F        | 0A220000-145B                     |
| Radium (226)    | 0.111          | U        | 0.094                        | 1.00    | 0.13    |       | 01/22/10     | 02/08/10                          |
| Radium 228 by G | FPC EPA 904 MC | )D       | pCi/L                        | Batch # | 0022148 | Yld % | 92 F         | 0A220000-148B                     |
| Radium 228      | 0.22           | Ū        | 0.35                         | 1.00    | 0.59    |       | 01/22/10     | 02/08/10                          |
| SR-90 BY GFPC   | EPA-905 MOD    |          | pCi/L                        | Batch # | 0022149 | Yld % | 79 F         | 0A220000-149B                     |
| Strontium 90    | -0.01          | ŭ        | 0.22                         | 3.00    | 0.38    |       |              | 02/01/10                          |
| Gamma Cs-137 &  | Hits by EPA 90 | 01.1 MOD | pCi/L                        | Batch # | 0023036 | Yld % | F            | 0A230000-036B                     |
| Cesium 137      | -0.4           | U        | 6.7                          | 20.0    | 12      |       | 01/23/10     | 01/26/10                          |
| Potassium 40    | -70            | U        | 240                          |         | 210     |       |              | 01/26/10                          |
| Gross Alpha/Bet | a EPA 900      |          | pCi/L                        | Batch # | 0025415 | Yld % | F            | '0A250000-415B                    |
| Gross Alpha     | -0.03          | υ        | 0.34                         | 3.00    | 0.71    |       | 01/25/10     | 01/29/10                          |
| Gross Beta      | -0.26          | U        | 0.86                         | 4.00    | 1.5     |       |              | 01/29/10                          |
| TRITIUM (Distil | 1) by EPA 906. | 0 MOD    | pCi/L                        | Batch # | 0028080 | Yld % | F            | OA280000-080B                     |
| Tritium         | 250            | J        | 120                          | 500     | 140     |       |              | 01/28/10                          |
|                 |                |          |                              |         |         |       |              |                                   |

#### NOTE (S)

Data are incomplete without the case narrative.

 $<sup>\</sup>ensuremath{\mathsf{MDC}}$  is determined using instrument performance only Bold results are greater than the  $\ensuremath{\mathsf{MDC}}$  .

J Result is greater than sample detection limit but less than stated reporting limit.

## Laboratory Control Sample Report

## Radiochemistry

Client Lot ID:

F0A220437

Matrix:

WATER

|                    |                 |         |       | Total               |       |                | Lab Sample ID                         |       |                      |  |
|--------------------|-----------------|---------|-------|---------------------|-------|----------------|---------------------------------------|-------|----------------------|--|
| Parameter          | Spike Amount    | Result  |       | Uncert.<br>(2 g+/-) |       | MDC            | % Yld                                 | % Rec | QC Control<br>Limits |  |
| Gamma Cs-137 & Hit | s by EPA 901.1  | MOD     | pCi/L |                     | 901.1 | MOD            | •                                     | F0A2  | 30000-036C           |  |
| Americium 241      | 141000          | 132000  |       | 10000               |       | 500            |                                       | 93    | (87 - 110)           |  |
| Cesium 137         | 53100           | 48200   |       | 2800                |       | 200            |                                       | 91    | (90 - 110)           |  |
| Cobalt 60          | 87900           | 79000   |       | 4400                |       | 200            |                                       | 90    | (89 - 110)           |  |
|                    | Batch #:        | 0023036 |       |                     |       | Analysis Date: | 01/2                                  | 6/10  |                      |  |
| Gross Alpha/Beta E | PA 900          |         | pCi/L |                     | 900.0 | MOD            | <del></del>                           | F0A2  | 50000-415C           |  |
| Gross Beta         | 68.1            | 73.4    |       | 6.2                 |       | 1.6            |                                       | 108   | (58 - 133)           |  |
|                    | Batch #:        | 0025415 |       |                     |       | Analysis Date: | 01/2                                  | 9/10  |                      |  |
| Gross Alpha/Beta E | PA 900          | ·       | pCi/L |                     | 900.0 | MOD            | ·· ·· · · · · · · · · · · · · · · · · | F0A2  | 50000-415C           |  |
| Gross Alpha        | 49.4            | 45.4    |       | 5.0                 |       | 0.9            |                                       | 92    | (62 - 134)           |  |
|                    | Batch #:        | 0025415 |       |                     |       | Analysis Date: | 01/2                                  | 9/10  |                      |  |
| TRITIUM (Distill)  | by EPA 906.0 M  | OD C    | pCi/L |                     | 906.0 | MOD            |                                       | F0A2  | 80000-080C           |  |
| Tritium            | 4540            | 4680    |       | 480                 |       | 140            |                                       | 103   | (85 - 112)           |  |
|                    | Batch #:        | 0028080 |       |                     |       | Analysis Date: | 01/2                                  | 3/10  |                      |  |
| Total Uranium by K | CPA ASTM 5174-9 | 1.      | pCi/L |                     | 5174- | 91             |                                       | F0BC  | 40000-029C           |  |
| Total Uranium      | 27.7            | 29.2    |       | 3.5                 |       | 0.2            |                                       | 105   | (90 - 120)           |  |
|                    | Batch #:        | 0035029 |       |                     |       | Analysis Date: | 02/0                                  | 3/10  |                      |  |
| Total Uranium by K | CPA ASTM 5174-9 | 1.      | pCi/L |                     | 5174- | 91             |                                       | F0BC  | 40000-029C           |  |
| Total Uranium      | 5.54            | 5.67    |       | 0.59                |       | 0.21           |                                       | 102   | (90 - 120)           |  |
|                    | Batch #:        | 0035029 |       |                     |       | Analysis Date: | 02/0                                  | 8/10  |                      |  |

## Laboratory Control Sample/LCS Duplicate Report

## Radiochemistry

Client Lot ID:

F0A220437

Matrix:

WATER

|                       |              |              |       | Total               | Lab Sample ID |            |                          |         |      |
|-----------------------|--------------|--------------|-------|---------------------|---------------|------------|--------------------------|---------|------|
| Parameter             | Spike Amount |              |       | Uncert.<br>(2 c+/-) |               | % Rec      | QC Control<br>Limits     | Preci   | sion |
| Radium 226 by EPA     | 903.0 MOD    |              | pCi/L | 903.                | O MOD         |            | F0A2                     | 220000- | 145C |
| Radium (226)<br>Spk 2 | 11.3<br>11.3 | 10.7<br>11.2 |       | 1.1<br>1.1          | 108<br>110    | 95<br>100  | (68 - 136)<br>(68 - 136) | 5       | %RPD |
|                       | Batch #:     | 0022145      |       |                     | Analysis      | Date:      | 02/08/10                 |         |      |
| Radium 228 by GFPC    |              | pCi/L        | 904 1 | MOD                 |               | F0A2       | 220000-                  | 148C    |      |
| Radium 228<br>Spk 2   | 6.45<br>6.45 | 8.22<br>7.58 | •     | 0.95<br>0.88        | 93<br>99      | 127<br>118 | (60 - 142)<br>(60 - 142) | 8       | %RPD |
|                       | Batch #:     | 0022148      |       |                     | Analysis      | Date:      | 02/08/10                 |         |      |
| SR-90 BY GFPC EPA-    | -905 MOD     |              | pCi/L | 905 1               | MOD           |            | F0A2                     | 220000- | 149C |
| Strontium 90 Spk 2    | 6.81<br>6.81 | 6.74<br>6.99 |       | 0.79<br>0.81        | 77<br>80      | 99<br>103  | (80 - 130)<br>(80 - 130) | 4       | %RPD |
|                       | Batch #:     | 0022149      |       |                     | Analysis      | Dato       | 02/01/10                 |         |      |

#### MATRIX SPIKE REPORT

## Radiochemistry

Client Lot Id:

F0A200486

Matrix:

WATER

Date Sampled:

01/18/10

Date Received:

01/20/10

|                         |                 |                 | Total               |                             | makal                         | QC Sampl  | e ID                 |
|-------------------------|-----------------|-----------------|---------------------|-----------------------------|-------------------------------|-----------|----------------------|
| Parameter               | Spike<br>Amount | Spike<br>Result | Uncert.<br>(2σ +/-) | Spike Sample<br>Yld. Result | Total<br>Uncert.<br>(2 c +/-) | %YLD %REC | QC Control<br>Limits |
| Gross Alpha/Beta EPA 90 | 10              |                 | pCi/L               | 900.0 MOI                   | )                             | F0A20048  | 6-001                |
| Gross Beta              | 68.1            | 10.0            | 1.6                 | 0.83                        | 0.99                          | 14        | a (54 - 150)         |
|                         | Batch #:        | 0025415         | An                  | alysis Date:                | 01/29/10                      |           |                      |
| Gross Alpha/Beta EPA 90 | 0               |                 | pCi/L               | 900.0 MOI                   | )                             | F0A20048  | 6-001                |
| Gross Alpha             | 49.4            | 6.9             | 1.6                 | 0.98                        | 0.70                          | 12        | a (35 - 150)         |
|                         | Batch #:        | 0025415         | An                  | alysis Date:                | 01/29/10                      |           |                      |
| TRITIUM (Distill) by EP | A 906.0 MO      | D               | pCi/L               | 906.0 MOI                   | 0                             | F0A20049  | 4-001                |
| Tritium                 | 4540            | 4350            | 460                 | 64                          | 88                            | 94        | (62 - 147)           |
|                         | Batch #:        | 0028080         | An                  | alysis Date:                | 01/29/10                      |           |                      |

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off errors in calculated results.

## MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

## Radiochemistry

Client Lot ID: F0A200486

Matrix:

WATER

Date Sampled:

01/18/10 0730

Date Received:

01/20/10 0915

|               |        |                 |                     | Total               |                            |        | Total                 | QC Sample ID |          |                      |  |  |
|---------------|--------|-----------------|---------------------|---------------------|----------------------------|--------|-----------------------|--------------|----------|----------------------|--|--|
| Parameter     |        | Spike<br>Amount | SPIKE<br>Result     | Uncert.<br>(2 g+/-) | Spike SAMPLE<br>Yld Result |        | Uncert.<br>(2σ +/-) * | Yld          | %Rec     | QC Control<br>Limits |  |  |
| Total Uranium | by KPA | ASTM 5          |                     | pCi/L               | 5174-91                    |        |                       | FO.          | A20048   | 6-001                |  |  |
| Total Uranium |        | 27.7            | 28.8                | 3.4                 | -0.0334                    | U      | 0.0040                |              | 104      | (62 - 150)           |  |  |
|               | Spk2   | 27.7            | 29.2                | 3.5                 | -0.0334                    | U      | 0.0040<br>Precisio    | n:           | 105<br>2 | (62 - 150)<br>%RPD   |  |  |
| ····          |        | Batch           | ı <b>#:</b> 0035029 | Ana                 | alysis date:               | 02/08, | /10                   |              |          |                      |  |  |

#### DUPLICATE EVALUATION REPORT

#### Radiochemistry

Client Lot ID:

F0A220437

Matrix:

WATER

Date Sampled:

01/18/10

Date Received: 01/20/10

|                    |                  |        | Total                |          |                     | Total               | Q     | C Sample ID |      |
|--------------------|------------------|--------|----------------------|----------|---------------------|---------------------|-------|-------------|------|
| Parameter          | SAMPLE<br>Result |        | Uncert.<br>(2 o +/-) | % Yld    | DUPLICATE<br>Result | Uncert.<br>(2 σ+/-) | % ¥ld | Precision   |      |
| Gross Alpha/Beta E | PA 900           |        |                      | pCi/L    | 900.0 MOD           |                     | FO2   | A200486-00  | )1   |
| Gross Alpha        | 0.98             | J      | 0.70                 |          | 0.71 J              | 0.85                |       | 32          | %RPD |
| Gross Beta         | 0.83             | Ū      | 0.99                 |          | <b>1.6</b> J        | 1.0                 |       | 62          | %RPD |
|                    | Bat              | ch #:  | 0025415              | (Sample) | 0025415 (D          | uplicate)           |       |             |      |
| TRITIUM (Distill)  | by EPA 90        | 6.0 MC | D                    | pCi/L    | 906.0 MOD           | ı                   | F02   | A200486-00  | )1   |
| Tritium            | 99               | υ      | 94                   |          | -49 U               | 64                  |       | 586         | %RPD |
|                    | Bat              | coh #: | 0028080              | (Sample) | 0028080 (D          | uplicate)           |       |             |      |
| Gamma Cs-137 & Hit | s by EPA         | 901.1  | MOD                  | pCi/L    | 901.1 MOD           |                     | FO.   | A210532-00  | )1   |
| Cesium 137         | -2.3             | U      | 9.2                  |          | -1.4 U              | 9.8                 |       | 47          | %RPD |
| Potassium 40       | -30              | U      | 240                  |          | -60 U               | 440                 |       | 69          | %RPD |
|                    | Bat              | ch #:  | 0023036              | (Sample) | 0023036 (D          | uplicate)           |       |             |      |

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

Result is greater than sample detection limit but less than stated reporting limit.



#### SUBCONTRACT ORDER TestAmerica Irvine

#### ITA1480

FOA 220437

**SENDING LABORATORY:** 

TestAmerica Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

**RECEIVING LABORATORY:** 

TestAmerica St. Louis 13715 Rider Trail North

Earth City, MO 63045

Phone: (314) 298-8566

Fax: (314) 298-8757

Project Location: CA - CALIFORNIA

Receipt Temperature:\_\_

Ice: Y / N

| Analysis                | Units           | Due          | Expires        | Interlab Price S        | urch | Comments                                    |
|-------------------------|-----------------|--------------|----------------|-------------------------|------|---------------------------------------------|
| Sample ID: ITA1480-02 ( | Outfall 010 (Co | mp) - Water) | Sampled        | : <u>01/19/10</u> 14:30 |      |                                             |
| Gamma Spec-O            | mg/kg           | 01/28/10     | 01/19/11 14:30 |                         | 0%   | Out St Louis, K-40 and CS-137 only, V       |
| Gross Alpha-O           | pCi/L           | 01/28/10     | 07/18/10 14:30 | \$100.00                | 50%  | Out St Louis, Boeing permit, DO NOT FILTER! |
| Gross Beta-O            | pCi/L           | 01/28/10     | 07/18/10 14:30 | \$100.00                | 50%  | Out St Louis, Boeing permit, DO NOT FILTER! |
| Radium, Combined-O      | pCi/L           | 01/28/10     | 01/19/11 14:30 | \$238,00                | 50%  | Out St Louis, Boeing permit, DO NOT FILTER! |
| Strontium 90-O          | pCi/L           | 01/28/10     | 01/19/11 14:30 | \$155.00                | 50%  | Out St Louis, Boeing permit, DO NOT FILTER! |
| Tritium-O               | pCi/L           | 01/28/10     | 01/19/11 14:30 | \$80.00                 | 50%  | Out St Louis, Boeing permit, DO NOT FILTER! |
| Uranium, Combined-O     | pCi/L           | 01/28/10     | 01/19/11 14:30 | \$120.00                | 0%   | Out St Louis, Boeing permit, DO NOT FILTER! |
| Containers Supplied:    |                 |              |                |                         |      |                                             |
| 2.5 gal Poly (H)        | 500 mL Aml      | per (I)      |                |                         |      |                                             |

Released By

|                                                                 |                                           |                     | NB               | -22            | 10           |                                                  | . المناسب         | 2000112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------|-------------------------------------------|---------------------|------------------|----------------|--------------|--------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Arac                                                       |                                           | Lot #               | (s):             | CAA            | 148          | <u> </u>                                         | POHO              | 180(437)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| THE LEADER IN GRIVINORN                                         |                                           | ρį                  | ير ارو           | TA             | 148          | 3 <i>t</i>                                       |                   | 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                 | - <del>-</del>                            | ro                  |                  |                | <del> </del> |                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | UPON RECEIPT FORM                         |                     |                  |                |              | <del></del>                                      | ·.                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | TA IZVIN                                  | <u> </u>            | _                |                |              |                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quote No:                                                       |                                           | 1                   |                  |                |              |                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COC/RFA No:                                                     |                                           | 1981                |                  | 1.4.1          |              |                                                  |                   | מ מי א                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Initiated By:                                                   | VO                                        |                     | Da               | 141<br>te:     | 1-27         | 2-10 <u> </u>                                    | Time: <u>0</u>    | 930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                 |                                           |                     |                  | <u>ormatio</u> | _            |                                                  |                   | Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Shipper: (F                                                     | edEx) UPS DHL                             | Courier Clien       | t Ot             | her:           |              |                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shipping # (s):*                                                | 20 0040                                   |                     |                  |                |              | _                                                | nperature (s):**  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                           | •                   |                  |                |              |                                                  | IENT 6.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                               | 7                                         | ·                   |                  |                |              | _ 2                                              | 7.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.                                                              | 8                                         | •                   |                  |                |              | 3                                                | 8.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.                                                              | 9                                         | •                   |                  |                |              | 4                                                | 9.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.                                                              | 10                                        | ·                   |                  |                |              | 5                                                | 10.               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *Numbered shipping lines                                        | s correspond to Numbered Sample           | Temp lines          |                  |                |              |                                                  |                   | elow. Temperature<br>ests- Liquid or Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Condition (Circle "Y"                                           | for yes, "N" for no and "N/A" for         | not applicable):    | 1-1-1-20         |                |              | mra rosta u 1118. 1447.                          |                   | and the state of t |
| 1. Y(N)                                                         | Are there custody seals pr                |                     | 8.               | Y(N            | >            | Are there cus                                    | tody seals prese  | ent on bottles?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Y N (N/A)                                                    | Do custody seals on coole                 | r appear to be      | 9.               | YN             | - NIA        | Do custody so                                    | eals on bottles a | ppear to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 | tampered with? Were contents of cooler fi | isked after         | 7,               | <del></del>    | <u> </u>     | tampered with                                    |                   | oper pH <sup>1</sup> ? (If not,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. (Y) N                                                        | opening, but before unpac                 | king?               | 10.              | YN             | (N/A)        | make note be                                     |                   | oper print (it not,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. YN                                                           | Sample received with Cha<br>Custody?      | in of               | 11.(             | YИ             |              | Sample receiv                                    | ed in proper co   | ntainers?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5. Y N N/A                                                      | Does the Chain of Custod                  |                     | 12.              | Y N            | (N/A)        |                                                  |                   | liquid samples?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | sample ID's on the contain                | <del></del>         |                  |                | <u>~</u>     |                                                  | nple ID's below)  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6. Y (V)                                                        | Was sample received brok                  |                     | 13.              | N C            | N/A          | Was Internal                                     | COC/Workshar      | e received?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7. (Y) N                                                        | Is sample volume sufficient analysis?     | nt for              | 14.              | YN             | N/A          | Was pH taker                                     | by original Te    | stAmerica lab?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                 | ANL, Sandia) sites, pH of ALL co          | ntainers received m | ust be v         | erified, BX    | CEPT V       | OA, TOX and soils                                | 4 ,               | A CONTRACTOR OF THE PARTY OF TH |
| Notes:                                                          |                                           |                     |                  |                | ."           |                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | ······································    |                     |                  |                | 1× · · · ·   |                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                           |                     |                  |                |              | <u></u>                                          |                   | A standard transport of the standard st |
|                                                                 |                                           |                     |                  |                |              | · · · · · · · · · · · · · · · · · · ·            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 |                                           |                     |                  |                |              | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |                   | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| · · · · · · · · · · · · · · · · · · ·                           |                                           | ·                   |                  |                |              |                                                  |                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ,                                                               |                                           |                     |                  |                |              |                                                  |                   | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                 | **************************************    |                     |                  |                |              | ·                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Corrective Action:                                              |                                           | ·                   |                  |                |              | <del> </del>                                     | ····              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ☐ Client Contact N                                              |                                           |                     | I                | nformed        | by:          |                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul><li>☐ Sample(s) proces</li><li>☐ Sample(s) on hol</li></ul> |                                           |                     | f relea          | ased, not      | ifv:         |                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Management                                              |                                           | Johl !              | .4 <b>2</b> VIVC |                | ate:         | 1-25-10                                          | )                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THIS FORM MUST BE C                                             | OMPLETED AT THE TIME TH                   | TTEMS ARE BEI       | NG CHI           | ECKED IN       | I. IF AN     | Y ITEM IS COMP                                   | LETED BY SOME     | ONE OTHER THAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

THE INITIATOR, THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.

ADMIN-0004, REVISED 10/21/08 \Sisvi01\QA\FORMS\ST-LOUIS\ADMIN\Admin004 rev1 \Ldoc



# **APPENDIX G**

# **Section 49**

Outfall 010 – BMP Effectiveness January 18 & 19, 2010
Test America Analytical Laboratory Report





#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project: BMP Effectiveness

Monitoring Program

Sampled: 01/18/10 Received: 01/22/10

Issued: 02/02/10 06:20

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

#### **CASE NARRATIVE**

SAMPLE RECEIPT: Samples were received intact, at 4°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: No analyses were subcontracted to an outside laboratory.

