APPENDIX G

Section 36

Outfall 008 – March 25, 2010 Test America Analytical Laboratory Report THIS PAGE LEFT INTENTIONALLY BLANK

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 008

Sampled: 03/25/10-03/26/10 Received: 03/25/10 Issued: 04/22/10 17:25

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:	Samples were received intact, at 1°C, on ice and with chain of custody documentat	ion.				
HOLDING TIMES:	All samples were analyzed within prescribed holding times and/or in accordance w Sample Acceptance Policy unless otherwise noted in the report.	vith the TestAmerica				
PRESERVATION:	Samples requiring preservation were verified prior to sample analysis.					
QA/QC CRITERIA:	All analyses met method criteria, except as noted in the report with data qualifiers.					
COMMENTS:	Results that fall between the MDL and RL are 'J' flagged.					
SUBCONTRACTED:	Refer to the last page for specific subcontract laboratory information included in the	iis report.				
ADDITIONAL INFORMATION:						
LABORATORY I	D CLIENT ID	MATRIX				
ITC2505-01	Outfall 008	Water				

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

LABORATORY ID ITC2505-02 CLIENT ID Blank

Project ID: Routine Outfall 008

MATRIX Water

Reviewed By:

Debby Wilson

TestAmerica Irvine Debby Wilson For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

HEXANE EXTRACTABLE MATERIAL MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Result Factor Extracted Analyzed Qualifiers Limit Sample ID: ITC2505-01 (Outfall 008 - Water) Sampled: 03/25/10 Reporting Units: mg/l Hexane Extractable Material (Oil & 03/26/10 EPA 1664A 10C3331 1.3 4.8 ND 1 03/26/10 Grease)

TestAmerica Irvine Debby Wilson For Heather Clark Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC2505-01 (Outfall 00			Sample	ed: 03/25/1	10				
Reporting Units: ug/l									
Mercury	EPA 245.1	10C3350	0.10	0.20	ND	1	03/26/10	03/26/10	
Antimony	EPA 200.8	10C3384	0.30	2.0	0.48	1	03/26/10	03/27/10	Ja
Cadmium	EPA 200.8	10C3384	0.10	1.0	ND	1	03/26/10	03/27/10	
Copper	EPA 200.8	10C3384	0.50	2.0	6.0	1	03/26/10	03/27/10	
Lead	EPA 200.8	10C3384	0.20	1.0	1.5	1	03/26/10	03/27/10	
Selenium	EPA 200.8	10C3384	0.50	2.0	1.3	1	03/26/10	03/27/10	Ja
Thallium	EPA 200.8	10C3384	0.20	1.0	ND	1	03/26/10	03/27/10	
Zinc	EPA 200.8	10C3384	5.0	20	17	1	03/26/10	03/27/10	Ja

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: ITC2505-01 (Outfall 008 - Water)				Sampled: 03/25/10								
Reporting Units: ug/l												
Mercury	EPA 245.1-Diss	10C3351	0.10	0.20	0.16	1	03/26/10	03/26/10	Ja			
Antimony	EPA 200.8-Diss	10C3392	0.30	2.0	ND	1	03/26/10	03/29/10				
Cadmium	EPA 200.8-Diss	10C3392	0.10	1.0	ND	1	03/26/10	03/29/10				
Copper	EPA 200.8-Diss	10C3392	0.50	2.0	1.1	1	03/26/10	03/29/10	Ja			
Lead	EPA 200.8-Diss	10C3392	0.20	1.0	0.21	1	03/26/10	03/29/10	Ja			
Selenium	EPA 200.8-Diss	10C3392	0.50	2.0	1.3	1	03/26/10	03/29/10	Ja			
Thallium	EPA 200.8-Diss	10C3392	0.20	1.0	ND	1	03/26/10	03/29/10				
Zinc	EPA 200.8-Diss	10C3392	5.0	20	ND	1	03/26/10	03/29/10				

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITC2505

INORGANICS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITC2505-01 (Outfall 008 - Water)				Sampled: 03/25/10						
Reporting Units: mg/l										
Ammonia-N (Distilled)	SM4500NH3-C	10C3223	0.50	0.50	ND	1	03/25/10	03/25/10		
Chloride	EPA 300.0	10C3196	1.2	2.5	83	5	03/25/10	03/25/10		
Nitrate-N	EPA 300.0	10C3196	0.060	0.11	0.93	1	03/25/10	03/25/10		
Nitrite-N	EPA 300.0	10C3196	0.090	0.15	ND	1	03/25/10	03/25/10		
Nitrate/Nitrite-N	EPA 300.0	10C3196	0.15	0.26	0.93	1	03/25/10	03/25/10		
Sulfate	EPA 300.0	10C3196	1.0	2.5	65	5	03/25/10	03/25/10		
Total Dissolved Solids	SM2540C	10C3266	1.0	10	330	1	03/26/10	03/26/10		
Sample ID: ITC2505-01 (Outfall 008 - W Reporting Units: ug/l	Vater)				Sample	ed: 03/25/1	10			
Perchlorate	EPA 314.0	10C3429	0.90	4.0	ND	1	03/27/10	03/27/10		

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

EPA-5 1613B

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

		1	21 A-3 10	150							
			MDL	Reporting	Sample	Dilution	Date	Date	Data		
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers		
Sample ID: ITC2505-01 (Outfall 008	- Water)		Sampled: 03/25/10								
Reporting Units: ug/L											
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	88281	0.0000005	0.00005	0.000012	0.99	03/29/10	03/30/10	J, B		
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	88281	0.000003	5 0.00005	0.0000087	0.99	03/29/10	03/30/10	J, B		
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	88281	0.00000057	7 0.00005	0.00001	0.99	03/29/10	03/30/10	J		
1,2,3,4,7,8-HxCDD	EPA-5 1613B	88281	0.0000003	0.00005	0.000006	0.99	03/29/10	03/30/10	J, B		
1,2,3,4,7,8-HxCDF	EPA-5 1613B	88281			0.0000048		03/29/10	03/30/10	J, B		
1,2,3,6,7,8-HxCDD	EPA-5 1613B	88281			0.0000072		03/29/10	03/30/10	J, B		
1,2,3,6,7,8-HxCDF	EPA-5 1613B	88281			0.0000054		03/29/10	03/30/10	J, Q, B		
1,2,3,7,8,9-HxCDD	EPA-5 1613B	88281			0.0000062		03/29/10	03/30/10	J, B		
1,2,3,7,8,9-HxCDF	EPA-5 1613B	88281	0.0000003		0.0000071		03/29/10	03/30/10	J, B		
1,2,3,7,8-PeCDD	EPA-5 1613B	88281			0.0000052		03/29/10	03/30/10	J, Q, B		
1,2,3,7,8-PeCDF	EPA-5 1613B	88281			0.0000046	0.99	03/29/10	03/30/10	J		
2,3,4,6,7,8-HxCDF	EPA-5 1613B	88281			0.0000079	0.99	03/29/10	03/30/10	J, B		
2,3,4,7,8-PeCDF	EPA-5 1613B	88281	0.00000059	9 0.00005	0.0000044	0.99	03/29/10	03/30/10	J		
2,3,7,8-TCDD	EPA-5 1613B	88281	0.0000038	3 0.00001	ND	0.99	03/29/10	03/30/10			
2,3,7,8-TCDF	EPA-5 1613B	88281	0.00000039	0.00001	ND	0.99	03/29/10	03/30/10			
OCDD	EPA-5 1613B	88281	0.0000007	7 0.0001	0.000038	0.99	03/29/10	03/30/10	J, B		
OCDF	EPA-5 1613B	88281	0.00000062	2 0.0001	0.000022	0.99	03/29/10	03/30/10	J, B		
Total HpCDD	EPA-5 1613B	88281	0.00000059	0.00005	0.000016	0.99	03/29/10	03/30/10	J, B		
Total HpCDF	EPA-5 1613B	88281	0.000003	5 0.00005	0.000019	0.99	03/29/10	03/30/10	J, B		
Total HxCDD	EPA-5 1613B	88281	0.0000002	5 0.00005	0.00002	0.99	03/29/10	03/30/10	J, Q, B		
Total HxCDF	EPA-5 1613B	88281	0.0000002	5 0.00005	0.000026	0.99	03/29/10	03/30/10	J, Q, B		
Total PeCDD	EPA-5 1613B	88281	0.00000072	2 0.00005	0.0000078	0.99	03/29/10	03/30/10	J, Q, B		
Total PeCDF	EPA-5 1613B	88281	0.0000001	0.00005	0.0000089	0.99	03/29/10	03/30/10	J		
Total TCDD	EPA-5 1613B	88281	0.0000001	5 0.00001	ND	0.99	03/29/10	03/30/10			
Total TCDF	EPA-5 1613B	88281	0.0000001	5 0.00001	ND	0.99	03/29/10	03/30/10			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	(23-140%)				70 %						
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF ((28-143%)				65 %						
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF ((26-138%)				63 %						
Surrogate: 13C-1,2,3,4,7,8-HxCDD (3.	2-141%)				60~%						
Surrogate: 13C-1,2,3,4,7,8-HxCDF (20	6-152%)				60~%						
Surrogate: 13C-1,2,3,6,7,8-HxCDD (2)	8-130%)				57 %						
Surrogate: 13C-1,2,3,6,7,8-HxCDF (20	5-123%)				55 %						
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29	9-147%)				57 %						
Surrogate: 13C-1,2,3,7,8-PeCDD (25-	181%)				50 %						
Surrogate: 13C-1,2,3,7,8-PeCDF (24-1	185%)				59 %						
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28	8-136%)				58 %						
Surrogate: 13C-2,3,4,7,8-PeCDF (21-	178%)				57%						
Surrogate: 13C-2,3,7,8-TCDD (25-164	1%)				54 %						
Surrogate: 13C-2,3,7,8-TCDF (24-169	%)				54 %						
Surrogate: 13C-OCDD (17-157%)					79 %						
Surrogate: 37Cl4-2,3,7,8-TCDD (35-1)	97%)				91 %						

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITC2505

Project ID: Routine Outfall 008

ASTM 5174-91									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC2505-01 (Outfall 008 - Water)					Sample	ed: 03/25/1	10		
Reporting Units: pCi/L									
Total Uranium	ASTM 5174-91	98114	0.21	0.68	1.61	1	04/08/10	04/13/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

ASTM 5174-91									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC2505-02 (Blank - Water)					Sample	ed: 03/26/1	10		
Reporting Units: pCi/L									
Total Uranium	ASTM 5174-91	98114	0.21	0.677	0.146	1	04/08/10	04/13/10	U

TestAmerica Irvine Debby Wilson For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

EPA 900.0 MOD									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC2505-01 (Outfall 008 - Water)					Sample	ed: 03/25/	10		
Reporting Units: pCi/L									
Gross Alpha	EPA 900.0 MOD	92098	2.5	3	2.5	1	04/02/10	04/13/10	U
Gross Beta	EPA 900.0 MOD	92098	1.3	4	4.4	1	04/02/10	04/13/10	
Sample ID: ITC2505-02 (Blank - Water)					Sample	ed: 03/26/	10		
Reporting Units: pCi/L									
Gross Alpha	EPA 900.0 MOD	92098	0.84	3	-0.02	1	04/02/10	04/13/10	U
Gross Beta	EPA 900.0 MOD	92098	0.95	4	-0.67	1	04/02/10	04/13/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

EPA 901.1 MOD									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC2505-01 (Outfall 00				Sample	ed: 03/25/1	10			
Reporting Units: pCi/L									
Cesium 137	EPA 901.1 MOD	88399	12	20	1	1	03/29/10	04/18/10	U
Potassium 40	EPA 901.1 MOD	88399	220	NA	-90	1	03/29/10	04/18/10	U
Sample ID: ITC2505-02 (Blank - W	ater)				Sample	ed: 03/26/1	10		
Reporting Units: pCi/L									
Cesium 137	EPA 901.1 MOD	88399	13	20	ND	1	03/29/10	04/18/10	U
Potassium 40	EPA 901.1 MOD	88399	270	NA	-60	1	03/29/10	04/18/10	U

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Repu

Project ID: Routine Outfall 008

Sampled: 03/25/10-03/26/10 Received: 03/25/10

Report Number: ITC2505

EPA 903.0 MOD									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC2505-01 (Outfall 008 - Water)					Sample	ed: 03/25/	10		
Reporting Units: pCi/L Radium (226)	EPA 903.0 MOD	88229	0.17	1	0.2	1	03/29/10	04/20/10	Jb
Sample ID: ITC2505-02 (Blank - Water)				Sample	ed: 03/26/	10			
Reporting Units: pCi/L Radium (226)	EPA 903.0 MOD	88229	0.17	1	0.08	1	03/29/10	04/20/10	U

Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

EPA 904 MOD									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC2505-01 (Outfall 008 - Water) Reporting Units: pCi/L					Sample	ed: 03/25/1	10		
Radium 228	EPA 904 MOD	88230	0.49	1	0.07	1	03/29/10	04/20/10	U
Sample ID: ITC2505-02 (Blank - Water) Reporting Units: pCi/L					Sample	ed: 03/26/1	10		
Radium 228	EPA 904 MOD	88230	0.45	1	-0.02	1	03/29/10	04/20/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

EPA 905 MOD									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITC2505-01 (Outfall 008 - Water)					Sample	ed: 03/25/1	10		
Reporting Units: pCi/L Strontium 90	EPA 905 MOD	88231	0.52	3	0.12	1	03/29/10	04/06/10	U
Sample ID: ITC2505-02 (Blank - Water)				Sample	ed: 03/26/1	10			
Reporting Units: pCi/L Strontium 90	EPA 905 MOD	88231	0.58	3	0.18	1	03/29/10	04/06/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: ITC2505

EPA 906.0 MOD											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITC2505-01 (Outfall 008 -	Water)				Sample	ed: 03/25/	10				
Reporting Units: pCi/L Tritium	EPA 906.0 MOD	105058	190	500	-106	1	04/15/10	04/15/10	U		
Sample ID: ITC2505-02 (Blank - Wate	r)				Sample	ed: 03/26/	10				
Reporting Units: pCi/L Tritium	EPA 906.0 MOD	105058	200	500	1200	1	04/15/10	04/15/10			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 008 (ITC2505-01) - Water	r				
EPA 300.0	2	03/25/2010 09:50	03/25/2010 16:45	03/25/2010 16:45	03/25/2010 18:36

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C3331 Extracted: 03/26/10)										
Blank Analyzed: 03/26/2010 (10C3331-B Hexane Extractable Material (Oil & Grease)	SLK1) ND	5.0	1.4	mg/l							
LCS Analyzed: 03/26/2010 (10C3331-BS Hexane Extractable Material (Oil & Grease)	1) 20.6	5.0	1.4	mg/l	20.0		103	78-114			MNR1
LCS Dup Analyzed: 03/26/2010 (10C333 Hexane Extractable Material (Oil & Grease)	1-BSD1) 19.7	5.0	1.4	mg/l	20.0		98	78-114	4	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C3350 Extracted: 03/26/10	<u> </u>										
Blank Analyzed: 03/26/2010 (10C3350-B	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 03/26/2010 (10C3350-BS	1)										
Mercury	8.04	0.20	0.10	ug/l	8.00		100	85-115			
Matrix Spike Analyzed: 03/26/2010 (10C	3350-MS1)				Sou	rce: ITC	2510-01				
Mercury	7.52	0.20	0.10	ug/l	8.00	ND	94	70-130			
Matrix Spike Dup Analyzed: 03/26/2010	(10C3350-MS	SD1)			Sou	rce: ITC	2510-01				
Mercury	7.40	0.20	0.10	ug/l	8.00	ND	92	70-130	2	20	
Batch: 10C3384 Extracted: 03/26/10											
Blank Analyzed: 03/27/2010 (10C3384-B	-										
Antimony	ND	2.0	0.30	ug/l							
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
Thallium	ND	1.0	0.20	ug/l							
Zinc	ND	20	5.0	ug/l							
LCS Analyzed: 03/27/2010 (10C3384-BS	1)										
Antimony	79.3	2.0	0.30	ug/l	80.0		99	85-115			
Cadmium	81.4	1.0	0.10	ug/l	80.0		102	85-115			
Copper	77.1	2.0	0.50	ug/l	80.0		96	85-115			
Lead	78.5	1.0	0.20	ug/l	80.0		98	85-115			
Selenium	76.7	2.0	0.50	ug/l	80.0		96	85-115			
Thallium	77.9	1.0	0.20	ug/l	80.0		97	85-115			
Zinc	75.9	20	5.0	ug/l	80.0		95	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C3384 Extracted: 03/26/10	<u> </u>										
Matrix Spike Analyzed: 03/27/2010 (10C	3384-MS1)				Sou	rce: ITC	1867-01				
Antimony	77.1	2.0	0.30	ug/l	80.0	ND	96	70-130			
Cadmium	77.0	1.0	0.10	ug/l	80.0	ND	96	70-130			
Copper	74.4	2.0	0.50	ug/l	80.0	ND	93	70-130			
Lead	75.3	1.0	0.20	ug/l	80.0	ND	94	70-130			
Selenium	72.4	2.0	0.50	ug/l	80.0	ND	90	70-130			
Thallium	74.6	1.0	0.20	ug/l	80.0	ND	93	70-130			
Zinc	80.7	20	5.0	ug/l	80.0	5.35	94	70-130			
Matrix Spike Dup Analyzed: 03/27/2010	(10C3384-M	SD1)			Sou	rce: ITC	1867-01				
Antimony	76.6	2.0	0.30	ug/l	80.0	ND	96	70-130	0.6	20	
Cadmium	76.7	1.0	0.10	ug/l	80.0	ND	96	70-130	0.4	20	
Copper	73.9	2.0	0.50	ug/l	80.0	ND	92	70-130	0.7	20	
Lead	77.6	1.0	0.20	ug/l	80.0	ND	97	70-130	3	20	
Selenium	72.2	2.0	0.50	ug/l	80.0	ND	90	70-130	0.3	20	
Thallium	77.6	1.0	0.20	ug/l	80.0	ND	97	70-130	4	20	
Zinc	76.8	20	5.0	ug/l	80.0	5.35	89	70-130	5	20	

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C3351 Extracted: 03/26/10	<u>)</u>										
Disasta Americana da 02/20/2010 (10022251 D	1 1/2 1)										
Blank Analyzed: 03/26/2010 (10C3351-B Mercury	ND	0.20	0.10	ug/l							
-		0.20	0.10	ug/1							
LCS Analyzed: 03/26/2010 (10C3351-BS		0.20	0.10	/1	0.00		100	05 115			
Mercury	8.01	0.20	0.10	ug/l	8.00		100	85-115			
Matrix Spike Analyzed: 03/26/2010 (10C	3351-MS1)				Sou	rce: ITC	2269-01				
Mercury	8.09	0.20	0.10	ug/l	8.00	ND	101	70-130			
Matrix Spike Dup Analyzed: 03/26/2010	(10C3351-M	ISD1)			Sou	rce: ITC	2269-01				
Mercury	8.18	0.20	0.10	ug/l	8.00	ND	102	70-130	1	20	
Batch: 10C3392 Extracted: 03/26/10											
	<u></u>										
Blank Analyzed: 03/29/2010 (10C3392-B	LK1)										
Antimony	ND	2.0	0.30	ug/l							
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Selenium	ND	2.0	0.50	ug/l							
Thallium	ND	1.0	0.20	ug/l							
Zinc	ND	20	5.0	ug/l							
LCS Analyzed: 03/29/2010 (10C3392-BS	1)										
Antimony	83.2	2.0	0.30	ug/l	80.0		104	85-115			
Cadmium	83.1	1.0	0.10	ug/l	80.0		104	85-115			
Copper	86.2	2.0	0.50	ug/l	80.0		108	85-115			
Lead	87.2	1.0	0.20	ug/l	80.0		109	85-115			
Selenium	82.9	2.0	0.50	ug/l	80.0		104	85-115			
Thallium	86.9	1.0	0.20	ug/l	80.0		109	85-115			
Zinc	81.8	20	5.0	ug/l	80.0		102	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10C3392 Extracted: 03/26/10	<u>)</u>										
Matrix Spike Analyzed: 03/29/2010 (10C	3392-MS1)				Sou	rce: ITC2	2505-01				
Antimony	86.7	2.0	0.30	ug/l	80.0	ND	108	70-130			
Cadmium	84.4	1.0	0.10	ug/l	80.0	ND	106	70-130			
Copper	84.6	2.0	0.50	ug/l	80.0	1.05	104	70-130			
Lead	78.6	1.0	0.20	ug/l	80.0	0.206	98	70-130			
Selenium	83.4	2.0	0.50	ug/l	80.0	1.27	103	70-130			
Thallium	78.9	1.0	0.20	ug/l	80.0	ND	99	70-130			
Zinc	80.6	20	5.0	ug/l	80.0	ND	101	70-130			
Matrix Spike Dup Analyzed: 03/29/2010	(10C3392-M	SD1)			Sou	rce: ITC2	2505-01				
Antimony	89.6	2.0	0.30	ug/l	80.0	ND	112	70-130	3	20	
Cadmium	88.8	1.0	0.10	ug/l	80.0	ND	111	70-130	5	20	
Copper	87.5	2.0	0.50	ug/l	80.0	1.05	108	70-130	3	20	
Lead	79.4	1.0	0.20	ug/l	80.0	0.206	99	70-130	1	20	
Selenium	84.4	2.0	0.50	ug/l	80.0	1.27	104	70-130	1	20	
Thallium	79.8	1.0	0.20	ug/l	80.0	ND	100	70-130	1	20	
Zinc	84.2	20	5.0	ug/l	80.0	ND	105	70-130	4	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C3196 Extracted: 03/25/10											
Blank Analyzed: 03/25/2010 (10C3196-B)	L K1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 03/25/2010 (10C3196-BS)	l)										
Chloride	4.90	0.50	0.25	mg/l	5.00		98	90-110			
Nitrate-N	1.10	0.11	0.060	mg/l	1.13		98	90-110			
Nitrite-N	1.48	0.15	0.090	mg/l	1.52		98	90-110			
Sulfate	10.2	0.50	0.20	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 03/25/2010 (10C	3196-MS1)				Sou	rce: ITC2	2471-01				
Chloride	111	5.0	2.5	mg/l	50.0	63.1	95	80-120			
Nitrate-N	14.9	1.1	0.60	mg/l	11.3	3.71	99	80-120			
Nitrite-N	15.2	1.5	0.90	mg/l	15.2	ND	100	80-120			
Sulfate	306	5.0	2.0	mg/l	100	214	92	80-120			
Matrix Spike Analyzed: 03/25/2010 (10C	3196-MS2)				Sou	rce: ITC2	2519-08				
Chloride	117	25	12	mg/l	50.0	63.2	108	80-120			
Nitrate-N	15.7	5.5	3.0	mg/l	11.3	2.05	121	80-120			<i>M1</i>
Nitrite-N	17.5	7.5	4.5	mg/l	15.2	0.433	112	80-120			
Sulfate	263	25	10	mg/l	100	161	102	80-120			
Matrix Spike Dup Analyzed: 03/25/2010	(10C3196-M	SD1)			Sou	rce: ITC2	2471-01				
Chloride	107	5.0	2.5	mg/l	50.0	63.1	87	80-120	3	20	
Nitrate-N	14.3	1.1	0.60	mg/l	11.3	3.71	94	80-120	4	20	
Nitrite-N	14.3	1.5	0.90	mg/l	15.2	ND	94	80-120	6	20	
Sulfate	291	5.0	2.0	mg/l	100	214	78	80-120	5	20	M2

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C3223 Extracted: 03/25/10	_										
Blank Analyzed: 03/25/2010 (10C3223-B	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.50	mg/l							
LCS Analyzed: 03/25/2010 (10C3223-BS	1)										
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 03/25/2010 (10C	3223-MS1)				Sou	rce: ITC	1735-01				
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0	ND	101	70-120			
Matrix Spike Dup Analyzed: 03/25/2010	(10C3223-MS	SD1)			Sou	rce: ITC	1735-01				
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0	ND	101	70-120	0	15	
Batch: 10C3266 Extracted: 03/26/10	_										
Blank Analyzed: 03/26/2010 (10C3266-B	LK1)										
Total Dissolved Solids	ND	10	1.0	mg/l							
LCS Analyzed: 03/26/2010 (10C3266-BS	1)										
Total Dissolved Solids	1000	10	1.0	mg/l	1000		100	90-110			
Duplicate Analyzed: 03/26/2010 (10C326	6-DUP1)				Sou	rce: ITC	2178-01				
Total Dissolved Solids	604	10	1.0	mg/l		598			1	10	
Batch: 10C3429 Extracted: 03/27/10	_										
Blank Analyzed: 03/27/2010 (10C3429-B	LK1)										
Perchlorate	ND	4.0	0.90	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10C3429 Extracted: 03/27/10	_										
LCS Analyzed: 03/27/2010 (10C3429-BS	1)										
Perchlorate	26.4	4.0	0.90	ug/l	25.0		106	85-115			
Matrix Spike Analyzed: 03/27/2010 (10C	3429-MS1)				Sou	rce: ITC2	505-01				
Perchlorate	27.8	4.0	0.90	ug/l	25.0	ND	111	80-120			
Matrix Spike Dup Analyzed: 03/27/2010	(10C3429-MS	D1)			Sou	rce: ITC2	2505-01				
Perchlorate	27.3	4.0	0.90	ug/l	25.0	ND	109	80-120	2	20	

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA-5 1613B

		Reportin	g		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 88281 Extracted: 03/29/10											
Blank Analyzed: 03/30/2010 (G0C2900	00281B)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	1.7e-006	0.00005	0.00000038	ug/L	500	1		_			J
1,2,3,4,6,7,8-HpCDF	1.1e-006	0.00005	0.00000026	ug/L				-			J, Q
1,2,3,4,7,8,9-HpCDF	ND	0.00005	0.00000039	ug/L				-			0, <u>2</u>
1,2,3,4,7,8-HxCDD	5.7e-007	0.00005	0.00000044	ug/L				-			J
1,2,3,4,7,8-HxCDF	5.1e-007	0.00005	0.0000003	ug/L				-			J
1,2,3,6,7,8-HxCDD	6.7e-007	0.00005	0.00000041	ug/L				-			J
1,2,3,6,7,8-HxCDF	2.8e-007	0.00005	0.00000029	ug/L				-			J, Q
1,2,3,7,8,9-HxCDD	7.6e-007	0.00005	0.00000035	ug/L				-			J, Q
1,2,3,7,8,9-HxCDF	2.6e-007	0.00005	0.00000031	ug/L				-			J, Q
1,2,3,7,8-PeCDD	1e-006	0.00005	0.0000005	ug/L				-			J
1,2,3,7,8-PeCDF	ND	0.00005	0.00000036	ug/L				-			
2,3,4,6,7,8-HxCDF	3.1e-007	0.00005	0.00000026	ug/L				-			J, Q
2,3,4,7,8-PeCDF	ND	0.00005	0.00000038	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	0.00000026	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	0.00000032	ug/L				-			
OCDD	1.1e-005	0.0001	0.00000049	ug/L				-			J
OCDF	1.8e-006	0.0001	0.0000006	ug/L				-			J, Q
Total HpCDD	4.6e-006	0.00005	0.0000038	ug/L				-			J
Total HpCDF	1.1e-006	0.00005	0.00000026	ug/L				-			J, Q
Total HxCDD	2e-006	0.00005	0.00000035	ug/L				-			J, Q
Total HxCDF	1.4e-006	0.00005	0.00000026	ug/L				-			J, Q
Total PeCDD	1e-006	0.00005	0.0000005	ug/L				-			J
Total PeCDF	ND	0.00005	0.00000034	ug/L				-			
Total TCDD	7.1e-007	0.00001	0.00000026	ug/L				-			J, Q
Total TCDF	ND	0.00001	0.0000032	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0017			ug/L	0.00200		86	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0015			ug/L	0.00200		75	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0016			ug/L	0.00200		78	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0014			ug/L	0.00200		71	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0014			ug/L	0.00200		70	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0014			ug/L	0.00200		69	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0013			ug/L	0.00200		66	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0013			ug/L	0.00200		65	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0012			ug/L	0.00200		58	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0014			ug/L	0.00200		69	24-185			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA-5 1613B

		Reporting	-		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 88281 Extracted: 03/29/10											
Blank Analyzed: 03/30/2010 (G0C2900	00281B)				Sou	rce:					
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0014			ug/L	0.00200		71	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0014			ug/L	0.00200		69	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0012			ug/L	0.00200		60	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0013			ug/L	0.00200		63	24-169			
Surrogate: 13C-OCDD	0.0035			ug/L	0.00400		88	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00073			ug/L	0.000800		91	35-197			
LCS Analyzed: 03/30/2010 (G0C29000	0281C)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00112	0.00005	0.0000011	ug/L	0.00100		112	70-140			В
1,2,3,4,6,7,8-HpCDF	0.00114	0.00005	0.0000011	ug/L	0.00100		114	82-122			В
1,2,3,4,7,8,9-HpCDF	0.00121	0.00005	0.0000016	ug/L	0.00100		121	78-138			
1,2,3,4,7,8-HxCDD	0.00117	0.00005	0.0000062	ug/L	0.00100		117	70-164			В
1,2,3,4,7,8-HxCDF	0.00116	0.00005	0.0000013	ug/L	0.00100		116	72-134			В
1,2,3,6,7,8-HxCDD	0.0012	0.00005	0.00000061	ug/L	0.00100		120	76-134			В
1,2,3,6,7,8-HxCDF	0.00114	0.00005	0.0000013	ug/L	0.00100		114	84-130			В
1,2,3,7,8,9-HxCDD	0.00105	0.00005	0.00000051	ug/L	0.00100		105	64-162			В
1,2,3,7,8,9-HxCDF	0.00117	0.00005	0.0000013	ug/L	0.00100		117	78-130			В
1,2,3,7,8-PeCDD	0.000952	0.00005	0.0000013	ug/L	0.00100		95	70-142			В
1,2,3,7,8-PeCDF	0.00115	0.00005	0.0000015	ug/L	0.00100		115	80-134			
2,3,4,6,7,8-HxCDF	0.00113	0.00005	0.0000011	ug/L	0.00100		113	70-156			В
2,3,4,7,8-PeCDF	0.00114	0.00005	0.0000016	ug/L	0.00100		114	68-160			
2,3,7,8-TCDD	0.000229	0.00001	0.0000038	ug/L	0.000200		114	67-158			
2,3,7,8-TCDF	0.000211	0.00001	0.0000033	ug/L	0.000200		106	75-158			
OCDD	0.00238	0.0001	0.0000017	ug/L	0.00200		119	78-144			В
OCDF	0.00227	0.0001	0.0000016	ug/L	0.00200		113	63-170			В
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00202			ug/L	0.00200		101	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00174			ug/L	0.00200		87	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00174			ug/L	0.00200		87	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00164			ug/L	0.00200		82	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0016			ug/L	0.00200		80	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00152			ug/L	0.00200		76	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00154			ug/L	0.00200		77	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00151			ug/L	0.00200		75	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00138			ug/L	0.00200		69	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0015			ug/L	0.00200		75	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00159			ug/L	0.00200		79	22-176			

TestAmerica Irvine

0.000796

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Surrogate: 37Cl4-2,3,7,8-TCDD

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

100

31-191

Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA-5 1613B

Analyte Batch: 88281 Extracted: 03/29/1	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 03/30/2010 (G0C290	0000281C)				Sou	rce:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00151			ug/L	0.00200		76	13-328			
Surrogate: 13C-2,3,7,8-TCDD	0.00132			ug/L	0.00200		66	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00132			ug/L	0.00200		66	22-152			
Surrogate: 13C-OCDD	0.00416			ug/L	0.00400		104	13-199			

ug/L 0.000800

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

ASTM 5174-91

Analyte Batch: 98114 Extracted: 04/08/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Matrix Spike Dup Analyzed: 04/13/2010	(F0C27042500	1D)			Sou	rce: ITC2	2505-01				
Total Uranium	29.9	0.7	0.2	pCi/L	27.1	1.61	104	62-150	2	20	
Matrix Spike Analyzed: 04/13/2010 (F0C270425001S)						rce: ITC2	2505-01				
Total Uranium	29.3	0.7	0.2	pCi/L	27.1	1.61	102	62-150			
Blank Analyzed: 04/13/2010 (F0D080000	0114B)				Sou	rce:					
Total Uranium	0.267	0.677	0.21	pCi/L				-			Jb
LCS Analyzed: 04/13/2010 (F0D0800001	14C)				Sou	rce:					
Total Uranium	5.69	0.68	0.21	pCi/L	5.42		105	90-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA 900.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 92098 Extracted: 04/02/10											
Matrix Spike Analyzed: 04/13/2010 (F00		Sou	rce: ITC2	2505-01							
Gross Alpha	52	3	2.5	pCi/L	51.2	2.5	97	35-150			
Gross Beta	80.4	4	1.2	pCi/L	70.3	4.4	108	54-150			
Duplicate Analyzed: 04/13/2010 (F0C27	0425001X)				Sou	rce: ITC2	2505-01				
Gross Alpha	2.7	3	2.4	pCi/L		2.5		-			Jb
Gross Beta	4.3	4	1.2	pCi/L		4.4		-			
Blank Analyzed: 04/13/2010 (F0D02000	0098B)				Sou	rce:					
Gross Alpha	0.21	2	0.83	pCi/L				-			U
Gross Beta	-0.36	4	0.95	pCi/L				-			U
LCS Analyzed: 04/13/2010 (F0D020000	98C)				Sou	rce:					
Gross Alpha	53.2	3	1.3	pCi/L	49.4		108	62-134			
Gross Beta	67.6	4	1	pCi/L	67.9		100	58-133			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA 901.1 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 88399 Extracted: 03/29/10											
Duplicate Analyzed: 04/18/2010 (F0C27	Source: ITC2505-01										
Cesium 137	0.2	20	17	pCi/L		1		-			U
Potassium 40	50	NA	230	pCi/L		-90		-			U
Blank Analyzed: 04/18/2010 (F0C29000	0399B)				Sou	rce:					
Cesium 137	-2.3	20	15	pCi/L				-			U
Potassium 40	-20	NA	200	pCi/L				-			U
LCS Analyzed: 04/18/2010 (F0C290000	399C)				Sou	rce:					
Americium 241	131000	NA	500	pCi/L	141000		93	87-110			
Cobalt 60	79300	NA	200	pCi/L	87900		90	89-110			
Cesium 137	48500	20	200	pCi/L	53100		91	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA 903.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 88229 Extracted: 03/29/10											
Blank Analyzed: 04/20/2010 (F0C29000)0229B)				Sou	rce:					
Radium (226)	0.075	1	0.16	pCi/L				-			U
LCS Analyzed: 04/20/2010 (F0C290000	229C)				Sou	rce:					
Radium (226)	11.5	1	0.2	pCi/L	11.3		102	68-136			
LCS Dup Analyzed: 04/20/2010 (F0C29	0000229L)				Sou	rce:					
Radium (226)	10.6	1	0.2	pCi/L	11.3		94	68-136	8	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA 904 MOD

Analyte Batch: 88230 Extracted: 03/29/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 04/20/2010 (F0C29000 Radium 228	0230B) -0.02	1	0.44	pCi/L	Sou	rce:		-			U
LCS Analyzed: 04/20/2010 (F0C290000) Radium 228	230C) 6.05	1	0.41	pCi/L	Sou 6.30	rce:	96	60-142			
LCS Dup Analyzed: 04/20/2010 (F0C29 Radium 228	0000230L) 6.52	1	0.42	pCi/L	Sou 6.30	rce:	104	60-142	8	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA 905 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 88231 Extracted: 03/29/10											
Blank Analyzed: 04/06/2010 (F0C29000	0231B)				Sou	rce:					
Strontium 90	-0.05	3	0.54	pCi/L				-			U
LCS Analyzed: 04/06/2010 (F0C290000	231C)				Sou	rce:					
Strontium 90	7.69	3	0.58	pCi/L	6.78		113	80-130			
LCS Dup Analyzed: 04/06/2010 (F0C29	0000231L)				Sou	rce:					
Strontium 90	7.28	3	0.52	pCi/L	6.78		107	80-130	5	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

METHOD BLANK/QC DATA

EPA 906.0 MOD

Analyte Batch: 105058 Extracted: 04/15/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 04/15/2010 (F0C27)	0425001X) -151	500	190	pCi/L	Sou	rce: ITC2 -106	2505-01	-			U
Matrix Spike Analyzed: 04/15/2010 (F00 Tritium	2 270425002S) 4370	500	190	pCi/L	Sou 4490	rce: ITC2 1200	2 505-02 71	62-147			
Blank Analyzed: 04/15/2010 (F0D150000 Tritium	0058B) -28	500	190	pCi/L	Sou	rce:		-			U
LCS Analyzed: 04/15/2010 (F0D1500000 Tritium	958C) 4910	500	200	pCi/L	Sou 4490	rce:	109	85-112			

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
ITC2505-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.67	4.8	15
ITC2505-01	Antimony-200.8	Antimony	ug/l	0.48	2.0	6
ITC2505-01	Cadmium-200.8	Cadmium	ug/l	0.099	1.0	3.1
ITC2505-01	Chloride - 300.0	Chloride	mg/l	83	2.5	150
ITC2505-01	Copper-200.8	Copper	ug/l	6.03	2.0	14
ITC2505-01	Lead-200.8	Lead	ug/l	1.54	1.0	5.2
ITC2505-01	Nitrate-N, 300.0	Nitrate-N	mg/l	0.93	0.11	8
ITC2505-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
ITC2505-01	Nitrogen, NO3+NO2 -N EPA 300.0) Nitrate/Nitrite-N	mg/l	0.93	0.26	8
ITC2505-01	Perchlorate 314.0 - Default	Perchlorate	ug/l	0	4.0	6
ITC2505-01	Selenium-200.8	Selenium	ug/l	1.34	2.0	5
ITC2505-01	Sulfate-300.0	Sulfate	mg/l	65	2.5	300
ITC2505-01	TDS - SM2540C	Total Dissolved Solids	mg/l	332	10	950
ITC2505-01	Thallium-200.8	Thallium	ug/l	0.076	1.0	2
ITC2505-01	Zinc-200.8	Zinc	ug/l	17	20	160

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

1.