LABORATORY ID CLIENT ID MATRIX

 ITA1966-01
 010 EFF-1 Grab
 Water

 ITA1966-02
 010 EFF-2 Composite
 Water

Reviewed By:

Delby Wilson TestAmerica Irvine

Debby Wilson For Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: ITA1966

Sampled: 01/18/10

Received: 01/22/10

#### **INORGANICS**

| Analyte                                                                  | Method                         | Batch     | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------------------------------------------|--------------------------------|-----------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITA1966-01 (010 EFF-1 Gra<br>Reporting Units: g/cc            | b - Water)                     |           |              |                    |                  |                    |                   |                  |                    |
| Density                                                                  | Displacement                   | 10A2463   | N/A          | NA                 | 1.0              | 1                  | 01/26/10          | 01/26/10         |                    |
| Sample ID: ITA1966-02 (010 EFF-2 Con<br>Reporting Units: g/cc<br>Density | nposite - Water)  Displacement | 10A2463   | N/A          | NA                 | 1.0              | 1                  | 01/26/10          | 01/26/10         |                    |
| Sample ID: ITA1966-01 (010 EFF-1 Gra                                     | •                              | 10112 103 | 1,111        | 1111               | 110              | •                  | 01/20/10          | 01/20/10         |                    |
| Reporting Units: mg/l<br>Sediment                                        | ASTM D3977                     | 10A2469   | 10           | 10                 | ND               | 1                  | 01/26/10          | 01/26/10         |                    |
| Sample ID: ITA1966-02 (010 EFF-2 Composite - Water)                      |                                |           |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l<br>Sediment                                        | ASTM D3977                     | 10A2469   | 10           | 10                 | 63               | 1                  | 01/26/10          | 01/26/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: ITA1966

Sampled: 01/18/10

Received: 01/22/10

## METHOD BLANK/QC DATA

#### **INORGANICS**

|                                       |           | Reporting |     |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|---------------------------------------|-----------|-----------|-----|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                               | Result    | Limit     | MDL | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10A2463 Extracted: 01/26/1     | 10        |           |     |       |       |          |         |        |     |       |            |
| Duplicate Analyzed: 01/26/2010 (10A24 | 163-DUP1) |           |     |       | Sou   | rce: ITA | 1969-01 |        |     |       |            |
| Density                               | 0.997     | NA        | N/A | g/cc  |       | 0.997    |         |        | 0   | 20    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/18/10

Report Number: ITA1966 Received: 01/22/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

## DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 01/18/10

Arcadia, CA 91007 Report Number: ITA1966 Received: 01/22/10
Attention: Bronwyn Kelly

## **Certification Summary**

#### **TestAmerica Irvine**

Displacement

| Method     | Matrix | Nelac | California |  |  |  |
|------------|--------|-------|------------|--|--|--|
| ASTM D3977 | Water  |       |            |  |  |  |

Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **TestAmerica Irvine**

CHAIN OF CUSTODY FORM

Page 1 of 1 ANALYSIS REQUIRED Normal Sample Integrity: (Check)
Intact On Ice: Comments Turn around Time: (check)
24 Hours 5 Days composite Perchlorate Only 72 Hours grab Metals Only 72 Hours\_ 72 Hours 48 Hours 1-22-[6 Date/Time: Date/Time: Date/Time: Project: Boeing BMP Effectiveness Monitoring Program (Y661-Y765Q-MTSA Suspended Sediment Concentration (SSC, × Bottle # 0 Mad Received By Preservative Received By Received By None None (626) 568-6691 Fax Number: (626) 568-6515 Phone Number 1/18/10 1100 Sampling Date/Time 1/18/10 2146 722-10 (6:00 .Date/Time: # of Cont. Test America version 06/29/09 Container Type Project Manager: Bronwyn Kelly Poly-1 L Poly cube 1 gal Test America contact: Joseph Doak Sampler: Shelby Dawson Cilent Name/Address: MWH-Pasadena 618 Michillinda Ave., Ste 200 Arcadia, CA 91007 Sample Matrix ≥ ≥ Relinquished By Sample Description 010 EFF-2 010 EFF-1

### **APPENDIX G**

### **Section 50**

Outfall 010 – February 5 & 6, 2010

MEC<sup>X</sup> Data Validation Report





# DATA VALIDATION REPORT

# **Boeing SSFL NPDES**

SAMPLE DELIVERY GROUP: ITB0784/ITB0886

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014 Project: SSFL NPDES
DATA VALIDATION REPORT SDG: ITB0784/ITB0886

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: ITB0784/ITB0886

Project Manager: B. Kelly
Matrix: Water
QC Level: IV

QC Level: IV No. of Samples: 3

No. of Reanalyses/Dilutions: 1

Laboratory: TestAmerica-Irvine

**Table 1. Sample Identification** 

| Client ID   | Laboratory<br>ID  | Sub-<br>Laboratory<br>ID | Matrix | Collected          | Method                                                                                                                                                                                                                                                                        |
|-------------|-------------------|--------------------------|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outfall 010 | ITB0784-01        |                          | Water  | 2/5/10<br>1:40 PM  | 1664A, 218.6, 624                                                                                                                                                                                                                                                             |
| Outfall 010 | ITB0886-01        | G0B100429-<br>001        | Water  | 2/6/10<br>11:15 AM | ASTM 5174-91, 180.1,<br>200.7, 200.7 (Diss), 200.8,<br>200.8 (Diss), 245.1, 245.1-<br>Diss, 300.0, 314.0, 525.2,<br>1613B, 608, 625, 900.0<br>MOD, 901.1 MOD, 903.0<br>MOD, 905 MOD, 906.0<br>MOD, SM 2540D, SM<br>4500-F-C, SM2340B,<br>SM2340B-Diss, SM2540C,<br>SM4500CN-E |
| Outfall 010 | ITB0886-<br>01RE1 |                          | Water  | 2/6/10<br>11:15 AM | 904 MOD, 1613B                                                                                                                                                                                                                                                                |
| Trip Blanks | ITB0784-02        |                          | Water  | 2/5/10<br>1:40 PM  | 624                                                                                                                                                                                                                                                                           |

#### **II. Sample Management**

No anomalies were observed regarding sample management. The sample was received below the temperature limits at TestAmerica-West Sacramento; however, the sample was not noted to be frozen or damaged. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

### **Data Qualifier Reference Table**

| Qualifier | Organics                                                                                                                                                                                                                                                                | Inorganics                                                                                                                                                                                                                                                                                  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U         | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J         | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N         | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ        | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ        | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R         | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

### **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of<br>standards used for the calibration<br>was incorrect              |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| Е         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| Ī         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| М         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

### **Qualification Code Reference Table Cont.**

| D         | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р         | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ       | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *11, *111 | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

#### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: March 23, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for 1,2,3,4,6,7,8-HpCDD and total HpCDD, OCDD, 1,2,3,4,6,7,8-HpCDF and total HpCDF, and OCDF. Most detects in the method blank did not meet ratio criteria and were reported as EMPCs, and it was reviewer's professional opinion that in this case, none of the method blank detects were sufficient to qualify the associated sample results.

 Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed
  for polychlorinated dioxins/furans by EPA Method 1613. The laboratory performed and
  reported a confirmation analysis for 2,3,7,8-TCDF. The initial result was not confirmed,
  as the peak in the confirmation analysis did not meet signal to noise criteria; therefore,
  the initial result was rejected, "R," in favor of the confirmation result, and the total TCDF
  result changed to nondetected, "U."
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any isomers reported as EMPCs, and any associated total containing no other peaks than the reported isomers were qualified as estimated and nondetected, "UJ," at the level of the EMPC. Any remaining total results reported as EMPCs or including EMPCs were qualified as estimated, "J." Any detects reported below the EDL, or between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

#### B. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 18, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC<sup>X</sup> Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, 245.1, and SM2340B, and the National Functional Guidelines for Inorganic Data Review (7/02).

• Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.

 Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

 Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury.

Total selenium was not recovered in the 10 ppb CRDL but was recovered acceptably in the 20 ppb CRDL. As the sensitivity of the instrument near the MDL (8ppb) was not verified, the reviewer raised the MDL and reporting limit for total selenium to the concentration shown to have acceptable recovery, 20 ppb. The 5ppb CRDL recovery for nickel was 66%, the total arsenic 10 ppb recovery was 56%, and the total cadmium 2ppb CRDL recovery was 50%; therefore, nondetected nickel in both fractions, total arsenic, and total cadmium were qualified as estimated, "UJ." The remaining CRDL/CRI recoveries were within the control limits of 70-130%.

- Blanks: Antimony and cadmium were reported in the total method blank at -0.36 and -0.16 μg/L; therefore, nondetected total antimony and cadmium were qualified as estimated, "UJ." Boron and iron were detected in the dissolved method blank at 45.3 and 21.9 μg/L; therefore, dissolved boron and iron were qualified as nondetected, "U," at the levels of contamination. Method blanks and CCBs had no other applicable detects.
- Interference Check Samples: Recoveries were within the method- (6010B) or laboratory- (6020) established control limits. ICSA/ICSAB analyses were performed for the 200.8 dissolved analytes only. Total and dissolved boron, total and dissolved silver, and dissolved arsenic were reported in the ICSAs -34, -75, -6.8, -7.1, and -13.9 μg/L, respectively and dissolved selenium was detected at 17.9 μg/L; however, the concentration of the interfering analytes were not sufficient to cause matrix interference in the site sample. Copper and cadmium were detected in the 200.8 ICSA; however the reviewer was unable to determine if these detects were due to level contamination of the standard. There were no other target compounds present in the ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: A matrix spike analysis was performed on the 200.7 total analytes. Aluminum was recovered above the control limit at 130%; therefore, total aluminum detected was qualified as estimated, "J." The remaining recoveries were within method-established QC limits. Method accuracy for the remaining analytes was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.

 Internal Standards Performance: All sample internal standard intensities were within 60-125% of the internal standard intensities measured in the initial calibration blank. Copper was not bracketed by an internal standard of lower mass; therefore, copper detected in the sample was qualified as estimated, "J."

• Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that antimony was detected marginally above the MDL in the dissolved fraction, but was not detected in the total fraction.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### C. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks

Date Reviewed: March 18, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Calibration criteria were met. The initial calibration r<sup>2</sup> value was ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. IPC recoveries were within the method-established control limit of 80-120%. The IPC-MA recovery was within 85-115%
- Blanks: Method blanks and CCBs had no detects.

 Blank Spikes and Laboratory Control Samples: The recovery was within the methodestablished QC limits of 85-115%.

- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on
  the sample result summary were verified against the raw data. No transcription errors or
  calculation errors were noted. Any detects between the method detection limit and the
  reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply
  with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### D. EPA METHOD 608—Pesticides and PCBs

Reviewed By: P. Meeks

Date Reviewed: March 21, 2010

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the  $MEC^{x}$  Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 608, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water samples were extracted within seven days of collection and analyzed within 40 days of extraction.
- Calibration: The %RSD exceeded the control limit for heptachlor on both channels, endrin ketone on channel A and endosulfan II on channel B; therefore, the results for these analytes were qualified as estimated, "UJ." The remaining initial calibrations had average %RSDs of ≤10% and r² values ≥0.995. CCV %Ds exceeded 15% for dieldrin, DDT, DDD, heptachlor, endrin, DDE, and endosulfan I; therefore, the nondetected results for these compounds were qualified as estimated, "UJ." The %D on channel B for Aroclor-1016 exceeded 15%; therefore, the nondetect result for Aroclor-1016, Aroclor-1221, Aroclor-1232, and Aroclor-1242 were qualified as estimated, "UJ." The remaining ICV and CCVs bracketing the sample analyses had %Ds within the QC limit of ≤15%.

Blanks: The method blanks had no target compound detects above the MDL.

 Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The reviewer noted that the pesticide LCS results were calculated using an incorrect sample volume. All results were acceptable when calculated using the correct volume.

- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified from the raw data. The reporting limits were supported by the lower level of the initial calibration. Any results reported between the MDL and the reporting limit were qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

#### E. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 24, 2010

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

 Holding Times: The aliquots for total uranium and radium-228 were reanalyzed more than 3x beyond the holding time for unpreserved samples; therefore, total uranium and detected in the sample was qualified as estimated, "J," and nondetected radium-228 was rejected, "R." Aliquots for gross alpha and gross beta were prepared beyond the fiveday analytical holding time for unpreserved samples; therefore, the results for these

DATA VALIDATION REPORT

Project: SSFL NPDES SDG: ITB0784/ITB0886

analytes were qualified as estimated, "J." The tritium sample was analyzed within 180 days of collection. Aliquots for gamma spectroscopy, radium-226, and strontium-90 were prepared within the five-day holding time for unpreserved aqueous samples.

Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.
 The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, the gross alpha and radium-226 results were qualified as estimated, "J," for detects and, "UJ," for nondetects. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Tritium was detected in the method blank, but not at a concentration sufficient to qualify the site sample. There were no other analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries and the radium-228 RPD were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

The reviewer noted that the total uranium preparation log was not signed as reviewed.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

### F. EPA METHOD 525.2—Semivolatile Organic Compounds (SVOCs)

Reviewed By: P. Meeks

Date Reviewed: March 20, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within 24 hours of collection and analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. The continuing calibration RRFs were ≥0.05 and recoveries were within the method QC limits of 70-130%.
- Blanks: The method blank had no applicable target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on the LCS/D results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.

• Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.

- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this analysis.
- System Performance: Review of the raw data indicated no problems with system performance.

#### G. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: P. Meeks

Date Reviewed: March 20. 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The r² value for pentachlorophenol was less than the control limit; therefore, the nondetected result for pentachlorophenol was qualified as estimated, "UJ." Initial calibration average RRFs were ≥0.05 and the %RSDs ≤35% and the remaining r² values were ≥0.995. The second source ICV had %Ds above 20% for benzyl alcohol, hexachlorocyclopentadiene, 2,4-dinitrophenol, n-nitrosodiphenylamine, pentachlorophenol, and benzidine; therefore, the nondetected results for these compound were qualified as estimated, "UJ." The ICV RRFs were ≥0.05 and the remaining %Ds ≤20%. The continuing calibration associated with the sample analysis had %Ds above 20% for benzyl alcohol and 2,4-dinitrophenol; therefore, the nondetected results for these compounds were qualified as estimated, "UJ." The continuing calibration RRFs were ≥0.05 and the remaining %Ds ≤20%.
- Blanks: Method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Both recoveries for hexachlorocyclopentadiene exceeded the control limit; however, the compound was not

detected in the site sample. The RPDs for benzidine and benzoic acid exceeded the control limit; therefore, the nondetected results for these compounds were qualified as estimated, "UJ." The remaining recoveries and RPDs were within laboratory-established QC limits.

- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
   -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

#### H. EPA METHOD 8260B—Volatile Organic Compounds (VOCs)

Reviewed By: P. Meeks

Date Reviewed: March 20, 2010

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC<sup>X</sup> Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection and the unpreserved samples were analyzed within seven day of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. The r² value for bromoform was <0.995; therefore, the nondetected results for bromoform were qualified as estimated, "UJ." The initial and continuing calibration RRFs for acrolein were <0.05; therefore, the nondetected results for acrolein were rejected, "R." The remaining initial and continuing calibration RRFs were ≥0.05 and %RSDs ≤35% and remaining r² values were ≥0.995. The continuing calibration %Ds exceeded 20% for acrolein, carbon tetrachloride and 2-chloroethyl vinyl ether; therefore, the nondetected results for these compounds were qualified as estimated, "UJ," unless otherwise rejected. The continuing calibration RRFs were ≥0.05 and the remaining %Ds ≤20%.</p>
- Blanks: Method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and the RPDs for 2chloroethylvinyl ether, acrolein, and acrylonitrile were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the samples in this SDG. Method accuracy was evaluated based on LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Trip Blanks: Trip Blanks was the trip blank associated with the site sample in this SDG. There were no detects above the MDL in the trip blank.

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
   -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

#### I. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 18, 2010

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 180.1, 218.6, 300.0, 1664, SM2540C, SM2540D, SM4500CN-E, SM4500F-C, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: All analytical holding times were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. Balance calibration check logs were acceptable. The nitrate reporting limit check standard was recovered at 63%; therefore, nitrate/nitrite detected in the sample was qualified as estimated, "J." All remaining reporting limit check standard recoveries were within 70-130%.
- Blanks: Method blanks and CCBs had no applicable detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. A nitrate/nitrite recovery was not listed in the summary by the

laboratory; however, the reviewer determined that the nitrate/nitrite LCS recovery was acceptable.

- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: A matrix spike analysis was performed for chloride, nitrate/nitrite, and sulfate. Chloride and sulfate recoveries were within laboratoryestablished QC limits. A nitrate/nitrite recovery was not listed in the summary by the laboratory; however, the reviewer determined that the nitrate/nitrite spike recovery was acceptable. Method accuracy for the remaining analytes was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms ITB0784/ITB0886

Analysis Method ASTM 5174-91

Sample Name Outfall 010Comp Matrix Type: WATER Validation Level: IV

**Lab Sample Name:** ITB0886-01 **Sample Date:** 2/6/2010 11:15:00 AM

Analyte CAS No Result RL **MDL** Result Lab Validation Validation Value Units Qualifier **Qualifier Notes** Total Uranium 7440-61-1 0.422 0.693 0.21 pCi/L H, DNQ

Analysis Method EPA 1664A

Sample Name Outfall 010 Matrix Type: Water Validation Level: IV

**Lab Sample Name:** ITB0784-01 **Sample Date:** 2/5/2010 1:40:00 PM

Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes

Hexane Extractable Material (Oil HEM ND 4.8 1.4 mg/l

& Grease)

Analysis Method EPA 200.7

Sample Name Outfall 010 Matrix Type: Water Validation Level: IV

**Lab Sample Name:** ITB0886-01 **Sample Date:** 2/6/2010 11:15:00 AM

Result RLAnalyte CAS No **MDL** Result Lab Validation Validation Value Units Qualifier Qualifier Notes ND 10 UJ C 7440-38-2 7.0 ug/l Arsenic Beryllium 7440-41-7 0.90 U ND ug/l Chromium 7440-47-3 2.0 U ND 5.0 ug/l Selenium 7782-49-2 U ND 20 20 ug/l Silver 7440-22-4 ND 10 6.0 U ug/l Zinc 20 6.0 7440-66-6 8.7 ug/l J DNQ

Sample Name Outfall 010Comp Matrix Type: Water Validation Level: IV

**Lab Sample Name:** ITB0886-01 **Sample Date:** 2/6/2010 11:15:00 AM

Analyte CAS No Result RL**MDL** Result Lab Validation Validation Value Units Qualifier Qualifier **Notes** 7429-90-5 770 50 40 ug/l J Q Aluminum Boron 7440-42-8 0.047 0.050 0.020 Ja DNQ mg/l Calcium 7440-70-2 30 0.10 0.050 mg/l MHA Iron 7439-89-6 0.74 0.040 0.015 mg/l Magnesium 7439-95-4 3.7 0.020 0.012 mg/l Nickel 7440-02-0 ND 10 2.0 UJ R ug/l 10 7440-62-2 4.6 3.0 J DNQ Vanadium ug/l Ja

Tuesday, April 06, 2010 Page 1 of 15

## Analysis Method EPA 200.7-Diss

| Sample Name      | Outfall 010   |                 | Matri     | x Type:  | Water           | Validation Level: IV |                         |                     |  |
|------------------|---------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|--|
| Lab Sample Name: | ITB0886-01    | Sam             | ple Date: | 2/6/2010 | 11:15:00 AM     |                      |                         |                     |  |
| Analyte          | CAS No        | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Arsenic          | 7440-38-2     | ND              | 10        | 7.0      | ug/l            |                      | U                       |                     |  |
| Beryllium        | 7440-41-7     | ND              | 2.0       | 0.90     | ug/l            |                      | U                       |                     |  |
| Chromium         | 7440-47-3     | ND              | 5.0       | 2.0      | ug/l            |                      | U                       |                     |  |
| Selenium         | 7782-49-2     | ND              | 10        | 8.0      | ug/l            |                      | U                       |                     |  |
| Silver           | 7440-22-4     | ND              | 10        | 6.0      | ug/l            |                      | U                       |                     |  |
| Zinc             | 7440-66-6     | 13              | 20        | 6.0      | ug/l            | J                    | J                       | DNQ                 |  |
| Sample Name      | Outfall 010Co | omp             | Matri     | x Type:  | Water           | V                    | alidation Le            | vel: IV             |  |
| Lab Sample Name: | ITB0886-01    | Sam             | ple Date: | 2/6/2010 | 11:15:00 AM     |                      |                         |                     |  |
| Analyte          | CAS No        | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Aluminum         | 7429-90-5     | 81              | 50        | 40       | ug/l            |                      |                         |                     |  |
| Boron            | 7440-42-8     | ND              | 0.056     | 0.020    | mg/l            | В                    | U                       | В                   |  |
| Calcium          | 7440-70-2     | 24              | 0.10      | 0.050    | mg/l            |                      |                         |                     |  |
| Iron             | 7439-89-6     | ND              | 0.081     | 0.015    | mg/l            | В                    | U                       | В                   |  |
| Magnesium        | 7439-95-4     | 2.8             | 0.020     | 0.012    | mg/l            |                      |                         |                     |  |
| Nickel           | 7440-02-0     | ND              | 10        | 2.0      | ug/l            |                      | UJ                      | R                   |  |
| Vanadium         | 7440-62-2     | ND              | 10        | 3.0      | ug/l            |                      | U                       |                     |  |
| Analysis Metho   | d EPA         | 200.8           |           |          |                 |                      |                         |                     |  |
| Sample Name      | Outfall 010Co | omp             | Matri     | x Type:  | Water           | V                    | alidation Le            | vel: IV             |  |
| Lab Sample Name: | ITB0886-01    | Sam             | ple Date: | 2/6/2010 | 11:15:00 AM     |                      |                         |                     |  |
| Analyte          | CAS No        | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Antimony         | 7440-36-0     | ND              | 2.0       | 0.30     | ug/l            |                      | UJ                      | В                   |  |
| Cadmium          | 7440-43-9     | ND              | 1.0       | 0.10     | ug/l            |                      | UJ                      | B, R                |  |
| Copper           | 7440-50-8     | 4.4             | 2.0       | 0.50     | ug/l            |                      | J                       | *III                |  |
| Lead             | 7439-92-1     | 1.9             | 1.0       | 0.20     | ug/l            |                      |                         |                     |  |
| Thallium         | 7440-28-0     | ND              | 1.0       | 0.20     | ug/l            | С                    | U                       |                     |  |

Tuesday, April 06, 2010 Page 2 of 15

### Analysis Method EPA 200.8-Diss

| Sample Name                                                                      | Outfall 010Co | mp                     | Matri       | x Type:                | Water                        | 7                | alidation Le                         | vel: IV                              |
|----------------------------------------------------------------------------------|---------------|------------------------|-------------|------------------------|------------------------------|------------------|--------------------------------------|--------------------------------------|
| Lab Sample Name:                                                                 | ITB0886-01    | Sam                    | ple Date:   | 2/6/2010               | 11:15:00 AM                  |                  |                                      |                                      |
| Analyte                                                                          | CAS No        | Result<br>Value        | RL          | MDL                    | Result<br>Units              | Lab<br>Qualifier | Validation<br>Qualifier              | Validation<br>Notes                  |
| Antimony                                                                         | 7440-36-0     | 0.57                   | 2.0         | 0.30                   | ug/l                         | Ja               | J                                    | DNQ                                  |
| Cadmium                                                                          | 7440-43-9     | ND                     | 1.0         | 0.10                   | ug/l                         |                  | U                                    |                                      |
| Copper                                                                           | 7440-50-8     | 1.4                    | 2.0         | 0.50                   | ug/l                         | Ja               | J                                    | DNQ, *III                            |
| Lead                                                                             | 7439-92-1     | ND                     | 1.0         | 0.20                   | ug/l                         |                  | U                                    |                                      |
| Γhallium                                                                         | 7440-28-0     | ND                     | 1.0         | 0.20                   | ug/l                         |                  | U                                    |                                      |
| Analysis Metho                                                                   | d EPA 2       | 218.6                  |             |                        |                              |                  |                                      |                                      |
| Sample Name                                                                      | Outfall 010   |                        | Matri       | х Туре:                | Water                        | 7                | alidation Le                         | vel: IV                              |
| Lab Sample Name:                                                                 | ITB0784-01    | Sam                    | ple Date:   | 2/5/2010               | 1:40:00 PM                   |                  |                                      |                                      |
| Analyte                                                                          | CAS No        | Result<br>Value        | RL          | MDL                    | Result<br>Units              | Lab<br>Qualifier | Validation<br>Qualifier              | Validation<br>Notes                  |
| Chromium VI                                                                      | 18540-29-9    | ND                     | 0.0010      | 0.00025                | mg/l                         |                  | U                                    |                                      |
| Analysis Metho                                                                   | d EPA 2       | 245.1                  |             |                        |                              |                  |                                      |                                      |
| Sample Name                                                                      | Outfall 010   |                        | Matri       | x Type:                | Water                        | 7                | alidation Le                         | vel: IV                              |
| Lab Sample Name:                                                                 | ITB0886-01    | Sam                    | ple Date:   | 2/6/2010               | 11:15:00 AM                  |                  |                                      |                                      |
| Analyte                                                                          | CAS No        | Result<br>Value        | RL          | MDL                    | Result<br>Units              | Lab<br>Qualifier | Validation<br>Qualifier              | Validation<br>Notes                  |
| Mercury                                                                          | 7439-97-6     | ND                     | 0.00020     | 0.00010                | mg/l                         |                  | U                                    |                                      |
| Analysis Metho                                                                   | d EPA 2       | 245.1-L                | <i>Diss</i> |                        |                              |                  |                                      |                                      |
| Sample Name                                                                      | Outfall 010Co | mp                     | Matri       | x Type:                | Water                        | 7                | alidation Le                         | vel: IV                              |
| Lab Sample Name:                                                                 | ITB0886-01    | Sam                    | ple Date:   | 2/6/2010               | 11:15:00 AM                  |                  |                                      |                                      |
| Analyte                                                                          | CAS No        | Result<br>Value        | RL          | MDL                    | Result<br>Units              | Lab<br>Qualifier | Validation<br>Qualifier              | Validation<br>Notes                  |
| Mercury                                                                          | 7439-97-6     | ND                     | 0.00020     | 0.00010                | mg/l                         |                  | U                                    |                                      |
| Analysis Matha                                                                   | d EPA 3       | 800.0                  |             |                        |                              |                  |                                      |                                      |
| Anaiysis meino                                                                   |               |                        |             |                        | ***                          | 7                |                                      |                                      |
|                                                                                  | Outfall 010Co | mp                     | Matri       | x Type:                | Water                        | ,                | /alidation Le                        | vel: IV                              |
| Sample Name                                                                      | Outfall 010Co | •                      |             |                        | water<br>11:15:00 AM         |                  | /alidation Le                        | vel: IV                              |
| Sample Name Lab Sample Name:                                                     |               | •                      |             |                        |                              |                  | Validation Le  Validation  Qualifier | vel: <sup>IV</sup> Validation  Notes |
| Sample Name Lab Sample Name: Analyte                                             | ITB0886-01    | Sam<br>Result          | ple Date:   | 2/6/2010               | 11:15:00 AM<br><b>Result</b> | Lab              | Validation                           | Validation                           |
| Analysis Metho Sample Name Lab Sample Name: Analyte  Chloride  Nitrate/Nitrite-N | CAS No        | Sam<br>Result<br>Value | ple Date:   | 2/6/2010<br><b>MDL</b> | 11:15:00 AM  Result  Units   | Lab              | Validation                           | Validation                           |

## Analysis Method EPA 314.0

| Sample Name                   | Outfall 010Co | mp              | Matri              | х Туре:  | Water                        | <b>Validation Level:</b> IV |                                   |                            |
|-------------------------------|---------------|-----------------|--------------------|----------|------------------------------|-----------------------------|-----------------------------------|----------------------------|
| Lab Sample Name:              | ITB0886-01    | Sam             | ple Date:          | 2/6/2010 | 11:15:00 AM                  |                             |                                   |                            |
| Analyte                       | CAS No        | Result<br>Value | RL                 | MDL      | Result<br>Units              | Lab<br>Qualifier            | Validation<br>Qualifier           | Validation<br>Notes        |
| Perchlorate                   | 14797-73-0    | ND              | 4.0                | 0.90     | ug/l                         |                             | U                                 |                            |
| Analysis Metho                | od EPA S      | 525.2           |                    |          |                              |                             |                                   |                            |
| C I N                         |               | Comp Matrix T   |                    |          |                              | Validation Level: IV        |                                   |                            |
| Sample Name                   | Outfall 010Co | mp              | Matri              | x Type:  | Water                        | 7                           | alidation Le                      | vel: IV                    |
| Sample Name  Lab Sample Name: | Outfall 010Co | 1               | Matri<br>ple Date: | • •      | Water<br>11:15:00 AM         |                             | alidation Le                      | vel: IV                    |
| •                             |               | 1               |                    | • •      |                              |                             | alidation Le Validation Qualifier | vel: IV  Validation  Notes |
| Lab Sample Name:              | ITB0886-01    | Sam<br>Result   | ple Date:          | 2/6/2010 | 11:15:00 AM<br><b>Result</b> | Lab                         | Validation                        | Validation                 |

Tuesday, April 06, 2010 Page 4 of 15

## Analysis Method EPA 608

| Sample Name         | Outfall 010Co | mp              | Matri     | іх Туре: | Water           | Validation Level: IV |                         |                     |  |
|---------------------|---------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|--|
| Lab Sample Name:    | ITB0886-01    | Sam             | ple Date: | 2/6/2010 | 11:15:00 AM     | I                    |                         |                     |  |
| Analyte             | CAS No        | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| 4,4'-DDD            | 72-54-8       | ND              | 0.0047    | 0.0019   | ug/l            | С                    | UJ                      | С                   |  |
| 4,4'-DDE            | 72-55-9       | ND              | 0.0047    | 0.0028   | ug/l            |                      | UJ                      | С                   |  |
| 4,4'-DDT            | 50-29-3       | ND              | 0.0094    | 0.0038   | ug/l            |                      | UJ                      | С                   |  |
| Aldrin              | 309-00-2      | ND              | 0.0047    | 0.0014   | ug/l            |                      | U                       |                     |  |
| alpha-BHC           | 319-84-6      | ND              | 0.0047    | 0.0024   | ug/l            |                      | U                       |                     |  |
| Aroclor 1016        | 12674-11-2    | ND              | 0.47      | 0.24     | ug/l            |                      | UJ                      | С                   |  |
| Aroclor 1221        | 11104-28-2    | ND              | 0.47      | 0.24     | ug/l            |                      | UJ                      | С                   |  |
| Aroclor 1232        | 11141-16-5    | ND              | 0.47      | 0.24     | ug/l            |                      | UJ                      | С                   |  |
| Aroclor 1242        | 53469-21-9    | ND              | 0.47      | 0.24     | ug/l            |                      | UJ                      | С                   |  |
| Aroclor 1248        | 12672-29-6    | ND              | 0.47      | 0.24     | ug/l            |                      | U                       |                     |  |
| Aroclor 1254        | 11097-69-1    | ND              | 0.47      | 0.24     | ug/l            |                      | U                       |                     |  |
| Aroclor 1260        | 11096-82-5    | ND              | 0.47      | 0.24     | ug/l            |                      | U                       |                     |  |
| beta-BHC            | 319-85-7      | ND              | 0.0094    | 0.0038   | ug/l            |                      | U                       |                     |  |
| Chlordane           | 57-74-9       | ND              | 0.094     | 0.038    | ug/l            |                      | U                       |                     |  |
| delta-BHC           | 319-86-8      | ND              | 0.0047    | 0.0033   | ug/l            |                      | U                       |                     |  |
| Dieldrin            | 60-57-1       | ND              | 0.0047    | 0.0019   | ug/l            |                      | UJ                      | С                   |  |
| Endosulfan I        | 959-98-8      | ND              | 0.0047    | 0.0019   | ug/l            |                      | UJ                      | С                   |  |
| Endosulfan II       | 33213-65-9    | ND              | 0.0047    | 0.0028   | ug/l            |                      | UJ                      | С                   |  |
| Endosulfan sulfate  | 1031-07-8     | ND              | 0.0094    | 0.0028   | ug/l            |                      | U                       |                     |  |
| Endrin              | 72-20-8       | ND              | 0.0047    | 0.0019   | ug/l            | С                    | UJ                      | С                   |  |
| Endrin aldehyde     | 7421-93-4     | ND              | 0.0094    | 0.0019   | ug/l            |                      | U                       |                     |  |
| Endrin ketone       | 53494-70-5    | ND              | 0.0094    | 0.0028   | ug/l            |                      | UJ                      | С                   |  |
| gamma-BHC (Lindane) | 58-89-9       | ND              | 0.019     | 0.0028   | ug/l            |                      | U                       |                     |  |
| Heptachlor          | 76-44-8       | ND              | 0.0094    | 0.0028   | ug/l            | С                    | UJ                      | С                   |  |
| Heptachlor epoxide  | 1024-57-3     | ND              | 0.0047    | 0.0024   | ug/l            |                      | U                       |                     |  |
| Methoxychlor        | 72-43-5       | ND              | 0.0047    | 0.0033   | ug/l            |                      | U                       |                     |  |
| Toxaphene           | 8001-35-2     | ND              | 0.47      | 0.24     | ug/l            |                      | U                       |                     |  |
|                     |               |                 |           |          |                 |                      |                         |                     |  |