0

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

DATA QUALIFIERS AND DEFINITIONS

- **B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated result. Result is less than the reporting limit.
- Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Jb Result is greater than sample detection limit but less than stated reporting limit.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- U Result is less than the sample detection limit.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 245.1-Diss	Water	Х	Х
EPA 245.1	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
SM2540C	Water	Х	
SM4500NH3-C	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Method Performed: ASTM 5174-91 Samples: ITC2505-01, ITC2505-02

Method Performed: EPA 900.0 MOD Samples: ITC2505-01, ITC2505-02

Method Performed: EPA 901.1 MOD Samples: ITC2505-01, ITC2505-02

Method Performed: EPA 903.0 MOD Samples: ITC2505-01, ITC2505-02

Method Performed: EPA 904 MOD Samples: ITC2505-01, ITC2505-02

Method Performed: EPA 905 MOD Samples: ITC2505-01, ITC2505-02

Method Performed: EPA 906.0 MOD Samples: ITC2505-01, ITC2505-02

TestAmerica Irvine

Debby Wilson For Heather Clark Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: ITC2505

Sampled: 03/25/10-03/26/10 Received: 03/25/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica West Sacramento

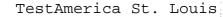
880 Riverside Parkway - West Sacramento, CA 95605 Method Performed: EPA-5 1613B Samples: ITC2505-01

TestAmerica Irvine Debby Wilson For Heather Clark Project Manager

CHAIN OF CUSTODY FORM

Client Name//	Address:			Project:			<u> </u>	<u> </u>		<u> </u>		- <u> </u>		ANA			IIRED				
MWH-Arca	dia			Boeing-SSFL	NPDES		 	Г	T	Г	Т	T	Ι	T	<u></u>				r	1	
618 Michillind		uite 200		Routine Outfa			1		1	1	1	1			1	1					
Arcadia, CA				GRAB						1	1				1						Field readings:
	01007			Stormwater at	Hanny Valle	ev															3
Test America	Contact	losenh Do	nak		inapp) tam	.,			1					1							
	Contact	. Joseph De	Jan						1												Temp °F = 55
							ŝ		1												
							🖳														pH = 6.9
Project Manag	ger Bro	nwyn Kelly		Phone Numbe	r.		Grease (1664-HEM)														pri 0.0
	J			(626) 568-669			100														Time of readings = 0950
					1		e i		1						1						Time of readings = 0550
Sampler: R Ba	anaga			Fax Number:			eas														
				(626) 568-651	5		อ็			1		1									
Sample	Sample	Container	# of	Sampling	Preservative	Bottle #	~~													1	0
Description	Matrix	Туре	Cont.	Date/Time			ō														Comments
Outfall 008	w	1L Amber	2	3/25/10 - 0950	нсі	1A, 1B	x				1			1							
							<u> </u>			<u> </u>	<u> </u>	+		+						<u> </u>	<u> </u>
												1]	
												1				1				1	
			┢──				<u> </u>			 		l							<u> </u>		
										-		<u> </u>		1		1				<u> </u>	
· · · · ·										┣		ļ	 	∔							
																1				{	
									1		1		1		1						
·····					l	·· · · -		ļ	I		<u> </u>	I	<u> </u>		<u> </u>	L					
																					·
											1				t	<u> </u>					
					<u> -</u>			[ļ	I				L	L				I	
										1											
															1						
																					1940/1
			<u>├</u>													[I	
						1															
	<u> </u>	ese Sample	es ar	e the Grab Por	tion of Out	fall 009 for	this	torm	event.	Gom	posite	samp	les wi	II folle	wand	are to	be ad	ded-te	-this -	work a	order.
Relinquished By		- <u>2</u> 5 - 2 13:50	ate/Ti	me:		Received By	1		11	Date/Ti		<u> </u>				ound time:					<u>∖</u> ∕
1-	~ ^	13:50	2010			Inil	$l \cap$	Ank	10	٩.	-75.	-Inl	12.	(7)	24 Hour			72 Hour			10 Day:
Ville	s-				l l	MW	///	WATH		2	-	19	() .	20					V		
Vrg/~	1						P		/			<u> </u>			148 Hour			5 Day:	_ ^	-	Normal:
Relinquiened By	1		ate/Tir			Redeived By		11	/	Date/Ti	me:					,	Check)				
1 datt	/ 11	ul A .	7	n	اسمين را	\frown	/	t	`	-	The co	•••	1/1	$u \sim$	Sample	integrijy: (Check)		-		
14 mil	/ wy	W // **	5~2	25-10 /1	6.43		/	/	-	- '	へろ	(0	١٥,	45	Intact:			On Ice:	X		
Relinguished By			ate/Tir			Received By				Date/Ti		-		<u>·</u> /	{	V		•••••			
(- Y					uy				Date/11					.						
	/																ts: (Check				v
					Í										No Leve	I IV:		All Level	IV:		

25215


1.4

Test America Version 6/29/09

CHAIN OF CUSTODY FORM

Page 2 of 2

												ê.						
Client Name/	Address	:	-	Project:			1					+	ANA	LYSIS	REQ	JIRED		
Arcadia, CA	adia Boeing-SSFL NPDES da Ave, Suite 200 91007 GRAB Stormwater at Happy Valley				ley	etals: Sb, Cd, Cu, Pb,	ners)	N, Perchlorate		Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)		Sb, Cd, Cu, Pb,					Comments	
Sampler: R B	(626) 568-6515			Total Recoverable Metals: Hg, Tl, Se, Zn TCDD (and all congeners)		DD (and all congeners) , SO4, NO3+NO2-N, Perchlorate		s Alpha(900.0), m (H-3) (906.0) bined Radium 2 Jm 228 (904.0) :S-137 (901.0 or	Chronic Toxicity	Total Dissolved Metals: Hg, Tl, Se, Zn	l otal Dissolved Meta Hg, Tl, Se, Zn Nitrate-N, Nitrite-N	Ammonia-N (350.2)						
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Total Hg, T		ь.	TDS	Gross Comb Radit 10, C	l f	fg, T	Vitrat	E E			AIL GRAS
Outfall 008	w	1L Poly	1	3/25/10 - 0950	HNO₃	2A	X		Ť	<u> </u> -	OFOE4	Ħ						
Outfall 008 Dup	w	1L Poly	1	3/25/10 - 0950	HNO ₃	2B	x						-					
Outfall 008	w	1L Amber	2	3/25/10 - 0950	None	3A, 3B		x										
Outfail 008	w	500 mL Poly	2	3/25/10 - 0950	None	4A, 4B			х				<u> </u>					
Outfall 008	w	500 mL Poly	1	3/25/10 - 0950	None	5		-		x	-							
Outfall 008	w	2.5 Gal Cube 500 ml Amber	1	3/25/10 - 0950	None None	6A 6B					x							Unfiltered and unpreserved analysis
Outfall 000		1 Gal Poly			None-	7												Only test if first or second rain
Outfall 008	w	1L Poly	1	3/25/10 - 0950	None	8							x					Filter w/in 24hrs of receipt at lab
Outfall 008	w	500 mL Poly	1	3/25/10 - 0950	None	9								х				
Outfall 008	w	500 mL Poły	1	3/25/10 - 0950	H₂SO₄	10								· · · · ·	x			
_							GEN	Б										
		_						-			s for Outfall 00						······	· · · · · · · · · · · · · · · · · · ·
Relinquished By Relinquished By Relinquished By	Bi	2-3-2- 2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	Date/1	ime: 0 ime: -10 6		Received B	, ж(2	1/11			Page 1 of 2 fo Pate/Time: 3-25-10 Pate/Time: - 3/29(0) Pate/Time:	13	:57/	Turn-aro 24 Hour: 48 Hour: Sample I Intact: Data Rea	ntegrity: ((Check) 72 Hour: 5 Day: Check) On Ice: s: (Check)	•	

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. ITC2505

MWH-Pasadena Boeing

Lot #: F0C270425

Debbie Wilson

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Lynn Fussner Project Manager

April 21, 2010

Case Narrative LOT NUMBER: F0C270425

This report contains the analytical results for the two samples received under chain of custody by TestAmerica St. Louis on March 27, 2010. These samples are associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements, except as noted below.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

Sample preparation was started in the TestAmerica Irvine laboratory prior to shipment of the samples to the TestAmerica St. Louis laboratory. The initial sample preparation consisted of acidification of samples to a pH less than 2 with Nitric Acid. Documentation of the acidification is attached in the Preparation Log.

Radium-226 by GFPC (EPA 903.0 MOD)

There was insufficient sample volume to perform MS/MSD analysis. A LCS/LCSD was performed to demonstrate accuracy and replicate precision.

Affected Samples:

F0C270425 (1): ITC2505-01 F0C270425 (2): ITC2505-02

Radium-228 by GFPC (EPA 904 MOD)

There was insufficient sample volume to perform MS/MSD analysis. A LCS/LCSD was performed to demonstrate accuracy and replicate precision.

Affected Samples:

F0C270425 (1): ITC2505-01 F0C270425 (2): ITC2505-02

H-3 by Distillation & LSC (906.0 MOD)

Tritium samples were received in non amber glass bottles.

Affected Samples:

F0C270425 (1): ITC2505-01 F0C270425 (2): ITC2505-02

pH Adustment Log sisvr01/inorganics/wetchem/spreadsheets/pH Adustment Log.xls Revision 0, 03/26/2010

Preparation Log (intial pH adjustment) TestAmerica Irvine Method: Radium 226/228 by 903.0/904.0

Laboratory: TestAmerica

the Winckrodt CHEMICALS Analyst: Francis Rochs

DATE: 03/26/10

a state of the second se			 	 _	 	 	 	 	 1	_	
Comments	Yuuga dirit	Barly sample									
Check pH < 2	Yes	423									
	11:23	11:36									
Nitric Acid Volume added (ml)	Broket & 40	40									
Sample Volume (L)	5 4 10 10	10									
Lab Sample Number	ZO-SOSZ JLI	10-50527LT									

METHODS SUMMARY

F0C270425

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Gamma Spectroscopy - Cesium-137 & Hits	EPA 901.1 MOD	
Gross Alpha/Beta EPA 900	EPA 900.0 MOD	EPA 900.0
H-3 by Distillation & LSC	EPA 906.0 MOD	
Radium-226 by GFPC	EPA 903.0 MOD	EPA 903.0
Radium-228 by GFPC	EPA 904 MOD	EPA 904
Strontium 90 by GFPC	EPA 905 MOD	
Total Uranium By Laser Ph osphorimetry	ASTM 5174-91	

١

References:

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

SAMPLE SUMMARY

F0C270425

WO # SAMPLE	# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LW7WC 001	ITC2505-01	03/25/10	
LW7WD 002	ITC2505-02	03/25/10	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

TestAmerica Irvine

Client Sample ID: ITC2505-01

Radiochemistry

Lab Sample ID: Work Order: Matrix:	F0C270425-00 LW7WC WATER	1		Date Collec Date Receive		/25/10 0950 /27/10 0815	
Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & H	its by EPA 901.	1 MOD		pCi/L	Batch	# 0088399	Yld %
Cesium 137	1.0	U	6.7	20.0	12	03/29/10	04/18/10
Potassium 40	-90	υ	390		220	03/29/10	04/18/10
Gross Alpha/Beta	EPA 900			pCi/L	Batch	# 0092098	Yld %
Gross Alpha	2.5	U	1.8	3.0	2.5	04/02/10	04/13/10
Gross Beta	4.4		1.1	4.0	1.3	04/02/10	04/13/10
SR-90 BY GFPC E	PA-905 MOD			pCi/L	Batch	# 0088231	¥ld % 82
Strontium 90	0.12	U	0.31	3.00	0.52	03/29/10	04/06/10
TRITIUM (Distill) by EPA 906.0	MOD		pCi/L	Batch	# 0105058	Yld %
Tritium	-106	U	89	500	190	04/15/10	04/15/10
Total Uranium by	KPA ASTM 5174-	91		pCi/L	Batch	# 0098114	Yld %
Total Uranium	1.61		0.17	0.68	0.21	04/08/10	04/13/10
Radium 226 by E	PA 903.0 MOD			pCi/L	Batch	# 0088229	Yld % 100
Radium (226)	0.20	J	0.13	1.00	0.17	03/29/10	04/20/10
Radium 228 by GF	PC EPA 904 MOD			pCi/L	Batch	# 0088230	¥ld % 97
Radium 228	0.07	U	0.29	1.00	0.49	03/29/10	04/20/10

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

F0C270425

TestAmerica Irvine

Client Sample ID: ITC2505-02

Radiochemistry

Lab Sample ID: Work Order: Matrix:	F0C270425-003 LW7WD WATER	2		Date Collec Date Receiv	• • ,	/25/10 1123 /27/10 0815	
Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Data	Analysis Date
Gamma Cs-137 & H	its by EPA 901.	L MOD		pCi/L	Batch	# 0088399	Yld %
Cesium 137	0.0	U	6.7	20.0	13	03/29/10	04/18/10
Potassium 40	-60	σ	300		270	03/29/10	04/18/10
Gross Alpha/Beta	EPA 900			pCi/L	Batch	# 0092098	Yld %
Gross Alpha	-0.02	U	0.40	3.00	0.84	04/02/10	04/13/10
Gross Beta	-0.67	U	0.46	4.00	0.95	04/02/10	04/13/10
TRITIUM (Distill)) by EPA 906.0 1	40D		pCi/L	Batch	# 0105058	Yld %
Tritium	1200		230	500	200	04/15/10	04/15/10
Total Uranium by	KPA ASTM 5174-	91		pCi/L	Batch	# 0098114	Yld %
Total Uranium	0.146	U	0.019	0.677	0,21	04/08/10	04/13/10
Radium 226 by El	PA 903.0 MOD			pCi/L	Batch	# 0088229	Yld % 106
Radium (226)	0.08	U	0.10	1.00	0,17	03/29/10	04/20/10
Radium 228 by GFI	PC EPA 904 MOD			pCi/L	Batch	# 0088230	¥ld % 98
Radium 228	-0.02	U	0.25	1.00	0.45	03/29/10	04/20/10
SR-90 BY GFPC E	PA-905 MOD			pCi/L	Batch	# 0088231	Yld % 83
Strontium 90	0.18	U	0.35	3.00	0.58	03/29/10	04/06/10

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

U Result is less than the sample detection limit.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID:	F0C270425
Matrix:	WATER

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Radium 226 by	EPA 903.0 MOD		pCi/L	Batch #	0088229	Yld %	106 F	0C290000-229B
Radium (226)	0.075	U	0.099	1.00	0.16			04/20/10
Radium 228 by	GFPC EPA 904 MC	סכ	pCi/L	Batch #	0088230	¥ld %	97 F	0С290000-230В
Radium 228	-0.02	U	0.25	1.00	0.44		03/29/10	04/20/10
SR-90 BY GFPC	EPA-905 MOD		pCi/L	Batch #	0088231	Yld %	85 F	0C290000-231B
Strontium 90	-0.05	U	0.31	3.00	0.54		03/29/10	04/06/10
Gamma Cs-137 &	Hits by EPA 90	01.1 MOD	pCi/L	Batch #	0088399	Yld %	F	0C290000-399B
Cesium 137	-2.3	υ	8.5	20.0	15		03/29/10	04/18/10
Potassium 40	-20	U	120		200		03/29/10	04/18/10
TRITIUM (Disti	11) by EPA 906.	.0 MOD	pCi/L	Batch #	0105058	Yld %	F	0D150000-058B
Tritium	-28	Ŭ	99	500	190		04/15/10	04/15/10
Gross Alpha/Be	ta EPA 900		pCi/L	Batch #	0092098	Yld %	F	0D020000-098B
Gross Alpha	0.21	U	0.47	2,00	0.83		04/02/10	04/13/10
Gross Beta	-0.36	σ	0.50	4.00	0.95		04/02/10	04/13/10
Total Uranium	by KPA ASTM 51	74-91	pCi/L	Batch #	0098114	Yld %	म	0D080000-114B
Total Uranium	0.267	J	0.033	0.677	0.21		04/08/10	04/13/10

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit,

F0C270425

Laboratory Control Sample Report

Radiochemistry

Client Lot ID: F0C270425 Matrix: WATER

			5	Fotal			Lab Sample ID		
Parameter	Spike Amount	Result		Jncert. 2 g+/-)	MDC	% Yld	% Rec	QC Control Limits	
Gamma Cs-137 & Hits	s by EPA 901.1	MOD	pCi/L	901	.1 MOD		F0C2	90000-399C	
Americium 241	141000	131000	1	10000	500		93	(87 - 110)	
Cesium 137	53100	48500	2	2800	200		91	(90 - 110)	
Cobalt 60	87900	79300	4	1500	200		90	(89 - 110)	
	Batch #:	0088399			Analysis Date:	04/1	8/10		
Gross Alpha/Beta El	PA 900		pCi/L	900	.0 MOD		FODO	20000-098C	
Gross Beta	67.9	67.6	5	5.8	1.0		100	(58 - 133)	
	Batch #;	0092098			Analysis Date:	04/13	3/10		
Gross Alpha/Beta El	PA 900		pCi/L	900	.0 MOD		F0D0	20000-098C	
Gross Alpha	49.4	53.2	5	5.9	1.3		108	(62 - 134)	
	Batch #:	0092098			Analysis Date:	04/1	3/10		
Total Uranium by KI	PA ASTM 5174-9	1	pCi/L	517	4-91		FODO	80000-114C	
Total Uranium	27.1	29.0	3	3.5	0.2		107	(90 - 120)	
	Batch #:	0098114			Analysis Date:	04/1	3/10		
Total Uranium by KI	PA ASTM 5174-9	1	pCi/L	517	4-91		FOD	080000-114C	
Total Uranium	5.42	5.69	(0.59	0.21		105	(90 - 120)	
	Batch #:	0098114			Analysis Date:	04/1	3/10		
TRITIUM (Distill) H	OY EPA 906.0 M	OD	pCi/L	906	.0 MOD		FODI	L50000-058C	
Tritium	4490	4910	Į	500	200		109	(85 - 112)	
	Batch #:	0105058			Analysis Date:	04/1	5/10		

Laboratory Control Sample/LCS Duplicate Report

Radiochemistry

Client Lot I	D:	F0C270425
Matrix:		WATER

				Total			Lab	Sample ID	
Parameter	Spike Amount	Result		Uncert. (2 c+/-)	% Yld	* Rec	QC Control Limits	Precision	
Radium 226 by EPA	903.0 MOD		pCi/L	903.0	MOD		F0C2	90000-229C	_
Radium (226) Spk 2	11.3 11.3 Batch #:	11.5 10.6 0088229		1.2 1.1	109 105	102 94	(68 - 136) (68 - 136)	8 %RPI	þ
Radium 228 by GFPC		0000229	pCi/L	904 №	Analysi	s Date:	04/20/10	00000 0000	
			PCT/ T	904 1	10D		FUC2	90000-230C	
Radium 228 Spk 2	6.30 6.30	6.05 6.52		0.74 0.79	100 92	96 104	(60 - 142) (60 - 142)	8)
	Batch #:	0088230			Analysi	s Date:	04/20/10		
SR-90 BY GFPC EPA	-905 MOD		pCi/L	905 N	10D		F0C2	90000-231C	
Strontium 90 Spk 2	6.78 6.78	7.69 7.28		0.89 0.84	82 83	113 107	(80 - 130) (80 - 130)	5 %RPI	C
	Batch #:	0088231			Analysi	s Date:	04/06/10		

MATRIX SPIKE REPORT

Radiochemistry

Client Lot Id:	F0C270425	Date Sampled:	03/25/10
Matrix:	WATER	Date Received:	03/27/10

			Total		Total	QC Sample	e ID
Parameter	Spike Amount	Spike Result	Uncert. (25+/-)	Spike Sample Xld. Result	^e Uncert,	%YLD %REC	QC Control Limits
Gross Alpha/Beta EPA 90	0		pCi/L	900.0 M	מכ	F0C27042	5-001
Gross Beta	70.3	80.4	6.8	4.4	1.1	108	(54 - 150)
	Batch #:	0092098	An	alysis Date:	04/13/10		
Gross Alpha/Beta EPA 90	00		pCi/L	900.0 M	ac	F0C27042	5-001
Gross Alpha	51.2	52.0	7.4	2.5	1.8	97	(35 - 150)
	Batch #:	0092098	An	alysis Date:	04/13/10		
TRITIUM (Distill) by EN	PA 906.0 MC	D	pCi/L	906.0 M	ac	F0C27042	5-002
Tritium	4490	4370	460	1200	230	71	(62 - 147)
	Batch #:	0105058	An	alysis Date:	04/15/10		

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

Client Lot ID: Matrix:	FOC27042 WATER	25				Sampled: Received:	03/25 03/2		0950 0815
Parameter	Spike Amount	SPIKE Result	Total Uncert. (2 g+/-)	Spike Yld	SAMPLE Result	Total Uncert. (2g +/-)	% Yld	QC Samp] %Rec	le ID QC Control Limits
Total Uranium by	KPA ASTM 5		pCi/L	5	174-91		F.(0C27042	25-001
Total Uranium Sp}	27.1 27.1	29.3 29.9	3.5 3.6		1.61 1.61	0.17 0.17		102 104	(62 - 150) (62 - 150)
-						Preci	sion:	2	%RPD

Analysis date:

04/13/10

Radiochemistry

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

Batch #:

0098114

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:	F0C270425	Date Sampled:	03/25/10
Matrix:	WATER	Date Received:	03/27/10

			Total			Total		QC Sample ID	
Parameter	SAMPLE Result		Uncert. (25+/-)	% ¥ld	DUPLICATE Result	Uncert. (2 σ+/-)	% Yld	Precisi	.on
Gamma Cs-137 & Hit	s by EPA S	901.1	MOD	pCi/L	901.1 MOD		F()C270425-0()1
Cesium 137	1.0	U	6,7		0.2 U	8.8		140	%RPD
Potassium 40	-90	υ	390		50 U	130		738	%RPD
	Bat	:ch #:	0088399	(Sample)	0088399 (Di	uplicate)			
Gross Alpha/Beta E	PA 900			pCi/L	900.0 MOD		F(C270425-00)1
Gross Alpha	2.5	U	1.8		2.7 J	1.8		9	%RPD
Gross Beta	4.4		1.1		4.3	1.1		2	%RPD
	Bat	ch #:	0092098	(Sample)	0092098 (D	uplicate)			
TRITIUM (Distill)	by EPA 900	6.0 МО	D	pCi/L	906.0 MOD		F(C270425-00)1
Tritium	-106	U	89		-151 U	81		35	%RPD
	Bat	ch #:	0105058	(Sample)	0105058 (D	uplicate)			

NOTE (S)

Data are incomplete without the case narrative. Calculations are performed before rounding to avoid round-off error in calculated results

J Result is greater than sample detection limit but less than stated reporting limit. U Result is less than the sample detection limit. F0C270425

13 of 15

SUBCONTRACT ORDER **TestAmerica** Irvine

ITC2505

SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	TestAmerica St. Louis
17461 Derian Avenue. Suite 100	13715 Rider Trail North
Irvine, CA 92614	Earth City, MO 63045
Phone: (949) 261-1022	Phone :(314) 298-8566
Fax: (949) 260-3297	Fax: (314) 298-8757
Project Manager: Heather Clark	Project Location: CA - CALIFORNIA
Client: MWH-Pasadena/Boeing	Receipt Temperature:°C Ice: Y / N

Analysis	Units	Due	Expires	Interlab Price S	Burch	Comments
Sample ID: ITC2505-01 (Out	fall 008 - Wa	ater)	Sampled	: 03/25/10 09:50	0	
Gamma Spec-O	mg/kg	03/29/10	03/25/11 09:50		0%	Out St Louis, K-40 and CS-137 only, DO NOT FILTER!
Gross Alpha-O	pCi/L	03/29/10	09/21/10 09:50	\$90.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	03/29/10	09/21/10 09:50	\$90.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Level 4 Data Package - Out	N/A	03/29/10	04/22/10 09:50	\$0.00	75%	Boeing, J flags
Radium 226-0	pCi/L	03/29/10	03/25/11 09:50	\$88.00	75%	Out St Louis, Boeing permit, DO NOT FILTER!
Radium 228-0	pCi/L	03/29/10	03/25/11 09:50	\$84.00	75%	Out St Louis, Boeing permit, DO NOT FILTER!
Strontium 90-O	pCi/L	03/29/10	03/25/11 09:50	\$140.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	03/29/10	03/25/11 09:50	\$80.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	03/29/10	03/25/11 09:50	\$100.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Containers Supplied:						
2.5 gal Poly (J) 5	00 mL Am	per (K)				

Sample ID: ITC2505-02 (Blank - Water)

			Sampled: 0	3/26/10 11:23	}	
Gamma Spec-O -	mg/kg	03/29/10	03/26/11 11:23	\$200.00	0%	Out St Louis, K-40 and CS-137 only, DO NOT FILTER!
Gross Alpha-O 、	pCi/L	03/29/10	09/22/10 11:23	\$90.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O -	pCi/L	03/29/10	09/22/10 11:23	\$90.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Level 4 Data Package - Out	N/A	03/29/10	04/23/10 11:23	\$0.00	75%	Boeing, J flags
Radium 226-0 -	pCi/L	03/29/10	03/26/11 11:23	\$88.00	75%	Out St Louis, Boeing permit, DO NOT FILTER!
Radium 228-O -	pCi/L	03/29/10	03/26/11 11:23	\$84.00	75%	Out St Louis, Boeing permit, DO NOT FILTER!
Tritium-O [,]	pCi/L	03/29/10	03/26/11 11:23	\$80.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	03/29/10	03/26/11 11:23	\$100.00	0%	Out St Louis, Boeing permit, DO NOT FILTER!

Containers Supplied: 2.5 gal Poly (A Released By

Date Time

Date/Time

-+ .X Received By 8--1

Received By

3/26/

10

0 1700 Date/Time shale our Date/Time

Page 1 of 1

Released By

	Lot #(s): FOC 270 425
TestAmerica	Lot #(s):
THE LEADER IN ENVIRONMENTAL TESTING	
CONDITION UPON RECEIPT FORM	
Client: 14 Irvy- 1-07-6	
Quote No: 950 44 18 77685	215
COC/RFA No: TIC2505, ITC2508	
Initiated By:	Date: <u>8/27/13</u> Time: <u>0815</u>
	Shipping Information
Shipper: FedEx UPS DHL Courier	Client Other: Multiple Packages: Y N
Shipping # (s):*	Sample Temperature (s):**
1. 4/269 2133 9547 6	1. antra f 6.
2. 9612 7.	2. <u>3</u> 7
3. 9661 8.	3. aubien 1 8.
4 9	49
·	5 10
Numbered shipping lines correspond to Numbered Sample Temp line	**Sample must be received at 4°C ± 2°C- If not, note contents below. Temperature variance does NOT affect the following: Metais-Liquid or Rad tests- Liquid or Solids
Condition (Circle "Y" for yes, "N" for no and "N/A" for not applied Are there custody seals present or	
L (Y)N cooler?	0. 1 (A) Price there chastery scale process on between
2. Y N N/A Do custody seals on cooler appear tampered with?	3. 1 h cor tampered with?
3. DN Were contents of cooler frisked a opening, but before unpacking?	ter 10. Y N/A Was sample received with proper pH1? (If not, $M_{3/27}/make$ note below)
4. PN Sample received with Chain of Custody?	11. Y N Sample received in proper containers?
5. N N/A Does the Chain of Custody match sample ID's on the container(s)?	12. YN N/A Headspace in VOA or TOX liquid samples? (If Yes, note sample ID's below)
6. N Was sample received broken?	13. Y N N/A Was Internal COC/Workshare received?
7. (Y) N Is sample volume sufficient for analysis?	14. YN N/A Was pH taken by original TestAmerica lab?
For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers i	
Notes: 1 5006 for ITC 2509-08	received broken
a fill may a lift of a fill	. 1
12. All TOX bottles have her	ra space
· · ·	
Corrective Action:	
Client Contact Name:	Informed by:
 Sample(s) processed "as is" Sample(s) on hold until: 	If released, notify:
Project Management Review	Date: 3-29-500
V (N) *	ARE BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMEONE OTHER THAN

KEQUIKED TO APPLY THEIK INITIAL AND THE DATE NEXT TO THAT ITEM. ADMIN-0004, REVISED 10/21/08 \\Siavr01\QA\FORM\$\ST-LOUI\$\ADMIN\Admin004 rev11.doc THIS PAGE LEFT INTENTIONALLY BLANK

APPENDIX G

Section 37

Outfall 009 – January 18 & 19, 2010

MECX Data Validation Report

THIS PAGE LEFT INTENTIONALLY BLANK

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITA1328

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	ITA1328
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	1
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub- Laboratory ID	Matrix	Collected	Method
Outfall 009 (Composite)	ITA1328-01	G0A210539- 001, F0A200536- 001	Water		ASTM 5174-91, 200.8, 200.8 (Diss), 245.1, EPA 245.1 (Diss), 1613B, 900.0 MOD, 901.1 MOD, 903.0 MOD, 904 MOD, 905 MOD
Outfall 009 (Composite)	ITA1328-01RE1	G0A210539- 001	Water	1/19/2010 12:13:00 AM	1613B, 906.0 MOD

II. Sample Management

No anomalies were observed regarding sample management. The sample receipt temperature was not noted by TestAmerica-St Louis; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. No custody seals were present on the sample coolers sent to TestAmerica-St. Louis. Custody seals were present upon receipt at TestAmerica-West Sacramento. As the samples were delivered to the remaining laboratories by courier, no custody seals were necessary. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifier	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: February 25, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *MEC[×] Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613,* and the *National Functional Guidelines Chlorinated Dioxin/Furan Data Review* (9/05).

- Holding Times: Extraction and analytical holding times were met. The water samples were extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for all compounds except 2,3,7,8-TCDF, total TCDF, all of the HxCDD isomers, and total HxCDD. Any sample detects for individual target compound isomers present at concentrations less than five times the method blank concentrations were qualified as nondetected, "U," at the RL. Results for totals were qualified as nondetected, "U," if all peaks comprising the total were

present in the method blank at less than five times the blank concentrations. Several detects in the method blank did not meet ratio criteria and were reported as EMPCs; however, due to the extent of contamination present in the method blank, it was the reviewer's professional opinion that those results be utilized to qualify applicable sample results. Results for totals that included peaks meeting ratio criteria that were not present in the method blank were qualified as estimated, "J," as only a portion of the total was considered method blank contamination.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. Confirmation analyses were performed for 2,3,7,8-TCDF. The confirmation results were rejected, "R," in favor of the original results.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample detects. The laboratory calculated and reported compound-specific detection limits. Several results for individual isomers were reported as EMPCs by the laboratory. The remaining results reported as EMPCs were previously qualified as nondetects for method blank contamination (see Method Blanks section) and were not further qualified as EMPCs. Any reported totals not qualified as nondetects for method blank contamination that included EMPCs were qualified as estimated, "J." Any detects between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHODS 200.8, and 245.1—Metals and Mercury

Reviewed By: P, Meeks Date Reviewed: February 25, 2010

The sample listed in Table 1 for these analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8, 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. CRDL recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: No ICSA analyses were performed for the ICP-MS analyses.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the dissolved aliquot of Outfall 009 Composite. The recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration. Copper was not bracketed by a lower mass internal standard; therefore, copper detected in the samples was qualified as estimated, "J."
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or

calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: February 25, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The aliquot for total uranium was prepared one day beyond 3x the five-day holding time for unpreserved samples; therefore, the nondetected total uranium result was rejected, "R." Aliquots for gross alpha and gross beta were prepared beyond the five-day analytical holding time for unpreserved samples; therefore, results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. Aliquots for radium-226, radium-228, strontium-90, total uranium, and gamma spectroscopy were prepared within the five-day holding time for unpreserved aqueous samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the samples was qualified as an estimated detect, "J." All remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The chemical yields were at least 40% and were considered

acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Tritium was detected in the method blank but was not detected in the site sample. There were no other analytes detected in the method blanks or KPA CCBs.
- Blank Spikes and Laboratory Control Samples: All recoveries and RPDs for radium-226, radium-228, strontium-90 and total uranium were within laboratory-established control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for tritium. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: A matrix spike analysis was performed on the sample in this SDG for tritium. The recovery was within the laboratory-established control limits. For the remaining analytes, method accuracy was evaluated based on the LCS or results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms: ITA1328

Analysis Method ASTM 5174-91

Sample Name	Outfall 009 (C	omposite)	Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITA1328-01	Samp	ole Date:	1/19/201	0 12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Total Uranium	7440-61-1	0.00278	0.693	0.21	pCi/L	U	R	Н
Analysis Method	d EPA 2	200.8						
Sample Name	Outfall 009 (C	omposite)	Matri	x Type:	Water	١	alidation Le	vel: IV
Lab Sample Name:	ITA1328-01	Samp	ole Date:	1/19/201	0 12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony	7440-36-0	0.34	2.0	0.30	ug/l	Ja	J	DNQ
Cadmium	7440-43-9	0.15	1.0	0.10	ug/l	Ja	J	DNQ
G								
Copper	7440-50-8	6.4	2.0	0.50	ug/l		J	*Ш
	7440-50-8 7439-92-1	6.4 9.3	2.0 1.0	0.50 0.20	ug/l ug/l		J	*Ш
Lead					, in the second se		J	*Ш
Copper Lead Thallium Analysis Method	7439-92-1 7440-28-0	9.3	1.0 1.0	0.20	ug/l		-	*111

Lab Sample Name:	ITA1328-01	Sam	ple Date:	1/19/2010) 12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony, dissolved	7440-36-0	ND	2.0	0.30	ug/l		U	
Cadmium, dissolved	7440-43-9	ND	1.0	0.10	ug/l		U	
Copper, dissolved	7440-50-8	2.8	2.0	0.50	ug/l		J	*III
Lead, dissolved	7439-92-1	0.62	1.0	0.20	ug/l	Ja	J	DNQ
Thallium, dissolved	7440-28-0	0.22	1.0	0.20	ug/l	Ja	J	DNQ

Analysis Method EPA 245.1

Sample Name	Outfall 009 (C	omposite)	Matri	ix Type:	Water	I	alidation Le	vel: IV
Lab Sample Name:	ITA1328-01	Samp	ole Date:	1/19/2010) 12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	

Sample Name	Outfall 009 (Co	omposite)	Matri	х Туре:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITA1328-01	Samp	ole Date:	1/19/2010	0 12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury, dissolved	7439-97-6	ND	0.20	0.10	ug/l	С	U	
Analysis Metho	od EPA 9	00.0 M	OD					
Sample Name	Outfall 009 (Co	omposite)	Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITA1328-01	Samp	ole Date:	1/19/2010	0 12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587-46-1	1.66	3	0.88	pCi/L	Jb	1	H, C, DNQ
Gross Beta	12587-47-2	3	4	1.6	pCi/L	Jb	1	H, DNQ
Analysis Metho	od EPA 9	01.1 M	OD					
Sample Name	Outfall 009 (Co	omposite)	Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITA1328-01	Samp	ole Date:	1/19/2010	0 12:13:00 A	М		
-	ITA1328-01 CAS No	Sam <u>p</u> Result Value	ole Date: RL	1/19/2010 MDL	0 12:13:00 A Result Units	M Lab Qualifier	Validation Qualifier	Validation Notes
Analyte		Result			Result	Lab		Validation Notes
Analyte Cesium 137	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Qualifier	
Analyte Cesium 137	CAS No 10045-97-3 13966-00-2	Result Value	RL 20 0	MDL 19	Result Units pCi/L	Lab Qualifier U	Qualifier U	
Analyte Cesium 137 Potassium 40	CAS No 10045-97-3 13966-00-2	Result Value -2 -100 03.0 M	RL 20 0 VOD	MDL 19	Result Units pCi/L	Lab Qualifier U U	Qualifier U	Notes
Analyte Cesium 137 Potassium 40 Analysis Metho	CAS No 10045-97-3 13966-00-2 od EPA 9	Result Value -2 -100 03.0 M omposite)	RL 20 0 OD Matri	MDL 19 200 x Type:	Result Units pCi/L pCi/L	Lab Qualifier U U	Qualifier U U	Notes
Analyte Cesium 137 Potassium 40 Analysis Metho Sample Name	CAS No 10045-97-3 13966-00-2 od EPA 9 Outfall 009 (Co	Result Value -2 -100 03.0 M omposite)	RL 20 0 OD Matri	MDL 19 200 x Type:	Result Units pCi/L pCi/L	Lab Qualifier U U	Qualifier U U	Notes
Analyte Cesium 137 Potassium 40 Analysis Metho Sample Name Lab Sample Name: Analyte	CAS No 10045-97-3 13966-00-2 od EPA 9 Outfall 009 (Co ITA1328-01	Result Value -2 -100 03.0 M omposite) Samp Result	RL 20 0 VOD Matri ole Date:	MDL 19 200 x Type: 1/19/2010	Result Units pCi/L pCi/L WATER 0 12:13:00 A Result	Lab Qualifier U U W M Lab	Qualifier U U Validation Le	Notes vel: IV Validation
Analyte Cesium 137 Potassium 40 Analysis Metho Sample Name Lab Sample Name:	CAS No 10045-97-3 13966-00-2 od EPA 9 Outfall 009 (Co ITA1328-01 CAS No 13982-63-3	Result Value -2 -100 03.0 M omposite) Samp Result Value	RL 20 0 VOD Matri ole Date: RL 1	MDL 19 200 x Type: 1/19/2010 MDL	Result Units pCi/L pCi/L WATER 0 12:13:00 A Result Units	Lab Qualifier U U M Lab Qualifier	Qualifier U U Validation Le Validation Qualifier	Notes vel: IV Validation
Analyte Cesium 137 Potassium 40 Analysis Metho Sample Name Lab Sample Name: Analyte Radium (226)	CAS No 10045-97-3 13966-00-2 od EPA 9 Outfall 009 (Co ITA1328-01 CAS No 13982-63-3	Result Value -2 -100 03.0 M omposite) omposite) Samp Result Value 0.04 0.04	RL 20 0 <i>VOD</i> Matri ole Date: RL 1 <i>D</i>	MDL 19 200 x Type: 1/19/2010 MDL	Result Units pCi/L pCi/L WATER 0 12:13:00 A Result Units	Lab Qualifier U U M Lab Qualifier U	Qualifier U U Validation Le Validation Qualifier	Notes vel: IV Validation Notes
Analyte Cesium 137 Potassium 40 Analysis Metho Sample Name Lab Sample Name: Analyte Radium (226) Analysis Metho	CAS No 10045-97-3 13966-00-2 od EPA 9 Outfall 009 (Co ITA1328-01 CAS No 13982-63-3 od EPA 9	Result Value -2 -100 03.0 M omposite) omposite) Samp Result Value 0.04 0.04 004 MO omposite)	RL 20 0 <i>VOD</i> Matri ole Date: RL 1 <i>D</i>	MDL 19 200 x Type: 1/19/2010 MDL 0.18 x Type:	Result Units pCi/L pCi/L WATER 0 12:13:00 A Result Units pCi/L	Lab Qualifier U U M Lab Qualifier U	Qualifier U U /alidation Le Validation Qualifier U	Notes vel: IV Validation Notes
Analyte Cesium 137 Potassium 40 Analysis Metho Sample Name Lab Sample Name: Analyte Radium (226) Analysis Metho Sample Name	CAS No 10045-97-3 13966-00-2 od EPA 9 Outfall 009 (Co ITA1328-01 CAS No 13982-63-3 od EPA 9 Outfall 009 (Co	Result Value -2 -100 03.0 M omposite) omposite) Samp Result Value 0.04 0.04 004 MO omposite)	RL 20 0 <i>VOD</i> Matri ole Date: RL 1 <i>D</i> Matri	MDL 19 200 x Type: 1/19/2010 MDL 0.18 x Type:	Result Units pCi/L pCi/L WATER 0 12:13:00 A Result Units pCi/L	Lab Qualifier U U M Lab Qualifier U	Qualifier U U Validation Le Validation Qualifier U	Notes vel: IV Validation Notes