Tuesday, April 06, 2010 Page 5 of 15

| Sample Name                         | Outfall 010 |                 | Matri     | x Type:  | Water           | Validation Level: IV |    |                     |
|-------------------------------------|-------------|-----------------|-----------|----------|-----------------|----------------------|----|---------------------|
| Lab Sample Name:                    | ITB0784-01  | Sam             | ple Date: | 2/5/2010 | 1:40:00 PM      |                      |    |                     |
| Analyte                             | CAS No      | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     |    | Validation<br>Notes |
| 1,1,1-Trichloroethane               | 71-55-6     | ND              | 0.50      | 0.30     | ug/l            |                      | U  |                     |
| 1,1,2,2-Tetrachloroethane           | 79-34-5     | ND              | 0.50      | 0.30     | ug/l            |                      | U  |                     |
| 1,1,2-Trichloroethane               | 79-00-5     | ND              | 0.50      | 0.30     | ug/l            |                      | U  |                     |
| 1,1-Dichloroethane                  | 75-34-3     | ND              | 0.50      | 0.40     | ug/l            |                      | U  |                     |
| 1,1-Dichloroethene                  | 75-35-4     | ND              | 0.50      | 0.42     | ug/l            |                      | U  |                     |
| 1,2-Dichlorobenzene                 | 95-50-1     | ND              | 0.50      | 0.32     | ug/l            |                      | U  |                     |
| 1,2-Dichloroethane                  | 107-06-2    | ND              | 0.50      | 0.28     | ug/l            |                      | U  |                     |
| 1,2-Dichloropropane                 | 78-87-5     | ND              | 0.50      | 0.35     | ug/l            |                      | U  |                     |
| 1,3-Dichlorobenzene                 | 541-73-1    | ND              | 0.50      | 0.35     | ug/l            |                      | U  |                     |
| 1,4-Dichlorobenzene                 | 106-46-7    | ND              | 0.50      | 0.37     | ug/l            |                      | U  |                     |
| 2-Chloroethyl vinyl ether           | 110-75-8    | ND              | 5.0       | 1.8      | ug/l            |                      | UJ | С                   |
| Acrolein                            | 107-02-8    | ND              | 5.0       | 4.0      | ug/l            |                      | R  | R                   |
| Acrylonitrile                       | 107-13-1    | ND              | 2.0       | 1.2      | ug/l            |                      | U  |                     |
| Benzene                             | 71-43-2     | ND              | 0.50      | 0.28     | ug/l            |                      | U  |                     |
| Bromodichloromethane                | 75-27-4     | ND              | 0.50      | 0.30     | ug/l            |                      | U  |                     |
| Bromoform                           | 75-25-2     | ND              | 0.50      | 0.40     | ug/l            |                      | UJ | С                   |
| Bromomethane                        | 74-83-9     | ND              | 1.0       | 0.42     | ug/l            |                      | U  |                     |
| Carbon tetrachloride                | 56-23-5     | ND              | 0.50      | 0.28     | ug/l            | C, L                 | UJ | С                   |
| Chlorobenzene                       | 108-90-7    | ND              | 0.50      | 0.36     | ug/l            |                      | U  |                     |
| Chloroethane                        | 75-00-3     | ND              | 1.0       | 0.40     | ug/l            |                      | U  |                     |
| Chloroform                          | 67-66-3     | ND              | 0.50      | 0.33     | ug/l            |                      | U  |                     |
| Chloromethane                       | 74-87-3     | ND              | 0.50      | 0.40     | ug/l            |                      | U  |                     |
| cis-1,2-Dichloroethene              | 156-59-2    | ND              | 0.50      | 0.32     | ug/l            |                      | U  |                     |
| cis-1,3-Dichloropropene             | 10061-01-5  | ND              | 0.50      | 0.22     | ug/l            |                      | U  |                     |
| Dibromochloromethane                | 124-48-1    | ND              | 0.50      | 0.40     | ug/l            |                      | U  |                     |
| Ethylbenzene                        | 100-41-4    | ND              | 0.50      | 0.25     | ug/l            |                      | U  |                     |
| Methylene chloride                  | 75-09-2     | ND              | 1.0       | 0.95     | ug/l            |                      | U  |                     |
| Tetrachloroethene                   | 127-18-4    | ND              | 0.50      | 0.32     | ug/l            |                      | U  |                     |
| Toluene                             | 108-88-3    | ND              | 0.50      | 0.36     | ug/l            |                      | U  |                     |
| trans-1,2-Dichloroethene            | 156-60-5    | ND              | 0.50      | 0.30     | ug/l            |                      | U  |                     |
| trans-1,3-Dichloropropene           | 10061-02-6  | ND              | 0.50      | 0.32     | ug/l            |                      | U  |                     |
| Trichloroethene                     | 79-01-6     | ND              | 0.50      | 0.26     | ug/l            |                      | U  |                     |
| Trichlorofluoromethane              | 75-69-4     | ND              | 0.50      | 0.34     | ug/l            |                      | U  |                     |
| Trichlorotrifluoroethane (Fred 113) | on 76-13-1  | ND              | 5.0       | 0.50     | ug/l            |                      | U  |                     |
| Vinyl chloride                      | 75-01-4     | ND              | 0.50      | 0.40     | ug/l            |                      | U  |                     |
| Tuesday April 06 2010               |             |                 |           |          |                 |                      |    | Dogo 6 of 1         |

Tuesday, April 06, 2010 Page 6 of 15

## Analysis Method EPA 624

Xylenes, Total 1330-20-7 ND 1.5 0.90 ug/l **U** 

Tuesday, April 06, 2010 Page 7 of 15

| Sample Name                    | Trip Blanks |                 | Matrix Type: Water |          |                 | Validation Level: IV |                         |                     |
|--------------------------------|-------------|-----------------|--------------------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name:               | ITB0784-02  | Sam             | ple Date:          | 2/5/2010 | 1:40:00 PM      |                      |                         |                     |
| Analyte                        | CAS No      | Result<br>Value | RL                 | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| 1,1,1-Trichloroethane          | 71-55-6     | ND              | 0.50               | 0.30     | ug/l            |                      | U                       |                     |
| ,1,2,2-Tetrachloroethane       | 79-34-5     | ND              | 0.50               | 0.30     | ug/l            |                      | U                       |                     |
| 1,1,2-Trichloroethane          | 79-00-5     | ND              | 0.50               | 0.30     | ug/l            |                      | U                       |                     |
| ,1-Dichloroethane              | 75-34-3     | ND              | 0.50               | 0.40     | ug/l            |                      | U                       |                     |
| ,1-Dichloroethene              | 75-35-4     | ND              | 0.50               | 0.42     | ug/l            |                      | U                       |                     |
| ,2-Dichlorobenzene             | 95-50-1     | ND              | 0.50               | 0.32     | ug/l            |                      | U                       |                     |
| ,2-Dichloroethane              | 107-06-2    | ND              | 0.50               | 0.28     | ug/l            |                      | U                       |                     |
| ,2-Dichloropropane             | 78-87-5     | ND              | 0.50               | 0.35     | ug/l            |                      | U                       |                     |
| ,3-Dichlorobenzene             | 541-73-1    | ND              | 0.50               | 0.35     | ug/l            |                      | U                       |                     |
| ,4-Dichlorobenzene             | 106-46-7    | ND              | 0.50               | 0.37     | ug/l            |                      | U                       |                     |
| 2-Chloroethyl vinyl ether      | 110-75-8    | ND              | 5.0                | 1.8      | ug/l            |                      | UJ                      | С                   |
| Acrolein                       | 107-02-8    | ND              | 5.0                | 4.0      | ug/l            |                      | R                       | R                   |
| Acrylonitrile                  | 107-13-1    | ND              | 2.0                | 1.2      | ug/l            |                      | U                       |                     |
| Benzene                        | 71-43-2     | ND              | 0.50               | 0.28     | ug/l            |                      | U                       |                     |
| Bromodichloromethane           | 75-27-4     | ND              | 0.50               | 0.30     | ug/l            |                      | U                       |                     |
| Bromoform                      | 75-25-2     | ND              | 0.50               | 0.40     | ug/l            |                      | UJ                      | С                   |
| Bromomethane                   | 74-83-9     | ND              | 1.0                | 0.42     | ug/l            |                      | U                       |                     |
| Carbon tetrachloride           | 56-23-5     | ND              | 0.50               | 0.28     | ug/l            | C, L                 | UJ                      | С                   |
| Chlorobenzene                  | 108-90-7    | ND              | 0.50               | 0.36     | ug/l            |                      | U                       |                     |
| Chloroethane                   | 75-00-3     | ND              | 1.0                | 0.40     | ug/l            |                      | U                       |                     |
| Chloroform                     | 67-66-3     | ND              | 0.50               | 0.33     | ug/l            |                      | U                       |                     |
| Chloromethane                  | 74-87-3     | ND              | 0.50               | 0.40     | ug/l            |                      | U                       |                     |
| ris-1,2-Dichloroethene         | 156-59-2    | ND              | 0.50               | 0.32     | ug/l            |                      | U                       |                     |
| eis-1,3-Dichloropropene        | 10061-01-5  | ND              | 0.50               | 0.22     | ug/l            |                      | U                       |                     |
| Dibromochloromethane           | 124-48-1    | ND              | 0.50               | 0.40     | ug/l            |                      | U                       |                     |
| Ethylbenzene                   | 100-41-4    | ND              | 0.50               | 0.25     | ug/l            |                      | U                       |                     |
| Methylene chloride             | 75-09-2     | ND              | 1.0                | 0.95     | ug/l            |                      | U                       |                     |
| Tetrachloroethene              | 127-18-4    | ND              | 0.50               | 0.32     | ug/l            |                      | U                       |                     |
| Toluene                        | 108-88-3    | ND              | 0.50               | 0.36     | ug/l            |                      | U                       |                     |
| rans-1,2-Dichloroethene        | 156-60-5    | ND              | 0.50               | 0.30     | ug/l            |                      | U                       |                     |
| rans-1,3-Dichloropropene       | 10061-02-6  | ND              | 0.50               | 0.32     | ug/l            |                      | U                       |                     |
| Trichloroethene                | 79-01-6     | ND              | 0.50               | 0.26     | ug/l            |                      | U                       |                     |
| Trichlorofluoromethane         | 75-69-4     | ND              | 0.50               | 0.34     | ug/l            |                      | U                       |                     |
| Frichlorotrifluoroethane (Fred | on 76-13-1  | ND              | 5.0                | 0.50     | ug/l            |                      | U                       |                     |
| Vinyl chloride                 | 75-01-4     | ND              | 0.50               | 0.40     | ug/l            |                      | U                       |                     |
| F                              |             |                 |                    |          | -               |                      |                         |                     |

Tuesday, April 06, 2010 Page 8 of 15

## Analysis Method EPA 624

Xylenes, Total 1330-20-7 ND 1.5 0.90 ug/l **U** 

Tuesday, April 06, 2010 Page 9 of 15

| Sample Name                       | Outfall 010Co   | omp             | Matri     | x Type:  | Water           | Validation Level: IV |                         |                     |
|-----------------------------------|-----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name:                  | ITB0886-01      |                 | ple Date: | 2/6/2010 | 11:15:00 AM     | I                    |                         |                     |
| Analyte                           | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| 1,2,4-Trichlorobenzene            | 120-82-1        | ND              | 9.4       | 2.4      | ug/l            |                      | U                       |                     |
| 1,2-Dichlorobenzene               | 95-50-1         | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| 1,2-<br>Diphenylhydrazine/Azobenz | 103-33-3<br>ene | ND              | 19        | 2.4      | ug/l            |                      | U                       |                     |
| 1,3-Dichlorobenzene               | 541-73-1        | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| 1,4-Dichlorobenzene               | 106-46-7        | ND              | 9.4       | 2.4      | ug/l            |                      | U                       |                     |
| 2,4,5-Trichlorophenol             | 95-95-4         | ND              | 19        | 2.8      | ug/l            |                      | U                       |                     |
| 2,4,6-Trichlorophenol             | 88-06-2         | ND              | 19        | 4.2      | ug/l            |                      | U                       |                     |
| 2,4-Dichlorophenol                | 120-83-2        | ND              | 9.4       | 3.3      | ug/l            |                      | U                       |                     |
| 2,4-Dimethylphenol                | 105-67-9        | ND              | 19        | 3.3      | ug/l            |                      | U                       |                     |
| 2,4-Dinitrophenol                 | 51-28-5         | ND              | 19        | 7.5      | ug/l            |                      | UJ                      | С                   |
| 2,4-Dinitrotoluene                | 121-14-2        | ND              | 9.4       | 3.3      | ug/l            |                      | U                       |                     |
| 2,6-Dinitrotoluene                | 606-20-2        | ND              | 9.4       | 1.9      | ug/l            |                      | U                       |                     |
| 2-Chloronaphthalene               | 91-58-7         | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| 2-Chlorophenol                    | 95-57-8         | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| 2-Methylnaphthalene               | 91-57-6         | ND              | 9.4       | 1.9      | ug/l            |                      | U                       |                     |
| 2-Methylphenol                    | 95-48-7         | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| 2-Nitroaniline                    | 88-74-4         | ND              | 19        | 1.9      | ug/l            |                      | U                       |                     |
| 2-Nitrophenol                     | 88-75-5         | ND              | 9.4       | 3.3      | ug/l            |                      | U                       |                     |
| 3,3'-Dichlorobenzidine            | 91-94-1         | ND              | 19        | 7.1      | ug/l            |                      | U                       |                     |
| 3-Nitroaniline                    | 99-09-2         | ND              | 19        | 2.8      | ug/l            |                      | U                       |                     |
| 4,6-Dinitro-2-methylphenol        | 534-52-1        | ND              | 19        | 3.8      | ug/l            |                      | U                       |                     |
| 4-Bromophenyl phenyl ether        | 101-55-3        | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| 4-Chloro-3-methylphenol           | 59-50-7         | ND              | 19        | 2.4      | ug/l            |                      | U                       |                     |
| 4-Chloroaniline                   | 106-47-8        | ND              | 9.4       | 1.9      | ug/l            |                      | U                       |                     |
| 4-Chlorophenyl phenyl ether       | 7005-72-3       | ND              | 9.4       | 2.4      | ug/l            |                      | U                       |                     |
| 4-Methylphenol                    | 106-44-5        | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| 4-Nitroaniline                    | 100-01-6        | ND              | 19        | 3.8      | ug/l            |                      | U                       |                     |
| 4-Nitrophenol                     | 100-02-7        | ND              | 19        | 5.2      | ug/l            |                      | U                       |                     |
| Acenaphthene                      | 83-32-9         | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| Acenaphthylene                    | 208-96-8        | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| Aniline                           | 62-53-3         | ND              | 9.4       | 3.3      | ug/l            |                      | U                       |                     |
| Anthracene                        | 120-12-7        | ND              | 9.4       | 2.4      | ug/l            |                      | U                       |                     |
| Benzidine                         | 92-87-5         | ND              | 19        | 9.4      | ug/l            |                      | UJ                      | C, *III             |
| Benzo(a)anthracene                | 56-55-3         | ND              | 9.4       | 2.4      | ug/l            |                      | U                       |                     |
| Benzo(a)pyrene                    | 50-32-8         | ND              | 9.4       | 2.8      | ug/l            |                      | U                       |                     |
| Tuesday, April 06, 2010           |                 |                 |           |          |                 |                      |                         | Page 10 of 15       |

## Analysis Method EPA 625

| Benzo(b)fluoranthene        | 205-99-2 | ND | 9.4 | 1.9 | ug/l |      | U  |      |
|-----------------------------|----------|----|-----|-----|------|------|----|------|
| Benzo(g,h,i)perylene        | 191-24-2 | ND | 9.4 | 3.8 | ug/l |      | U  |      |
| Benzo(k)fluoranthene        | 207-08-9 | ND | 9.4 | 2.4 | ug/l |      | U  |      |
| Benzoic acid                | 65-85-0  | ND | 19  | 9.4 | ug/l |      | UJ | *III |
| Benzyl alcohol              | 100-51-6 | ND | 19  | 3.3 | ug/l | С    | UJ | C    |
| Bis(2-chloroethoxy)methane  | 111-91-1 | ND | 9.4 | 2.8 | ug/l |      | U  |      |
| Bis(2-chloroethyl)ether     | 111-44-4 | ND | 9.4 | 2.8 | ug/l |      | U  |      |
| Bis(2-chloroisopropyl)ether | 108-60-1 | ND | 9.4 | 2.4 | ug/l |      | U  |      |
| Bis(2-ethylhexyl)phthalate  | 117-81-7 | ND | 47  | 3.8 | ug/l |      | U  |      |
| Butyl benzyl phthalate      | 85-68-7  | ND | 19  | 3.8 | ug/l |      | U  |      |
| Chrysene                    | 218-01-9 | ND | 9.4 | 2.4 | ug/l |      | U  |      |
| Dibenz(a,h)anthracene       | 53-70-3  | ND | 19  | 2.8 | ug/l |      | U  |      |
| Dibenzofuran                | 132-64-9 | ND | 9.4 | 3.8 | ug/l |      | U  |      |
| Diethyl phthalate           | 84-66-2  | ND | 9.4 | 3.3 | ug/l |      | U  |      |
| Dimethyl phthalate          | 131-11-3 | ND | 9.4 | 2.4 | ug/l |      | U  |      |
| Di-n-butyl phthalate        | 84-74-2  | ND | 19  | 2.8 | ug/l |      | U  |      |
| Di-n-octyl phthalate        | 117-84-0 | ND | 19  | 3.3 | ug/l |      | U  |      |
| Fluoranthene                | 206-44-0 | ND | 9.4 | 2.8 | ug/l |      | U  |      |
| Fluorene                    | 86-73-7  | ND | 9.4 | 2.8 | ug/l |      | U  |      |
| Hexachlorobenzene           | 118-74-1 | ND | 9.4 | 2.8 | ug/l |      | U  |      |
| Hexachlorobutadiene         | 87-68-3  | ND | 9.4 | 3.8 | ug/l |      | U  |      |
| Hexachlorocyclopentadiene   | 77-47-4  | ND | 19  | 4.7 | ug/l | C, L | UJ | C    |
| Hexachloroethane            | 67-72-1  | ND | 9.4 | 3.3 | ug/l |      | U  |      |
| Indeno(1,2,3-cd)pyrene      | 193-39-5 | ND | 19  | 3.3 | ug/l |      | U  |      |
| Isophorone                  | 78-59-1  | ND | 9.4 | 2.8 | ug/l |      | U  |      |
| Naphthalene                 | 91-20-3  | ND | 9.4 | 2.8 | ug/l |      | U  |      |
| Nitrobenzene                | 98-95-3  | ND | 19  | 2.8 | ug/l |      | U  |      |
| N-Nitrosodimethylamine      | 62-75-9  | ND | 19  | 2.4 | ug/l |      | U  |      |
| N-Nitroso-di-n-propylamine  | 621-64-7 | ND | 9.4 | 3.3 | ug/l |      | U  |      |
| N-Nitrosodiphenylamine      | 86-30-6  | ND | 9.4 | 1.9 | ug/l |      | UJ | С    |
| Pentachlorophenol           | 87-86-5  | ND | 19  | 3.3 | ug/l |      | UJ | С    |
| Phenanthrene                | 85-01-8  | ND | 9.4 | 3.3 | ug/l |      | U  |      |
| Phenol                      | 108-95-2 | ND | 9.4 | 1.9 | ug/l |      | U  |      |
| Pyrene                      | 129-00-0 | ND | 9.4 | 3.8 | ug/l |      | U  |      |

Tuesday, April 06, 2010 Page 11 of 15

# Analysis Method EPA 900.0 MOD

|                                                                                             | Outfall 010Co                                                             | mp                            | Matri                             | x Type:                   | WATER                        | Validation Level: IV  |                                    |                          |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------|-----------------------------------|---------------------------|------------------------------|-----------------------|------------------------------------|--------------------------|--|
| Lab Sample Name:                                                                            | ITB0886-01                                                                | Sam                           | ple Date:                         | 2/6/2010                  | 11:15:00 AM                  |                       |                                    |                          |  |
| Analyte                                                                                     | CAS No                                                                    | Result<br>Value               | RL                                | MDL                       | Result<br>Units              | Lab<br>Qualifier      | Validation<br>Qualifier            | Validation<br>Notes      |  |
| Gross Alpha                                                                                 | 12587-46-1                                                                | 2.7                           | 3                                 | 1.4                       | pCi/L                        | Jb                    | J                                  | H, C, DNQ                |  |
| Gross Beta                                                                                  | 12587-47-2                                                                | 5.8                           | 4                                 | 1                         | pCi/L                        |                       | J                                  | Н                        |  |
| Analysis Metho                                                                              | od EPA 9                                                                  | 901.1 N                       | 10D                               |                           |                              |                       |                                    |                          |  |
| Sample Name                                                                                 | Outfall 010Co                                                             | mp                            | Matri                             | x Type:                   | WATER                        | V                     | alidation Le                       | vel: IV                  |  |
| Lab Sample Name:                                                                            | ITB0886-01                                                                | Sam                           | ple Date:                         | 2/6/2010                  | 11:15:00 AM                  |                       |                                    |                          |  |
| Analyte                                                                                     | CAS No                                                                    | Result<br>Value               | RL                                | MDL                       | Result<br>Units              | Lab<br>Qualifier      | Validation<br>Qualifier            | Validation<br>Notes      |  |
| Cesium 137                                                                                  | 10045-97-3                                                                | 4.3                           | 20                                | 11                        | pCi/L                        | U                     | U                                  |                          |  |
| Potassium 40                                                                                | 13966-00-2                                                                | -60                           | 0                                 | 250                       | pCi/L                        | U                     | U                                  |                          |  |
| Analysis Metho                                                                              | od EPA 9                                                                  | 903.0 N                       | 10D                               |                           |                              |                       |                                    |                          |  |
| Sample Name                                                                                 | Outfall 010Co                                                             | mp                            | Matri                             | x Type:                   | WATER                        | 7                     | alidation Le                       | vel: IV                  |  |
| Lab Sample Name:                                                                            | ITB0886-01                                                                | Sam                           | ple Date:                         | 2/6/2010                  | 11:15:00 AM                  |                       |                                    |                          |  |
| Analyte                                                                                     | CAS No                                                                    | Result<br>Value               | RL                                | MDL                       | Result<br>Units              | Lab<br>Qualifier      | Validation<br>Qualifier            | Validation<br>Notes      |  |
| Radium (226)                                                                                | 13982-63-3                                                                | 0.2                           | 1                                 | 0.25                      | pCi/L                        | U                     | UJ                                 | С                        |  |
| Nauruiii (220)                                                                              |                                                                           |                               |                                   |                           |                              |                       |                                    |                          |  |
| Analysis Metho                                                                              | od EPA 9                                                                  | 904 MC                        | )D                                |                           |                              |                       |                                    |                          |  |
|                                                                                             | Outfall 010Co                                                             |                               |                                   | х Туре:                   | WATER                        | <b>\</b>              | alidation Le                       | vel: IV                  |  |
| Analysis Metho                                                                              |                                                                           | mp                            | Matri                             |                           | WATER<br>11:15:00 AM         |                       | Validation Le                      | vel: IV                  |  |
| Analysis Metho<br>Sample Name<br>Lab Sample Name:                                           | Outfall 010Co                                                             | mp                            | Matri                             |                           |                              |                       | Validation Le Validation Qualifier |                          |  |
| Analysis Metho Sample Name Lab Sample Name: Analyte                                         | Outfall 010Co                                                             | mp<br>Sam<br>Result           | Matri<br>ple Date:                | 2/6/2010                  | 11:15:00 AM<br><b>Result</b> | Lab                   | Validation                         | Validation               |  |
| Analysis Metho<br>Sample Name<br>Lab Sample Name:<br>Analyte                                | Outfall 010Co ITB0886-01RE1  CAS No  15262-20-1                           | Sam<br>Sam<br>Result<br>Value | Matri ple Date: RL                | 2/6/2010<br>MDL           | 11:15:00 AM  Result Units    | Lab<br>Qualifier      | Validation<br>Qualifier            | Validation<br>Notes      |  |
| Analysis Metho Sample Name Lab Sample Name: Analyte Radium 228                              | Outfall 010Co ITB0886-01RE1  CAS No  15262-20-1                           | Sam Result Value  0.04        | Matri ple Date: RL  1             | 2/6/2010<br>MDL           | 11:15:00 AM  Result Units    | Lab<br>Qualifier      | Validation<br>Qualifier            | Validation<br>Notes<br>H |  |
| Analysis Methor Sample Name Lab Sample Name: Analyte Radium 228 Analysis Methor             | Outfall 010Co ITB0886-01RE1  CAS No  15262-20-1  od EPA 9                 | Result Value 0.04 005 MC      | Matri ple Date: RL  1             | 2/6/2010 MDL 0.41 x Type: | Result<br>Units<br>pCi/L     | Lab<br>Qualifier<br>U | Validation<br>Qualifier<br>R       | Validation<br>Notes<br>H |  |
| Analysis Methor Sample Name Lab Sample Name: Analyte Radium 228 Analysis Methor Sample Name | Outfall 010Co  ITB0886-01RE1  CAS No  15262-20-1  od EPA 9  Outfall 010Co | Result Value 0.04 005 MC      | Matri ple Date:  RL  1  DD  Matri | 2/6/2010 MDL 0.41 x Type: | Result Units  pCi/L  WATER   | Lab<br>Qualifier<br>U | Validation<br>Qualifier<br>R       | Validation<br>Notes<br>H |  |