Analysis Method EPA 245.1-Diss

Sample Name	Outfall 009 (Co	omposite)	Matri	ix Type:	WATER	V	alidation Le	evel: IV
Lab Sample Name:	ITA1328-01	Samp	le Date:	1/19/201	0 12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098-97-2	0.66	3	0.6	pCi/L	Jb	J	DNQ
Analysis Metho	od EPA 9	06.0 M	OD					
Sample Name	Outfall 009 (Co	omposite)	Matri	ix Type:	WATER	V	alidation Le	evel: IV
Lab Sample Name:	ITA1328-01RE1	Samp	le Date:	1/19/201	0 12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028-17-8	29	500	76	pCi/L	U	U	

Analysis Method EPA 905 MOD

Sample Name	Outfall 009 (C	omposite)	Matrix	к Туре:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITA1328-01	Samp	ole Date:	1/19/2010	12:13:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	0.00025	0.000049	0.000014	ug/L	В		
1,2,3,4,6,7,8-HpCDF	67562-39-4	6.2e-005	0.000049	0.000001	ug/L	В		
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	2.8e-006	0.000002	ug/L	J, Q, B	U	В
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.000049	0.00001	ug/L		U	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.000049	0.000001	ug/L	J, B	U	В
1,2,3,6,7,8-HxCDD	57653-85-7	1.3e-005	0.000049	0.000009	ug/L	J	J	DNQ
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.000049	0.000001	ug/L	J, B	U	В
1,2,3,7,8,9-HxCDD	19408-74-3	1e-005	0.000049	0.000008	ug/L	J	J	DNQ
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.000049	0.000001	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.000049	0.000004	ug/L	J, B	U	В
1,2,3,7,8-PeCDF	57117-41-6	ND	8.4e-007	0.000000	ug/L	J, Q, B	U	В
2,3,4,6,7,8-HxCDF	60851-34-5	ND	2.8e-006	0.000000	ug/L	J, Q, B	U	В
2,3,4,7,8-PeCDF	57117-31-4	ND	1.3e-006	0.000000	ug/L	J, Q, B	U	В
2,3,7,8-TCDD	1746-01-6	ND	0.0000097	0.000001	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	1.1e-006	0.000000	ug/L	J, Q, B	U	В
2,3,7,8-TCDF	51207-31-9	ND	0.0000097	0.000007	ug/L		R	D
OCDD	3268-87-9	0.0029	0.000097	0.000006	ug/L	В		
OCDF	39001-02-0	0.00016	0.000097	0.000001	ug/L	В		
Fotal HpCDD	37871-00-4	0.00065	0.000049	0.000014	ug/L	В		
Total HpCDF	38998-75-3	0.00016	0.00016	0.000001	ug/L	B, J, Q	J	B, *III, DNC
Total HxCDD	34465-46-8	6e-005	0.000049	0.000008	ug/L	J		
Total HxCDF	55684-94-1	6e-005	6e-005	0.000000	ug/L	B, J, Q	J	B, *III, DNC
Total PeCDD	36088-22-9	ND	0.000049	0.000004	ug/L	J, B	U	В
Total PeCDF	30402-15-4	1e-005	1e-005	0.000000	ug/L	B, J, Q	J	B, *III, DNO
Total TCDD	41903-57-5	ND	0.0000097	0.000001	ug/L		U	
Total TCDF	55722-27-5	ND	5.1e-006	0.000000	ug/L	B, J, Q	U	В

Analysis Method EPA-5 1613B

APPENDIX G

Section 38

Outfall 009 – January 18 & 19, 2010 Test America Analytical Laboratory Report THIS PAGE LEFT INTENTIONALLY BLANK

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 009

Sampled: 01/18/10-01/19/10 Received: 01/18/10 Revised: 04/05/10 15:23

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 4 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:	Samples were received intact, at 4°C, on ice and with chain of custody documentation.	
HOLDING TIMES:	All samples were analyzed within prescribed holding times and/or in accordance with the Te Sample Acceptance Policy unless otherwise noted in the report.	stAmerica
PRESERVATION:	Samples requiring preservation were verified prior to sample analysis.	
QA/QC CRITERIA:	All analyses met method criteria, except as noted in the report with data qualifiers.	
COMMENTS:	Results that fall between the MDL and RL are 'J' flagged.	
SUBCONTRACTED:	Refer to the last page for specific subcontract laboratory information included in this report.	
ADDITIONAL INFORMATION:	Final revised report to provide corrected units and .pdf file for Radchem data. Revised 4/5/10 to report the radchem from the composite sample.	
LABORATORY	D CLIENT ID	MATRIX

LABORATORY ID	CLIENT ID	MATRIX
ITA1328-01	Outfall 009 (Composite)	Water
ITA1328-02	Outfall 009 (Grab)	Water

Reviewed By:

Debby Wilson

TestAmerica Irvine Debby Wilson For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Grease)

Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

HEXANE EXTRACTABLE MATERIAL MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: ITA1328-02 (Outfall 009 (Grab) - Water) Sampled: 01/18/10 Reporting Units: mg/l 01/21/10 Hexane Extractable Material (Oil & EPA 1664A 10A1946 1.3 4.8 ND 1 01/21/10

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: ITA1328-01 (Outfall 009 (Composite) - Water) Sampled: 01/19/10 Reporting Units: ug/l Mercury EPA 245.1 10A1830 0.10 0.20 ND 1 01/20/10 01/20/10 EPA 200.8 10A1800 0.30 2.0 01/20/10 01/25/10 Antimony 0.34 1 J Cadmium 10A1800 0.15 01/20/1001/25/10 EPA 200.8 0.10 1.0 1 J Copper EPA 200.8 10A1800 0.50 2.0 6.4 1 01/20/10 01/25/10 9.3 Lead EPA 200.8 10A1800 0.20 1.0 1 01/20/10 01/25/10 Thallium EPA 200.8 10A1800 0.20 1.0 ND 1 01/20/10 01/25/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITA1328

		DISSOI	LVED	METALS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1328-01 (Outfall 009 (Composite) - Water)				Sample	ed: 01/19/	10		
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	10A2023	0.10	0.20	ND	1	01/21/10	01/21/10	С
Antimony	EPA 200.8-Diss	10A2106	0.30	2.0	ND	1	01/22/10	01/25/10	
Cadmium	EPA 200.8-Diss	10A2106	0.10	1.0	ND	1	01/22/10	01/25/10	
Copper	EPA 200.8-Diss	10A2106	0.50	2.0	2.8	1	01/22/10	01/25/10	
Lead	EPA 200.8-Diss	10A2106	0.20	1.0	0.62	1	01/22/10	01/25/10	J
Thallium	EPA 200.8-Diss	10A2106	0.20	1.0	0.22	1	01/22/10	01/25/10	J

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1328-01 (Outfall 009 (Composite) - Water)				Sample	ed: 01/19/2	10		
Reporting Units: mg/l									
Chloride	EPA 300.0	10A1647	0.25	0.50	2.5	1	01/19/10	01/19/10	
Nitrate/Nitrite-N	EPA 300.0	10A1647	0.15	0.26	0.48	1	01/19/10	01/19/10	
Sulfate	EPA 300.0	10A1647	0.20	0.50	2.8	1	01/19/10	01/19/10	
Total Dissolved Solids	SM2540C	10A1751	1.0	10	57	1	01/20/10	01/20/10	
Sample ID: ITA1328-01 (Outfall 009 (Reporting Units: ug/l	Composite) - Water)				Sample	ed: 01/19/	10		
Perchlorate	EPA 314.0	10A2275	0.90	4.0	ND	1	01/25/10	01/25/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

		AS	TM 51	74-91					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1328-01 (Outfall 009 (Composite) - Water)					Sample	ed: 01/19/1	10		
Reporting Units: pCi/L									
Total Uranium	ASTM 5174-91	35029	0.21	0.693	0.00278	1	02/04/10	02/08/10	U

Project ID: Routine Outfall 009

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

		EPA	A 900.0	MOD					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1328-01 (Outfall 0	09 (Composite) - Water)				Sample	d: 01/19/1	10		
Reporting Units: pCi/L									
Reporting Onits. peril									
Gross Alpha	EPA 900.0 MOD	25415	0.88	3	1.66	1	01/25/10	01/29/10	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

		EPA	A 901.1	MOD						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITA1328-01 (Outfall 009 (Composite) - Water)	omposite) - Water)				Sampled: 01/19/10				
Reporting Units: pCi/L										
Cesium 137	EPA 901.1 MOD	23036	19	20	-2	1	01/23/10	01/26/10	U	
Potassium 40	EPA 901.1 MOD	23036	200	NA	-100	1	01/23/10	01/26/10	U	

TestAmerica Irvine Debby Wilson For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

		EPA	A 903.0	MOD					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1328-01 (Outfall 009 (Composite) - Water)					Sample	ed: 01/19/1	10		
Reporting Units: pCi/L									
Radium (226)	EPA 903.0 MOD	22145	0.18	1	0.04	1	01/22/10	02/08/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

		EP	A 904]	MOD					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1328-01 (Outfall 009 (Composite) - Water)					Sample	ed: 01/19/1	10		
Reporting Units: pCi/L									
Radium 228	EPA 904 MOD	22148	1.1	1	-0.03	1	01/22/10	02/08/10	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

		EP	A 905 I	MOD					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITA1328-01 (Outfall 009 (Composite) - Water)					Sample	ed: 01/19/1	10		
Reporting Units: pCi/L									
Reporting emissi per L									

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

EPA 906.0 MOD												
MDL Reporting Sample Dilution Date Date Analyte Method Batch Limit Limit Result Factor Extracted Analyzed												
Sample ID: ITA1328-01RE1 (Outfall	009 (Composite) - Wat	ær)			Sample	ed: 01/19/1	10					
Reporting Units: pCi/L												
Tritium	EPA 906.0 MOD	27209	76	500	29	1	01/27/10	01/28/10	U			

Project ID: Routine Outfall 009

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

EPA-5 1613B

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

		ľ	LPA-5 101	38					
			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITA1328-01 (Outfall 009 (C	omposite) - Water)				Sample	d: 01/19/1	10		
Reporting Units: ug/L					•				
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	25399	0.000014	0.000049	0.00025	0.97	01/25/10	01/27/10	В
2,3,7,8-TCDF	EPA-5 1613B	25399	0.00000049	0.0000097	1.1e-006	0.97	01/25/10	01/27/10	J, Q, B
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	25399	0.0000018	0.000049	6.2e-005	0.97	01/25/10	01/27/10	В
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	25399	0.0000027	0.000049	2.8e-006	0.97	01/25/10	01/27/10	J, Q, B
1,2,3,4,7,8-HxCDD	EPA-5 1613B	25399	0.00001	0.000049	ND	0.97	01/25/10	01/27/10	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	25399	0.00000099	0.000049	2.8e-006	0.97	01/25/10	01/27/10	J, Q, B
1,2,3,4,7,8-HxCDF	EPA-5 1613B	25399	0.0000011	0.000049	4e-006	0.97	01/25/10	01/27/10	J, B
1,2,3,6,7,8-HxCDD	EPA-5 1613B	25399	0.0000097	0.000049	1.3e-005	0.97	01/25/10	01/27/10	J
OCDD	EPA-5 1613B	25399	0.0000063	0.000097	0.0029	0.97	01/25/10	01/27/10	В
1,2,3,6,7,8-HxCDF	EPA-5 1613B	25399	0.000001	0.000049	2.9e-006	0.97	01/25/10	01/27/10	J, B
OCDF	EPA-5 1613B	25399	0.0000015	0.000097	0.00016	0.97	01/25/10	01/27/10	В
1,2,3,7,8,9-HxCDD	EPA-5 1613B	25399	0.0000084	0.000049	1e-005	0.97	01/25/10	01/27/10	J
Total HxCDF	EPA-5 1613B	25399	0.00000099	0.000049	6e-005	0.97	01/25/10	01/27/10	B, J, Q
1,2,3,7,8,9-HxCDF	EPA-5 1613B	25399	0.0000012	0.000049	ND	0.97	01/25/10	01/27/10	
Total PeCDD	EPA-5 1613B	25399	0.0000042	0.000049	3.4e-006	0.97	01/25/10	01/27/10	J, B
1,2,3,7,8-PeCDD	EPA-5 1613B	25399	0.0000042	0.000049	3.4e-006	0.97	01/25/10	01/27/10	J, B
Total PeCDF	EPA-5 1613B	25399	0.00000065	0.000049	1e-005	0.97	01/25/10	01/27/10	B, J, Q
1,2,3,7,8-PeCDF	EPA-5 1613B	25399	0.0000085	0.000049	8.4e-007	0.97	01/25/10	01/27/10	J, Q, B
2,3,4,7,8-PeCDF	EPA-5 1613B	25399	0.00000091	0.000049	1.3e-006	0.97	01/25/10	01/27/10	J, Q, B
2,3,7,8-TCDD	EPA-5 1613B	25399	0.0000017	0.0000097	ND	0.97	01/25/10	01/27/10	
Total HpCDD	EPA-5 1613B	25399	0.000014	0.000049	0.00065	0.97	01/25/10	01/27/10	В
Total HpCDF	EPA-5 1613B	25399	0.0000018	0.000049	0.00016	0.97	01/25/10	01/27/10	B, J, Q
Total HxCDD	EPA-5 1613B	25399	0.0000084	0.000049	6e-005	0.97	01/25/10	01/27/10	J
Total TCDD	EPA-5 1613B	25399	0.0000017	0.0000097	ND	0.97	01/25/10	01/27/10	
Total TCDF	EPA-5 1613B	25399	0.00000049	0.0000097	5.1e-006	0.97	01/25/10	01/27/10	B, J, Q
Surrogate: 13C-2,3,7,8-TCDD (25-164%))				71 %				
Surrogate: 13C-2,3,7,8-TCDF (24-169%)	1				66 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-1979	2%)				97 %				
Surrogate: 13C-OCDD (17-157%)					83 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23					84 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28	-143%)				83 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26					83 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-1					96 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1	52%)				92 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-1	30%)				67 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1					74 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1					82 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18)	,				65 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-185	5%)				60~%				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1					79 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-178	3%)				63 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

EPA-5 1613B													
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers				
Sample ID: ITA1328-01RE1 (Outfall 009	(Composite) - Wat	ter) - cont			Sample	ed: 01/19/1	10						
Reporting Units: ug/L													
2,3,7,8-TCDF	EPA-5 1613B	25399	0.0000071	0.0000097	ND	0.97	01/25/10	01/29/10					
Surrogate: 13C-2,3,7,8-TCDF (24-169%)					69 %								
Surrogate: 37Cl4-2,3,7,8-TCDD (35-197%)	ó)				102 %								

TestAmerica Irvine Debby Wilson For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 009 (Composite) (ITA132	Hold Time (in days) 28-01) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 300.0	2	01/19/2010 00:13	01/18/2010 19:00	01/19/2010 21:45	01/19/2010 22:07
Filtration	1	01/19/2010 00:13	01/18/2010 19:00	01/20/2010 16:50	01/20/2010 16:53

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A1946 Extracted: 01/21/10)										
Blank Analyzed: 01/21/2010 (10A1946-B Hexane Extractable Material (Oil & Grease)	SLK1) ND	2.5	1.4	mg/l							
LCS Analyzed: 01/21/2010 (10A1946-BS Hexane Extractable Material (Oil & Grease)	1) 20.3	5.0	1.4	mg/l	20.0		102	78-114			MNR1
LCS Dup Analyzed: 01/21/2010 (10A194 Hexane Extractable Material (Oil & Grease)	6-BSD1) 20.3	5.0	1.4	mg/l	20.0		102	78-114	0	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A1800 Extracted: 01/20/10)										
Blank Analyzed: 01/25/2010 (10A1800-B	SLK1)										
Antimony	ND	2.0	0.30	ug/l							
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/25/2010 (10A1800-BS	1)										
Antimony	73.9	2.0	0.30	ug/l	80.0		92	85-115			
Cadmium	74.1	1.0	0.10	ug/l	80.0		93	85-115			
Copper	73.8	2.0	0.50	ug/l	80.0		92	85-115			
Lead	74.3	1.0	0.20	ug/l	80.0		93	85-115			
Thallium	73.9	1.0	0.20	ug/l	80.0		92	85-115			
Matrix Spike Analyzed: 01/25/2010 (10A	1800-MS1)				Sou	irce: ITA	1401-01				
Antimony	81.2	2.0	0.30	ug/l	80.0	2.44	98	70-130			
Cadmium	77.9	1.0	0.10	ug/l	80.0	ND	97	70-130			
Copper	86.3	2.0	0.50	ug/l	80.0	6.94	99	70-130			
Lead	118	1.0	0.20	ug/l	80.0	39.4	98	70-130			
Thallium	78.6	1.0	0.20	ug/l	80.0	0.228	98	70-130			
Matrix Spike Analyzed: 01/25/2010 (10A	1800-MS2)				Sou	irce: ITA	1478-01				
Antimony	73.2	4.0	0.60	ug/l	80.0	0.938	90	70-130			
Cadmium	80.5	2.0	0.20	ug/l	80.0	0.628	100	70-130			
Copper	101	4.0	1.0	ug/l	80.0	19.2	102	70-130			
Lead	130	2.0	0.40	ug/l	80.0	47.6	103	70-130			
Thallium	81.9	2.0	0.40	ug/l	80.0	0.594	102	70-130			
Matrix Spike Dup Analyzed: 01/25/2010	(10A1800-M	ISD1)			Sou	irce: ITA	1401-01				
Antimony	81.3	2.0	0.30	ug/l	80.0	2.44	99	70-130	0.2	20	
Cadmium	79.0	1.0	0.10	ug/l	80.0	ND	99	70-130	1	20	
Copper	87.7	2.0	0.50	ug/l	80.0	6.94	101	70-130	2	20	
Lead	120	1.0	0.20	ug/l	80.0	39.4	101	70-130	2	20	
Thallium	81.2	1.0	0.20	ug/l	80.0	0.228	101	70-130	3	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A1830 Extracted: 01/20/10	<u>.</u>										
Blank Analyzed: 01/20/2010 (10A1830-B	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 01/20/2010 (10A1830-BS	1)										
Mercury	8.22	0.20	0.10	ug/l	8.00		103	85-115			
Matrix Spike Analyzed: 01/20/2010 (10A	1830-MS1)				Sou	rce: ITA	1359-01				
Mercury	8.18	0.20	0.10	ug/l	8.00	ND	102	70-130			
Matrix Spike Dup Analyzed: 01/20/2010	(10A1830-MS	SD1)			Sou	rce: ITA	1359-01				
Mercury	8.18	0.20	0.10	ug/l	8.00	ND	102	70-130	0.08	20	

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A2023 Extracted: 01/21/10	<u> </u>										
Blank Analyzed: 01/21/2010 (10A2023-B	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 01/21/2010 (10A2023-BS	1)										
Mercury	8.84	0.20	0.10	ug/l	8.00		110	85-115			
Matrix Spike Analyzed: 01/21/2010 (10A	2023-MS1)				Sou	rce: ITA	1481-02				
Mercury	8.85	0.20	0.10	ug/l	8.00	ND	111	70-130			
Matrix Spike Dup Analyzed: 01/21/2010	(10A2023-MS	D1)			Sou	rce: ITA	1481-02				
Mercury	8.92	0.20	0.10	ug/l	8.00	ND	111	70-130	0.8	20	
Batch: 10A2106 Extracted: 01/22/10	<u> </u>										
Blank Analyzed: 01/25/2010 (10A2106-B	LK1)										
Antimony	ND	2.0	0.30	ug/l							
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/25/2010 (10A2106-BS	1)										
Antimony	78.4	2.0	0.30	ug/l	80.0		98	85-115			
Cadmium	78.4	1.0	0.10	ug/l	80.0		98	85-115			
Copper	80.7	2.0	0.50	ug/l	80.0		101	85-115			
Lead	83.0	1.0	0.20	ug/l	80.0		104	85-115			
Thallium	83.3	1.0	0.20	ug/l	80.0		104	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10A2106 Extracted: 01/22/10	<u>)</u>										
Matrix Spike Analyzed: 01/25/2010 (10A	2106-MS1)				Sou	rce: ITA	1328-01				
Antimony	81.6	2.0	0.30	ug/l	80.0	ND	102	70-130			
Cadmium	81.9	1.0	0.10	ug/l	80.0	ND	102	70-130			
Copper	86.8	2.0	0.50	ug/l	80.0	2.76	105	70-130			
Lead	84.9	1.0	0.20	ug/l	80.0	0.620	105	70-130			
Thallium	84.7	1.0	0.20	ug/l	80.0	0.222	106	70-130			
Matrix Spike Dup Analyzed: 01/25/2010	-01/27/2010 ((10A2106-MSI	D1)		Sou	rce: ITA	1328-01				
Antimony	74.6	2.0	0.30	ug/l	80.0	ND	93	70-130	9	20	
Cadmium	74.6	1.0	0.10	ug/l	80.0	ND	93	70-130	9	20	
Copper	79.9	2.0	0.50	ug/l	80.0	2.76	96	70-130	8	20	
Lead	77.9	1.0	0.20	ug/l	80.0	0.620	97	70-130	9	20	
Thallium	78.8	1.0	0.20	ug/l	80.0	0.222	98	70-130	7	20	

Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A1647 Extracted: 01/19/10	_										
DL	I IZ1)										
Blank Analyzed: 01/19/2010 (10A1647-B) Chloride	ND	0.50	0.25								
Nitrate/Nitrite-N	ND ND	0.50 0.26	0.25 0.15	mg/l							
Sulfate	ND	0.20	0.13	mg/l							
Sullate	ND	0.50	0.20	mg/l							
LCS Analyzed: 01/19/2010 (10A1647-BS	1)										
Chloride	4.93	0.50	0.25	mg/l	5.00		99	90-110			M-3
Sulfate	9.95	0.50	0.20	mg/l	10.0		100	90-110			M-3
Matrix Spike Analyzed: 01/20/2010 (10A	1647-MS2)				Sou	rce: ITA	1331-03				
Chloride	67.6	5.0	2.5	mg/l	50.0	16.4	102	80-120			
Sulfate	301	5.0	2.0	mg/l	100	205	96	80-120			
Batch: 10A1751 Extracted: 01/20/10											
	-										
Blank Analyzed: 01/20/2010 (10A1751-B	LK1)										
Total Dissolved Solids	ND	10	1.0	mg/l							
LCS Analyzed: 01/20/2010 (10A1751-BS	1)										
Total Dissolved Solids	998	10	1.0	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/20/2010 (10A175	1-DUP1)				Sou	rce: ITA	1458-01				
Total Dissolved Solids	1020	10	1.0	mg/l		1020			0.8	10	
Batch: 10A2275 Extracted: 01/25/10	-										
Blank Analyzed: 01/25/2010 (10A2275-B	LK1)										
Perchlorate	ND	4.0	0.90	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %RF	%REC C Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10A2275 Extracted: 01/25/10	<u> </u>									-
LCS Analyzed: 01/25/2010 (10A2275-BS	,									
Perchlorate	23.8	4.0	0.90	ug/l	25.0	95	85-115			
Matrix Spike Analyzed: 01/25/2010 (10A	2275-MS1)				Sou	rce: ITA1654-1	3			
Perchlorate	28.7	4.0	0.90	ug/l	25.0	6.12 90	80-120			
Matrix Spike Dup Analyzed: 01/25/2010	(10A2275-MS	D1)			Sou	rce: ITA1654-1	3			
Perchlorate	29.6	4.0	0.90	ug/l	25.0	6.12 94	80-120	3	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

ASTM 5174-91

Analyte Batch: 35029 Extracted: 02/04/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Matrix Spike Dup Analyzed: 02/08/2010 Total Uranium	(F0A20048600 29.2	01 D) 0.7	0.2	pCi/L	Sou 27.7	rce: F0A2 -0.0334	0048600 105	1 62-150	2	20	
Matrix Spike Analyzed: 02/08/2010 (F0 / Total Uranium	200486001S) 28.8	0.7	0.2	pCi/L	Sou 27.7	rce: F0A2 -0.0334	0048600 104	1 62-150			
Blank Analyzed: 02/08/2010 (F0B04000) Total Uranium	0029B) -0.0623	0.693	0.21	pCi/L	Sou	rce:		-			U
LCS Analyzed: 02/08/2010 (F0B0400000) Total Uranium	29C) 29.2	0.7	0.2	pCi/L	Sou 27.7	rce:	105	90-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA 900.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 25415 Extracted: 01/25/10											
Matrix Spike Analyzed: 01/29/2010 (F0/	A200486001S)				Sou	rce: F0A2	20048600	1			
Gross Alpha	6.9	3	1	pCi/L	49.4	0.98	12	35-150			а
Gross Beta	10	4	1.6	pCi/L	68.1	0.83	14	54-150			а
Duplicate Analyzed: 01/29/2010 (F0A20	0486001X)				Sou	rce: F0A2	20048600	1			
Gross Alpha	0.71	3	1.4	pCi/L		0.98		-			Jb
Gross Beta	1.6	4	1.6	pCi/L		0.83		-			Jb
Blank Analyzed: 01/29/2010 (F0A25000	0415B)				Sou	rce:					
Gross Alpha	-0.03	3	0.71	pCi/L				-			U
Gross Beta	-0.26	4	1.5	pCi/L				-			U
LCS Analyzed: 01/29/2010 (F0A2500004	415C)				Sou	rce:					
Gross Alpha	45.4	3	0.9	pCi/L	49.4		92	62-134			
Gross Beta	73.4	4	1.6	pCi/L	68.1		108	58-133			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA 901.1 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 23036 Extracted: 01/23/10											
Duplicate Analyzed: 01/26/2010 (F0A21	0532001X)				Sou	rce: F0A	21053200	1			
Cesium 137	-1.4	20	18	pCi/L		-2.3		-			U
Potassium 40	-60	NA	250	pCi/L		-30		-			U
Blank Analyzed: 01/26/2010 (F0A23000	0036B)				Sou	rce:					
Cesium 137	-0.4	20	12	pCi/L				-			U
Potassium 40	-70	NA	210	pCi/L				-			U
LCS Analyzed: 01/26/2010 (F0A230000	036C)				Sou	rce:					
Americium 241	132000	NA	500	pCi/L	141000		93	87-110			
Cobalt 60	79000	NA	200	pCi/L	87900		90	89-110			
Cesium 137	48200	20	200	pCi/L	53100		91	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA 903.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 22145 Extracted: 01/22/10											
Blank Analyzed: 02/08/2010 (F0A22000	0145B)				Sou	rce:					
Radium (226)	0.111	1	0.13	pCi/L				-			U
LCS Analyzed: 02/08/2010 (F0A220000	145C)				Sou	rce:					
Radium (226)	10.7	1	0.1	pCi/L	11.3		95	68-136			
LCS Dup Analyzed: 02/08/2010 (F0A22	0000145L)				Sou	rce:					
Radium (226)	11.2	1	0.2	pCi/L	11.3		100	68-136	5	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA 904 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 22148 Extracted: 01/22/10											
Blank Analyzed: 02/08/2010 (F0A22000	0148B)				Sou	rce:					
Radium 228	0.22	1	0.59	pCi/L				-			U
LCS Analyzed: 02/08/2010 (F0A220000	148C)				Sou	rce:					
Radium 228	8.22	1	0.61	pCi/L	6.45		127	60-142			
LCS Dup Analyzed: 02/08/2010 (F0A22	0000148L)				Sou	rce:					
Radium 228	7.58	1	0.57	pCi/L	6.45		118	60-142	8	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA 905 MOD

Analyte Batch: 22149 Extracted: 01/22/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 02/01/2010 (F0A22000 Strontium 90	0149B) -0.01	3	0.38	pCi/L	Sou	rce:		-			U
LCS Analyzed: 02/01/2010 (F0A220000 Strontium 90	149C) 6.74	3	0.39	pCi/L	Sou 6.81	rce:	99	80-130			
LCS Dup Analyzed: 02/01/2010 (F0A22 Strontium 90	0000149L) 6.99	3	0.38	pCi/L	Sou 6.81	rce:	103	80-130	4	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA 906.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 27209 Extracted: 01/27/10											
Matrix Spike Analyzed: 01/28/2010 (F0A	A210536001S)				Sou	rce: ITA1	1328-01				
Tritium	9060	500	80	pCi/L	9090	29	99	62-147			
Duplicate Analyzed: 01/28/2010 (F0A210											
Tritium	23	500	76	pCi/L		29		-			U
Blank Analyzed: 01/28/2010 (F0A270000)209B)				Sou	rce:					
Tritium	69	500	76	pCi/L				-			U
LCS Analyzed: 01/28/2010 (F0A2700002	(09C)				Sou	rce:					
Tritium	4640	500	80	pCi/L	4540		102	85-112			

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA-5 1613B

		Reporting	g		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 25399 Extracted: 01/25/10											
Blank Analyzed: 01/27/2010 (G0A2500	00399B)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	7.4e-006	0.00005	0.0000087	ug/L				-			J, Q
2,3,7,8-TCDF	7e-007	0.00001	0.0000004	ug/L				-			J, Q
1,2,3,4,6,7,8-HpCDF	7e-006	0.00005	0.0000016	ug/L				-			J
1,2,3,4,7,8,9-HpCDF	7.1e-006	0.00005	0.0000021	ug/L				-			J
1,2,3,4,7,8-HxCDD	ND	0.00005	0.0000099	ug/L				-			
2,3,4,6,7,8-HxCDF	4.4e-006	0.00005	0.00000079	ug/L				-			J
1,2,3,4,7,8-HxCDF	5.3e-006	0.00005	0.00000087	ug/L				-			J
1,2,3,6,7,8-HxCDD	ND	0.00005	0.0000098	ug/L				-			
OCDD	1.5e-005	0.0001	0.0000072	ug/L				-			J, Q
1,2,3,6,7,8-HxCDF	4.8e-006	0.00005	0.00000086	ug/L				-			J
OCDF	1.6e-005	0.0001	0.0000016	ug/L				-			J
1,2,3,7,8,9-HxCDD	ND	0.00005	0.0000083	ug/L				-			
Total HxCDF	1.9e-005	0.00005	0.00000079	ug/L				-			J
1,2,3,7,8,9-HxCDF	5e-006	0.00005	0.00000096	ug/L				-			J
Total PeCDD	3.6e-006	0.00005	0.0000033	ug/L				-			J
1,2,3,7,8-PeCDD	3.6e-006	0.00005	0.0000033	ug/L				-			J
Total PeCDF	5.7e-006	0.00005	0.00000069	ug/L				-			J, Q
1,2,3,7,8-PeCDF	2.9e-006	0.00005	0.00000079	ug/L				-			J
2,3,4,7,8-PeCDF	2.9e-006	0.00005	0.00000083	ug/L				-			J, Q
2,3,7,8-TCDD	ND	0.00001	0.0000015	ug/L				-			
Total HpCDD	7.4e-006	0.00005	0.0000087	ug/L				-			J, Q
Total HpCDF	1.4e-005	0.00005	0.0000016	ug/L				-			J
Total HxCDD	ND	0.00005	0.0000083	ug/L				-			
Total TCDD	ND	0.00001	0.0000015	ug/L				-			
Total TCDF	7e-007	0.00001	0.0000004	ug/L				-			J, Q
Surrogate: 13C-2,3,7,8-TCDD	0.0014			ug/L	0.00200		68	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0013			ug/L	0.00200		65	24-169			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00073			ug/L	0.000800		91	35-197			
Surrogate: 13C-OCDD	0.0031			ug/L	0.00400		78	17-157			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0018			ug/L	0.00200		88	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0017			ug/L	0.00200		85	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0017			ug/L	0.00200		85	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.002			ug/L	0.00200		102	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0019			ug/L	0.00200		95	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0014			ug/L	0.00200		72	28-130			

TestAmerica Irvine

Debby Wilson For Heather Clark Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA-5 1613B

Analyte	Result	Reporting Limit	; MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
•							,				X
Batch: 25399 Extracted: 01/25/10											
Blank Analyzed: 01/27/2010 (G0A2500	00399B)				Sou	rce:					
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0015			ug/L	0.00200		77	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0017			ug/L	0.00200		86	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0013			ug/L	0.00200		66	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0012			ug/L	0.00200		59	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0017			ug/L	0.00200		85	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0012			ug/L	0.00200		62	21-178			
LCS Analyzed: 01/27/2010 (G0A25000	0399C)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00103	0.00005	0.0000092	ug/L	0.00100		103	70-140			
2,3,7,8-TCDF	0.000201	0.00001	0.00000054	ug/L	0.000200		100	75-158			
1,2,3,4,6,7,8-HpCDF	0.00106	0.00005	0.0000058	ug/L	0.00100		106	82-122			
1,2,3,4,7,8,9-HpCDF	0.00107	0.00005	0.0000086	ug/L	0.00100		107	78-138			
1,2,3,4,7,8-HxCDD	0.0011	0.00005	0.000003	ug/L	0.00100		110	70-164			
2,3,4,6,7,8-HxCDF	0.00107	0.00005	0.00000056	ug/L	0.00100		107	70-156			
1,2,3,4,7,8-HxCDF	0.00103	0.00005	0.00000064	ug/L	0.00100		103	72-134			
1,2,3,6,7,8-HxCDD	0.00111	0.00005	0.0000031	ug/L	0.00100		111	76-134			
OCDD	0.00209	0.0001	0.000006	ug/L	0.00200		104	78-144			
1,2,3,6,7,8-HxCDF	0.00105	0.00005	0.00000062	ug/L	0.00100		105	84-130			
OCDF	0.00204	0.0001	0.0000019	ug/L	0.00200		102	63-170			
1,2,3,7,8,9-HxCDD	0.00109	0.00005	0.0000026	ug/L	0.00100		109	64-162			
1,2,3,7,8,9-HxCDF	0.00103	0.00005	0.0000068	ug/L	0.00100		103	78-130			
1,2,3,7,8-PeCDD	0.00102	0.00005	0.0000032	ug/L	0.00100		102	70-142			
1,2,3,7,8-PeCDF	0.00105	0.00005	0.0000016	ug/L	0.00100		105	80-134			
2,3,4,7,8-PeCDF	0.00104	0.00005	0.0000017	ug/L	0.00100		104	68-160			
2,3,7,8-TCDD	0.000201	0.00001	0.0000015	ug/L	0.000200		101	67-158			
Surrogate: 13C-2,3,7,8-TCDD	0.00147			ug/L	0.00200		74	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0014			ug/L	0.00200		70	24-169			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000783			ug/L	0.000800		98	35-197			
Surrogate: 13C-OCDD	0.00341			ug/L	0.00400		85	17-157			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00185			ug/L	0.00200		93	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0018			ug/L	0.00200		90	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00178			ug/L	0.00200		89	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00199			ug/L	0.00200		100	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0019			ug/L	0.00200		95	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00162			ug/L	0.00200		81	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00165			ug/L	0.00200		83	26-123			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA-5 1613B

Analyte	Result	Reporting Limit	g MDL	Units	Spike Level	Source Bosult	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Linnt	MDL	Units	Level	Result	/orec	Linnes	ΠD	Linnt	Quanners
Batch: 25399 Extracted: 01/25/10	-										
LCS Analyzed: 01/27/2010 (G0A2500	00399C)				Sou	rce:					
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0018			ug/L	0.00200		90	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00147			ug/L	0.00200		74	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00133			ug/L	0.00200		67	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00175			ug/L	0.00200		88	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00138			ug/L	0.00200		69	21-178			
LCS Dup Analyzed: 01/27/2010 (G0A	250000399L)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.000962	0.00005	0.000001	ug/L	0.00100		96	70-140	6.6	50	
2,3,7,8-TCDF	0.000193	0.00001	0.00000061	ug/L	0.000200		96	75-158	4.2	50	
1,2,3,4,6,7,8-HpCDF	0.000994	0.00005	0.0000036	ug/L	0.00100		99	82-122	6.8	50	
1,2,3,4,7,8,9-HpCDF	0.000999	0.00005	0.0000051	ug/L	0.00100		100	78-138	7	50	
1,2,3,4,7,8-HxCDD	0.00103	0.00005	0.0000051	ug/L	0.00100		103	70-164	5.8	50	
2,3,4,6,7,8-HxCDF	0.000971	0.00005	0.00000069	ug/L	0.00100		97	70-156	9.8	50	
1,2,3,4,7,8-HxCDF	0.000944	0.00005	0.0000008	ug/L	0.00100		94	72-134	8.4	50	
1,2,3,6,7,8-HxCDD	0.00102	0.00005	0.0000049	ug/L	0.00100		102	76-134	7.9	50	
OCDD	0.00195	0.0001	0.0000076	ug/L	0.00200		97	78-144	6.9	50	
1,2,3,6,7,8-HxCDF	0.000984	0.00005	0.00000075	ug/L	0.00100		98	84-130	6	50	
OCDF	0.00192	0.0001	0.0000024	ug/L	0.00200		96	63-170	6.2	50	
1,2,3,7,8,9-HxCDD	0.000967	0.00005	0.0000042	ug/L	0.00100		97	64-162	12	50	
1,2,3,7,8,9-HxCDF	0.000971	0.00005	0.0000082	ug/L	0.00100		97	78-130	6	50	
1,2,3,7,8-PeCDD	0.000951	0.00005	0.0000042	ug/L	0.00100		95	70-142	7.4	50	
1,2,3,7,8-PeCDF	0.000961	0.00005	0.0000025	ug/L	0.00100		96	80-134	9	50	
2,3,4,7,8-PeCDF	0.000967	0.00005	0.0000022	ug/L	0.00100		97	68-160	7.4	50	
2,3,7,8-TCDD	0.00019	0.00001	0.0000017	ug/L	0.000200		95	67-158	5.5	50	
Surrogate: 13C-2,3,7,8-TCDD	0.00134			ug/L	0.00200		67	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.00132			ug/L	0.00200		66	24-169			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000767			ug/L	0.000800		96	35-197			
Surrogate: 13C-OCDD	0.00319			ug/L	0.00400		80	17-157			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00175			ug/L	0.00200		87	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00172			ug/L	0.00200		86	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00169			ug/L	0.00200		84	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00199			ug/L	0.00200		100	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00184			ug/L	0.00200		92	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00154			ug/L	0.00200		77	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0016			ug/L	0.00200		80	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00173			ug/L	0.00200		86	29-147			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

METHOD BLANK/QC DATA

EPA-5 1613B

		Reporting	5		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 25399 Extracted: 01/25/10											
LCS Dup Analyzed: 01/27/2010 (G0A)	250000399L)				Sou	rce:					
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0013			ug/L	0.00200		65	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0012			ug/L	0.00200		60	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00173			ug/L	0.00200		86	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00122			ug/L	0.00200		61	21-178			
Blank Analyzed: 02/01/2010 (G0A250	0099RE1)				Sou	rce:					
2,3,7,8-TCDF	ND	0.00001	0.0000061	ug/L				-			
Surrogate: 13C-2,3,7,8-TCDF	0.0013			ug/L	0.00200		66	24-169			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.0008			ug/L	0.000800		100	35-197			

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

DATA QUALIFIERS AND DEFINITIONS

- **a** Spiked analyte outside of stated QC limits.
- **B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- **Jb** Result is greater than sample detection limit but less than stated reporting limit.
- **M-3** Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- U Result is less than the sample detection limit.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 1664A	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 245.1-Diss	Water	Х	Х
EPA 245.1	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
Filtration	Water	N/A	N/A
Level 4	Water		
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Method Performed: ASTM 5174-91 Samples: ITA1328-01

- Method Performed: EPA 900.0 MOD Samples: ITA1328-01
- Method Performed: EPA 901.1 MOD Samples: ITA1328-01
- Method Performed: EPA 903.0 MOD Samples: ITA1328-01
- Method Performed: EPA 904 MOD Samples: ITA1328-01
- Method Performed: EPA 905 MOD Samples: ITA1328-01
- Method Performed: EPA 906.0 MOD Samples: ITA1328-01RE1

TestAmerica Irvine

Debby Wilson For Heather Clark Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: ITA1328

Sampled: 01/18/10-01/19/10 Received: 01/18/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica West Sacramento

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITA1328-01, ITA1328-01RE1

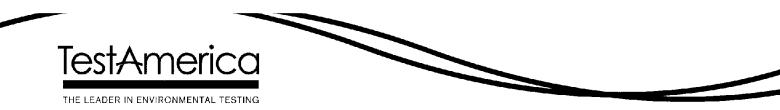
TestAmerica Irvine Debby Wilson For Heather Clark Project Manager

	A REAL PROPERTY OF THE REAL PR	Comments							Unfiltered and unpreserved	analysis	Only test if first or second rain	Filter w/in 24hrs of receipt at lab						10 Day	Normai	1	
ANALYSIS REQUIRED				<												storm event.	These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event.	und time; (Check)	48 Hour 5 Day	Intact On Ice: X	Data Requirements (Check)
ANA	: Sb, Cd, Cu, Pb,				-		2				*	×				for this s	Outfall 0	10.0			
	iross Beta(900.0), 5r-90 (905.0), Total 5 (903.0 or 903.1) & Jranium (908.0), K- 101.1)	2, (0.809) (S-H) n 2SS muibsЯ bani 0, (0.409) 8SS m 9 n 0.109) 751-2	Tritiun Comb 40, C				•	3	5	<						COC Page 2 of 2 are the composite samples for Outfall 009 for this storm event.	Page 1 of 2 for	Date/lime:	Date/Time:		Date/Time:
	ן, רפוכחוסוגופ	0*' NO3+NO2-N	SQT				×	×)		-	-		۵	sample	for COC	in the	Î		۵
		negnos lls bns) (×									apply SD	posite	order	g			
	tals: Sb, Cd, Cu, Pb,	Recoverable Me	Total T, PH	×	×										25	ne com	e worl	At	4		
			Bottle #	2A	2B	3A, 3B	4A, 4B	2 ²	6A	68	1	8	CARGO DE			of 2 are th	o the sam	A A A	Received By		Received By
	NPDES SP 11 009 SP Griveld NS-13		Preservative	EONH	HNO ₃	None	None	None	None	None	None	None		AN AND	No.	DC Page 2	be added t	6:0			
Project:	Boeing-SSFL NPDES Routine Outfall 009 COMPOSITE- 61/AB Stormwater at WS-13	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time	1/15/10 0230	-			- , 400	07163		7	1/1% (10 1-1-30)				cc	These must	60			me:
			# of Cont.	+	-	2	2	-	+	٣	1	+					T	I All	Date/Time.		Date/Time:
	uite 200 Joseph Do	wyn Kelly	Container Type	1L Poly	1L Poly	1L Amber	500 mL Poly	500 mL Poly	2.5 Gal Cube	500 ml Amber	1-Gal Poly	1L Poly						Z	Contra Contra	No.	
ddress:	lia a Ave, Su 11007 Contact:	ier: Bron Wን እባ	Sample Matrix	M	M	M	M	8	M		M	M						de		0	No.
Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly Sampler: ର୍ମ୍ ନିଆର୍ଥ୍ୟ ୬୬ଏ	Sample Description	Outfall 009	Outfall 009 Dup	Outfall 009	Outfall 009	Outfall 009	Outfall 009		Outfall 009	Outfall 009					Ratinnuichad Ru	5/11/147	Relinquished By		Relinquished By

		Comments						CIV 00: 17 11	10// 1// 1/0	Unfiltered and unpreserved	analysis	Only test if first or second rain events of the vear	Filter w/in 24hrs of receipt at lab				1118/10 1118/10	10 Day:	Normal:		Ĺ Ŀ		NPDES Level IV:
UIRED																	These must be added to the same work order for GOO Page tor Dutfall 009 for the same event." 2436 Samper taken	: (Check) 72 Hour:	5 Day:		(Check) On Ice: X	its: (Check)	All Level IV:
ANALYSIS REQUIRED	Sp' Cq' Cn' bp'	SIBIĐIVI DĐ		T, PH					-				×			nis storm event.	all 009 for the sa	Turm-around time: (Check) 24 Hour:	30 48 Hour		Sample Integrity: (Check)	Data Requirements: (Check)	No Level IV:
	-	Sc (0.906), Sc Badium 226 ((904.0), Ur 100.10 or 901.0 or 901.0 or	n (H-3) ined Rs m 228 5-137 (i 707 (i	Tritiur Comb 40, C: 4 0, C:	1					×	<			4		COC Page ‡ of ‡ are the composite samples for Outfall 009 for this storm event.	nge + 6+2: tan. Duth	Date/Time:	1-19-10 14:30	Date/Time:	Maria (2)	Date/Time:	
	Perchlorate	····	ON '*O	LDS CI-' S			×	×	×							osite samples fo	order for GOG P	Date Bate	1/mm/	C Date	M-C	Date	
	ls: Sb, Cd, Cu, Pb,			Hg, TI	×	×								6	2	 the comp	me work o		L A	By	\mathcal{N}	B	
				Bottle #	2A	2B	3A, 3B	4A, 4B	5	6A	68	2	8	3		f of are	to the sai	Received	h a	Received By		Received By	
	NPDES all 009 t WS-13	er.	15	Preservative	C HNO3	HNO ₃	None	None	None	None	None	None	None			OC Page	be added		1430		, C N		
Project:	Boeing-SSFL NPDES Routine Outfall 009 COMPOSITE Stormwater at WS-13	Phone Number: (626) 568-6691	Fax Number: (626) 568-6515	Sampling Date/Time	1/19/10 0613							+)			Ō	These must		01/17/10	ime:	-10 (8	ime:	
	Jak			# of Cont.	-	1	2	2	٢	-	-	┝	+					Date/Time.	-	Date/Time:	01-61-1	Date/Time:	
	Suite 200 ct: Joseph Do	nwyn Kelly		Container Type	1L Paly م	1L Poly ể	1L Amber"	500 mL Poly,	500 mL Poly	2.5 Gal Cube ⁹	500 ml Amber	-1-Gal-Poly-	1L Poly [•]						z			A	
Vddress:	dia a Ave, 5 31007 Contact	jer: Bro		Sample Matrix	N	N	Ν	N	Ν	M	2	M	Μ				þ)	\sim	ł	1/1		
Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	Sampler:	Sample Description	Outfall 009	Outfall 009 Dup	Outfall 009	Outfall 009	Outfall 009	Outfalt 009		-Outfall-009-	Outfall 009					Relinquished By	5.	Relinquished By	Nott	Rélinquished By	

Page 2012

CHAIN OF CUSTODY FORM


Test America Version 6/29/09

uite 200 Joseph Doak nwyn Kelly nwyn Kelly Type 40 1. LPoly 1 1. LPoly 1 1. LPoly 1 2.5 Gal cube 1 500 mL Poly 2 500 mL Poly 1 1. LPoly 1 1. LPoly 1 1. LPoly 1 1. LPoly 1 1. LPoly 1 1. LPoly 1 1. Date/T		I ESI AMERICA version 6/29/09				CH		5	USTO	CHAIN OF CUSTODY FORM	۲ ۵۵۲		•			Page 2 of 2	
Question Buendossert CP, Solution Concentre CP, Solution Gradie Solution contract at WS-13 Solution contract at WS-13 Solution contract at WS-13 Solution contract at WS-13 Hard: Joseph Doak Solution contract at WS-13 Solution contract at WS-13 Solution contract at WS-13 Horizond Fax Number: Fax Number: (E20) Solution contract at WS-13 Solution contract at WS-13 Monter at WS-1 Monte (E20) Solution contract at WS-13 Solu	Client Name/Address:			Project:		J					AN	ALYSIS R	EQUIRED				
Concept Doak Concept Doak Mayn Kelly Phone Number: Mayn Kelly Phone Number: Mayn Kelly Eax Number: Mayn Kelly Eax Number: Topie Eax Number: Stock Eax Number: Stock Eax Number: Stock Eax Number: Stock Eax Num Git Sto	07 (e	ite 200		Boeing-SSFL N Routine Outfal COMPOSITE- Stormwater at V	PDES 1009 55 FIRAD	L <u></u>	, da ,uD ,	e)	,(0.00	etoT ,((8 (1.506	u, Pb,						
Mundrickly Phone Number: Munder:	contact:	Joseph Do	Å		2				Gross Beta(9	, Sr-90 (903.0 26 (903.0 or 90 muins) (90	0 ,b0 ,d8 :sli				· · · · · · · · · · · · · · · · · · ·	Comments	
Image: The set of the	er: Bronv	wyn Kelly		Phone Number (626) 568-6691					'(0.009)e	(0.809) (1 2 muibe (0.409) 8							
$ \begin{array}{c ccc} Container & c_{acc} & Container $	MUS SVM			Fax Number: (626) 568-6515			1		sdqlA a	E-H) m 7 benio 822 mi	lossiQ						
1LPoly 1 1/1/1/0 0420 2A X A	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative		Т , ен			Tritiun Comb Radiu	letoT						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M	1L Poly	-	(20 01/21/1	HNO ₃	2A	×										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N	1L Poly	+		HNO ₃	2B	×									4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M	1L Amber	2		None	3A, 3B		×								V 0100	
500 mL Poly 1 None 5 ×	,	500 mL Poly	2		None	4A, 4B		×									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		500 mL Poly	-		None	5			×							0,00	
Soo mixtures 1 None 6B None 7 None 8 None 7 None 8 None None None None None None		2.5 Gal Cube	+		None	6A				>						Unfiltered and unpreserved	
I. Louy		500 ml Amber	+		None	68				<						analysis	
1L Poly 1 1/15/150 0130 None 8 X <td>M</td> <td>1 Gal Poly</td> <td>+</td> <td> </td> <td>None -</td> <td>2</td> <td>\uparrow</td> <td>+</td> <td>+</td> <td>{</td> <td>+</td> <td></td> <td>-</td> <td></td> <td></td> <td>Only test if first or second rain events of the year</td> <td>٢</td>	M	1 Gal Poly	+	 	None -	2	\uparrow	+	+	{	+		-			Only test if first or second rain events of the year	٢
COC Page 2 of 2 are the somposite samples for Outfall 009 for this storm event. COC Page 2 of 2 are the somposite samples for Outfall 009 for this storm event. COC Page 2 of 2 are the somposite samples for Outfall 009 for the same event. Emust be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Iteration in the formation of the same event.	3	1L Poly	-	الراهزية ولج	None	ω					×					Filter w/in 24hrs of receipt at lab	,
COC Page 2 of 2 are the semiposite samples for Outfall 009 for this storm event. coc Page 2 of 2 are the semiposite samples for Outfall 009 for this storm event. ce must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Received by Received by I (b: u) U (b: u) I (c: u) I (c: u																	
COC Page 2 of 2 are the some points and loop for this storm event. certain constraints of 2 for Outfall 009 for the same event. certain constraints for Coc Page 1 of 2 for Outfall 009 for the same event. Coc Page 4 of 2 for Outfall 009 for the same event. Received by IL IL IL 24 Hour 72 Hour Refered by Date/Time: 24 Hour 72 Hour 72 Hour IL IL IL 48 Hour 72 Hour 72 Hour IL Sample tringenty: (Check) As Hour 5 Day: 5 Day: IL As Hour Sample tringenty: (Check) On tee: X Intert Date/Time: Date/Time: And On tee: X							<u>G</u> fd										
ie must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Received by 24 Hour 72 Hour 72 Hour 72 Hour 72 Hour 72 Hour 72 Hour 75 Day: Refeived By Date/Time: Sample Integrity: (Check) 1 (6: W 10 Hour 00 test) 1 (7: W 10 Hour 00 test) 1 (8) (0) (0) (0) (0) test 1 (120 Hour 00 test) 1 (5	C Page 2 (of 2 are th		ooite s	amples fo	r Outfall 00	9 for this	storm eve	ť				
M & I-18-10 16:00 1 at Man 1-18-10 16:00 24 Hour 72 Hour 74 Ho			Date/T	These must t	be added to	the sam		order fo	or COC Pa	ige 1 of 2 fo	r Outfall	1Tum-around	same eve	int.			
Date/Time: Rederved By Date/Time: Sample Integrity: (Check) Intact: Date/Time: On tes: Date/Time: Antact: Date/Time: Antact:	SWIGTRA	2	17.			1 le)) }	Hel	-10	16-10	<i>l6:a</i>	24 Hour.		72 Hour. 5 Day:	÷Z	10 Day: Vormal:	
Received By Date/Time: Data Requirements: (Check) No Level IV: All Level IV: All Level IV:	Ju	, in the second se	баtе/ 7-1	1ime: 1 F-18 (9		Redeived By	,	\mathcal{O}	Date	lime:		Sample Inteç Intact:	rity: (Check)	٦	ł	() m	
		8	Date/T	lime:		Received By		$ \wedge $	Date/	0	(di')		ments: (Chec) Ail Level IV:	z	NPDES Level IV:	

Test America version 6/29/09	rica _{ve}	rsion 6/29/09				CH	AIN	OF C	UST	CHAIN OF CUSTODY FORM	ORI	5		FT	ITA 1328	\mathfrak{S}	A	١	Page 1 of 2
Client Name/Address:	Vddress:			Project:								Ā	NALYS	ANALYSIS REQUIRED	JUIREL				
MWH-Arcadia 618 Michillinda Ave, Arcadia, CA 91007	dia a Ave, St 31007	Suite 200		Boeing-SSFL NPDES Routine Outfall 009 GRAB Stormwater at WS-13	NPDES all 009 WS-13													<u> </u>	Field readings:
Test America Contact: Joseph Doak	Contact:	Joseph Dc	a X				(MB		<u></u>					· · · ·					Temp°F=∫0º€
Project Manager: Bronwyn Kelly	jer: Bror	wyn Kelly		Phone Number (626) 568-6691			H- # 99l)												Time of readings =
Sampler: 5 Jury)	הכנגמוש	,		Fax Number: (626) 568-6515	. ю		Grease (6.5F0
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	8 IIO												Comments
Outfall 009	8	1L Amber	2	1(166 10 8730	Ę	1A, 1B	×						-						
													\neg						
Relinquished By	=	ese sampl	es ar	These Samples are the Grab Portion of Outtall 009 tor this storm event.	tion of Out	Received B	this st	orm ev		Composite samples will follow and are to be added to this work order.	amples	s will fo	Tum Tum	HID ALE	to be a ne: (Check	dded 1	o this v	vork orc	der.
AUNATUR.	170			1-18-10 16:00	Ś	Na	Þ	Jay 1		> 1-18-10 16:00	\$	16:2	7 ²⁴ ⁴⁸	24 Hour 48 Hour		72 Hour: 5 Day:		ο ž	10 Day: Normal:
Relinquisted By	1 hr	M	Date/Time:	3	19:20	Received By	ł	2	Date/Time:	Time:			Sampl	Sample Integrity: (Check) Intact:	ly: (Check)	On Ice:	X		(v) M
Relinguished By		5	Date/Time:	ime:		Received By	()		Date/Time:	Date/Time: {/(&(_()		1016		(0,1,00 Data Requirements: (Check)	ients: (Ché	eck) All I evel IV		Ż	
)							- A 16		

• • •

,

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

REVISED

PROJECT NO. ITA1328

MWH-Pasadena Boeing

Lot #: F0A210536

Joseph Doak

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

av Clay

Project Manager

March 17, 2010

Case Narrative LOT NUMBER: F0A210536 Revised 03-17-10

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on January 21, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements except as noted below.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Report revised to report the KPA uranium results in pCi/L.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

H-3 by Distillation and LSC (EPA906.0 MOD)

The Tritium blank has activity above the MDA. Samples were sent to re-extract to verify the results. The re-extract results are acceptable and are reported.

Tritium sample aliquot was reduced due to limited sample volume availability.

Affected Samples:

F0A210536 (1): ITA1328-01

Gross Alpha/Beta (EPA 900.0 MOD)

The gross alpha and beta matrix spike are outside lower control limits due to possible matrix interference. Method performance is demonstrated by acceptable LCS recovery.

Affected Samples:

F0A210536 (1): ITA1328-01

SUBCONTRACT ORDER **TestAmerica Irvine**

ITA1328

SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	TestAmerica St. Louis
17461 Derian Avenue. Suite 100	13715 Rider Trail North
Irvine, CA 92614	Earth City, MO 63045
Phone: (949) 261-1022	Phone :(314) 298-8566
Fax: (949) 260-3297	Fax: (314) 298-8757
Project Manager: Joseph Doak	Project Location: CA - CALIFORNIA
Client: MWII-Pasadena/Boeing	Receipt Temperature: <u>°C</u> Ice: Y / N

Analysis	Units	Due	Expires	Interlab Price S	urch	Comments
	()) (^					. · ·
ample ID: ITA1328-01 (Out	tall 009 (Cor	nposite) - Wat	er) Sampled	: 01/19/10 00:13	}	
Gamma Spec-O	mg/kg	01/27/10	01/19/11 00:13	\$250.00	0%	Out St Louis, K-40 and CS-137 only, DO NOT FILTER
Gross Alpha-O	pCi/L	01/ 27/10	07/18/10 00:13	\$100.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	01/27/10	07/18/10 00:13	\$100.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Level 4 Data Package - Out	N/A	01/27/10	02/16/10 00:13	\$0.00	0%	
Radium, Combined-O	pCi/L	01/27/10	01/19/11 00:13	\$238.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Strontium 90-0	pCi/L	01/27/10	01/19/11 00:13	8 \$155.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	01/27/10	01/19/11 00:13	\$80.00	50%	Out St Lauis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	01/27/10	01/19/11 00:13	\$ \$120.00	0%	Out St Louis, Boeing permit, DO NO FILTER!
Containers Supplied:						
2.5 gal Poly (H) 5	00 mL Am	per (l)				
						A
ample ID: ITA1328-02 (Out	fali 009 (Gra	b) - Water)	Complex		1	
Gamma Spec-O	mg/kg	01/27/10	01/18/11 07:30	l <u>: 01/18/10 07:30</u>) \$250.00	0%	Out St Louis, K-40 and CS-137 only, DO NOT FILTER
Gross Alpha-O	pCi/L	01/27/10	07/17/10 07:30	\$100.00	50%	Out St Louis, Boeing permit, DO NOT
Gross Beta-O	pCi/L	01/27/10	07/17/10 07:30	\$100.00	50%	Out St Leuis, Boeing permit, DO NO
Radium, Combined-O	pCi/L	01/27/10	01/18/11 07:30	\$238.00	50%	
Strontium 90-0	pCi/L	01/27/10-	-01/18/11 07:30	\$155.00	50%	Out St Louis, Boeing permit, DO NO ⁻ FILTER!
Tritium-O	pCi/L	01/27/10	01/18/11 07:30	\$80.00	-50%-	Out St Louis, Boeing permit, DO NO
Uranium, Combined-O	pCi/L	01/27/10	01/18/11 07:30	\$120.00	0%	Out St Louis, Boeing permit, DO NO FILTER!
Containers-Supplied:						
Containers oupplied.						

Drnelal 1/20/10/200 Felex 1/20/10/7:00

F0A210536

TestAmerica St. Louis

Low RD: Low RD: POP classic Treasticies a devisor service The Classic The Classic CONDITION UPON RECERPT FORM Gli Client: The Client: The Client: Quice No: Staff of Content Client Gli Shipping # (a)* Shipping Liferonation Multiple Packages: (b) N Shipping # (a)* Sample Temperature (a)**	Tan Ana	Lot #	(s): FOA21052	2	•	
CONDITION UPON RECEIPT FORM			(53	\mathcal{V}		
Client: <u>TA Journe</u> Quote No: <u>\$5044</u> COCREA No: <u>TA L30,34295</u> Initiated By: <u><u>Store</u> Shipping # (a): <u>Des20</u> <u>/21//0</u> Time: <u>1215</u> Shipping # (a): <u>Store</u> Shipping # (a): <u>Store</u> Shipping # (a): <u>Store</u> Shipping # (a): <u>Store</u> 1. <u>4289</u> <u>2132</u> <u>9059</u> 6. <u>1</u> <u>arriller</u> 6. <u>2</u> <u>9040</u> 7. <u>2</u>. <u>7</u> 7. <u>2</u>. <u>7</u> 7. <u>3</u>. <u>8</u>. <u>3</u>. <u>8</u>. <u>4</u> <u>9</u>. <u>5</u>. <u>100</u> 7. <u>2</u>. <u>4</u> 9. <u>100</u> 7. <u>3</u>. <u>8</u>. <u>8</u>. <u>4</u> <u>9</u>. <u>100</u> 7. <u>5</u>. <u>100</u> 7. <u>7</u>. <u>7</u>. <u>7</u>. <u>7</u>. <u>7</u>. <u>7</u>. <u>7</u>. </u>	THE LEADER IN ENVIRORM	ENTAL TESTING	54	8		
Client: <u>TA Jonnel</u> Quote No: <u>Staff</u> <u>Staff</u> <u>CORREA No: <u>TABLES J. 3 (20</u>)<u>S</u> Initiated By: <u>TABLES J. 3 (20</u>)<u>S</u> Shipping # (b): <u>Shipping Information</u> Shipping # (b): <u>Shipping Information</u> Shipping # (b): <u>Sample Temperature (b): **</u> 1. <u>4289 2132 9059</u> 6. <u>1 curletor 6</u>. <u>7</u> 2. <u>9060</u> 7. <u>2. <u>7</u> 7. <u>2. <u>7</u> 7. <u>3. 8.</u> 3. <u>8. <u>9</u> <u>4. 9.</u> <u>5. </u><u>7</u> <u>7. <u>7. 2. <u>7. 7. </u><u>7. <u>7. 3. 8. <u>9. 1000000000000000000000000000000000000</u></u></u></u></u></u></u></u></u>	CONDITION U	JPON RECEIPT FORM	54	([
COCREPA Not TTHE 1330, 3 (28) SB Initiated By:	Client:	TA Donne				
Initiated By: Dat220 /21/10 Time: /22.5 Shipper: PedB: UPS DHL Courier Client Other: Multiple Packages: (*) N Shipping 1():* 1. 42.8° 2.3.2 90.5° 1. 42.8° 7. 7. 7. 3. 8. 3. 8. 3. 8. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 1. 9. 1. 1. 9. 1.	Quote No:	85044	·		<u> </u>	<u></u>
Initiated By: Dat220 /21/10 Time: /22.5 Shipper: PedB: UPS DHL Courier Client Other: Multiple Packages: (*) N Shipping 1():* 1. 42.8° 2.3.2 90.5° 1. 42.8° 7. 7. 7. 3. 8. 3. 8. 3. 8. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 9. 1. 1. 9. 1. 1. 9. 1.	COC/RFA No:	ITA 1330,3128 58			· · ·	
Shipping Information Shipping Information Shipping Information Simple Temperature (s):** 1. 4289 2/32 9059 6. 1. 4. 7. 7. 2. 90/40 7. 2. 7. 7. 3. 8. 3. 8. 9. 5. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. **Sample must be received at 40 ± 7. 10. *** *** 10. *** *** *** 10. *** *** *** *** *** *** *** *** *** *** *** **** **** **** *** ****<			Date 20 /2	1.10	Time:	1215
Shipper: (FedB) UPS DHL Courier Multiple Packages: (y) N Shipping # (s);* Sample Temperature (s);** I. 4289 2132 9059 6. I. 4289 2. 7. I. 2. I. 7. I. 2. I. 7. I. 3. 8. I. 9. I. 5. I. 10. Temperature 7. I. 9. I. 10. Temperature 7. I. 9. I. 9. I. 10. S. I. 10. Temperature 7. I. 10. N. Are there custody seals present on the coler of the coler		Shipp				
Shipping # (6):* Sample Temperature (6)** 1. <u>4289</u> 2/32 9059 6. 2. <u>9040</u> 7. 3. 8. 4. 9. 5. 10. **Number a slipping lines concepted to Numberd Sample Temp lines **Sample must be received at 42 < 2* 1°. If not, note contents to cooler	Shipper: Fo].			Multiple F	Packages: (Y)N
1. <u>4289</u> 2.322 90.59 6.	•• (1			1	e (s):**
2. 9000 7. 2. 7. 3. 8. 3. 8. 7. 4. 9. 5. 10. 5. 10. *Sample must be realized at 20 ± 20. If not, note conject below. Temperature variance den NOT affect the following: Metal-Liquide Robuster Liquide Robuster Li	1. 4289	2132 9059 6.		1. 6	willer	6.
3. 8. 3. 8. 4. 9. 5. 10. 5. 10. *Numbered shipping lines correspond to Numbered Sample Temp lines *Sample must be notived at 4°C ± 2°C. If not, note congrego below. Temperature variance des NO1 affect the following: Metal-Liquide Robusts: Liquid er Solids. Condition (Crele *V* for per, *N* for no and *V/A* for no applicable): 1. N Are there custedy seals present on the search of the NO1 affect the following: Metal-Liquide Robusts: Liquid er Solids: 2. Y (D) NA Do custedy seals on cooler appear to be search on bottles appear to be tampered with? 3. (D) N Are there custedy seals on cooler appear to be search with? 3. (D) N Ocoler* (D) N 4. (D) N (D) Custedy seals on cooler appear to be search with? (D) Custedy seals on cooler fisked after to cloake there custedy with proper pil? (If not, make note below) 3. (D) N N/A Do custedy match after the following: (If not, make note below) 4. (D) N Sample received with Chain of Custedy match after the following: (If not, make note below) 5. (D) N N/A Sample to Chain of Custedy match after the following: (If yes, note sample ID's todw) 6. Y(D) N <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td>· · · · · · · · · · · · · · · · · · ·</td>					1 1	· · · · · · · · · · · · · · · · · · ·
4. 9. 4. 9. 5. 10. 5. 10. *Numbered shipping lines correspond to Numbered Sample Temp lines **Sample must be readived at 4°C ± 2°C. If not, not compare back. Temperature variance daet NOT affect the following: Metabelliptic Robuster Liquid or Solids Condition (Circle "Y" for yea, "A" for no and "N/A" for no explicitable): 1. N Ac there custody seals present on the solution cool of appear to be solution (Circle "Y" for yea, "A" for no and "N/A" for no explicitable): 2. Y (D) NA Do custody seals on cooler appear to be solution (Circle "Y" for yea, "A" for no and "N/A" for no explicitable): 3. D N Do custody seals on cooler appear to be solution (Circle "Y" for yea, "A" for no and "N/A" for no explicitable): 4. D N D custody seals on cooler appear to be solution (Circle "Y" for yea, "A" for no and "N/A" for no explicitable): 3. D N Were contents of cooler frisked after to container(?) 10. Y N (N)A Was sample received with (Chain of 11. D N Sample received with (Chain of 11. D N Sample received with (Chain of 12. Y N (N)A Headspace in VOA or TOX liquid samples? 5. D N N N N/A Sample to clower broken? 13. Y N (N)A Was Internal COC/Workshare received?						
5. 10. 5. 10. *Numbered shipping lines correspond to Numbered Sample Temp lines **Sample must be reacted at %C ± %C ± 10 in not corgge below. Temperature variance does NOT affect the following: Metab-Liquid or Salids Condition (Circle 'Y' for yes. 'N' for no and 'W/A' for not explicable): **Sample must be reacted at %C ± %C ± 10 in not corgge below. Temperature variance does NOT affect the following: Metab-Liquid or Salids Condition (Circle 'Y' for yes. 'N' for no and 'W/A' for not explicable): Are there custody seals on cooler appear to be 9. Y N N Do custody seals on cooler appear to be 9. Y N N Do custody seals on cooler appear to be 9. Y N N Do custody seals on cooler appear to be 9. Y N N Do custody seals on cooler appear to be 9. Y N N Do custody seals on cooler appear to be 9. Y N N N Do custody seals on cooler appear to be 9. Y N N N Do custody seals on cooler appear to be 10. Y N N N N N Sample received with Chain of 11. O N N N Sample received with Chain of 11. N N Headspac			· · · · · · · · · · · · · · · · · · ·		1	- · · · · · · · · · · · · · · · · · · ·
*Sample must be received at 4°C ± 2°C. If not, note conjects below. Temperature variance does NOT affect the following: Metals-Lauder Radgetts-Lauder Radgetts-Radgetts-Lauder Radgetts-Radgetts-Lauder Radgetts-Lauder Radgetts-Lauder Radgetts-Lauder Radgetts-Radgetts-Lauder Radgetts-Radgetts-Lauder Radgetts-					1	• • • •
Trumbered subjeting lines correspond to Kunnered Subjet France variance does NOT affect the following: Meals-Liquid or Sablets 1. Image: A for these custody seals present on the cooler? 8. Y Image: A for these custody seals present on bottles? 2. Y Image: Notation (Circle "Y" for not applicable): 8. Y Image: A for these custody seals present on bottles? 3. Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): 3. Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): 3. Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): 4. Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): 5. Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): 6. Y (F) Was sample received broken? Image: Notation (Circle "Y" for not applicable): Image: Notation (Circle "Y" for not applicable): 7. Image: Notation			**Sample must be receive		C- If not, note o	mients below. Temperature
1. N Are there custody seals present on the cooler? Y N Are there custody seals on bottles? 2. Y N/A Do custody seals on cooler appear to be tampered with? Do custody seals on bottles appear to be tampered with? 3. N Were contents of cooler frisked after opening, but before unpacking? 10. Y N N Was sample received with proper pH? (If not, make note below) 4. N Sample received with Chain of Custody match custody? 11. N Sample received in proper containers? 5. N N/A Boe the Chain of Custody match sample in the container(s)? 12. Y N N Sample received with? 6. Y Was sample received broken? 13. Y N Was Internal COC/Workshare received? 7. D N Is sample volume sufficient for 14. Y N Was pH taken by original TestAmerica lab? ¹ For DDE-AL (Pante, LAN, Santia) sites, pH of ALL containers received must be verifiet, EXCEPT VOA, TOX and soils. Notes: Log H i H i H i H i H i H i H i H i H i H i	*Numbered shipping line:	s correspond to Numbered Sample Temp lines	variance does NOT affect	the following	g Metals-Liquid	or Radvests- Liquid or Solids
1. Cooler? a. 1 C. 1 Do custody seels on bottles appear to be tampered with? 3. C. N Mere contents of cooler fisiked after opening, but before umpacking? 10. Y N Was sample received with chain of Custody? Was sample received with Chain of Custody? 11. P N Sample received in proper containers? 5. C N N/A Bose the Chain of Custody? 12. Y N Mas tampered with? 13. Sample received in proper containers? (I' Yes, act ample D' is below) 6. V Was sample received broken? 13. Y N Was Internal COC/Workshare received? 7. W Is sample optime sufficient for analysis? 14. Y N N Was pet taken by original TestAmerica lab?				1		1 41 0
2. Y Y N Y N Y N T N T T N T T N T T N T N T N T N T N T N T N T N T N T N T N T T N N T T N N T T N T N T N T N T N T N T N T N T N T N T N T N T N T T N T N	א 💓 1.	cooler?	8. Y (N)		1	the second se
3. (3) N opening, but before unpacking? 10. Y N (NA make note below) 4. (2) N Sample received with Chain of Custody match sample received in proper containers? 11. (2) N Sample received in proper containers? 5. (2) N N/A Does the Chain of Custody match sample ID's on the container(s)? 12. Y N Headspace in VOA or TOX liquid samples? (If Yes, sole sample ID's below) 6. Y(P) Was sample received broken? 13. Y N Was Internal COC/Workshare received? 7. (3) N Is sample rolume sufficient for analysis? 14. Y N Was pH taken by original TestAmerica lab? * For DOE-AL (Panter, LANL, Sandia) sites, pH of ALL container received must be verified, EXCEPT VOA. TOX and soils. Notes: L04	2. Y 🔊 N/A	tampered with?	9. Y N NA	tamperce	d with?	
4. CS N Custody? 11. CS N 5. CN N/A Does the Chain of Custody match sample ID's bolow 12. Y N NA 6. Y Was sample received broken? 13. Y N 7. DN analysis? Is sample volume sufficient for analysis? 14. Y N NA r for DOE-AL (Panter, LANT, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and soils. Notes: Log friftium for 1 TAISSB pV NC for for the containers received must be verified, EXCEPT VOA, TOX and soils.	3. YB N	opening, but before unpacking?	10. Y N NA			with proper ph'? (11 not,
5. (X > N N/A sample ID's on the container(s)? 12. T N (VA (free note sample ID's below) 6. Y Was sample received broken? 13. Y N (VA) Was Internal COC/Workshare received? 7. (D) N Is sample volume sufficient for analysis? 14. Y N (VA) Was pH taken by original TestAmerica lab? ' For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and soils. Notes: Log H i Hum for 1 / A / SSB Notes: Log H i Hum for If of Client Contact Name: Informed by:	4. Y N		11. (Y N	· · ·		
6. Y Was sample received broken? 13. Y N Was Internal COC/Workshare received? 7. Y N Is sample volume sufficient for analysis? 14. Y N Was pH taken by original TestAmerica lab? ¹ For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and soils. Notes: L64 Hr it is an formation of the containers received must be verified, EXCEPT VOA, TOX and soils. Notes: L64 Hr it is an formation of the containers received must be verified, EXCEPT VOA, TOX and soils. Notes: L64 Hr it is an formation of the containers received must be verified. Corrective Action: If an analysis? Imformed by: Informed by: Sample(s) processed "as is" If released, notify: Sample(s) on hold until: Date: Project Management Review: L	5. (Y) N N/A		12. Y N NA			
7. Dr N analysis? 14. If N(V,D) was privately of generative network in the intervention of the interventintervention of the i	6. YN		13. Y N 💓	Was Inte	ernal COC/W	orkshare received?
¹ For DOE-AL (Pantex, LANL, Sandia) sites, pH of ALL containers received must be verified, EXCEPT VOA, TOX and soils. Notes: Log	7. WN		14. Y N N/A) Was pH	taken by orig	inal TestAmerica lab?
Corrective Action: Corrective Action: Client Contact Name: Sample(s) processed "as is" Sample(s) on hold until: Project Management Review: Market Contact Name: Dat		ANL, Sandia) sites, pH of ALL containers received 1	must be verified, EXCEPT	OA, TOX an	nd soils.	
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 	Notes: Log	tritium for ITAISSB	pr KC por	puli-		
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 	<u> </u>	<u> </u>	•		·	-
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 			·····			
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 		· · · · · · · · · · · · · · · · · · ·				
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 					1. 	
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 		·				
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 						·
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 				• .		
 □ Client Contact Name: Informed by: □ Sample(s) processed "as is" □ Sample(s) on hold until: If released, notify: Date: 0 - 22 - 10 						
□ Sample(s) processed "as is" □ Sample(s) on hold until: Project Management Review: If released, notify: Date: Date:		•	Tr. C			
Sample(s) on hold until: Project Management Review:			informed by: _	<u></u>		
	□ Sample(s) on ho	old until:				1-01-10
	Project Managemen		r –	<u>.</u>	0	- dd /1)

THIS FORM MUST BE COMPLETED AT THE TIME THE TIME ARE BEING CHECKED IV. IF ANY THEM IS COMPLETED THE INITIATOR. THEN THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.