Tuesday, April 06, 2010 Page 12 of 15

### Analysis Method EPA 906.0 MOD

Sample Name Matrix Type: WATER Validation Level: IV Outfall 010Comp ITB0886-01 **Sample Date:** 2/6/2010 11:15:00 AM Lab Sample Name: Analyte CAS No Result RL**MDL** Result Lab Validation Validation Value Units Qualifier Qualifier Notes Tritium 10028-17-8 1060 500 90 pCi/L

Analysis Method EPA-5 1613B

Sample Name Outfall 010Comp Matrix Type: WATER Validation Level: IV

Lab Sample Name: ITB0886-01 Sample Date: 2/6/2010 11:15:00 AM

| Analyte             | CAS No     | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
|---------------------|------------|-----------------|-----------|-----------|-----------------|------------------|-------------------------|---------------------|
| 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | 0.00014         | 0.00005   | 0.0000018 | ug/L            | Ba               |                         |                     |
| 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | 0.000038        | 0.00005   | 0.0000008 | ug/L            | J, Ba            | J                       | DNQ                 |
| 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | ND              | 0.000008  | 0.0000015 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,4,7,8-HxCDD   | 39227-28-6 | 0.000004        | 0.00005   | 0.0000004 | ug/L            | J                | J                       | DNQ                 |
| 1,2,3,4,7,8-HxCDF   | 70648-26-9 | 0.000005        | 0.00005   | 0.0000004 | ug/L            | J                | J                       | DNQ                 |
| 1,2,3,6,7,8-HxCDD   | 57653-85-7 | 0.000006        | 0.00005   | 0.0000003 | ug/L            | J                | J                       | DNQ                 |
| 1,2,3,6,7,8-HxCDF   | 57117-44-9 | ND              | 0.0000036 | 0.0000004 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,7,8,9-HxCDD   | 19408-74-3 | 0.000004        | 0.00005   | 0.0000003 | ug/L            | J                | J                       | DNQ                 |
| 1,2,3,7,8,9-HxCDF   | 72918-21-9 | ND              | 0.000003  | 0.0000005 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,7,8-PeCDD     | 40321-76-4 | ND              | 0.000003  | 0.0000006 | ug/L            | J, Q             | UJ                      | *III                |
| 1,2,3,7,8-PeCDF     | 57117-41-6 | 0.000003        | 0.00005   | 0.0000004 | ug/L            | J                | J                       | DNQ                 |
| 2,3,4,6,7,8-HxCDF   | 60851-34-5 | 0.000003        | 0.00005   | 0.0000004 | ug/L            | J                | J                       | DNQ                 |
| 2,3,4,7,8-PeCDF     | 57117-31-4 | 0.000003        | 0.00005   | 0.0000005 | ug/L            | J                | J                       | DNQ                 |
| 2,3,7,8-TCDD        | 1746-01-6  | ND              | 0.0000011 | 0.0000004 | ug/L            | J, Q             | UJ                      | *III                |
| 2,3,7,8-TCDF        | 51207-31-9 | ND              | 0.00001   | 0.000002  | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDF        | 51207-31-9 | 0.000001        | 0.00001   | 0.0000003 | ug/L            | J                | R                       | D                   |
| OCDD                | 3268-87-9  | 0.0014          | 0.0001    | 0.0000029 | ug/L            | Ba               |                         |                     |
| OCDF                | 39001-02-0 | 0.00038         | 0.0001    | 0.0000019 | ug/L            | Ba               |                         |                     |
| Total HpCDD         | 37871-00-4 | 0.00026         | 0.00005   | 0.0000018 | ug/L            | Ba               |                         |                     |
| Total HpCDF         | 38998-75-3 | 0.00023         | 0.00005   | 0.0000008 | ug/L            | J, Q, Ba         | J                       | *III                |
| Total HxCDD         | 34465-46-8 | 0.000025        | 0.00005   | 0.0000003 | ug/L            | J                | J                       | DNQ, *III           |
| Total HxCDF         | 55684-94-1 | 0.000035        | 0.000035  | 0.0000004 | ug/L            | J, Q             | J                       | DNQ, *III           |
| Total PeCDD         | 36088-22-9 | ND              | 0.000003  | 0.0000006 | ug/L            | J, Q             | UJ                      | *III                |
| Total PeCDF         | 30402-15-4 | 0.000006        | 0.00005   | 0.0000004 | ug/L            | J                | J                       | DNQ                 |
| Total TCDD          | 41903-57-5 | ND              | 0.0000011 | 0.0000004 | ug/L            | J, Q             | UJ                      | *III                |
| Total TCDF          | 55722-27-5 | ND              | 0.00001   | 0.0000003 | ug/L            | J                | U                       | \$                  |

Tuesday, April 06, 2010 Page 13 of 15

## Analysis Method SM 2540D

| Sample Name            | Outfall 010Comp Matrix Type: Water |                           |           | Water                | <b>Validation Level:</b> IV |                      |                         |                     |  |
|------------------------|------------------------------------|---------------------------|-----------|----------------------|-----------------------------|----------------------|-------------------------|---------------------|--|
| Lab Sample Name:       | ITB0886-01                         | Sam                       | ple Date: | 2/6/2010             | 11:15:00 AM                 | M                    |                         |                     |  |
| Analyte                | CAS No                             | Result<br>Value           | RL        | MDL                  | Result<br>Units             | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Total Suspended Solids | TSS                                | 73                        | 10        | 1.0                  | mg/l                        |                      |                         |                     |  |
| Analysis Metho         | od $SM 4.$                         | 500-F-0                   | C         |                      |                             |                      |                         |                     |  |
| Sample Name            | Outfall 010Co                      | omp                       | Matri     | ix Type: Water       |                             | Validation Level: IV |                         |                     |  |
| Lab Sample Name:       | ITB0886-01                         | Sam                       | ple Date: | 2/6/2010             | 11:15:00 AM                 |                      |                         |                     |  |
| Analyte                | CAS No                             | Result<br>Value           | RL        | MDL                  | Result<br>Units             | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Fluoride               | 16984-48-8                         | 0.20                      | 0.10      | 0.020                | mg/l                        | В                    |                         |                     |  |
| Analysis Metho         | od SM23                            | 240B                      |           |                      |                             |                      |                         |                     |  |
| Sample Name            | Outfall 010Co                      | Outfall 010Comp Matrix Ty |           |                      | Water                       | Validation Level: IV |                         |                     |  |
| Lab Sample Name:       | ITB0886-01                         | Sam                       | ple Date: | 2/6/2010 11:15:00 AM |                             |                      |                         |                     |  |
| Analyte                | CAS No                             | Result<br>Value           | RL        | MDL                  | Result<br>Units             | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Hardness as CaCO3      |                                    | 89                        | 0.33      | 0.17                 | mg/l                        |                      |                         |                     |  |
| Analysis Metho         | od SM23                            | 240B-D                    | iss       |                      |                             |                      |                         |                     |  |
| Sample Name            | Outfall 010Co                      | omp                       | Matri     | ix Type: Water       |                             | Validation Level: IV |                         |                     |  |
| Lab Sample Name:       | ITB0886-01                         | Sam                       | ple Date: | 2/6/2010             | 11:15:00 AM                 |                      |                         |                     |  |
| Analyte                | CAS No                             | Result<br>Value           | RL        | MDL                  | Result<br>Units             | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Hardness as CaCO3      |                                    | 72                        | 0.33      | 0.17                 | mg/l                        |                      |                         |                     |  |
| Analysis Metho         | od SM25                            | 40C                       |           |                      |                             |                      |                         |                     |  |
| Sample Name            | Outfall 010Co                      | Outfall 010Comp Matri     |           |                      | Water                       | V                    | Validation Le           | vel: IV             |  |
| Lab Sample Name:       | ITB0886-01                         | Sam                       | ple Date: | 2/6/2010             | 11:15:00 AM                 |                      |                         |                     |  |
| Analyte                | CAS No                             | Result<br>Value           | RL        | MDL                  | Result<br>Units             | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
|                        |                                    |                           |           |                      |                             |                      | A                       | 11000               |  |

Tuesday, April 06, 2010 Page 14 of 15

## Analysis Method SM4500CN-E

| Sample Name      | Outfall 010Comp Matri |                 |           | іх Туре: | Water           | Validation Level: IV |                         |                     |
|------------------|-----------------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name: | ITB0886-01            | Sam             | ple Date: | 2/6/2010 | 11:15:00 AM     |                      |                         |                     |
| Analyte          | CAS No                | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Total Cyanide    | 57-12-5               | ND              | 0.0050    | 0.0022   | mg/l            |                      | U                       |                     |

Tuesday, April 06, 2010 Page 15 of 15