METHODS SUMMARY

F0A210536

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Gamma Spectroscopy - Cesium-137 & Hits	EPA 901.1 MOD	
Gross Alpha/Beta EPA 900	EPA 900.0 MOD	EPA 900.0
H-3 by Distillation & LSC	EPA 906.0 MOD	
Radium-226 by GFPC	EPA 903.0 MOD	
Radium-228 by GFPC	EPA 904 MOD	
Strontium 90 by GFPC	EPA 905 MOD	
Total Uranium By Laser Ph osphorimetry	ASTM 5174-91	

References:

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

SAMPLE SUMMARY

F0A210536

WO # SAMPLE# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LTH78 001 ITA1328-01	01/19/10	00:13
NOTE (S) : - The analytical results of the samples listed above are presented on the following pages.		

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

.

TestAmerica Irvine

Client Sample ID: ITA1328-01

Radiochemistry

Lab Sample ID: Work Order: Matrix:	F0A210536-00 LTH78 WATER)1		Date Collec Date Receiv	• • • • • • • • •	9/10 0013 1/10 1215	
Parameter	Result	Qual	Total Uncert. (2 σ+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & H	its by EPA 901.	1 MOD		pCi/L	Batch #	0023036	Yld %
Cesium 137	-2	U	11	20	19	01/23/10	01/26/10
Potassium 40	-100	U	4000		200	01/23/10	01/26/10
Gross Alpha/Beta	EPA 900			pCi/L	Batch #	0025415	Yld %
Gross Alpha	1.66	J	0.78	3.00	0.88	01/25/10	01/29/10
Gross Beta	3.0	J	1.1	4.0	1.6	01/25/10	01/29/10
SR-90 BY GFPC E	PA-905 MOD			pCi/L	Batch #	0022149	¥ld % 76
Strontium 90	0.66	J	0.39	3.00	0.60	01/22/10	02/01/10
Total Uranium by	KPA ASTM 5174-	91		pCi/L	Batch #	0035029	Yld %
Total Uranium	0.00278	U	0.00032	0.693	0.21	02/04/10	02/08/10
Radium 226 by E	PA 903.0 MOD			pCi/L	Batch #	0022145	Yld % 61
Radium (226)	0.04	U	0.10	1.00	0.18	01/22/10	02/08/10
Radium 228 by GF	PC EPA 904 MOD			pCi/L	Batch #	0022148	¥ld % 54
Radium 228	-0.03	U	0.62	1.00	1.1	01/22/10	02/08/10
TRITIUM (Distill)) by EPA 906.0	MOD		pCi/L	Batch #	0027209	Yld %
Tritium	29	U	46	500	76	01/27/10	01/28/10

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID:	F0A210536
Matrix:	WATER

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Total Uranium b	Y KPA ASTM 517	4-91	pCi/L	Batch #	0035029	Yld %	I	70B040000-029B
Total Uranium	-0.0623	σ	0.0075	0.693	0.21		02/04/10	02/08/10
Radium 226 by Radium (226)	EPA 903.0 MOD 0.111	U	pCi/L 0.094	Batch # 1.00	0022145 0.13	Yld %		F0A220000-145B 02/08/10
Radium 228 by G	FPC EPA 904 MO	D	pCi/L	Batch #	0022148	¥ld %	92 1	70A220000-148B
Radium 228	0.22	υ	0.35	1.00	0.59	_	01/22/10	02/08/10
SR-90 BY GFPC	EPA-905 MOD		pCi/L	Batch #	0022149	Yld %	79 1	70A220000-149B
Strontium 90	-0.01	U	0.22	3.00	0.38		01/22/10	02/01/10
Gamma Cs-137 &	Hits by EPA 90	1.1 MOD	pCi/L	Batch #	0023036	¥ld %]	70A230000-036B
Cesium 137	-0.4	U	6.7	20.0	12		01/23/10	01/26/10
Potassium 40	-70	U	240		210		01/23/10	01/26/10
Gross Alpha/Bet	a EPA 900		pCi/L	Batch #	0025415	Yld %	1	F0A250000-415B
Gross Alpha	-0.03	U	0.34	3.00	0.71		01/25/10	01/29/10
Gross Beta	-0.26	U	0.86	4.00	1.5		01/25/10	01/29/10
TRITIUM (Distil	1) by EPA 906.	0 MOD	pCi/L	Batch #	0027209	Yld %]	
Tritium	69	U	50	500	76		01/27/10	01/28/10

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only

Laboratory Control Sample Report

Radiochemistry

Client Lot	ID:	F0A210536
Matrix:		WATER

			Total			Lab Sample ID		
Parameter	Spike Amount	Result	Uncert . (2 σ+/-))	MDC	% Y1d	% Rec	QC Control Limits
Gamma Cs-137 & Hit	s by EPA 901.1	MOD	pCi/L	901.1	MOD		FOA2	30000-036C
Americium 241	141000	132000	10000		500		93	(87 - 110)
Cesium 137	53100	48200	2800		200		91	(90 - 110)
Cobalt 60	87900	79000	4400		200		90	(89 - 110)
	Batch #:	0023036			Analysis Date:	01/2	6/10	
Gross Alpha/Beta E	PA 900		pCi/L	900.0	MOD		F0A2	50000-415C
Gross Beta	68.1	73.4	6.2		1.6		108	(58 - 133)
	Batch #:	0025415			Analysis Date:	01/2	9/10	
Gross Alpha/Beta F	PA 900		pCi/L	900.0	MOD		F0A2	50000-415C
Gross Alpha	49.4	45.4	5.0		0.9		92	(62 - 134)
	Batch #:	0025415			Analysis Date:	01/2	9/10	
TRITIUM (Distill)	by EPA 906.0 M	OD	pCi/L	906.0	MOD		FOA2	70000-209C
Tritium	4540	4640	360		80		102	(85 - 112)
	Batch #:	0027209			Analysis Date:	01/2	8/10	
Total Uranium by F	(PA ASTM 5174-9)	1	pCi/L	5174-	91		FOBO	40000-029C
Total Uranium	27.7	29.2	3.5		0.2		105	(90 - 120)
	Batch #:	0035029			Analysis Date:	02/0	8/10	
Total Uranium by F	(PA ASTM 5174-9)	1	pCi/L	5174-	91		FOBO	40000-029C
Total Uranium	5.54	5.67	0.59		0.21		102	(90 - 120)
	Batch #:	0035029			Analysis Date:	02/0	8/10	

Laboratory Control Sample/LCS Duplicate Report

Radiochemistry

Client Lot	ID:	F0A210536
Matrix:		WATER

					Total			Lab	Sample I	D
Parameter		Spike Amount	Result		Uncert. (2 g+/-)	% Yld	% Rec	QC Control Limits	Precis	ion
Radium 226 b	у ЕРА	903.0 MOD	· · · · · ·	pCi/L	903.(MOD		F0A2	220000-1	.45C
Radium (226)	Spk 2	11.3 11.3	10.7 11.2		1.1 1.1	108 110	95 100	(68 - 136) (68 - 136)	5	%RPD
		Batch #:	0022145			Analysi	s Date:	02/08/10		
Radium 228 b	y GFPC	EPA 904 MOD		pCi/L	904 N	IOD		F0A2	220000-1	.48C
Radium 228	Spk 2	6.45 6.45	8. 22 7.58		0.95 0.88	93 99	127 118	(60 - 142) (60 - 142)	8	%RPD
		Batch #:	0022148			Analysi	s Date:	02/08/10		
SR-90 BY GFP	C EPA	-905 MOD		pCi/L	905 N	IOD		F0A2	220000-1	.49C
Strontium 90	Spk 2	6.81 6.81	6.74 6.99		0.79 0.81	77 80	99 103	(80 - 130) (80 - 130)	4	%RPD
		Batch #:	0022149			Analysi	s Date:	02/01/10		

MATRIX SPIKE REPORT

Radiochemistry

Client Lot Id:	F0A200486	Date Sampled:	01/18/10
Matrix:	WATER	Date Received:	01/20/10

			Metel		Total	QC Sampl	e ID
Parameter	Spike Amount	Spike Result	Total Uncert. (2g+/-)	Spike Sample Yld. Result	Uncert.	%YLD %REC	QC Control Limits
Gross Alpha/Beta EPA	900		pCi/L	900.0 MC	מנ	F0A20048	6-001
Gross Beta	68.1	10.0	1.6	0.83	0.99	14	a (54 - 150)
	Batch #:	0025415	Ar	alysis Date:	01/29/10		
Gross Alpha/Beta EPA	900		pCi/L	900.0 MC	םנ	F0A20048	6-001
Gross Alpha	49.4	6.9	1.6	0.98	0.70	12	a (35 - 150)
	Batch #:	0025415	Ar	alysis Date:	01/29/10		
TRITIUM (Distill) by	EPA 906.0 M	מכ	pCi/L	906.0 MC	D	F0A21053	6-001
Tritium	9090	9060	620	29	46	99	(62 - 147)
	Batch #:	0027209	Ar	alysis Date:	01/28/10		

NOTE (S)

Data are incomplete without the case narrative. Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

Radiochemistry

Client Lot I Matrix:		F0A200486 WATER					te Sam te Rece	•	01/1 01/2		0730 0915	
Parameter		Spike Amount	SPIKE Result	Total Uncert. (2 g+/-)	Spike Yld	SAMPLE Result		Total Uncert. (2g +/-)	* Yld	QC Sam <u>r</u> %Rec		Control Lts
Total Uranium	by KPA	A ASTM 5		pCi/L	5	174-91			F	DA2004	86-001	
Total Uranium	Spk2	27.7 27.7	28.8 29.2	3.4 3.5		-0.0334 -0.0334		0.0040 0.0040 Preci	sion:	104 105 2		- 150) - 150)
		Batch	#: 0035029	An	alysis d	ate:	02/08/	10				

NOTE (S)

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:	F0A210536	Date Sampled:	01/18/10
Matrix:	WATER	Date Received:	01/20/10

			Total			Total	(QC Sample ID	
Parameter	SAMPLE Result		Uncert. (2σ+/-)	% Yld	DUPLICATE Result	Uncert. (2 σ+/-)	% Yld	Precisi	.on
Gross Alpha/Beta EP	A 900			pCi/L	900.0 MOD		FC	A200486-00)1
Gross Alpha	0.98	J	0.70		0.71 J	0.85		32	%RPD
Gross Beta	0,83	U	0.99		1.6 J	1.0		62	%RPD
	Ba	tch #:	0025415	(Sample)	0025415 (Du	plicate)			
TRITIUM (Distill) b	Y EPA 90	6.0 МО	D	pCi/L	906.0 MOD		FC	A210536-00	01
Tritium	29	U	46		23 U	45		22	%RPD
	Ba	tch #:	0027209	(Sample)	0027209 (Du	plicate)			
Gamma Cs-137 & Hits	by EPA	901.1	MOD	pCi/L	901.1 MOD		FC	A210532-00	01
Cesium 137	-2.3	U	9.2		-1.4 U	9.8		47	%RPD
Potassium 40	-30	U	240		-60 U	440		69	%RPD
	Ba	tch #:	0023036	(Sample)	0023036 (Du	plicate)			

NOTE (S)

Data are incomplete without the case narrative.

THIS PAGE LEFT INTENTIONALLY BLANK

APPENDIX G

Section 39

Outfall 009 – February 5, 2010

MECX Data Validation Report

THIS PAGE LEFT INTENTIONALLY BLANK

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITB0773

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	ITB0773
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009	ITB0773-02	F0B090473- 001, G0B100420- 001	Water	2/3/2010	ASTM 5174-91, 100.2, 200.7, 200.7 (Diss), 245.1, 245.1 (Diss), 1613B, 900.0 MOD, 901.1 MOD, 903.0 MOD, 904 MOD, 905 MOD, 906.0 MOD, SM2540D

II. Sample Management

No anomalies were observed regarding sample management. The sample receipt temperature was noted to be ambient by TestAmerica-St Louis; however, due to the nonvolatile nature of the analytes, no qualifications were required. The sample was received below the temperature limits at TestAmerica-West Sacramento; however, the sample was not noted to be frozen or damaged. The samples in this SDG were received at the remaining laboratories within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were present upon receipt at TestAmerica-West Sacramento and TestAmerica-St. Louis. As the samples were delivered to the remaining laboratories by courier, no custody seals were necessary. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 100.2—Asbestos

Reviewed By: P. Meeks Date Reviewed: March 16, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 100.2, and the National Functional Guidelines for Inorganic Data Review (10/2004).

- Holding Times: The sample was filtered one day beyond the 48-hour holding time; therefore, nondetected asbestos in the sample was qualified as estimated, "UJ." There is no analysis holding time; however, the sample was analyzed within 5 days of collection.
- Calibration: The refractive index calibration was acceptable.
- Blanks: A method blank was analyzed with the site sample. Asbestos was not detected in the method blank.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: The sample result was verified against the raw data. No transcription errors were noted. Any detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

B. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: March 22, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for all target compounds except 2,3,7,8-TCDD, 1,2,3,7,8-PeCDF, and 2,3,4,7,8-PeCDF. Most detects in the method blank did not meet ratio criteria and were reported as EMPCs; however, due to the extent of contamination present in the method blank, it was the reviewer's professional opinion that those results be utilized to qualify applicable sample results. Isomers present in the sample between the EDLs and RLs were qualified as nondetected, "U," at the levels of contamination. Results for associated totals that included peaks

meeting ratio criteria that were not present in the method blank were qualified as estimated, "J," as only a portion of the total was considered method blank contamination. The concentrations of OCDD and 1,2,3,4,6,7,8-HpCDD in the method blank were insufficient to qualify the sample results or associated total HpCDD.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was
 verified by recalculating a representative number of reportable sample results. EMPCs
 qualified as nondetected for method blank contamination were not further qualified as
 EMPCs. Any total results reported as EMPCs or including EMPCs were qualified as
 estimated, "J." Any detects reported below the EDL, or between the estimated detection
 limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with
 "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

C. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 16, 2010

The sample listed in Table 1 for these analyses were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Tuning: Not applicable to these analyses.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. The magnesium CRDL recovery was 154%; however, as the magnesium result was more than 3× the reporting limit, no qualifications were required. The remaining CRDL and CRI recoveries were within the control limits of 70-130%.
- Blanks: Boron was detected in the total method blank at 23.7 µg/L; therefore, boron in the total fraction was qualified as nondetected, "U," at the reporting limit. Selenium was detected in a bracketing CCB at 8.8 µg/L; therefore, total selenium detected in the sample was qualified as nondetected, "U," at the level of contamination. Method blanks and CCBs had no other applicable detects.
- Interference Check Samples: Recoveries were within the method-established control limits. Boron, arsenic, silver, and total selenium were reported at -62.6, -10.0, -8.4, and -16 µg/L, respectively, in the ICSA solution; however, the concentration of the interfering element, iron, was insufficient to cause matrix interference in the site sample.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for the ICP analytes on the dissolved fraction. All recoveries and RPDs were within the methodestablished control limits. No MS/MSD analyses were performed on the sample for mercury; therefore, for mercury, method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable tot these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that the result for total arsenic was a negative value, -7.5 μ g/L, the absolute value of which was slightly larger than the MDL. The reviewer changed the MDL to the level of interference, 7.5 μ g/L.

Selenium was detected in the dissolved fraction and was originally detected at a higher concentration in the total fraction; however, due to CCB contamination, total selenium was qualified as nondetected.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 17, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The aliquots for total uranium and radium-228 were reanalyzed more than 3x beyond the holding time for unpreserved samples; therefore, total uranium and radium-228 detected in the sample was qualified as estimated, "J." Aliquots for gross alpha and gross beta, and gamma spectroscopy were prepared beyond the five-day analytical holding time for unpreserved samples; therefore, the results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. Aliquots for radium-226 and strontium-90 were prepared within the five-day holding time for unpreserved aqueous samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, the results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the

sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Tritium was detected in the method blank at 165 pCi/L; therefore, tritium detected in the sample was qualified as nondetected, "U," at the reporting limit. There were no other analytes detected in the method blanks or KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries and the radium-228 RPD were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. A matrix spike analysis was performed on the sample in this SDG for tritium. The recovery was within the laboratory-established control limits. Method accuracy for the remaining analytes was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

The reviewer noted that the preparation log for KPA was not signed as having been reviewed.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

E. EPA METHOD 525.2—Semivolatile Organic Compounds (SVOCs)

Reviewed By: P. Meeks Date Reviewed: March 16, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within 24 hours of collection and analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs were ≥0.05 and %RSDs ≤30%. The continuing calibration RRFs were ≥0.05 and recoveries were within the method QC limits of 70-130%.
- Blanks: The method blank had no applicable target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.

- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this analysis.
- System Performance: Review of the raw data indicated no problems with system performance.

F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 16, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), SM2540D, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time of seven days was met.
- Calibration: The balance calibration logs were acceptable.
- Blanks: The method blank had no detect.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Analysis of Water by Transmission Electron Microscopy (EPA-600 R 94 134) EPA 100.2

EMS No. 135399	Client	Test America	
Sample No. ITB0773-02 Outfall 009		Date Analyzed	2/10/2010
Fibers > 10 µm in length (chrysotile)	UJ/H	BDL*	MFL
Mass (chrysotile)		0	ug/L
More/Less than 5 Fibers in Sample (chrysotile)		LESS	
Poisson 95% Confidence Interval		0 to	8 MFL
Detection Limit		2.2	MFL

* BDL : Below Detection Limit; MFL: Million Fibers per Liter

Particle Size Distribution (Chrysotile)

Particle Length - Microns

O -0.49	9 0.50 - 0.99	1.00 - 1.49	1.50 - 1.99	2.00 - 2.49	2.5 - 4.99	5.00 - 9.99	10 & UP						
0	0	0	0	0	0	0	0						
	Particle Width - Microns												
O04	.0509	.114	.1519	.224	.2549	.5099	1 & UP						
0	0	0	0	0	0	00	0						
			Aspect Ra	atio L/W									
0 - 9.9	10 - 19.9	20 - 29.9	30 - 39.9	40 - 49.9	50 - 99	100 - 199	200 & UP						
0	0	0	0	0	0	0	0						

TEM 7B (1994)

LEVEL IV

EMS LABORATORIES 117 West Bellevue Drive / Pasadena CA 91105-2503 /626-568-4065 1731

PM 3/19/10

Validated Sample Result Forms ITB0773

Analysis Method ASTM 5174-91

Sample Name	Outfall 009 C	omposite	Matri	х Туре:	WATER	Validation Level: IV					
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes			
Total Uranium	7440-61-1	0.264	0.693	0.21	pCi/L	Jb	1	H, DNQ			
Analysis Method	d EPA 2	200.7									
Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	Ţ	alidation Le	vel: IV			
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes			
Aluminum	7429-90-5	950	50	40	ug/l						
Arsenic	7440-38-2	ND	10	7.0	ug/l		U				
Beryllium	7440-41-7	ND	2.0	0.90	ug/l		U				
Boron	7440-42-8	ND	0.053	0.020	mg/l	В	U	В			
Calcium	7440-70-2	11	0.10	0.050	mg/l						
Chromium	7440-47-3	2.0	5.0	2.0	ug/l	J	J	DNQ			
Iron	7439-89-6	1.1	0.040	0.015	mg/l						
Magnesium	7439-95-4	3.2	0.020	0.012	mg/l						
Nickel	7440-02-0	ND	10	2.0	ug/l		U				
Selenium	7782-49-2	ND	12	8.0	ug/l		U	В			
Silver	7440-22-4	ND	10	6.0	ug/l		U				
Vanadium	7440-62-2	3.7	10	3.0	ug/l	J	J	DNQ			
Zinc	7440-66-6	13	20	6.0	ug/l	J	J	DNQ			

Sample Name	Outfall 009 C	Composite	Matri	ix Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validatior Notes
Aluminum	7429-90-5	ND	50	40	ug/l		U	
Arsenic	7440-38-2	ND	10	7.5	ug/l		UJ	\$,*III
Beryllium	7440-41-7	ND	2.0	0.90	ug/l		U	
Boron	7440-42-8	0.046	0.050	0.020	mg/l	J	J	DNQ
Calcium	7440-70-2	11	0.10	0.050	mg/l	MHA		
Chromium	7440-47-3	ND	5.0	2.0	ug/l		U	
ron	7439-89-6	0.042	0.040	0.015	mg/l			
Magnesium	7439-95-4	3.0	0.020	0.012	mg/l			
Nickel	7440-02-0	ND	10	2.0	ug/l		U	
Selenium	7782-49-2	10	10	8.0	ug/l			
Silver	7440-22-4	ND	10	6.0	ug/l		U	
Vanadium	7440-62-2	ND	10	3.0	ug/l		U	
Zinc	7440-66-6	ND	20	6.0	ug/l		U	
Analysis Method	d EPA	245.1						
Sample Name	Outfall 009 C	Composite	Matri	ix Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.00020	0.00010	mg/l		U	
Analysis Method	d EPA	245.1-1	Diss					
Sample Name	Outfall 009 C	Composite	Matri	ix Type:	Water	۲	alidation Le	vel: IV
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.00020	0.00010	mg/l		U	
Analysis Method	d EPA	525.2						
Sample Name	Outfall 009 C	Composite	Matri	ix Type:	Water	١	alidation Le	vel: IV
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Chlorpyrifos	2921-88-2	ND	1.0		ug/l		U	
Chlorpyrifos Diazinon	2921-88-2 333-41-5	ND ND	1.0 0.25		ug/l ug/l		U U	
					-			Page 2 d

Analysis Method EPA 200.7-Diss

Sample Name	Outfall 009 Co	omposite	Matri	x Type:	WATER	۷	Validation Level: IV				
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes			
Gross Alpha	12587-46-1	1.02	3	1.2	pCi/L	U	UJ	H, C			
Gross Beta	12587-47-2	1.65	4	0.95	pCi/L	Jb	1	H, DNQ			
Analysis Metho	od EPA 9	901.1 M	IOD								
Sample Name	Outfall 009 Co	omposite	Matri	x Type:	WATER	٧	alidation Le	vel: IV			
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes			
Cesium 137	10045-97-3	1.8	20	12	pCi/L	U	UJ	Н			
Potassium 40	13966-00-2	-40	0	220	pCi/L	U	UJ	Н			
Analysis Metho	od EPA 9	903.0 M	IOD								
Sample Name	Outfall 009 Co	omposite	Matri	x Type:	WATER	۷	alidation Le	vel: IV			
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes			
Radium (226)	13982-63-3	0.29	1	0.21	pCi/L	Jb	1	C, DNQ			
Analysis Metho		904 MC	מו								
mai ysis memi	oa EPAS	104 MC	Ú								
Sample Name	Outfall 009 Co			х Туре:	WATER	V	alidation Le	vel: IV			
		omposite	Matri		WATER 1:44:00 PM	V	alidation Le	vel: IV			
Sample Name Lab Sample Name:	Outfall 009 Co	omposite	Matri			Lab Qualifier	⁷ alidation Le Validation Qualifier				
Sample Name Lab Sample Name: Analyte	Outfall 009 Co ITB0773-02RE1	omposite Sam Result	Matri ple Date:	2/5/2010	1:44:00 PM Result	Lab	Validation	Validation			
Sample Name Lab Sample Name: Analyte	Outfall 009 Co ITB0773-02RE1 CAS No 15262-20-1	omposite Sam Result Value	Matri ple Date: RL	2/5/2010 MDL	1:44:00 PM Result Units	Lab Qualifier	Validation Qualifier	Validation Notes			
Sample Name Lab Sample Name: Analyte Radium 228	Outfall 009 Co ITB0773-02RE1 CAS No 15262-20-1	Sam Sam Result Value 0.38 2005 MC	Matri ple Date: RL 1 DD	2/5/2010 MDL	1:44:00 PM Result Units	Lab Qualifier ^{Jb}	Validation Qualifier	Validation Notes H, DNQ			
Sample Name Lab Sample Name: Analyte Radium 228 Analysis Metho	Outfall 009 Co ITB0773-02RE1 CAS No 15262-20-1 od EPA 9	Composite Sam Result Value 0.38 DO5 MC Composite	Matri ple Date: RL 1 DD Matri	2/5/2010 MDL 0.28 x Type:	1:44:00 PM Result Units pCi/L	Lab Qualifier ^{Jb}	Validation Qualifier J	Validation Notes H, DNQ			
Sample Name Lab Sample Name: Analyte Radium 228 Analysis Metho Sample Name	Outfall 009 Co ITB0773-02RE1 CAS No 15262-20-1 od EPA 9 Outfall 009 Co	Composite Sam Result Value 0.38 DO5 MC Composite	Matri ple Date: RL 1 DD Matri	2/5/2010 MDL 0.28 x Type:	1:44:00 PM Result Units pCi/L WATER	Lab Qualifier ^{Jb}	Validation Qualifier J	Validation Notes H, DNQ vel: IV			

Analysis Method EPA 900.0 MOD

Outfall 009 Co	omposite	Matri	x Type:	WATER	V	alidation Le	vel: IV
ITB0773-02	Sam	ple Date:	2/5/2010 1	:44:00 PM			
CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
10028-17-8	ND	500	95	pCi/L	Jb	U	В
d EPA-:	5 16131	8					
Outfall 009 Co	omposite	Matri	х Туре:	WATER	۲	alidation Le	vel: IV
ITB0773-02	Sam	ple Date:	2/5/2010 1	:44:00 PM			
CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
35822-46-9	6.3e-005	0.000047	0.0000028	ug/L	Ba		
67562-39-4	ND	0.000047	0.000002	ug/L	J, Ba	U	В
55673-89-7	ND	0.000047	0.0000027	ug/L		U	
39227-28-6	ND	0.000047	0.0000021	ug/L	J, Ba	U	В
70648-26-9	ND	0.000047	0.0000016	ug/L		U	
57653-85-7	ND	0.000047	0.0000018	ug/L	J, Ba	U	В
57117-44-9	ND	0.000047	0.0000015	ug/L	J, Ba	U	В
19408-74-3	ND	2.4e-006	0.0000016	i ug/L	J, Q, Ba	U	В
72918-21-9	ND	0.000047	0.0000012	ug/L		U	
40321-76-4	ND	0.000047	0.0000032	ug/L		U	
57117-41-6	ND	0.000047	0.0000018	ug/L		U	
60851-34-5	ND	0.000047	0.0000014	ug/L	J, Ba	U	В
57117-31-4	ND	0.000047	0.0000021	ug/L		U	
1746-01-6	ND	0.0000094	0.0000015	ug/L		U	
51207-31-9	ND	0.0000094	0.0000012	ug/L		U	
3268-87-9	0.00091	0.000094	0.0000045	ug/L	Ba		
39001-02-0	ND	0.000094	0.0000027	ug/L	J, Ba	U	В
37871-00-4	0.00014	0.000047	0.0000028	ug/L	Ba		
38998-75-3	3.5e-005	0.000047	0.000002	ug/L	J, Ba	J	B, DNQ
34465-46-8	2.1e-005	2.1e-005	0.0000016	i ug/L	J, Q, Ba	J	B, DNQ, *II
55684-94-1	9.7e-006	9.7e-006	0.0000012	ug/L	J, Q, Ba	J	B, DNQ, *II
36088-22-9	3.4e-006	3.4e-006	0.0000032	ug/L	J, Q, Ba	J	B, DNQ, *II
30402-15-4	7.2e-006	7.2e-006	0.0000012	ug/L	J, Q, Ba	J	B, DNQ, *II
41903-57-5	ND	0.0000094	0.0000015	ug/L		U	
	ITB0773-02 CAS No 10028-17-8 od EPA-3 Outfall 009 Co ITB0773-02 CAS No 35822-46-9 67562-39-4 55673-89-7 39227-28-6 70648-26-9 57653-85-7 57117-44-9 19408-74-3 72918-21-9 40321-76-4 57117-41-6 60851-34-5 57117-41-6 60851-34-5 57117-31-4 1746-01-6 51207-31-9 3268-87-9 39001-02-0 37871-00-4 38998-75-3 34465-46-8 55684-94-1 36088-22-9 30402-15-4	CAS No Result Value 10028-17-8 ND Dd EPA-5 16131 Outfall 009 Composite ITB0773-02 Sam CAS No Result Value Sam CAS No Result Value Sam CAS No Result Value Sam CAS No Result Value Sam 55673-89-7 ND S55673-89-7 39227-28-6 ND S000 70648-26-9 ND S7117-44-9 57117-44-9 ND S7117-44-9 19408-74-3 ND S7117-41-6 57117-41-6 ND S7117-41-6 60851-34-5 ND S7117-31-4 51207-31-9 ND S1207-31-9 3268-87-9 0.00091 3268-87-9 39001-02-0 ND S1207-31-9 39001-02-0 ND S1207-31-9 39001-02-0 ND S1207-31-9 39001-02-0 ND S1207-31-9 39001-02-0 ND S1200-05	ITB0773-02 Sample Date: CAS No Result Value RL 10028-17-8 ND 500 od EPA-5 I6133 Outfall 009 Composite Matri TB0773-02 Sample Date: Outfall 009 Composite Matri TB0773-02 Sample Date: CAS No Result Value RL 35822-46-9 6.3e-005 0.000047 67562-39-4 ND 0.000047 55673-89-7 ND 0.000047 39227-28-6 ND 0.000047 39227-28-6 ND 0.000047 57653-85-7 ND 0.000047 57653-85-7 ND 0.000047 57117-44-9 ND 0.000047 19408-74-3 ND 2.4e-006 72918-21-9 ND 0.000047 60851-34-5 ND 0.000047 57117-41-6 ND 0.000047 57117-31-4 ND 0.000047 57107-31-9 ND 0.000047 51207-31-9 ND 0.000047 <t< td=""><td>ITB0773-02 Sample Date: 2/5/2010 1 CAS No Result Value RL MDL MDL 10028-17-8 ND 500 95 Outfall 009 Composite Matrix Type: ITB0773-02 Sample Date: 2/5/2010 1 CAS No Result Value RL MDL 0utfall 009 Composite Matrix Type: 2/5/2010 1 CAS No Result Value RL MDL 35822-46-9 6.3e-005 0.000047 0.000022 55673-89-7 ND 0.000047 0.000021 39227-28-6 ND 0.000047 0.000021 70648-26-9 ND 0.000047 0.000016 57117-44-9 ND 0.000047 0.000012 19408-74-3 ND 2.4e-006 0.000012 40321-76-4 ND 0.000047 0.000012 40321-76-4 ND 0.000047 0.000012 57117-41-6 ND 0.000047 0.000014 57117-41-6 ND 0.000047 0.00</td><td>TB0773-02Sample Date:2/5/2010 1:44:00 PMCAS NoResult ValueMD50095pCi/LOUtfall 009 CompositeMatrix Type:VATEROUtfall 009 CompositeMatrix Type:VATERTB0773-02Sample Date:2/5/2010 1:44:00 PMCAS NoResultRLVMTERTB0773-02Sample Date:VJ5/2010 1:44:00 PMCAS NoResultRLVMTERTB0773-02Sample Date:VJ5/2010 1:44:00 PMCAS NoResultRLVMTERTB0773-02Sample Date:VJ5/2010 1:44:00 PMCAS NoResultRLVMTERTB0773-02Sample Date:VJ5/2010 1:44:00 PMCAS NoResultVITISVITISCAS NoResultRLVITISVITISVITISVITISVITISND0.0000010ug/L70648-26-9ND0.0000470.000011ug/L</td><td>TB0773-02 Sample Date: 2/5/2010 1:44:00 PM CAS No Result Value RL Solo MDL Diss Result Units Lab Qualifier 10028-17-8 ND 500 95 pCi/L Jb od EPA-5 1613B Varian Varian Qualifier 00tfall 009 Composite Matrix Type: WATER Varian MDL Result Units Lab Qualifier TB0773-02 Sample Date: 2/5/2010 1:44:00 PM Ba 35822-46-9 6.3e-005 0.00007 0.000028 ug/L Ba 67562-39-4 ND 0.00007 0.000021 ug/L J, Ba 55673-89-7 ND 0.000047 0.000016 ug/L J, Ba 70648-26-9 ND 0.000047 0.000016 ug/L J, Ba 57117-44-9 ND 0.000047 0.000016 ug/L J, Ba 57117-44-9 ND 0.000047 0.000012 ug/L J, Ba 51207-31-9 ND 0.000047 0.000</td><td>TTB0773-02 Sample Date: 2/5/2010 1:44:00 PM CAS No Result Value RL MDL Result Units Lab Qualifier Validation Qualifier 10028-17-8 ND 500 95 pCi/L Jb U od EPA-5 Io13B Validation Le Validation Le Validation Le Outfall 009 Composite Matrix Type: WATER Validation Le TB0773-02 Sample Date: 2/5/2010 1:44:00 PM Validation Qualifier Validation Le S822-46-9 6.3e-005 0.000047 0.000002 ug/L J, Ba U 55673-89-7 ND 0.000047 0.000002 ug/L J, Ba U 39227-28-6 ND 0.000047 0.000001 ug/L J, Ba U 70648-26-9 ND 0.000047 0.000015 ug/L U U 57653-85-7 ND 0.000047 0.000016 ug/L J, Ba U 701498-74-3 ND 2.4e-006 0.000016 ug/L U U 19408-74-3 ND 0.000047 0.000012 ug/L<!--</td--></td></t<>	ITB0773-02 Sample Date: 2/5/2010 1 CAS No Result Value RL MDL MDL 10028-17-8 ND 500 95 Outfall 009 Composite Matrix Type: ITB0773-02 Sample Date: 2/5/2010 1 CAS No Result Value RL MDL 0utfall 009 Composite Matrix Type: 2/5/2010 1 CAS No Result Value RL MDL 35822-46-9 6.3e-005 0.000047 0.000022 55673-89-7 ND 0.000047 0.000021 39227-28-6 ND 0.000047 0.000021 70648-26-9 ND 0.000047 0.000016 57117-44-9 ND 0.000047 0.000012 19408-74-3 ND 2.4e-006 0.000012 40321-76-4 ND 0.000047 0.000012 40321-76-4 ND 0.000047 0.000012 57117-41-6 ND 0.000047 0.000014 57117-41-6 ND 0.000047 0.00	TB0773-02Sample Date:2/5/2010 1:44:00 PMCAS NoResult ValueMD50095pCi/LOUtfall 009 CompositeMatrix Type:VATEROUtfall 009 CompositeMatrix Type:VATERTB0773-02Sample Date:2/5/2010 1:44:00 PMCAS NoResultRLVMTERTB0773-02Sample Date:VJ5/2010 1:44:00 PMCAS NoResultRLVMTERTB0773-02Sample Date:VJ5/2010 1:44:00 PMCAS NoResultRLVMTERTB0773-02Sample Date:VJ5/2010 1:44:00 PMCAS NoResultRLVMTERTB0773-02Sample Date:VJ5/2010 1:44:00 PMCAS NoResultVITISVITISCAS NoResultRLVITISVITISVITISVITISVITISND0.0000010ug/L70648-26-9ND0.0000470.000011ug/L	TB0773-02 Sample Date: 2/5/2010 1:44:00 PM CAS No Result Value RL Solo MDL Diss Result Units Lab Qualifier 10028-17-8 ND 500 95 pCi/L Jb od EPA-5 1613B Varian Varian Qualifier 00tfall 009 Composite Matrix Type: WATER Varian MDL Result Units Lab Qualifier TB0773-02 Sample Date: 2/5/2010 1:44:00 PM Ba 35822-46-9 6.3e-005 0.00007 0.000028 ug/L Ba 67562-39-4 ND 0.00007 0.000021 ug/L J, Ba 55673-89-7 ND 0.000047 0.000016 ug/L J, Ba 70648-26-9 ND 0.000047 0.000016 ug/L J, Ba 57117-44-9 ND 0.000047 0.000016 ug/L J, Ba 57117-44-9 ND 0.000047 0.000012 ug/L J, Ba 51207-31-9 ND 0.000047 0.000	TTB0773-02 Sample Date: 2/5/2010 1:44:00 PM CAS No Result Value RL MDL Result Units Lab Qualifier Validation Qualifier 10028-17-8 ND 500 95 pCi/L Jb U od EPA-5 Io13B Validation Le Validation Le Validation Le Outfall 009 Composite Matrix Type: WATER Validation Le TB0773-02 Sample Date: 2/5/2010 1:44:00 PM Validation Qualifier Validation Le S822-46-9 6.3e-005 0.000047 0.000002 ug/L J, Ba U 55673-89-7 ND 0.000047 0.000002 ug/L J, Ba U 39227-28-6 ND 0.000047 0.000001 ug/L J, Ba U 70648-26-9 ND 0.000047 0.000015 ug/L U U 57653-85-7 ND 0.000047 0.000016 ug/L J, Ba U 701498-74-3 ND 2.4e-006 0.000016 ug/L U U 19408-74-3 ND 0.000047 0.000012 ug/L </td

Analysis Method EPA 906.0 MOD

Sample Name	Outfall 009 C	omposite	Matri	ix Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITB0773-02	Sam	ple Date:	2/5/2010	1:44:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Total Suspended Solids	TSS	21	10	1.0	mg/l			

Analysis Method SM 2540D

APPENDIX G

Section 40

Outfall 009 – February 5, 2010 Test America Analytical Laboratory Report THIS PAGE LEFT INTENTIONALLY BLANK

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Annual Outfall 009

Sampled: 02/05/10 Received: 02/05/10 Revised: 04/01/10 18:59

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are

included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL INFORMATION:

WATER, 1613B, Dioxins/Furans with Totals

Some analytes are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

Final revised report to provide corrected units and merge .pdf file for Radchem. Final report to include PP metals omittied from original issue.

LABORATORY ID	CLIENT ID	MATRIX
ITB0773-01	Outfall 009 Grab	Water
ITB0773-02	Outfall 009 Composite	Water
ITB0773-03	Trip Blank	Water

Reviewed By:

fabb-Ecthlee **TestAmerica** Irvine

Kathleen A. Robb For Heather Clark Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

	rur	GEADLES	DI G		A 024)				
			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITB0773-01 (Outfall 009 Grab	- Water)				Sample	ed: 02/05/1	10		
Reporting Units: ug/l	,				Sumpre	u . u_ /00/			
Benzene	EPA 624	10B0831	0.28	0.50	ND	1	02/08/10	02/08/10	
Bromodichloromethane	EPA 624	10B0831	0.30	0.50	ND	1	02/08/10	02/08/10	
Bromoform	EPA 624	10B0831	0.40	0.50	ND	1	02/08/10	02/08/10	
Bromomethane	EPA 624	10B0831	0.42	1.0	ND	1	02/08/10	02/08/10	
Carbon tetrachloride	EPA 624	10B0831	0.28	0.50	ND	1	02/08/10	02/08/10	
Chlorobenzene	EPA 624	10B0831	0.36	0.50	ND	1	02/08/10	02/08/10	
Chloroethane	EPA 624	10B0831	0.40	1.0	ND	1	02/08/10	02/08/10	
Chloroform	EPA 624	10B0831	0.33	0.50	ND	1	02/08/10	02/08/10	
Chloromethane	EPA 624	10B0831	0.40	0.50	ND	1	02/08/10	02/08/10	
Dibromochloromethane	EPA 624	10B0831	0.40	0.50	ND	1	02/08/10	02/08/10	
1,2-Dichlorobenzene	EPA 624	10B0831	0.32	0.50	ND	1	02/08/10	02/08/10	
1,3-Dichlorobenzene	EPA 624	10B0831	0.35	0.50	ND	1	02/08/10	02/08/10	
1,4-Dichlorobenzene	EPA 624	10B0831	0.37	0.50	ND	1	02/08/10	02/08/10	
1,1-Dichloroethane	EPA 624	10B0831	0.40	0.50	ND	1	02/08/10	02/08/10	
1,2-Dichloroethane	EPA 624	10B0831	0.28	0.50	ND	1	02/08/10	02/08/10	
1,1-Dichloroethene	EPA 624	10B0831	0.42	0.50	ND	1	02/08/10	02/08/10	
cis-1,2-Dichloroethene	EPA 624	10B0831	0.32	0.50	ND	1	02/08/10	02/08/10	
trans-1,2-Dichloroethene	EPA 624	10B0831	0.30	0.50	ND	1	02/08/10	02/08/10	
1,2-Dichloropropane	EPA 624	10B0831	0.35	0.50	ND	1	02/08/10	02/08/10	
cis-1,3-Dichloropropene	EPA 624	10B0831	0.22	0.50	ND	1	02/08/10	02/08/10	
trans-1,3-Dichloropropene	EPA 624	10B0831	0.32	0.50	ND	1	02/08/10	02/08/10	
Ethylbenzene	EPA 624	10B0831	0.25	0.50	ND	1	02/08/10	02/08/10	
Methylene chloride	EPA 624	10B0831	0.95	1.0	ND	1	02/08/10	02/08/10	
1,1,2,2-Tetrachloroethane	EPA 624	10B0831	0.30	0.50	ND	1	02/08/10	02/08/10	
Tetrachloroethene	EPA 624	10B0831	0.32	0.50	ND	1	02/08/10	02/08/10	
Toluene	EPA 624	10B0831	0.36	0.50	ND	1	02/08/10	02/08/10	
1,1,1-Trichloroethane	EPA 624	10B0831	0.30	0.50	ND	1	02/08/10	02/08/10	
1,1,2-Trichloroethane	EPA 624	10B0831	0.30	0.50	ND	1	02/08/10	02/08/10	
Trichloroethene	EPA 624	10B0831	0.26	0.50	ND	1	02/08/10	02/08/10	
Trichlorofluoromethane	EPA 624	10B0831	0.34	0.50	ND	1	02/08/10	02/08/10	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10B0831	0.50	5.0	ND	1	02/08/10	02/08/10	
Vinyl chloride	EPA 624	10B0831	0.40	0.50	ND	1	02/08/10	02/08/10	
Xylenes, Total	EPA 624	10B0831	0.90	1.5	ND	1	02/08/10	02/08/10	
Surrogate: 4-Bromofluorobenzene (80-120%	<i>i</i>)				9 7 %				
Surrogate: Dibromofluoromethane (80-120%	6)				105 %				
Surrogate: Toluene-d8 (80-120%)					107 %				

PURGEABLES BY GC/MS (EPA 624)

TestAmerica Irvine

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

PURGEABLES BY GC/MS (EPA 624)									
			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITB0773-03 (Trip Blank - Wate	er)				Sample	ed: 02/05/1	10		
Reporting Units: ug/l									
Benzene	EPA 624	10B0785	0.28	0.50	ND	1	02/07/10	02/08/10	
Bromodichloromethane	EPA 624	10B0785	0.30	0.50	ND	1	02/07/10	02/08/10	
Bromoform	EPA 624	10B0785	0.40	0.50	ND	1	02/07/10	02/08/10	
Bromomethane	EPA 624	10B0785	0.42	1.0	ND	1	02/07/10	02/08/10	
Carbon tetrachloride	EPA 624	10B0785	0.28	0.50	ND	1	02/07/10	02/08/10	C, L
Chlorobenzene	EPA 624	10B0785	0.36	0.50	ND	1	02/07/10	02/08/10	
Chloroethane	EPA 624	10B0785	0.40	1.0	ND	1	02/07/10	02/08/10	
Chloroform	EPA 624	10B0785	0.33	0.50	ND	1	02/07/10	02/08/10	
Chloromethane	EPA 624	10B0785	0.40	0.50	ND	1	02/07/10	02/08/10	
Dibromochloromethane	EPA 624	10B0785	0.40	0.50	ND	1	02/07/10	02/08/10	
1,2-Dichlorobenzene	EPA 624	10B0785	0.32	0.50	ND	1	02/07/10	02/08/10	
1,3-Dichlorobenzene	EPA 624	10B0785	0.35	0.50	ND	1	02/07/10	02/08/10	
1,4-Dichlorobenzene	EPA 624	10B0785	0.37	0.50	ND	1	02/07/10	02/08/10	
1,1-Dichloroethane	EPA 624	10B0785	0.40	0.50	ND	1	02/07/10	02/08/10	
1,2-Dichloroethane	EPA 624	10B0785	0.28	0.50	ND	1	02/07/10	02/08/10	
1,1-Dichloroethene	EPA 624	10B0785	0.42	0.50	ND	1	02/07/10	02/08/10	
cis-1,2-Dichloroethene	EPA 624	10B0785	0.32	0.50	ND	1	02/07/10	02/08/10	
trans-1,2-Dichloroethene	EPA 624	10B0785	0.30	0.50	ND	1	02/07/10	02/08/10	
1,2-Dichloropropane	EPA 624	10B0785	0.35	0.50	ND	1	02/07/10	02/08/10	
cis-1,3-Dichloropropene	EPA 624	10B0785	0.22	0.50	ND	1	02/07/10	02/08/10	
trans-1,3-Dichloropropene	EPA 624	10B0785	0.32	0.50	ND	1	02/07/10	02/08/10	
Ethylbenzene	EPA 624	10B0785	0.25	0.50	ND	1	02/07/10	02/08/10	
Methylene chloride	EPA 624	10B0785	0.95	1.0	ND	1	02/07/10	02/08/10	
1,1,2,2-Tetrachloroethane	EPA 624	10B0785	0.30	0.50	ND	1	02/07/10	02/08/10	
Tetrachloroethene	EPA 624	10B0785	0.32	0.50	ND	1	02/07/10	02/08/10	
Toluene	EPA 624	10B0785	0.36	0.50	ND	1	02/07/10	02/08/10	
1,1,1-Trichloroethane	EPA 624	10B0785	0.30	0.50	ND	1	02/07/10	02/08/10	
1,1,2-Trichloroethane	EPA 624	10B0785	0.30	0.50	ND	1	02/07/10	02/08/10	
Trichloroethene	EPA 624	10B0785	0.26	0.50	ND	1	02/07/10	02/08/10	
Trichlorofluoromethane	EPA 624	10B0785	0.34	0.50	ND	1	02/07/10	02/08/10	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10B0785	0.50	5.0	ND	1	02/07/10	02/08/10	
Vinyl chloride	EPA 624	10B0785	0.40	0.50	ND	1	02/07/10	02/08/10	
Xylenes, Total	EPA 624	10B0785	0.90	1.5	ND	1	02/07/10	02/08/10	
Surrogate: 4-Bromofluorobenzene (80-120%)				103 %				
Surrogate: Dibromofluoromethane (80-120%					107 %				
Surrogate: Toluene-d8 (80-120%)					110 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

PURGEABLES-- GC/MS (EPA 624) Data MDL Reporting Sample Dilution Date Date Qualifiers Method Batch Limit Limit Result Factor Extracted Analyte Analyzed Sample ID: ITB0773-01 (Outfall 009 Grab - Water) Sampled: 02/05/10 Reporting Units: ug/l 02/08/10 02/08/10 Acrolein EPA 624 10B0831 4.0 5.0 ND 1 ND 02/08/10 Acrylonitrile EPA 624 10B0831 1.2 2.0 1 02/08/10 2-Chloroethyl vinyl ether 10B0831 ND 02/08/10 EPA 624 1.8 5.0 1 02/08/10 97% Surrogate: 4-Bromofluorobenzene (80-120%) 105 % Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) 107 % Sample ID: ITB0773-03 (Trip Blank - Water) Sampled: 02/05/10 Reporting Units: ug/l EPA 624 10B0785 4.0 5.0 ND 02/07/10 02/08/10 Acrolein 1 2.0 Acrylonitrile EPA 624 10B0785 1.2 ND 02/07/10 02/08/10 1 2-Chloroethyl vinyl ether EPA 624 10B0785 1.8 5.0 ND 1 02/07/10 02/08/10 Surrogate: 4-Bromofluorobenzene (80-120%) 103 % Surrogate: Dibromofluoromethane (80-120%) 107 % Surrogate: Toluene-d8 (80-120%) 110 %

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)										
			MDL	Reporting	-	Dilution	Date	Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID: ITB0773-02 (Outfall 009 C	Composite - Water)									
Reporting Units: ug/l										
Acenaphthene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
Acenaphthylene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
Aniline	EPA 625	10B1058	3.3	9.4	ND	0.943	02/09/10	02/11/10		
Anthracene	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10		
Benzidine	EPA 625	10B1058	9.4	19	ND	0.943	02/09/10	02/11/10	С	
Benzo(a)anthracene	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10		
Benzo(a)pyrene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
Benzo(b)fluoranthene	EPA 625	10B1058	1.9	9.4	ND	0.943	02/09/10	02/11/10		
Benzo(g,h,i)perylene	EPA 625	10B1058	3.8	9.4	ND	0.943	02/09/10	02/11/10		
Benzo(k)fluoranthene	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10		
Benzoic acid	EPA 625	10B1058	9.4	19	ND	0.943	02/09/10	02/11/10		
Benzyl alcohol	EPA 625	10B1058	3.3	19	ND	0.943	02/09/10	02/11/10	С	
4-Bromophenyl phenyl ether	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
Butyl benzyl phthalate	EPA 625	10B1058	3.8	19	ND	0.943	02/09/10	02/11/10		
4-Chloro-3-methylphenol	EPA 625	10B1058	2.4	19	ND	0.943	02/09/10	02/11/10		
4-Chloroaniline	EPA 625	10B1058	1.9	9.4	ND	0.943	02/09/10	02/11/10		
Bis(2-chloroethoxy)methane	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
Bis(2-chloroethyl)ether	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
Bis(2-chloroisopropyl)ether	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10		
Bis(2-ethylhexyl)phthalate	EPA 625	10B1058	3.8	47	ND	0.943	02/09/10	02/11/10		
2-Chloronaphthalene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
2-Chlorophenol	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
4-Chlorophenyl phenyl ether	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10		
Chrysene	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10		
Dibenz(a,h)anthracene	EPA 625	10B1058	2.8	19	ND	0.943	02/09/10	02/11/10		
Dibenzofuran	EPA 625	10B1058	3.8	9.4	ND	0.943	02/09/10	02/11/10		
Di-n-butyl phthalate	EPA 625	10B1058	2.8	19	ND	0.943	02/09/10	02/11/10		
1,2-Dichlorobenzene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
1,3-Dichlorobenzene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10		
1,4-Dichlorobenzene	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10		
3,3'-Dichlorobenzidine	EPA 625	10B1058	7.1	19	ND	0.943	02/09/10	02/11/10		
2,4-Dichlorophenol	EPA 625	10B1058	3.3	9.4	ND	0.943	02/09/10	02/11/10		
Diethyl phthalate	EPA 625	10B1058	3.3	9.4	ND	0.943	02/09/10	02/11/10		
2,4-Dimethylphenol	EPA 625	10B1058	3.3	19	ND	0.943	02/09/10	02/11/10		
Dimethyl phthalate	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10		
4,6-Dinitro-2-methylphenol	EPA 625	10B1058	3.8	19	ND	0.943	02/09/10	02/11/10		
2,4-Dinitrophenol	EPA 625	10B1058	7.5	19	ND	0.943	02/09/10	02/11/10		
2,4-Dinitrotoluene	EPA 625	10B1058	3.3	9.4	ND	0.943	02/09/10	02/11/10		
2,6-Dinitrotoluene	EPA 625	10B1058	1.9	9.4	ND	0.943	02/09/10	02/11/10		
Di-n-octyl phthalate	EPA 625	10B1058	3.3	9.4 19	ND	0.943	02/09/10	02/11/10		
1,2-Diphenylhydrazine/Azobenzene	EPA 625 EPA 625	10B1058	2.4	19	ND	0.943	02/09/10	02/11/10		
1,2-Dipitenyinyurazine/Azobenzene	EI A 025	1011038	∠.4	17	ΠD	0.943	02/09/10	02/11/10		

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)									
			MDL	Reporting	-	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITB0773-02 (Outfall 009 Comp	osite - Water) -	- cont.			Sample	ed: 02/05/1	10		
Reporting Units: ug/l									
Fluoranthene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10	
Fluorene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10	
Hexachlorobenzene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10	
Hexachlorobutadiene	EPA 625	10B1058	3.8	9.4	ND	0.943	02/09/10	02/11/10	
Hexachlorocyclopentadiene	EPA 625	10B1058	4.7	19	ND	0.943	02/09/10	02/11/10	C, L
Hexachloroethane	EPA 625	10B1058	3.3	9.4	ND	0.943	02/09/10	02/11/10	
Indeno(1,2,3-cd)pyrene	EPA 625	10B1058	3.3	19	ND	0.943	02/09/10	02/11/10	
Isophorone	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10	
2-Methylnaphthalene	EPA 625	10B1058	1.9	9.4	ND	0.943	02/09/10	02/11/10	
2-Methylphenol	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10	
4-Methylphenol	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10	
Naphthalene	EPA 625	10B1058	2.8	9.4	ND	0.943	02/09/10	02/11/10	
2-Nitroaniline	EPA 625	10B1058	1.9	19	ND	0.943	02/09/10	02/11/10	
3-Nitroaniline	EPA 625	10B1058	2.8	19	ND	0.943	02/09/10	02/11/10	
4-Nitroaniline	EPA 625	10B1058	3.8	19	ND	0.943	02/09/10	02/11/10	
Nitrobenzene	EPA 625	10B1058	2.8	19	ND	0.943	02/09/10	02/11/10	
2-Nitrophenol	EPA 625	10B1058	3.3	9.4	ND	0.943	02/09/10	02/11/10	
4-Nitrophenol	EPA 625	10B1058	5.2	19	ND	0.943	02/09/10	02/11/10	
N-Nitroso-di-n-propylamine	EPA 625	10B1058	3.3	9.4	ND	0.943	02/09/10	02/11/10	
N-Nitrosodimethylamine	EPA 625	10B1058	2.4	19	ND	0.943	02/09/10	02/11/10	
N-Nitrosodiphenylamine	EPA 625	10B1058	1.9	9.4	ND	0.943	02/09/10	02/11/10	
Pentachlorophenol	EPA 625	10B1058	3.3	19	ND	0.943	02/09/10	02/11/10	
Phenanthrene	EPA 625	10B1058	3.3	9.4	ND	0.943	02/09/10	02/11/10	
Phenol	EPA 625	10B1058	1.9	9.4	ND	0.943	02/09/10	02/11/10	
Pyrene	EPA 625	10B1058	3.8	9.4	ND	0.943	02/09/10	02/11/10	
1,2,4-Trichlorobenzene	EPA 625	10B1058	2.4	9.4	ND	0.943	02/09/10	02/11/10	
2,4,5-Trichlorophenol	EPA 625	10B1058	2.8	19	ND	0.943	02/09/10	02/11/10	
2,4,6-Trichlorophenol	EPA 625	10B1058	4.2	19	ND	0.943	02/09/10	02/11/10	
Surrogate: 2,4,6-Tribromophenol (40-120%)					92 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					82 %				
Surrogate: 2-Fluorophenol (30-120%)					63 %				
Surrogate: Nitrobenzene-d5 (45-120%)					78 %				
Surrogate: Phenol-d6 (35-120%)					79 %				
Surrogate: Terphenyl-d14 (50-125%)					92 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB0773-02 (Outfall 009 C	Composite - Water)				Sample	ed: 02/05/1	10		
Reporting Units: ug/l									
Chlorpyrifos	EPA 525.2	10B0759	0.010	1.0	ND	1	02/06/10	02/09/10	
Diazinon	EPA 525.2	10B0759	0.10	0.25	ND	1	02/06/10	02/09/10	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	e (70-130%)				98 %				
Surrogate: 1,3-Dimethyl-2-nitrobenzene	e (70-130%)				98 %				
Surrogate: Triphenylphosphate (70-130	%)				115 %				
Surrogate: Triphenylphosphate (70-130	%)				115 %				
Surrogate: Perylene-d12 (70-130%)					97 %				
Surrogate: Perylene-d12 (70-130%)					97 %				

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

ORGANOCHLORINE PESTICIDES (EPA 608)										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITB0773-02 (Outfall 009 Comp	osite - Water)				Sample	ed: 02/05/1	10			
Reporting Units: ug/l										
4,4'-DDD	EPA 608	10B1291	0.0019	0.0047	ND	0.943	02/11/10	02/13/10	С	
4,4'-DDE	EPA 608	10B1291	0.0028	0.0047	ND	0.943	02/11/10	02/13/10		
4,4'-DDT	EPA 608	10B1291	0.0038	0.0094	ND	0.943	02/11/10	02/13/10		
Aldrin	EPA 608	10B1291	0.0014	0.0047	ND	0.943	02/11/10	02/13/10		
alpha-BHC	EPA 608	10B1291	0.0024	0.0047	ND	0.943	02/11/10	02/13/10		
beta-BHC	EPA 608	10B1291	0.0038	0.0094	ND	0.943	02/11/10	02/13/10		
delta-BHC	EPA 608	10B1291	0.0033	0.0047	ND	0.943	02/11/10	02/13/10		
Dieldrin	EPA 608	10B1291	0.0019	0.0047	ND	0.943	02/11/10	02/13/10		
Endosulfan I	EPA 608	10B1291	0.0019	0.0047	ND	0.943	02/11/10	02/13/10		
Endosulfan II	EPA 608	10B1291	0.0028	0.0047	ND	0.943	02/11/10	02/13/10		
Endosulfan sulfate	EPA 608	10B1291	0.0028	0.0094	ND	0.943	02/11/10	02/13/10		
Endrin	EPA 608	10B1291	0.0019	0.0047	ND	0.943	02/11/10	02/13/10	С	
Endrin aldehyde	EPA 608	10B1291	0.0019	0.0094	ND	0.943	02/11/10	02/13/10		
Endrin ketone	EPA 608	10B1291	0.0028	0.0094	ND	0.943	02/11/10	02/13/10		
gamma-BHC (Lindane)	EPA 608	10B1291	0.0028	0.019	ND	0.943	02/11/10	02/13/10		
Heptachlor	EPA 608	10B1291	0.0028	0.0094	ND	0.943	02/11/10	02/13/10	С	
Heptachlor epoxide	EPA 608	10B1291	0.0024	0.0047	ND	0.943	02/11/10	02/13/10		
Methoxychlor	EPA 608	10B1291	0.0033	0.0047	ND	0.943	02/11/10	02/13/10		
Chlordane	EPA 608	10B1291	0.038	0.094	ND	0.943	02/11/10	02/13/10		
Toxaphene	EPA 608	10B1291	0.24	0.47	ND	0.943	02/11/10	02/13/10		
Surrogate: Decachlorobiphenyl (45-120%)					81 %					
Surrogate: Tetrachloro-m-xylene (35-115%)					54 %					

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

TOTAL PCBS (EPA 608)										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITB0773-02 (Outfall 009 Comp	oosite - Water)	- cont.			Sample	ed: 02/05/1	10			
Reporting Units: ug/l										
Aroclor 1016	EPA 608	10B1291	0.24	0.47	ND	0.943	02/11/10	02/12/10		
Aroclor 1221	EPA 608	10B1291	0.24	0.47	ND	0.943	02/11/10	02/12/10		
Aroclor 1232	EPA 608	10B1291	0.24	0.47	ND	0.943	02/11/10	02/12/10		
Aroclor 1242	EPA 608	10B1291	0.24	0.47	ND	0.943	02/11/10	02/12/10		
Aroclor 1248	EPA 608	10B1291	0.24	0.47	ND	0.943	02/11/10	02/12/10		
Aroclor 1254	EPA 608	10B1291	0.24	0.47	ND	0.943	02/11/10	02/12/10		
Aroclor 1260	EPA 608	10B1291	0.24	0.47	ND	0.943	02/11/10	02/12/10		
Surrogate: Decachlorobiphenyl (45-120%)					87 %					

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

HEXANE EXTRACTABLE MATERIAL											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITB0773-01 (Outfall 009 G	rab - Water)				Sample	ed: 02/05/1	10				
Reporting Units: mg/l											
Hexane Extractable Material (Oil &	EPA 1664A	10B1778	1.3	4.8	ND	1	02/15/10	02/15/10			
Grease)											

TestAmerica Irvine Kathleen A. Robb For Heather Clark Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITB0773-02 (Outfall 009 Com	posite - Water)				Sample	ed: 02/05/1	10		
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	41	1	02/15/10	02/15/10	
Aluminum	EPA 200.7	10B1770	0.040	0.050	0.95	1	02/15/10	02/15/10	
Boron	EPA 200.7	10B1770	0.020	0.050	0.053	1	02/15/10	02/15/10	В
Calcium	EPA 200.7	10B1770	0.050	0.10	11	1	02/15/10	02/15/10	
Iron	EPA 200.7	10B1770	0.015	0.040	1.1	1	02/15/10	02/15/10	
Magnesium	EPA 200.7	10B1770	0.012	0.020	3.2	1	02/15/10	02/15/10	
Sample ID: ITB0773-02 (Outfall 009 Com	posite - Water)				Sample	ed: 02/05/1	10		
Reporting Units: ug/l									
Mercury	EPA 245.1	10B0921	0.10	0.20	ND	1	02/08/10	02/08/10	
Arsenic	EPA 200.7	10B1770	7.0	10	ND	1	02/15/10	02/15/10	
Antimony	EPA 200.8	10B1571	0.30	2.0	0.52	1	02/12/10	02/16/10	Ja
Beryllium	EPA 200.7	10B1770	0.90	2.0	ND	1	02/15/10	02/15/10	
Chromium	EPA 200.7	10B1770	2.0	5.0	2.0	1	02/15/10	02/15/10	Ja
Nickel	EPA 200.7	10B1770	2.0	10	ND	1	02/15/10	02/15/10	
Selenium	EPA 200.7	10B1770	8.0	10	12	1	02/15/10	04/01/10	
Silver	EPA 200.7	10B1770	6.0	10	ND	1	02/15/10	02/15/10	
Cadmium	EPA 200.8	10B1571	0.10	1.0	ND	1	02/12/10	02/16/10	
Vanadium	EPA 200.7	10B1770	3.0	10	3.7	1	02/15/10	02/15/10	Ja
Zinc	EPA 200.7	10B1770	6.0	20	13	1	02/15/10	02/15/10	Ja
Copper	EPA 200.8	10B1571	0.50	2.0	4.1	1	02/12/10	02/16/10	
Lead	EPA 200.8	10B1571	0.20	1.0	3.5	1	02/12/10	02/16/10	
Thallium	EPA 200.8	10B1571	0.20	1.0	ND	1	02/12/10	02/16/10	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

DISSOLVED METALS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITB0773-02 (Outfall 009 0	Composite - Water)				Sample	d: 02/05/1	10				
Reporting Units: mg/l											
Hardness as CaCO3	SM2340B-Diss	[CALC]	N/A	0.33	40	1	02/15/10	02/15/10			
Aluminum	EPA 200.7-Diss	10B1782	0.040	0.050	ND	1	02/15/10	02/15/10			
Boron	EPA 200.7-Diss	10B1782	0.020	0.050	0.046	1	02/15/10	02/15/10	Ja		
Calcium	EPA 200.7-Diss	10B1782	0.050	0.10	11	1	02/15/10	02/15/10	MHA		
Iron	EPA 200.7-Diss	10B1782	0.015	0.040	0.042	1	02/15/10	02/15/10			
Magnesium	EPA 200.7-Diss	10B1782	0.012	0.020	3.0	1	02/15/10	02/15/10			
Sample ID: ITB0773-02 (Outfall 009 (Composite - Water)				Sample	d: 02/05/1	10				
Reporting Units: ug/l											
Mercury	EPA 245.1-Diss	10B1554	0.10	0.20	ND	1	02/12/10	02/12/10			
Arsenic	EPA 200.7-Diss	10B1782	7.0	10	ND	1	02/15/10	02/15/10			
Antimony	EPA 200.8-Diss	10B1786	0.30	2.0	ND	1	02/15/10	02/15/10			
Beryllium	EPA 200.7-Diss	10B1782	0.90	2.0	ND	1	02/15/10	02/15/10			
Chromium	EPA 200.7-Diss	10B1782	2.0	5.0	ND	1	02/15/10	02/15/10			
Nickel	EPA 200.7-Diss	10B1782	2.0	10	ND	1	02/15/10	02/15/10			
Selenium	EPA 200.7-Diss	10B1782	8.0	10	10	1	02/15/10	02/15/10			
Silver	EPA 200.7-Diss	10B1782	6.0	10	ND	1	02/15/10	02/15/10			
Cadmium	EPA 200.8-Diss	10B1786	0.10	1.0	ND	1	02/15/10	02/15/10			
Vanadium	EPA 200.7-Diss	10B1782	3.0	10	ND	1	02/15/10	02/15/10			
Zinc	EPA 200.7-Diss	10B1782	6.0	20	ND	1	02/15/10	02/15/10			
Copper	EPA 200.8-Diss	10B1786	0.50	2.0	1.8	1	02/15/10	02/15/10	Ja		
Lead	EPA 200.8-Diss	10B1786	0.20	1.0	ND	1	02/15/10	02/15/10			
Thallium	EPA 200.8-Diss	10B1786	0.20	1.0	ND	1	02/15/10	02/15/10	С		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

DISSOLVED INORGANICS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITB0773-01 (Outfall 009	Grab - Water)				Sample	ed: 02/05/1	10				
Reporting Units: ug/l											
Chromium VI	EPA 218.6	10B0683	0.25	1.0	ND	1	02/05/10	02/05/10			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

INORGANICS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITB0773-02 (Outfall 009 Composite - Water) Sampled: 02/05/10											
Reporting Units: mg/l											
Chloride	EPA 300.0	10B0646	0.25	0.50	5.4	1	02/05/10	02/06/10			
Fluoride	SM 4500-F-C	10B0814	0.020	0.10	0.20	1	02/08/10	02/08/10	В		
Nitrate/Nitrite-N	EPA 300.0	10B0646	0.15	0.26	0.55	1	02/05/10	02/06/10			
Sulfate	EPA 300.0	10B0646	0.20	0.50	9.9	1	02/05/10	02/06/10			
Total Dissolved Solids	SM2540C	10B1300	1.0	10	79	1	02/11/10	02/11/10			
Total Suspended Solids	SM 2540D	10B1557	1.0	10	21	1	02/12/10	02/12/10			
Sample ID: ITB0773-02 (Outfall 009	Composite - Water)				Sample	ed: 02/05/1	10				
Reporting Units: ug/l											
Perchlorate	EPA 314.0	10B1480	0.90	4.0	ND	1	02/12/10	02/12/10			
Total Cyanide	SM4500CN-E	10B1250	2.2	5.0	ND	1	02/10/10	02/10/10			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

ASTM 5174-91										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITB0773-02 (Outfall 009	Composite - Water)				Sample	ed: 02/05/1	10			
Reporting Units: pCi/L Total Uranium	ASTM 5174-91	53280	0.21	0.693	0.264	1	02/23/10	02/26/10	Jb	

TestAmerica Irvine Kathleen A. Robb For Heather Clark

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

EPA 900.0 MOD										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITB0773-02 (Outfall 009	Composite - Water)				Sample	ed: 02/05/1	10			
Reporting Units: pCi/L		12100	1.0	2	1.03	1	00/10/10	00/10/10	T T	
Gross Alpha	EPA 900.0 MOD	43108	1.2	3	1.02	1	02/10/10	02/18/10	U	
Gross Beta	EPA 900.0 MOD	43108	0.95	4	1.65	1	02/10/10	02/18/10	Jb	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

EPA 901.1 MOD										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITB0773-02 (Outfall 009	Composite - Water)				Sample	ed: 02/05/1	10			
Reporting Units: pCi/L Cesium 137	EPA 901.1 MOD	42136	12	20	1.8	1	02/11/10	02/19/10	U	
Potassium 40	EPA 901.1 MOD	42136	220	NA	-40	I	02/11/10	02/19/10	U	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

EPA 903.0 MOD										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITB0773-02 (Outfall 009	Composite - Water)				Sample	ed: 02/05/1	10			
Reporting Units: pCi/L Radium (226)	EPA 903.0 MOD	41160	0.21	1	0.29	1	02/10/10	02/26/10	Jb	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

EPA 904 MOD											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITB0773-02RE1 (Outfall 00	9 Composite - Water	r)	Sampled: 02/05/10								
Reporting Units: pCi/L											
Radium 228	EPA 904 MOD	60257	0.28	1	0.38	1	03/01/10	03/05/10	Jb		

Project ID: Annual Outfall 009

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

EPA 905 MOD											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ITB0773-02 (Outfall 009 Composite - Water)				Sampled: 02/05/10							
Reporting Units: pCi/L Strontium 90	EPA 905 MOD	41162	0.42	3	0.2	1	02/10/10	02/19/10	U		

TestAmerica Irvine Kathleen A. Robb For Heather Clark

Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Project ID: Annual Outfall 009

Sampled: 02/05/10 Received: 02/05/10

EPA 906.0 MOD										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITB0773-02 (Outfall 009 Composite - Water)					Sample	ed: 02/05/1	10			
Reporting Units: pCi/L Tritium	EPA 906.0 MOD	49035	95	500	122	1	02/18/10	02/18/10	Jb	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

EPA-5 1613B

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

			111-5 10	150						
			MDL	Reporting	-	Dilution	Date	Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID: ITB0773-02 (Outfall 009	Composite - Water)		Sampled: 02/05/10							
Reporting Units: ug/L										
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	47247	0.0000028	3 0.000047	6.3e-005	0.94	02/16/10	02/18/10	Ba	
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	47247	0.000002	0.000047	1.5e-005	0.94	02/16/10	02/18/10	J, Ba	
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	47247	0.0000027	0.000047	ND	0.94	02/16/10	02/18/10		
1,2,3,4,7,8-HxCDD	EPA-5 1613B	47247	0.0000021	0.000047	1.7e-006	0.94	02/16/10	02/18/10	J, Ba	
1,2,3,4,7,8-HxCDF	EPA-5 1613B	47247	0.0000016	0.000047	ND	0.94	02/16/10	02/18/10		
1,2,3,6,7,8-HxCDD	EPA-5 1613B	47247	0.0000018	3 0.000047	4.3e-006	0.94	02/16/10	02/18/10	J, Ba	
1,2,3,6,7,8-HxCDF	EPA-5 1613B	47247	0.0000015	5 0.000047	1.2e-006	0.94	02/16/10	02/18/10	J, Ba	
1,2,3,7,8,9-HxCDD	EPA-5 1613B	47247	0.0000016	6 0.000047	2.4e-006	0.94	02/16/10	02/18/10	J, Q, Ba	
1,2,3,7,8,9-HxCDF	EPA-5 1613B	47247	0.0000012	2 0.000047	ND	0.94	02/16/10	02/18/10		
1,2,3,7,8-PeCDD	EPA-5 1613B	47247	0.0000032	2 0.000047	ND	0.94	02/16/10	02/18/10		
1,2,3,7,8-PeCDF	EPA-5 1613B	47247	0.0000018	3 0.000047	ND	0.94	02/16/10	02/18/10		
2,3,4,6,7,8-HxCDF	EPA-5 1613B	47247	0.0000014	0.000047	1.8e-006	0.94	02/16/10	02/18/10	J, Ba	
2,3,4,7,8-PeCDF	EPA-5 1613B	47247	0.0000021	0.000047	ND	0.94	02/16/10	02/18/10		
2,3,7,8-TCDD	EPA-5 1613B	47247	0.0000015	5 0.0000094	ND	0.94	02/16/10	02/18/10		
2,3,7,8-TCDF	EPA-5 1613B	47247	0.0000012	2 0.0000094	ND	0.94	02/16/10	02/18/10		
OCDD	EPA-5 1613B	47247	0.0000045	5 0.000094	0.00091	0.94	02/16/10	02/18/10	Ba	
OCDF	EPA-5 1613B	47247		0.000094	3.9e-005	0.94	02/16/10	02/18/10	J, Ba	
Total HpCDD	EPA-5 1613B	47247	0.0000028	3 0.000047	0.00014	0.94	02/16/10	02/18/10	Ва	
Total HpCDF	EPA-5 1613B	47247	0.000002	0.000047	3.5e-005	0.94	02/16/10	02/18/10	J, Ba	
Total HxCDD	EPA-5 1613B	47247	0.0000016	6 0.000047	2.1e-005	0.94	02/16/10	02/18/10	J, Q, Ba	
Total HxCDF	EPA-5 1613B	47247	0.0000012	2 0.000047	9.7e-006	0.94	02/16/10	02/18/10	J, Q, Ba	
Total PeCDD	EPA-5 1613B	47247	0.0000032	2 0.000047	3.4e-006	0.94	02/16/10	02/18/10	J, Q, Ba	
Total PeCDF	EPA-5 1613B	47247	0.0000012	2 0.000047	7.2e-006	0.94	02/16/10	02/18/10	J, Q, Ba	
Total TCDD	EPA-5 1613B	47247	0.0000015	5 0.0000094	ND	0.94	02/16/10	02/18/10		
Total TCDF	EPA-5 1613B	47247	0.0000012	2 0.0000094	ND	0.94	02/16/10	02/18/10		
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	(23-140%)				98 %					
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	(28-143%)				86 %					
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	(26-138%)				83 %					
Surrogate: 13C-1,2,3,4,7,8-HxCDD (3.	2-141%)				70 %					
Surrogate: 13C-1,2,3,4,7,8-HxCDF (20	6-152%)				76 %					
Surrogate: 13C-1,2,3,6,7,8-HxCDD (2	8-130%)				74 %					
Surrogate: 13C-1,2,3,6,7,8-HxCDF (20	6-123%)				72 %					
Surrogate: 13C-1,2,3,7,8,9-HxCDF (2)	9-147%)				81 %					
Surrogate: 13C-1,2,3,7,8-PeCDD (25-	181%)				61 %					
Surrogate: 13C-1,2,3,7,8-PeCDF (24-	185%)				60 %					
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28	8-136%)				72 %					
Surrogate: 13C-2,3,4,7,8-PeCDF (21-	178%)				60 %					
Surrogate: 13C-2,3,7,8-TCDD (25-164	1%)				66 %					
Surrogate: 13C-2,3,7,8-TCDF (24-169	9%)				70 %					
Surrogate: 13C-OCDD (17-157%)					96 %					
Surrogate: 37Cl4-2,3,7,8-TCDD (35-1)	97%)				91 %					

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 Grab (ITB0773-01)	- Water				
EPA 218.6	1	02/05/2010 11:45	02/05/2010 19:20	02/05/2010 22:30	02/05/2010 22:50
EPA 624	3	02/05/2010 11:45	02/05/2010 19:20	02/08/2010 00:00	02/08/2010 11:47
Sample ID: Outfall 009 Composite (ITB0773	3-02) - Water				
EPA 300.0	2	02/05/2010 13:44	02/05/2010 19:20	02/05/2010 23:00	02/06/2010 01:51
EPA 525.2	1	02/05/2010 13:44	02/05/2010 19:20	02/06/2010 13:30	02/09/2010 16:49
Filtration	1	02/05/2010 13:44	02/05/2010 19:20	02/06/2010 13:21	02/06/2010 13:30
Sample ID: Trip Blank (ITB0773-03) - Wate	er				
EPA 624	3	02/05/2010 07:00	02/05/2010 19:20	02/07/2010 00:00	02/08/2010 00:55

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

	D L	Reporting	MDI	T T •/	Spike	Source	AVDEC	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B0785 Extracted: 02/07/10	<u>)</u>										
Blank Analyzed: 02/07/2010 (10B0785-B											
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
Dibromochloromethane	ND	0.50	0.40	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
1,1-Dichloroethane	ND	0.50	0.40	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
cis-1,2-Dichloroethene	ND	0.50	0.32	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.30	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Methylene chloride	ND	1.0	0.95	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.30	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.40	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			
Surrogate: Dibromofluoromethane	23.9			ug/l	25.0		96	80-120			
				5							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0785 Extracted: 02/07/10)										
Butten Toboroc Extructed 02/07/10	<u>, </u>										
Blank Analyzed: 02/07/2010 (10B0785-B	SLK1)										
Surrogate: Toluene-d8	27.0			ug/l	25.0		108	80-120			
LCS Analyzed: 02/07/2010 (10B0785-BS	1)										
Benzene	24.1	0.50	0.28	ug/l	25.0		96	70-120			
Bromodichloromethane	28.8	0.50	0.30	ug/l	25.0		115	70-135			
Bromoform	22.2	0.50	0.40	ug/l	25.0		89	55-130			
Bromomethane	30.3	1.0	0.42	ug/l	25.0		121	65-140			
Carbon tetrachloride	39.8	0.50	0.28	ug/l	25.0		159	65-140			L
Chlorobenzene	25.9	0.50	0.36	ug/l	25.0		104	75-120			
Chloroethane	27.2	1.0	0.40	ug/l	25.0		109	60-140			
Chloroform	25.5	0.50	0.33	ug/l	25.0		102	70-130			
Chloromethane	28.2	0.50	0.40	ug/l	25.0		113	50-140			
Dibromochloromethane	25.7	0.50	0.40	ug/l	25.0		103	70-140			
1,2-Dichlorobenzene	26.1	0.50	0.32	ug/l	25.0		104	75-120			
1,3-Dichlorobenzene	27.0	0.50	0.35	ug/l	25.0		108	75-120			
1,4-Dichlorobenzene	26.6	0.50	0.37	ug/l	25.0		107	75-120			
1,1-Dichloroethane	25.1	0.50	0.40	ug/l	25.0		100	70-125			
1,2-Dichloroethane	25.5	0.50	0.28	ug/l	25.0		102	60-140			
1,1-Dichloroethene	26.8	0.50	0.42	ug/l	25.0		107	70-125			
cis-1,2-Dichloroethene	25.6	0.50	0.32	ug/l	25.0		102	70-125			
trans-1,2-Dichloroethene	25.4	0.50	0.30	ug/l	25.0		102	70-125			
1,2-Dichloropropane	22.8	0.50	0.35	ug/l	25.0		91	70-125			
cis-1,3-Dichloropropene	30.0	0.50	0.22	ug/l	25.0		120	75-125			
trans-1,3-Dichloropropene	23.0	0.50	0.32	ug/l	25.0		92	70-125			
Ethylbenzene	28.4	0.50	0.25	ug/l	25.0		114	75-125			
Methylene chloride	21.2	1.0	0.95	ug/l	25.0		85	55-130			
1,1,2,2-Tetrachloroethane	22.6	0.50	0.30	ug/l	25.0		90	55-130			
Tetrachloroethene	28.9	0.50	0.32	ug/l	25.0		116	70-125			
Toluene	25.5	0.50	0.36	ug/l	25.0		102	70-120			
1,1,1-Trichloroethane	31.7	0.50	0.30	ug/l	25.0		127	65-135			
1,1,2-Trichloroethane	22.6	0.50	0.30	ug/l	25.0		91	70-125			
Trichloroethene	28.0	0.50	0.26	ug/l	25.0		112	70-125			
Trichlorofluoromethane	31.6	0.50	0.34	ug/l	25.0		126	65-145			
Vinyl chloride	30.9	0.50	0.40	ug/l	25.0		124	55-135			
Xylenes, Total	79.7	1.5	0.90	ug/l	75.0		106	70-125			
Surrogate: 4-Bromofluorobenzene	28.3			ug/l	25.0		113	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0785 Extracted: 02/07/10	1										
	-										
LCS Analyzed: 02/07/2010 (10B0785-BS	1)										
Surrogate: Dibromofluoromethane	24.8			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	27.3			ug/l	25.0		109	80-120			
Matrix Spike Analyzed: 02/07/2010 (10B	0785-MS1)				Sou	rce: ITB(302-01				
Benzene	21.5	0.50	0.28	ug/l	25.0	ND	86	65-125			
Bromodichloromethane	26.4	0.50	0.30	ug/l	25.0	ND	106	70-135			
Bromoform	19.7	0.50	0.40	ug/l	25.0	ND	79	55-135			
Bromomethane	26.9	1.0	0.42	ug/l	25.0	ND	108	55-145			
Carbon tetrachloride	35.7	0.50	0.28	ug/l	25.0	ND	143	65-140			M7
Chlorobenzene	23.7	0.50	0.36	ug/l	25.0	ND	95	75-125			
Chloroethane	24.5	1.0	0.40	ug/l	25.0	ND	98	55-140			
Chloroform	23.0	0.50	0.33	ug/l	25.0	ND	92	65-135			
Chloromethane	25.6	0.50	0.40	ug/l	25.0	ND	103	45-145			
Dibromochloromethane	23.2	0.50	0.40	ug/l	25.0	ND	93	65-140			
1,2-Dichlorobenzene	23.4	0.50	0.32	ug/l	25.0	ND	94	75-125			
1,3-Dichlorobenzene	24.0	0.50	0.35	ug/l	25.0	ND	96	75-125			
1,4-Dichlorobenzene	24.0	0.50	0.37	ug/l	25.0	ND	96	75-125			
1,1-Dichloroethane	22.7	0.50	0.40	ug/l	25.0	ND	91	65-130			
1,2-Dichloroethane	23.4	0.50	0.28	ug/l	25.0	ND	93	60-140			
1,1-Dichloroethene	25.0	0.50	0.42	ug/l	25.0	0.470	98	60-130			
cis-1,2-Dichloroethene	23.1	0.50	0.32	ug/l	25.0	ND	93	65-130			
trans-1,2-Dichloroethene	22.8	0.50	0.30	ug/l	25.0	ND	91	65-130			
1,2-Dichloropropane	20.3	0.50	0.35	ug/l	25.0	ND	81	65-130			
cis-1,3-Dichloropropene	26.6	0.50	0.22	ug/l	25.0	ND	106	70-130			
trans-1,3-Dichloropropene	21.0	0.50	0.32	ug/l	25.0	ND	84	65-135			
Ethylbenzene	25.6	0.50	0.25	ug/l	25.0	ND	103	65-130			
Methylene chloride	18.6	1.0	0.95	ug/l	25.0	ND	74	50-135			
1,1,2,2-Tetrachloroethane	19.8	0.50	0.30	ug/l	25.0	ND	79	55-135			
Tetrachloroethene	29.3	0.50	0.32	ug/l	25.0	3.33	104	65-130			
Toluene	23.0	0.50	0.36	ug/l	25.0	ND	92	70-125			
1,1,1-Trichloroethane	28.6	0.50	0.30	ug/l	25.0	ND	115	65-140			
1,1,2-Trichloroethane	20.7	0.50	0.30	ug/l	25.0	ND	83	65-130			
Trichloroethene	26.5	0.50	0.26	ug/l	25.0	1.63	100	65-125			
Trichlorofluoromethane	29.1	0.50	0.34	ug/l	25.0	ND	116	60-145			
Vinyl chloride	28.1	0.50	0.40	ug/l	25.0	ND	112	45-140			
Xylenes, Total	71.7	1.5	0.90	ug/l	75.0	ND	96	60-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

	D	Reporting		.	Spike	Source	AVERG	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B0785 Extracted: 02/07/1	0										
Matrix Spike Analyzed: 02/07/2010 (10)	R0785_MS1)				Sou	rce: ITB(302-01				
Surrogate: 4-Bromofluorobenzene	28.7			ug/l	25.0	ICC. IID	115	80-120			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	27.1			ug/l	25.0		108	80-120			
Matrix Spike Dup Analyzed: 02/07/2010	0 (10B0785-N	(SD1)				rce: ITB(302-01				
Benzene	24.4	0.50	0.28	ug/l	25.0	ND	98	65-125	13	20	
Bromodichloromethane	29.7	0.50	0.20	ug/l	25.0	ND	119	70-135	12	20	
Bromoform	23.7	0.50	0.40	ug/l	25.0	ND	95	55-135	12	20	
Bromomethane	29.8	1.0	0.40	ug/l	25.0	ND	119	55-145	10	25	
Carbon tetrachloride	39.9	0.50	0.28	ug/l	25.0	ND	160	65-140	11	25 25	М7
Chlorobenzene	26.9	0.50	0.36	ug/l	25.0	ND	100	75-125	13	20	111/
Chloroethane	27.2	1.0	0.40	ug/l	25.0	ND	109	55-140	11	25	
Chloroform	25.8	0.50	0.33	ug/l	25.0	ND	103	65-135	11	20	
Chloromethane	28.8	0.50	0.40	ug/l	25.0	ND	115	45-145	12	25	
Dibromochloromethane	27.2	0.50	0.40	ug/l	25.0	ND	109	65-140	16	25	
1,2-Dichlorobenzene	26.6	0.50	0.32	ug/l	25.0	ND	106	75-125	13	20	
1,3-Dichlorobenzene	27.4	0.50	0.35	ug/l	25.0	ND	109	75-125	13	20	
1,4-Dichlorobenzene	26.9	0.50	0.37	ug/l	25.0	ND	108	75-125	11	20	
1,1-Dichloroethane	25.2	0.50	0.40	ug/l	25.0	ND	101	65-130	10	20	
1,2-Dichloroethane	26.8	0.50	0.28	ug/l	25.0	ND	107	60-140	14	20	
1,1-Dichloroethene	27.6	0.50	0.42	ug/l	25.0	0.470	108	60-130	10	20	
cis-1,2-Dichloroethene	26.0	0.50	0.32	ug/l	25.0	ND	104	65-130	12	20	
trans-1,2-Dichloroethene	25.4	0.50	0.30	ug/l	25.0	ND	102	65-130	11	20	
1,2-Dichloropropane	23.5	0.50	0.35	ug/l	25.0	ND	94	65-130	15	20	
cis-1,3-Dichloropropene	30.8	0.50	0.22	ug/l	25.0	ND	123	70-130	15	20	
trans-1,3-Dichloropropene	24.5	0.50	0.32	ug/l	25.0	ND	98	65-135	16	25	
Ethylbenzene	29.0	0.50	0.25	ug/l	25.0	ND	116	65-130	12	20	
Methylene chloride	21.4	1.0	0.95	ug/l	25.0	ND	85	50-135	14	20	
1,1,2,2-Tetrachloroethane	24.3	0.50	0.30	ug/l	25.0	ND	97	55-135	20	30	
Tetrachloroethene	32.2	0.50	0.32	ug/l	25.0	3.33	115	65-130	9	20	
Toluene	26.0	0.50	0.36	ug/l	25.0	ND	104	70-125	12	20	
1,1,1-Trichloroethane	31.6	0.50	0.30	ug/l	25.0	ND	126	65-140	10	20	
1,1,2-Trichloroethane	23.6	0.50	0.30	ug/l	25.0	ND	95	65-130	13	25	
Trichloroethene	30.2	0.50	0.26	ug/l	25.0	1.63	114	65-125	13	20	
Trichlorofluoromethane	32.0	0.50	0.34	ug/l	25.0	ND	128	60-145	10	25	
Vinyl chloride	31.2	0.50	0.40	ug/l	25.0	ND	125	45-140	11	30	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0785 Extracted: 02/07/10)										-
Matrix Spike Dup Analyzed: 02/07/2010	(10B0785-N	MSD1)			Sou	rce: ITB	0302-01				
Xylenes, Total	80.9	1.5	0.90	ug/l	75.0	ND	108	60-130	12	20	
Surrogate: 4-Bromofluorobenzene	28.3			ug/l	25.0		113	80-120			
Surrogate: Dibromofluoromethane	24.7			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	27.4			ug/l	25.0		109	80-120			
Batch: 10B0831 Extracted: 02/08/10	<u>)</u>										
Blank Analyzed: 02/08/2010 (10B0831-F	BLK1)										
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
Dibromochloromethane	ND	0.50	0.40	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
1,1-Dichloroethane	ND	0.50	0.40	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
cis-1,2-Dichloroethene	ND	0.50	0.32	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.30	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Methylene chloride	ND	1.0	0.95	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.30	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

A 1.	D L	Reporting	MDI	T T •4	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B0831 Extracted: 02/08/10)										
	T T74)										
Blank Analyzed: 02/08/2010 (10B0831-B	,	0.50	0.00								
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.40	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: 4-Bromofluorobenzene	23.4			ug/l	25.0		94	80-120			
Surrogate: Dibromofluoromethane	24.8			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	26.6			ug/l	25.0		106	80-120			
LCS Analyzed: 02/08/2010 (10B0831-BS	51)										
Benzene	22.7	0.50	0.28	ug/l	25.0		91	70-120			
Bromodichloromethane	24.1	0.50	0.30	ug/l	25.0		97	70-135			
Bromoform	20.9	0.50	0.40	ug/l	25.0		83	55-130			
Bromomethane	27.8	1.0	0.42	ug/l	25.0		111	65-140			
Carbon tetrachloride	24.7	0.50	0.28	ug/l	25.0		99	65-140			
Chlorobenzene	24.7	0.50	0.36	ug/l	25.0		99	75-120			
Chloroethane	26.1	1.0	0.40	ug/l	25.0		105	60-140			
Chloroform	23.5	0.50	0.33	ug/l	25.0		94	70-130			
Chloromethane	27.1	0.50	0.40	ug/l	25.0		109	50-140			
Dibromochloromethane	22.6	0.50	0.40	ug/l	25.0		90	70-140			
1,2-Dichlorobenzene	24.9	0.50	0.32	ug/l	25.0		99	75-120			
1,3-Dichlorobenzene	25.8	0.50	0.35	ug/l	25.0		103	75-120			
1,4-Dichlorobenzene	24.8	0.50	0.37	ug/l	25.0		99	75-120			
1,1-Dichloroethane	23.3	0.50	0.40	ug/l	25.0		93	70-125			
1,2-Dichloroethane	23.2	0.50	0.28	ug/l	25.0		93	60-140			
1,1-Dichloroethene	26.2	0.50	0.42	ug/l	25.0		105	70-125			
cis-1,2-Dichloroethene	25.8	0.50	0.32	ug/l	25.0		103	70-125			
trans-1,2-Dichloroethene	24.7	0.50	0.30	ug/l	25.0		99	70-125			
1,2-Dichloropropane	21.7	0.50	0.35	ug/l	25.0		87	70-125			
cis-1,3-Dichloropropene	26.0	0.50	0.22	ug/l	25.0		104	75-125			
trans-1,3-Dichloropropene	20.0	0.50	0.32	ug/l	25.0		80	70-125			
Ethylbenzene	24.8	0.50	0.25	ug/l	25.0		99	75-125			
Methylene chloride	23.4	1.0	0.95	ug/l	25.0		94	55-130			
1,1,2,2-Tetrachloroethane	26.6	0.50	0.30	ug/l	25.0		107	55-130			
Tetrachloroethene	25.5	0.50	0.32	ug/l	25.0		102	70-125			
Toluene	23.8	0.50	0.36	ug/l	25.0		95	70-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·							,				X
Batch: 10B0831 Extracted: 02/08/10	<u>)</u>										
LCS Analyzed: 02/08/2010 (10B0831-BS	51)										
1,1,1-Trichloroethane	23.9	0.50	0.30	ug/l	25.0		95	65-135			
1,1,2-Trichloroethane	24.1	0.50	0.30	ug/l	25.0		96	70-125			
Trichloroethene	25.0	0.50	0.26	ug/l	25.0		100	70-125			
Trichlorofluoromethane	27.9	0.50	0.34	ug/l	25.0		112	65-145			
Vinyl chloride	31.7	0.50	0.40	ug/l	25.0		127	55-135			
Xylenes, Total	77.7	1.5	0.90	ug/l	75.0		104	70-125			
Surrogate: 4-Bromofluorobenzene	25.4			ug/l	25.0		102	80-120			
Surrogate: Dibromofluoromethane	25.4			ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	26.6			ug/l	25.0		106	80-120			
Matrix Spike Analyzed: 02/08/2010 (10E	30831-MS1)				Sou	rce: ITA	2535-01R	E1			
Benzene	24.7	0.50	0.28	ug/l	25.0	ND	99	65-125			
Bromodichloromethane	28.9	0.50	0.30	ug/l	25.0	1.69	109	70-135			
Bromoform	33.9	0.50	0.40	ug/l	25.0	8.96	100	55-135			
Bromomethane	29.6	1.0	0.42	ug/l	25.0	ND	118	55-145			
Carbon tetrachloride	26.1	0.50	0.28	ug/l	25.0	ND	104	65-140			
Chlorobenzene	27.0	0.50	0.36	ug/l	25.0	ND	108	75-125			
Chloroethane	27.8	1.0	0.40	ug/l	25.0	ND	111	55-140			
Chloroform	28.2	0.50	0.33	ug/l	25.0	1.71	106	65-135			
Chloromethane	30.0	0.50	0.40	ug/l	25.0	ND	120	45-145			
Dibromochloromethane	30.8	0.50	0.40	ug/l	25.0	4.84	104	65-140			
1,2-Dichlorobenzene	26.3	0.50	0.32	ug/l	25.0	ND	105	75-125			
1,3-Dichlorobenzene	27.2	0.50	0.35	ug/l	25.0	ND	109	75-125			
1,4-Dichlorobenzene	26.4	0.50	0.37	ug/l	25.0	ND	106	75-125			
1,1-Dichloroethane	26.1	0.50	0.40	ug/l	25.0	ND	104	65-130			
1,2-Dichloroethane	25.5	0.50	0.28	ug/l	25.0	ND	102	60-140			
1,1-Dichloroethene	27.4	0.50	0.42	ug/l	25.0	ND	109	60-130			
cis-1,2-Dichloroethene	29.0	0.50	0.32	ug/l	25.0	ND	116	65-130			
trans-1,2-Dichloroethene	27.6	0.50	0.30	ug/l	25.0	ND	110	65-130			
1,2-Dichloropropane	24.2	0.50	0.35	ug/l	25.0	ND	97	65-130			
cis-1,3-Dichloropropene	29.6	0.50	0.22	ug/l	25.0	ND	119	70-130			
trans-1,3-Dichloropropene	22.5	0.50	0.32	ug/l	25.0	ND	90	65-135			
Ethylbenzene	26.1	0.50	0.25	ug/l	25.0	ND	105	65-130			
Methylene chloride	25.8	1.0	0.95	ug/l	25.0	ND	103	50-135			
1,1,2,2-Tetrachloroethane	28.7	0.50	0.30	ug/l	25.0	ND	115	55-135			
Tetrachloroethene	26.4	0.50	0.32	ug/l	25.0	ND	105	65-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
·		Linnt	MDL	Units	Level	Kesuit	/0KEC	Linnts	κιν	Linnt	Quaimers
Batch: 10B0831 Extracted: 02/08/10)										
Matrix Spike Analyzed: 02/08/2010 (10E	R0831_MS1)				Sou	rce: ITA	2535_01R	E1			
Toluene	25.6	0.50	0.36	ug/l	25.0	ND	102	70-125			
1,1,1-Trichloroethane	26.1	0.50	0.30	ug/l	25.0	ND	102	65-140			
1,1,2-Trichloroethane	26.4	0.50	0.30	ug/l	25.0	ND	104	65-130			
Trichloroethene	26.5	0.50	0.26	ug/l	25.0	ND	106	65-125			
Trichlorofluoromethane	29.0	0.50	0.34	ug/l	25.0	ND	116	60-145			
Vinyl chloride	33.2	0.50	0.40	ug/l	25.0	ND	133	45-140			
Xylenes, Total	82.5	1.5	0.90	ug/l	75.0	ND	110	60-130			
Surrogate: 4-Bromofluorobenzene	27.5			ug/l	25.0	112	110	80-120			
Surrogate: Dibromofluoromethane	26.5			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.4			ug/l	25.0		106	80-120			
				0							
Matrix Spike Dup Analyzed: 02/08/2010						rce: ITA2				• •	
Benzene	24.9	0.50	0.28	ug/l	25.0	ND	100	65-125	0.7	20	
Bromodichloromethane	29.8	0.50	0.30	ug/l	25.0	1.69	113	70-135	3	20	
Bromoform	34.1	0.50	0.40	ug/l	25.0	8.96	101	55-135	0.6	25	
Bromomethane	28.9	1.0	0.42	ug/l	25.0	ND	115	55-145	2	25	
Carbon tetrachloride	26.5	0.50	0.28	ug/l	25.0	ND	106	65-140	2	25	
Chlorobenzene	26.4	0.50	0.36	ug/l	25.0	ND	106	75-125	2	20	
Chloroethane	27.5	1.0	0.40	ug/l	25.0	ND	110	55-140	1	25	
Chloroform	28.2	0.50	0.33	ug/l	25.0	1.71	106	65-135	0.04	20	
Chloromethane	28.6	0.50	0.40	ug/l	25.0	ND	114	45-145	5	25	
Dibromochloromethane	30.9	0.50	0.40	ug/l	25.0	4.84	104	65-140	0.4	25	
1,2-Dichlorobenzene	26.6	0.50	0.32	ug/l	25.0	ND	106	75-125	0.9	20	
1,3-Dichlorobenzene	27.2	0.50	0.35	ug/l	25.0	ND	109	75-125	0.2	20	
1,4-Dichlorobenzene	26.6	0.50	0.37	ug/l	25.0	ND	106	75-125	0.6	20	
1,1-Dichloroethane	25.7	0.50	0.40	ug/l	25.0	ND	103	65-130	1	20	
1,2-Dichloroethane	26.1	0.50	0.28	ug/l	25.0	ND	104	60-140	2	20	
1,1-Dichloroethene	26.7	0.50	0.42	ug/l	25.0	ND	107	60-130	3	20	
cis-1,2-Dichloroethene	28.8	0.50	0.32	ug/l	25.0	ND	115	65-130	0.6	20	
trans-1,2-Dichloroethene	26.9	0.50	0.30	ug/l	25.0	ND	108	65-130	2	20	
1,2-Dichloropropane	24.2	0.50	0.35	ug/l	25.0	ND	97	65-130	0.04	20	
cis-1,3-Dichloropropene	29.9	0.50	0.22	ug/l	25.0	ND	120	70-130	0.9	20	
trans-1,3-Dichloropropene	23.2	0.50	0.32	ug/l	25.0	ND	93	65-135	3	25	
Ethylbenzene	25.9	0.50	0.25	ug/l	25.0	ND	104	65-130	0.9	20	
Methylene chloride	25.3	1.0	0.95	ug/l	25.0	ND	101	50-135	2	20	
1,1,2,2-Tetrachloroethane	29.6	0.50	0.30	ug/l	25.0	ND	118	55-135	3	30	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B0831 Extracted: 02/08/10	_										
Matrix Spike Dup Analyzed: 02/08/2010	(10B0831-M	SD1)			Sou	rce: ITA2	2535-01R	E1			
Tetrachloroethene	26.0	0.50	0.32	ug/l	25.0	ND	104	65-130	1	20	
Toluene	25.8	0.50	0.36	ug/l	25.0	ND	103	70-125	0.7	20	
1,1,1-Trichloroethane	26.0	0.50	0.30	ug/l	25.0	ND	104	65-140	0.7	20	
1,1,2-Trichloroethane	26.5	0.50	0.30	ug/l	25.0	ND	106	65-130	0.4	25	
Trichloroethene	26.9	0.50	0.26	ug/l	25.0	ND	108	65-125	1	20	
Trichlorofluoromethane	28.9	0.50	0.34	ug/l	25.0	ND	115	60-145	0.7	25	
Vinyl chloride	31.4	0.50	0.40	ug/l	25.0	ND	126	45-140	6	30	
Xylenes, Total	81.9	1.5	0.90	ug/l	75.0	ND	109	60-130	0.7	20	
Surrogate: 4-Bromofluorobenzene	27.6			ug/l	25.0		110	80-120			
Surrogate: Dibromofluoromethane	26.2			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	26.7			ug/l	25.0		107	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·		Linnt	MIDL	Onits	Level	Kesuit	JUREC	Linits	KI D	Linnt	Quanners
Batch: 10B0785 Extracted: 02/07/10											
Blank Analyzed: 02/07/2010 (10B0785-B	LK1)										
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	1.2	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: 4-Bromofluorobenzene	26.2			ug/l	25.0		105	80-120			
Surrogate: Dibromofluoromethane	23.9			ug/l	25.0		96	80-120			
Surrogate: Toluene-d8	27.0			ug/l	25.0		108	80-120			
LCS Analyzed: 02/07/2010 (10B0785-BS	1)										
2-Chloroethyl vinyl ether	18.7	5.0	1.8	ug/l	25.0		75	25-170			
Surrogate: 4-Bromofluorobenzene	28.3			ug/l	25.0		113	80-120			
Surrogate: Dibromofluoromethane	24.8			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	27.3			ug/l	25.0		109	80-120			
Matrix Spike Analyzed: 02/07/2010 (10B	0785-MS1)				Sou	rce: ITB(302-01				
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l	25.0	ND		25-170			M13
Surrogate: 4-Bromofluorobenzene	28.7			ug/l	25.0		115	80-120			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	27.1			ug/l	25.0		108	80-120			
Matrix Spike Dup Analyzed: 02/07/2010	(10B0785-M	ISD1)			Sou	rce: ITB(302-01				
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l	25.0	ND		25-170		25	M13
Surrogate: 4-Bromofluorobenzene	28.3			ug/l	25.0		113	80-120			
Surrogate: Dibromofluoromethane	24.7			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	27.4			ug/l	25.0		109	80-120			
Batch: 10B0831 Extracted: 02/08/10	<u>)</u>										
Blank Analyzed: 02/08/2010 (10B0831-B	LK1)										
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	1.2	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: 4-Bromofluorobenzene	23.4			ug/l	25.0		94	80-120			
Surrogate: Dibromofluoromethane	24.8			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	26.6			ug/l	25.0		106	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0831 Extracted: 02/08/10	_										
LCS Analyzed: 02/08/2010 (10B0831-BS	1)										
2-Chloroethyl vinyl ether	12.9	5.0	1.8	ug/l	25.0		52	25-170			
Surrogate: 4-Bromofluorobenzene	25.4			ug/l	25.0		102	80-120			
Surrogate: Dibromofluoromethane	25.4			ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	26.6			ug/l	25.0		106	80-120			
Matrix Spike Analyzed: 02/08/2010 (10B	0831-MS1)				Sou	rce: ITA	2535-01R	E1			
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l	25.0	ND		25-170			M13
Surrogate: 4-Bromofluorobenzene	27.5			ug/l	25.0		110	80-120			
Surrogate: Dibromofluoromethane	26.5			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.4			ug/l	25.0		106	80-120			
Matrix Spike Dup Analyzed: 02/08/2010	(10B0831-M	ISD1)	Source: ITA2535-01RE1								
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l	25.0	ND		25-170		25	M13
Surrogate: 4-Bromofluorobenzene	27.6			ug/l	25.0		110	80-120			
Surrogate: Dibromofluoromethane	26.2			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	26.7			ug/l	25.0		107	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·		Linit	MIDL	Units	Level	Result	JUREC	Linnes	ΝD	Linnt	Quanners
Batch: 10B1058 Extracted: 02/09/10	<u>)</u>										
Blank Analyzed: 02/11/2010 (10B1058-B	RLK1)										
Acenaphthene	ND	10	3.0	ug/l							
Acenaphthylene	ND	10	3.0	ug/l							
Aniline	ND	10	3.5	ug/l							
Anthracene	ND	10	2.5	ug/l							
Benzidine	ND	20	10	ug/l							
Benzo(a)anthracene	ND	10	2.5	ug/l							
Benzo(a)pyrene	ND	10	3.0	ug/l							
Benzo(b)fluoranthene	ND	10	2.0	ug/l							
Benzo(g,h,i)perylene	ND	10	4.0	ug/l							
Benzo(k)fluoranthene	ND	10	2.5	ug/l							
Benzoic acid	ND	20	10	ug/l							
Benzyl alcohol	ND	20 20	3.5	ug/l							
4-Bromophenyl phenyl ether	ND	20 10	3.0	ug/l							
Butyl benzyl phthalate	ND	20	4.0	ug/l							
4-Chloro-3-methylphenol	ND	20 20	2.5								
4-Chloroaniline	ND	20 10	2.0	ug/l							
Bis(2-chloroethoxy)methane	ND ND	10	3.0	ug/l							
Bis(2-chloroethyl)ether	ND	10	3.0	ug/l							
Bis(2-chloroisopropyl)ether	ND ND	10	2.5	ug/l							
Bis(2-ethylhexyl)phthalate	ND ND	10 50	2.3 4.0	ug/l							
2-Chloronaphthalene	ND ND	30 10	4.0 3.0	ug/l							
-	ND ND	10	3.0	ug/l							
2-Chlorophenol 4-Chlorophenyl phenyl ether	ND ND	10	2.5	ug/l							
	ND ND	10	2.5	ug/l							
Chrysene Dihang(a h)anthracana				ug/l							
Dibenz(a,h)anthracene Dibenzofuran	ND	20	3.0	ug/l							
	ND ND	10 20	4.0 3.0	ug/l							
Di-n-butyl phthalate				ug/l							
3,3'-Dichlorobenzidine 2,4-Dichlorophenol	ND	20 10	7.5 3.5	ug/l							
· •	ND			ug/l							
Diethyl phthalate	ND	10	3.5	ug/l							
2,4-Dimethylphenol	ND	20	3.5	ug/l							
Dimethyl phthalate	ND	10	2.5	ug/l							
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l							
2,4-Dinitrophenol	ND	20	8.0	ug/l							
2,4-Dinitrotoluene	ND	10	3.5	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1058 Extracted: 02/09/10											
	-										
Blank Analyzed: 02/11/2010 (10B1058-Bl	L K1)										
2,6-Dinitrotoluene	ND	10	2.0	ug/l							
Di-n-octyl phthalate	ND	20	3.5	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	20	2.5	ug/l							
Fluoranthene	ND	10	3.0	ug/l							
Fluorene	ND	10	3.0	ug/l							
Hexachlorobenzene	ND	10	3.0	ug/l							
Hexachlorobutadiene	ND	10	4.0	ug/l							
Hexachlorocyclopentadiene	ND	20	5.0	ug/l							
Hexachloroethane	ND	10	3.5	ug/l							
Indeno(1,2,3-cd)pyrene	ND	20	3.5	ug/l							
Isophorone	ND	10	3.0	ug/l							
2-Methylnaphthalene	ND	10	2.0	ug/l							
2-Methylphenol	ND	10	3.0	ug/l							
4-Methylphenol	ND	10	3.0	ug/l							
Naphthalene	ND	10	3.0	ug/l							
2-Nitroaniline	ND	20	2.0	ug/l							
3-Nitroaniline	ND	20	3.0	ug/l							
4-Nitroaniline	ND	20	4.0	ug/l							
Nitrobenzene	ND	20	3.0	ug/l							
2-Nitrophenol	ND	10	3.5	ug/l							
4-Nitrophenol	ND	20	5.5	ug/l							
N-Nitroso-di-n-propylamine	ND	10	3.5	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
N-Nitrosodiphenylamine	ND	10	2.0	ug/l							
Pentachlorophenol	ND	20	3.5	ug/l							
Phenanthrene	ND	10	3.5	ug/l							
Phenol	ND	10	2.0	ug/l							
Pyrene	ND	10	4.0	ug/l							
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l							
2,4,5-Trichlorophenol	ND	20	3.0	ug/l							
2,4,6-Trichlorophenol	ND	20	4.5	ug/l							
Surrogate: 2,4,6-Tribromophenol	198			ug/l	200		99	40-120			
Surrogate: 2-Fluorobiphenyl	97.6			ug/l	100		98	50-120			
Surrogate: 2-Fluorophenol	155			ug/l	200		78	30-120			
Surrogate: Nitrobenzene-d5	97.6			ug/l	100		98	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1058 Extracted: 02/09/10)										
	<u> </u>										
Blank Analyzed: 02/11/2010 (10B1058-E	BLK1)										
Surrogate: Phenol-d6	172			ug/l	200		86	35-120			
Surrogate: Terphenyl-d14	101			ug/l	100		101	50-125			
LCS Analyzed: 02/11/2010 (10B1058-BS	51)										MNR1
Acenaphthene	83.7	10	3.0	ug/l	100		84	60-120			
Acenaphthylene	85.2	10	3.0	ug/l	100		85	60-120			
Aniline	66.2	10	3.5	ug/l	100		66	35-120			
Anthracene	87.5	10	2.5	ug/l	100		88	65-120			
Benzidine	125	20	10	ug/l	100		125	30-160			
Benzo(a)anthracene	87.8	10	2.5	ug/l	100		88	65-120			
Benzo(a)pyrene	92.0	10	3.0	ug/l	100		92	55-130			
Benzo(b)fluoranthene	91.3	10	2.0	ug/l	100		91	55-125			
Benzo(g,h,i)perylene	97.7	10	4.0	ug/l	100		98	45-135			
Benzo(k)fluoranthene	88.1	10	2.5	ug/l	100		88	50-125			
Benzoic acid	60.2	20	10	ug/l	100		60	25-120			
Benzyl alcohol	103	20	3.5	ug/l	100		103	50-120			
4-Bromophenyl phenyl ether	84.4	10	3.0	ug/l	100		84	60-120			
Butyl benzyl phthalate	95.7	20	4.0	ug/l	100		96	55-130			
4-Chloro-3-methylphenol	79.3	20	2.5	ug/l	100		79	60-120			
4-Chloroaniline	78.9	10	2.0	ug/l	100		79	55-120			
Bis(2-chloroethoxy)methane	82.8	10	3.0	ug/l	100		83	55-120			
Bis(2-chloroethyl)ether	75.1	10	3.0	ug/l	100		75	50-120			
Bis(2-chloroisopropyl)ether	86.2	10	2.5	ug/l	100		86	45-120			
Bis(2-ethylhexyl)phthalate	101	50	4.0	ug/l	100		101	65-130			
2-Chloronaphthalene	82.1	10	3.0	ug/l	100		82	60-120			
2-Chlorophenol	69.1	10	3.0	ug/l	100		69	45-120			
4-Chlorophenyl phenyl ether	82.4	10	2.5	ug/l	100		82	65-120			
Chrysene	91.9	10	2.5	ug/l	100		92	65-120			
Dibenz(a,h)anthracene	99.4	20	3.0	ug/l	100		99	50-135			
Dibenzofuran	84.0	10	4.0	ug/l	100		84	65-120			
Di-n-butyl phthalate	90.5	20	3.0	ug/l	100		90	60-125			
3,3'-Dichlorobenzidine	77.2	20	7.5	ug/l	100		77	45-135			
2,4-Dichlorophenol	76.6	10	3.5	ug/l	100		77	55-120			
Diethyl phthalate	82.1	10	3.5	ug/l	100		82	55-120			
2,4-Dimethylphenol	73.4	20	3.5	ug/l	100		73	40-120			
Dimethyl phthalate	83.2	10	2.5	ug/l	100		83	30-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·											
Batch: 10B1058 Extracted: 02/09/10											
LCS Analyzed: 02/11/2010 (10B1058-BS	1)										MNR1
4,6-Dinitro-2-methylphenol	100	20	4.0	ug/l	100		100	45-120			
2,4-Dinitrophenol	88.4	20	8.0	ug/l	100		88	40-120			
2,4-Dinitrotoluene	86.2	10	3.5	ug/l	100		86	65-120			
2,6-Dinitrotoluene	85.8	10	2.0	ug/l	100		86	65-120			
Di-n-octyl phthalate	102	20	3.5	ug/l	100		102	65-135			
1,2-Diphenylhydrazine/Azobenzene	84.4	20	2.5	ug/l	100		84	60-120			
Fluoranthene	87.7	10	3.0	ug/l	100		88	60-120			
Fluorene	82.6	10	3.0	ug/l	100		83	65-120			
Hexachlorobenzene	82.1	10	3.0	ug/l	100		82	60-120			
Hexachlorobutadiene	61.7	10	4.0	ug/l	100		62	40-120			
Hexachlorocyclopentadiene	136	20	5.0	ug/l	100		136	25-120			L
Hexachloroethane	57.0	10	3.5	ug/l	100		57	35-120			
Indeno(1,2,3-cd)pyrene	92.7	20	3.5	ug/l	100		93	45-135			
Isophorone	88.0	10	3.0	ug/l	100		88	50-120			
2-Methylnaphthalene	77.6	10	2.0	ug/l	100		78	55-120			
2-Methylphenol	72.8	10	3.0	ug/l	100		73	50-120			
4-Methylphenol	76.5	10	3.0	ug/l	100		76	50-120			
Naphthalene	76.2	10	3.0	ug/l	100		76	55-120			
2-Nitroaniline	90.4	20	2.0	ug/l	100		90	65-120			
3-Nitroaniline	87.8	20	3.0	ug/l	100		88	60-120			
4-Nitroaniline	88.7	20	4.0	ug/l	100		89	55-125			
Nitrobenzene	80.0	20	3.0	ug/l	100		80	55-120			
2-Nitrophenol	77.3	10	3.5	ug/l	100		77	50-120			
4-Nitrophenol	74.4	20	5.5	ug/l	100		74	45-120			
N-Nitroso-di-n-propylamine	86.4	10	3.5	ug/l	100		86	45-120			
N-Nitrosodimethylamine	71.5	20	2.5	ug/l	100		72	45-120			
N-Nitrosodiphenylamine	92.9	10	2.0	ug/l	100		93	60-120			
Pentachlorophenol	76.6	20	3.5	ug/l	100		77	50-120			
Phenanthrene	86.5	10	3.5	ug/l	100		86	65-120			
Phenol	74.1	10	2.0	ug/l	100		74	40-120			
Pyrene	88.8	10	4.0	ug/l	100		89	55-125			
1,2,4-Trichlorobenzene	69.0	10	2.5	ug/l	100		69	45-120			
2,4,5-Trichlorophenol	81.7	20	3.0	ug/l	100		82	55-120			
2,4,6-Trichlorophenol	82.2	20	4.5	ug/l	100		82	55-120			
Surrogate: 2,4,6-Tribromophenol	172			ug/l	200		86	40-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1058 Extracted: 02/09/10	0										
LCS Analyzed: 02/11/2010 (10B1058-BS	51)										MNR1
Surrogate: 2-Fluorobiphenyl	84.2			ug/l	100		84	50-120			
Surrogate: 2-Fluorophenol	115			ug/l	200		58	30-120			
Surrogate: Nitrobenzene-d5	79.7			ug/l	100		80	45-120			
Surrogate: Phenol-d6	133			ug/l	200		66	35-120			
Surrogate: Terphenyl-d14	89.4			ug/l	100		89	50-125			
LCS Dup Analyzed: 02/11/2010 (10B105	58-BSD1)										
Acenaphthene	81.4	10	3.0	ug/l	100		81	60-120	3	20	
Acenaphthylene	82.9	10	3.0	ug/l	100		83	60-120	3	20	
Aniline	79.3	10	3.5	ug/l	100		79	35-120	18	30	
Anthracene	83.9	10	2.5	ug/l	100		84	65-120	4	20	
Benzidine	120	20	10	ug/l	100		120	30-160	4	35	
Benzo(a)anthracene	84.7	10	2.5	ug/l	100		85	65-120	4	20	
Benzo(a)pyrene	89.5	10	3.0	ug/l	100		90	55-130	3	25	
Benzo(b)fluoranthene	89.4	10	2.0	ug/l	100		89	55-125	2	25	
Benzo(g,h,i)perylene	92.3	10	4.0	ug/l	100		92	45-135	6	25	
Benzo(k)fluoranthene	88.9	10	2.5	ug/l	100		89	50-125	0.9	20	
Benzoic acid	57.0	20	10	ug/l	100		57	25-120	5	30	
Benzyl alcohol	103	20	3.5	ug/l	100		103	50-120	0.5	20	
4-Bromophenyl phenyl ether	79.9	10	3.0	ug/l	100		80	60-120	6	25	
Butyl benzyl phthalate	90.8	20	4.0	ug/l	100		91	55-130	5	20	
4-Chloro-3-methylphenol	80.0	20	2.5	ug/l	100		80	60-120	0.9	25	
4-Chloroaniline	82.4	10	2.0	ug/l	100		82	55-120	4	25	
Bis(2-chloroethoxy)methane	82.8	10	3.0	ug/l	100		83	55-120	0.07	20	
Bis(2-chloroethyl)ether	74.4	10	3.0	ug/l	100		74	50-120	1	20	
Bis(2-chloroisopropyl)ether	86.0	10	2.5	ug/l	100		86	45-120	0.3	20	
Bis(2-ethylhexyl)phthalate	95.8	50	4.0	ug/l	100		96	65-130	5	20	
2-Chloronaphthalene	79.6	10	3.0	ug/l	100		80	60-120	3	20	
2-Chlorophenol	65.6	10	3.0	ug/l	100		66	45-120	5	25	
4-Chlorophenyl phenyl ether	79.6	10	2.5	ug/l	100		80	65-120	3	20	
Chrysene	88.2	10	2.5	ug/l	100		88	65-120	4	20	
Dibenz(a,h)anthracene	95.5	20	3.0	ug/l	100		96	50-135	4	25	
Dibenzofuran	82.1	10	4.0	ug/l	100		82	65-120	2	20	
Di-n-butyl phthalate	87.3	20	3.0	ug/l	100		87	60-125	4	20	
3,3'-Dichlorobenzidine	76.5	20	7.5	ug/l	100		76	45-135	1	25	
2,4-Dichlorophenol	74.0	10	3.5	ug/l	100		74	55-120	3	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·			MDL	emis	Lever	itesuit	/une	Linits	NI D	Linnt	Quanners
Batch: 10B1058 Extracted: 02/09/10	<u>)</u>										
LCS Dup Analyzed: 02/11/2010 (10B105	8-RSD1)										
Diethyl phthalate	79.9	10	3.5	ug/l	100		80	55-120	3	30	
2,4-Dimethylphenol	70.8	20	3.5	ug/l	100		30 71	40-120	3	25	
Dimethyl phthalate	80.7	10	2.5	ug/l	100		81	30-120	3	30	
4,6-Dinitro-2-methylphenol	97.0	20	4.0	ug/l	100		97	45-120	3	25	
2,4-Dinitrophenol	88.5	20	4.0 8.0	ug/l	100		88	40-120	0.09	25	
2,4-Dinitrotoluene	85.8	10	3.5	ug/l	100		86	65-120	0.5	20	
2,6-Dinitrotoluene	83.2	10	2.0	ug/l	100		83	65-120	3	20	
Di-n-octyl phthalate	97.6	20	3.5	ug/l	100		98	65-135	4	20	
1,2-Diphenylhydrazine/Azobenzene	82.4	20	2.5	ug/l	100		82	60-120	2	20	
Fluoranthene	86.7	10	3.0	ug/l	100		82	60-120	1	20	
Fluorene	81.7	10	3.0	ug/l	100		87	65-120	1	20 20	
Hexachlorobenzene	79.1	10	3.0	ug/l	100		82 79	60-120	4	20	
Hexachlorobutadiene	62.4	10	4.0	ug/l	100		62	40-120	4	20 25	
	131	20	5.0	-	100		131	40-120 25-120	4	23 30	L
Hexachlorocyclopentadiene Hexachloroethane	55.3	20 10	3.5	ug/l	100		55	35-120	4	30 25	L
	33.3 89.4	10 20	3.5 3.5	ug/l	100		33 89	45-135	3 4	23 25	
Indeno(1,2,3-cd)pyrene				ug/l					4		
Isophorone	87.0	10	3.0	ug/l	100		87 79	50-120		20	
2-Methylnaphthalene	77.6	10	2.0	ug/l	100		78	55-120	0.08	20	
2-Methylphenol	71.3	10	3.0	ug/l	100		71	50-120	2	20	
4-Methylphenol	75.8	10	3.0	ug/l	100		76 75	50-120	0.9	20	
Naphthalene	75.0	10	3.0	ug/l	100		75	55-120	2	20	
2-Nitroaniline	88.8	20	2.0	ug/l	100		89	65-120	2	20	
3-Nitroaniline	88.1	20	3.0	ug/l	100		88	60-120	0.3	25	
4-Nitroaniline	90.5	20	4.0	ug/l	100		90	55-125	2	20	
Nitrobenzene	79.9	20	3.0	ug/l	100		80	55-120	0.2	25	
2-Nitrophenol	75.4	10	3.5	ug/l	100		75	50-120	3	25	
4-Nitrophenol	71.8	20	5.5	ug/l	100		72	45-120	4	30	
N-Nitroso-di-n-propylamine	86.1	10	3.5	ug/l	100		86	45-120	0.4	20	
N-Nitrosodimethylamine	71.6	20	2.5	ug/l	100		72	45-120	0.08	20	
N-Nitrosodiphenylamine	88.1	10	2.0	ug/l	100		88	60-120	5	20	
Pentachlorophenol	75.1	20	3.5	ug/l	100		75	50-120	2	25	
Phenanthrene	82.8	10	3.5	ug/l	100		83	65-120	4	20	
Phenol	69.3	10	2.0	ug/l	100		69	40-120	7	25	
Pyrene	83.4	10	4.0	ug/l	100		83	55-125	6	25	
1,2,4-Trichlorobenzene	67.7	10	2.5	ug/l	100		68	45-120	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1058 Extracted: 02/09/10	-										
LCS Dup Analyzed: 02/11/2010 (10B105	8-BSD1)										
2,4,5-Trichlorophenol	78.3	20	3.0	ug/l	100		78	55-120	4	30	
2,4,6-Trichlorophenol	78.1	20	4.5	ug/l	100		78	55-120	5	30	
Surrogate: 2,4,6-Tribromophenol	160			ug/l	200		80	40-120			
Surrogate: 2-Fluorobiphenyl	81.4			ug/l	100		81	50-120			
Surrogate: 2-Fluorophenol	98.8			ug/l	200		49	30-120			
Surrogate: Nitrobenzene-d5	79.3			ug/l	100		79	45-120			
Surrogate: Phenol-d6	120			ug/l	200		60	35-120			
Surrogate: Terphenyl-d14	85.0			ug/l	100		85	50-125			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0759 Extracted: 02/06/10	_										
Blank Analyzed: 02/09/2010 (10B0759-B	LK1)										
Chlorpyrifos	ND	1.0	N/A	ug/l							
Diazinon	ND	0.25	0.10	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.24			ug/l	5.00		105	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.24			ug/l	5.00		105	70-130			
Surrogate: Triphenylphosphate	5.34			ug/l	5.00		107	70-130			
Surrogate: Triphenylphosphate	5.34			ug/l	5.00		107	70-130			
Surrogate: Perylene-d12	4.61			ug/l	5.00		92	70-130			
Surrogate: Perylene-d12	4.61			ug/l	5.00		92	70-130			
LCS Analyzed: 02/09/2010 (10B0759-BS	1)										
Chlorpyrifos	5.29	1.0	0.010	ug/l	5.00		106	70-130			
Diazinon	4.98	0.25	0.10	ug/l	5.00		100	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.21			ug/l	5.00		84	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.21			ug/l	5.00		84	70-130			
Surrogate: Triphenylphosphate	5.22			ug/l	5.00		104	70-130			
Surrogate: Triphenylphosphate	5.22			ug/l	5.00		104	70-130			
Surrogate: Perylene-d12	5.26			ug/l	5.00		105	70-130			
Surrogate: Perylene-d12	5.26			ug/l	5.00		105	70-130			
LCS Dup Analyzed: 02/09/2010 (10B075	9-BSD1)										
Chlorpyrifos	5.08	1.0	0.010	ug/l	5.00		102	70-130	4	30	
Diazinon	4.81	0.25	0.10	ug/l	5.00		96	70-130	3	30	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.90			ug/l	5.00		98	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.90			ug/l	5.00		98	70-130			
Surrogate: Triphenylphosphate	4.87			ug/l	5.00		97	70-130			
Surrogate: Triphenylphosphate	4.87			ug/l	5.00		97	70-130			
Surrogate: Perylene-d12	4.89			ug/l	5.00		98	70-130			
Surrogate: Perylene-d12	4.89			ug/l	5.00		98	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

	D L	Reporting	MDI	T T •/	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1291 Extracted: 02/11/10	-										
Blank Analyzed: 02/12/2010 (10B1291-B	LK1)										
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0025	ug/l							
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
gamma-BHC (Lindane)	ND	0.020	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Chlordane	ND	0.10	0.040	ug/l							
Toxaphene	ND	0.50	0.25	ug/l							
Surrogate: Decachlorobiphenyl	0.387			ug/l	0.500		77	45-120			
Surrogate: Tetrachloro-m-xylene	0.240			ug/l	0.500		48	35-115			
LCS Analyzed: 02/12/2010 (10B1291-BS	1)										
4,4'-DDD	0.464	0.0050	0.0020	ug/l	0.500		93	55-120			
4,4'-DDE	0.404	0.0050	0.0020	ug/l	0.500		93 84	50-120			
4,4'-DDT	0.418	0.0050	0.0030	ug/l	0.500		90	55-120			
Aldrin	0.430	0.0050	0.0040	ug/l	0.500		90 75	40-115			
alpha-BHC	0.369	0.0050	0.0015	ug/l	0.500		73 74	45-115			
beta-BHC	0.369	0.0050	0.0023	-			74	43-115 55-115			
delta-BHC	0.301		0.0040	ug/l	0.500			55-115			
Dieldrin		0.0050		ug/l	0.500		81				
	0.434	0.0050	0.0020	ug/l	0.500		87	55-115			
Endosulfan I	0.423	0.0050	0.0020	ug/l	0.500		85	55-115			
Endosulfan II	0.464	0.0050	0.0030	ug/l	0.500		93	55-120			
Endosulfan sulfate	0.431	0.010	0.0030	ug/l	0.500		86	60-120			
Endrin	0.477	0.0050	0.0020	ug/l	0.500		95	55-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

	D L	Reporting			Spike	Source	A/DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1291 Extracted: 02/11/10	_										
LCS Analyzed: 02/12/2010 (10B1291-BS)	,										
Endrin aldehyde	0.393	0.010	0.0020	ug/l	0.500		79	50-120			
Endrin ketone	0.454	0.010	0.0030	ug/l	0.500		91	55-120			
gamma-BHC (Lindane)	0.381	0.020	0.0030	ug/l	0.500		76	45-115			
Heptachlor	0.415	0.010	0.0030	ug/l	0.500		83	45-115			
Heptachlor epoxide	0.407	0.0050	0.0025	ug/l	0.500		81	55-115			
Methoxychlor	0.485	0.0050	0.0035	ug/l	0.500		97	60-120			
Surrogate: Decachlorobiphenyl	0.394			ug/l	0.500		79	45-120			
Surrogate: Tetrachloro-m-xylene	0.339			ug/l	0.500		68	35-115			
Matrix Spike Analyzed: 02/12/2010 (10B	1291-MS1)				Sou	rce: ITB()602-01				
4,4'-DDD	0.362	0.019	0.0075	ug/l	0.472	ND	77	50-125			
4,4'-DDE	0.530	0.019	0.011	ug/l	0.472	ND	112	45-125			
4,4'-DDT	0.402	0.038	0.015	ug/l	0.472	ND	85	50-125			
Aldrin	0.386	0.019	0.0057	ug/l	0.472	ND	82	35-120			
alpha-BHC	0.372	0.019	0.0094	ug/l	0.472	ND	79	40-120			
beta-BHC	0.186	0.038	0.015	ug/l	0.472	ND	39	50-120			M2
delta-BHC	0.314	0.019	0.013	ug/l	0.472	ND	67	50-120			
Dieldrin	0.390	0.019	0.0075	ug/l	0.472	ND	83	50-120			
Endosulfan I	0.475	0.019	0.0075	ug/l	0.472	ND	101	50-120			
Endosulfan II	0.390	0.019	0.011	ug/l	0.472	ND	83	50-125			
Endosulfan sulfate	0.333	0.038	0.011	ug/l	0.472	ND	71	55-125			
Endrin	0.413	0.019	0.0075	ug/l	0.472	ND	88	50-120			
Endrin aldehyde	0.190	0.038	0.0075	ug/l	0.472	ND	40	45-125			М2
Endrin ketone	0.342	0.038	0.011	ug/l	0.472	ND	72	50-125			
gamma-BHC (Lindane)	0.371	0.075	0.011	ug/l	0.472	ND	79	40-120			
Heptachlor	0.452	0.038	0.011	ug/l	0.472	ND	96	40-120			
Heptachlor epoxide	0.450	0.019	0.0094	ug/l	0.472	ND	95	50-120			
Methoxychlor	0.447	0.019	0.013	ug/l	0.472	ND	95	55-125			
Surrogate: Decachlorobiphenyl	0.418			ug/l	0.472		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.220			ug/l	0.472		47	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1291 Extracted: 02/11/10	<u> </u>										
Matrix Spike Dup Analyzed: 02/12/2010	(10B1291-M	ISD1)			Sou	rce: ITB()602-01				
4,4'-DDD	0.364	0.019	0.0075	ug/l	0.472	ND	77	50-125	0.5	30	
4,4'-DDE	0.527	0.019	0.011	ug/l	0.472	ND	112	45-125	0.7	30	
4,4'-DDT	0.396	0.038	0.015	ug/l	0.472	ND	84	50-125	1	30	
Aldrin	0.384	0.019	0.0057	ug/l	0.472	ND	81	35-120	0.6	30	
alpha-BHC	0.367	0.019	0.0094	ug/l	0.472	ND	78	40-120	1	30	
beta-BHC	0.196	0.038	0.015	ug/l	0.472	ND	42	50-120	5	30	M2
delta-BHC	0.313	0.019	0.013	ug/l	0.472	ND	66	50-120	0.2	30	
Dieldrin	0.387	0.019	0.0075	ug/l	0.472	ND	82	50-120	0.7	30	
Endosulfan I	0.471	0.019	0.0075	ug/l	0.472	ND	100	50-120	1	30	
Endosulfan II	0.393	0.019	0.011	ug/l	0.472	ND	83	50-125	0.7	30	
Endosulfan sulfate	0.346	0.038	0.011	ug/l	0.472	ND	73	55-125	4	30	
Endrin	0.409	0.019	0.0075	ug/l	0.472	ND	87	50-120	1	30	
Endrin aldehyde	0.197	0.038	0.0075	ug/l	0.472	ND	42	45-125	4	30	M2
Endrin ketone	0.338	0.038	0.011	ug/l	0.472	ND	72	50-125	1	30	
gamma-BHC (Lindane)	0.368	0.075	0.011	ug/l	0.472	ND	78	40-120	0.6	30	
Heptachlor	0.441	0.038	0.011	ug/l	0.472	ND	93	40-120	3	30	
Heptachlor epoxide	0.447	0.019	0.0094	ug/l	0.472	ND	95	50-120	0.7	30	
Methoxychlor	0.442	0.019	0.013	ug/l	0.472	ND	94	55-125	1	30	
Surrogate: Decachlorobiphenyl	0.407			ug/l	0.472		86	45-120			
Surrogate: Tetrachloro-m-xylene	0.264			ug/l	0.472		56	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

	DL	Reporting	MDI	TT •4	Spike	Source		%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1291 Extracted: 02/11/10											
Blank Analyzed: 02/11/2010 (10B1291-B	LK1)										
Aroclor 1016	ND	0.50	0.25	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.25	ug/l							
Surrogate: Decachlorobiphenyl	0.422			ug/l	0.500		84	45-120			
LCS Analyzed: 02/11/2010 (10B1291-BS	2)										
Aroclor 1016	2.94	0.50	0.25	ug/l	4.00		74	50-115			
Aroclor 1260	3.60	0.50	0.25	ug/l	4.00		90	60-120			
Surrogate: Decachlorobiphenyl	0.432			ug/l	0.500		86	45-120			
Matrix Spike Analyzed: 02/11/2010 (10B	1291-MS2)				Sou	rce: ITB	0602-01				
Aroclor 1016	4.30	0.47	0.24	ug/l	3.77	ND	114	45-120			
Aroclor 1260	3.32	0.47	0.24	ug/l	3.77	ND	88	55-125			
Surrogate: Decachlorobiphenyl	0.388			ug/l	0.472		82	45-120			
Matrix Spike Dup Analyzed: 02/11/2010	(10B1291-M	SD2)			Sou	rce: ITB	0602-01				
Aroclor 1016	4.36	0.47	0.24	ug/l	3.77	ND	116	45-120	1	30	
Aroclor 1260	3.32	0.47	0.24	ug/l	3.77	ND	88	55-125	0.2	25	
Surrogate: Decachlorobiphenyl	0.383			ug/l	0.472		81	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1778 Extracted: 02/15/10	<u> </u>										
Blank Analyzed: 02/15/2010 (10B1778-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 02/15/2010 (10B1778-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	20.9	5.0	1.4	mg/l	20.0		104	78-114			
LCS Dup Analyzed: 02/15/2010 (10B177	8-BSD1)										
Hexane Extractable Material (Oil & Grease)	20.5	5.0	1.4	mg/l	20.0		102	78-114	2	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0921 Extracted: 02/08/10	-										
Blank Analyzed: 02/08/2010 (10B0921-B	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 02/08/2010 (10B0921-BS	1)										
Mercury	8.22	0.20	0.10	ug/l	8.00		103	85-115			
Matrix Spike Analyzed: 02/08/2010 (10B	0921-MS1)				Sou	rce: ITB	0263-07				
Mercury	8.24	0.20	0.10	ug/l	8.00	ND	103	70-130			
Matrix Spike Dup Analyzed: 02/08/2010	(10B0921-MS	5D1)			Sou	rce: ITB)263-07				
Mercury	8.09	0.20	0.10	ug/l	8.00	ND	101	70-130	2	20	
Batch: 10B1571 Extracted: 02/12/10	_										
Blank Analyzed: 02/15/2010 (10B1571-B	LK1)										
Antimony	ND	2.0	0.30	ug/l							
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/15/2010 (10B1571-BS	1)										
Antimony	91.6	2.0	0.30	ug/l	80.0		114	85-115			
Cadmium	85.2	1.0	0.10	ug/l	80.0		107	85-115			
Copper	85.1	2.0	0.50	ug/l	80.0		106	85-115			
Lead	83.1	1.0	0.20	ug/l	80.0		104	85-115			
Thallium	83.3	1.0	0.20	ug/l	80.0		104	85-115			

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1571 Extracted: 02/12	2/10										
Matrix Spike Analyzed: 02/15/2010 (10B1571-MS1)				Sou	irce: ITB	0573-01				
Antimony	104	2.0	0.30	ug/l	80.0	ND	129	70-130			
Cadmium	110	1.0	0.10	ug/l	80.0	ND	137	70-130			<i>M1</i>
Copper	87.2	2.0	0.50	ug/l	80.0	0.972	108	70-130			
Lead	84.2	1.0	0.20	ug/l	80.0	0.339	105	70-130			
Thallium	85.1	1.0	0.20	ug/l	80.0	ND	106	70-130			
Matrix Spike Analyzed: 02/15/2010 (10B1571-MS2)				Sou	ırce: ITB	0729-01				
Antimony	91.5	2.0	0.30	ug/l	80.0	ND	114	70-130			
Cadmium	96.6	1.0	0.10	ug/l	80.0	ND	121	70-130			
Copper	84.9	2.0	0.50	ug/l	80.0	8.51	95	70-130			
Lead	77.2	1.0	0.20	ug/l	80.0	0.446	96	70-130			
Thallium	77.1	1.0	0.20	ug/l	80.0	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/15/20	010 (10B1571-M	SD1)			Sou	ırce: ITB	0573-01				
Antimony	96.9	2.0	0.30	ug/l	80.0	ND	121	70-130	7	20	
Cadmium	101	1.0	0.10	ug/l	80.0	ND	127	70-130	8	20	
Copper	81.6	2.0	0.50	ug/l	80.0	0.972	101	70-130	7	20	
Lead	80.7	1.0	0.20	ug/l	80.0	0.339	100	70-130	4	20	
Thallium	81.0	1.0	0.20	ug/l	80.0	ND	101	70-130	5	20	
Batch: 10B1770 Extracted: 02/15	5/10										
Blank Analyzed: 02/15/2010 (10B177	0-RLK1)										
Aluminum	ND	0.050	0.040	mg/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	0.0237	0.050	0.020	mg/l							Ja
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	6.0	ug/l							
				c							

TestAmerica Irvine

Vanadium

Zinc

Kathleen A. Robb For Heather Clark Project Manager ND

ND

10

20

ug/l

ug/l

3.0

6.0

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
		Linit	MDL	emis	Level	ixesuit	JURLE	Linnts	ΝD	Linit	Quanners
Batch: 10B1770 Extracted: 02/15/10	-										
LCS Analyzed: 02/15/2010 (10B1770-BS	1)										
Aluminum	0.514	0.050	0.040	mg/l	0.500		103	85-115			
Arsenic	481	10	7.0	ug/l	500		96	85-115			
Beryllium	477	2.0	0.90	ug/l	500		95	85-115			
Boron	0.540	0.050	0.020	mg/l	0.500		108	85-115			
Calcium	2.37	0.10	0.050	mg/l	2.50		95	85-115			
Chromium	464	5.0	2.0	ug/l	500		93	85-115			
Iron	0.468	0.040	0.015	mg/l	0.500		94	85-115			
Magnesium	2.28	0.020	0.012	mg/l	2.50		91	85-115			
Nickel	460	10	2.0	ug/l	500		92	85-115			
Selenium	485	10	8.0	ug/l	500		97	85-115			
Silver	261	10	6.0	ug/l	250		104	85-115			
Vanadium	473	10	3.0	ug/l	500		95	85-115			
Zinc	464	20	6.0	ug/l	500		93	85-115			
Matrix Spike Analyzed: 02/15/2010 (10B	1770-MS1)				Sou	rce: ITB1	567-01				
Aluminum	5.92	0.050	0.040	mg/l	0.500	5.22	141	70-130			MHA
Arsenic	487	10	7.0	ug/l	500	ND	97	70-130			
Beryllium	478	2.0	0.90	ug/l	500	ND	96	70-130			
Boron	0.546	0.050	0.020	mg/l	0.500	0.0706	95	70-130			
Calcium	39.5	0.10	0.050	mg/l	2.50	37.6	78	70-130			MHA
Chromium	471	5.0	2.0	ug/l	500	ND	94	70-130			
Iron	1.95	0.040	0.015	mg/l	0.500	1.45	99	70-130			
Magnesium	9.37	0.020	0.012	mg/l	2.50	7.09	91	70-130			
Nickel	468	10	2.0	ug/l	500	3.71	93	70-130			
Selenium	500	10	8.0	ug/l	500	19.4	96	70-130			
Silver	242	10	6.0	ug/l	250	ND	97	70-130			
Vanadium	476	10	3.0	ug/l	500	ND	95	70-130			
Zinc	496	20	6.0	ug/l	500	17.9	96	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1770 Extracted: 02/15/10	<u> </u>										
Matrix Spike Dup Analyzed: 02/15/2010	(10B1770-M	ISD1)			Sou	rce: ITB1	567-01				
Aluminum	5.90	0.050	0.040	mg/l	0.500	5.22	137	70-130	0.3	20	MHA
Arsenic	491	10	7.0	ug/l	500	ND	98	70-130	0.8	20	
Beryllium	483	2.0	0.90	ug/l	500	ND	97	70-130	1	20	
Boron	0.552	0.050	0.020	mg/l	0.500	0.0706	96	70-130	1	20	
Calcium	39.0	0.10	0.050	mg/l	2.50	37.6	58	70-130	1	20	MHA
Chromium	475	5.0	2.0	ug/l	500	ND	95	70-130	0.9	20	
Iron	1.98	0.040	0.015	mg/l	0.500	1.45	105	70-130	1	20	
Magnesium	9.31	0.020	0.012	mg/l	2.50	7.09	89	70-130	0.7	20	
Nickel	472	10	2.0	ug/l	500	3.71	94	70-130	0.9	20	
Selenium	503	10	8.0	ug/l	500	19.4	97	70-130	0.5	20	
Silver	245	10	6.0	ug/l	250	ND	98	70-130	1	20	
Vanadium	481	10	3.0	ug/l	500	ND	96	70-130	1	20	
Zinc	484	20	6.0	ug/l	500	17.9	93	70-130	3	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1554 Extracted: 02/12/10	_										
Blank Analyzed: 02/12/2010 (10B1554-B	LK1)										
Mercury	ND	0.20	0.10	ug/l							
LCS Analyzed: 02/12/2010 (10B1554-BS	1)										
Mercury	8.07	0.20	0.10	ug/l	8.00		101	85-115			
Matrix Spike Analyzed: 02/12/2010 (10B	1554-MS1)				Sou	rce: ITB	0849-01				
Mercury	8.19	0.20	0.10	ug/l	8.00	ND	102	70-130			
Matrix Spike Dup Analyzed: 02/12/2010	(10B1554-MS	D1)			Sou	rce: ITB	0849-01				
Mercury	8.21	0.20	0.10	ug/l	8.00	ND	103	70-130	0.2	20	
Batch: 10B1782 Extracted: 02/15/10	1										
	-										
Blank Analyzed: 02/15/2010 (10B1782-B	LK1)										
Aluminum	ND	0.050	0.040	mg/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1782 Extracted: 02/15/10											-
Datch. 10D1/02 Extracted. 02/15/10	_										
LCS Analyzed: 02/15/2010 (10B1782-BS	1)										
Aluminum	0.465	0.050	0.040	mg/l	0.500		93	85-115			
Arsenic	494	10	7.0	ug/l	500		99	85-115			
Beryllium	484	2.0	0.90	ug/l	500		97	85-115			
Boron	0.482	0.050	0.020	mg/l	0.500		96	85-115			
Calcium	2.39	0.10	0.050	mg/l	2.50		95	85-115			
Chromium	472	5.0	2.0	ug/l	500		94	85-115			
Iron	0.495	0.040	0.015	mg/l	0.500		99	85-115			
Magnesium	2.36	0.020	0.012	mg/l	2.50		94	85-115			
Nickel	484	10	2.0	ug/l	500		97	85-115			
Selenium	473	10	8.0	ug/l	500		95	85-115			
Silver	244	10	6.0	ug/l	250		98	85-115			
Vanadium	490	10	3.0	ug/l	500		98	85-115			
Zinc	478	20	6.0	ug/l	500		96	85-115			
Matrix Spike Analyzed: 02/15/2010 (10B	1782-MS1)				Sou	rce: ITB(773-02				
Aluminum	0.502	0.050	0.040	mg/l	0.500	ND	100	70-130			
Arsenic	505	10	7.0	ug/l	500	ND	101	70-130			
Beryllium	486	2.0	0.90	ug/l	500	ND	97	70-130			
Boron	0.521	0.050	0.020	mg/l	0.500	0.0464	95	70-130			
Calcium	13.1	0.10	0.050	mg/l	2.50	11.0	85	70-130			MHA
Chromium	480	5.0	2.0	ug/l	500	ND	96	70-130			
Iron	0.513	0.040	0.015	mg/l	0.500	0.0419	94	70-130			
Magnesium	5.27	0.020	0.012	mg/l	2.50	3.02	90	70-130			
Nickel	477	10	2.0	ug/l	500	ND	95	70-130			
Selenium	476	10	8.0	ug/l	500	10.2	93	70-130			
Silver	242	10	6.0	ug/l	250	ND	97	70-130			
Vanadium	482	10	3.0	ug/l	500	ND	96	70-130			
Zinc	474	20	6.0	ug/l	500	ND	95	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1782 Extracted: 02/15/10	_										
Matrix Spike Dup Analyzed: 02/15/2010	(10R1782-M	(SD1)			Sou	rce: ITB	773-02				
Aluminum	0.522	0.050	0.040	mg/l	0.500	ND	104	70-130	4	20	
Arsenic	497	10	7.0	ug/l	500	ND	99	70-130	1	20	
Beryllium	491	2.0	0.90	ug/l	500	ND	98	70-130	1	20	
Boron	0.527	0.050	0.020	mg/l	0.500	0.0464	96	70-130	1	20	
Calcium	13.3	0.10	0.050	mg/l	2.50	11.0	93	70-130	1	20	MHA
Chromium	482	5.0	2.0	ug/l	500	ND	96	70-130	0.6	20	
Iron	0.520	0.040	0.015	mg/l	0.500	0.0419	96	70-130	1	20	
Magnesium	5.33	0.020	0.012	mg/l	2.50	3.02	93	70-130	1	20	
Nickel	478	10	2.0	ug/l	500	ND	96	70-130	0.3	20	
Selenium	478	10	8.0	ug/l	500	10.2	93	70-130	0.3	20	
Silver	245	10	6.0	ug/l	250	ND	98	70-130	1	20	
Vanadium	489	10	3.0	ug/l	500	ND	98	70-130	1	20	
Zinc	479	20	6.0	ug/l	500	ND	96	70-130	1	20	
Batch: 10B1786 Extracted: 02/15/10											
	-										
Blank Analyzed: 02/15/2010 (10B1786-B	LK1)										
Antimony	ND	2.0	0.30	ug/l							
Cadmium	ND	1.0	0.10	ug/l							
Copper	ND	2.0	0.50	ug/l							
Lead	ND	1.0	0.20	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/15/2010 (10B1786-BS	1)										
Antimony	81.7	2.0	0.30	ug/l	80.0		102	85-115			
Cadmium	80.8	1.0	0.10	ug/l	80.0		101	85-115			
Copper	80.3	2.0	0.50	ug/l	80.0		100	85-115			
Lead	83.6	1.0	0.20	ug/l	80.0		104	85-115			
Thallium	82.6	1.0	0.20	ug/l	80.0		103	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10B1786 Extracted: 02/15/10	<u> </u>										
Matrix Spike Analyzed: 02/15/2010 (10B	1786-MS1)				Sou	irce: ITB	567-01				
Antimony	82.3	2.0	0.30	ug/l	80.0	ND	103	70-130			
Cadmium	79.2	1.0	0.10	ug/l	80.0	ND	99	70-130			
Copper	80.4	2.0	0.50	ug/l	80.0	1.63	98	70-130			
Lead	75.9	1.0	0.20	ug/l	80.0	ND	95	70-130			
Thallium	78.1	1.0	0.20	ug/l	80.0	ND	98	70-130			
Matrix Spike Dup Analyzed: 02/15/2010	(10B1786-M	(SD1)			Sou	rce: ITB	567-01				
Antimony	83.0	2.0	0.30	ug/l	80.0	ND	104	70-130	0.9	20	
Cadmium	79.9	1.0	0.10	ug/l	80.0	ND	100	70-130	0.9	20	
Copper	81.3	2.0	0.50	ug/l	80.0	1.63	100	70-130	1	20	
Lead	78.0	1.0	0.20	ug/l	80.0	ND	98	70-130	3	20	
Thallium	79.9	1.0	0.20	ug/l	80.0	ND	100	70-130	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

DISSOLVED INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0683 Extracted: 02/05/10	-										
Blank Analyzed: 02/05/2010 (10B0683-B	LK1)										
Chromium VI	ND	1.0	0.25	ug/l							
LCS Analyzed: 02/05/2010 (10B0683-BS	1)										
Chromium VI	5.10	1.0	0.25	ug/l	5.00		102	90-110			
Matrix Spike Analyzed: 02/05/2010 (10B	0683-MS1)				Sou	rce: ITB	0773-01				
Chromium VI	4.72	1.0	0.25	ug/l	5.00	ND	94	90-110			
Matrix Spike Dup Analyzed: 02/05/2010	Dup Analyzed: 02/05/2010 (10B0683-MSD1)				Sou	rce: ITB	0773-01				
Chromium VI	5.34	1.0	0.25	ug/l	5.00	ND	107	90-110	12	10	R-3

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0646 Extracted: 02/05/10	<u>)</u>										
Blank Analyzed: 02/05/2010 (10B0646-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/05/2010 (10B0646-BS	1)										
Chloride	5.08	0.50	0.25	mg/l	5.00		102	90-110			M-3
Sulfate	10.2	0.50	0.20	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 02/05/2010 (10B	0646-MS1)				Sou	rce: ITB(0664-01				
Sulfate	29.9	2.5	1.0	mg/l	10.0	20.5	94	80-120			
Matrix Spike Analyzed: 02/06/2010 (10B	0646-MS2)				Sou	rce: ITB(0773-02				
Chloride	10.4	0.50	0.25	mg/l	5.00	5.38	101	80-120			
Sulfate	19.8	0.50	0.20	mg/l	10.0	9.95	98	80-120			
Matrix Spike Dup Analyzed: 02/05/2010	(10B0646-M	ISD1)			Sou	rce: ITB(0664-01				
Sulfate	30.2	2.5	1.0	mg/l	10.0	20.5	97	80-120	0.9	20	
Batch: 10B0814 Extracted: 02/08/10	<u>)</u>										
Blank Analyzed: 02/08/2010 (10B0814-B	LK1)										
Fluoride	0.0335	0.10	0.020	mg/l							Ja
LCS Analyzed: 02/08/2010 (10B0814-BS	1)										
Fluoride	1.04	0.10	0.020	mg/l	1.00		104	90-110			
Matrix Spike Analyzed: 02/08/2010 (10B	0814-MS1)				Sou	rce: ITB(0610-01				
Fluoride	1.48	0.10	0.020	mg/l	1.00	0.481	100	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B0814 Extracted: 02/08/10	_										
Matrix Spike Dup Analyzed: 02/08/2010	(10B0814-MS	D1)			Sou	rce: ITB()610-01				
Fluoride	1.50	0.10	0.020	mg/l	1.00	0.481	101	80-120	1	20	
Batch: 10B1250 Extracted: 02/10/10	-										
Blank Analyzed: 02/10/2010 (10B1250-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 02/10/2010 (10B1250-BS)	1)										
Total Cyanide	190	5.0	2.2	ug/l	200		95	90-110			
Matrix Spike Analyzed: 02/10/2010 (10B	,				Sou	rce: ITB()359-02				
Total Cyanide	187	5.0	2.2	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 02/10/2010	(10B1250-MS	D1)			Sou	rce: ITB)359-02				
Total Cyanide	182	5.0	2.2	ug/l	200	ND	91	70-115	3	15	
Batch: 10B1300 Extracted: 02/11/10	-										
Blank Analyzed: 02/11/2010 (10B1300-B	LK1)										
Total Dissolved Solids	ND	10	1.0	mg/l							
LCS Analyzed: 02/11/2010 (10B1300-BS	1)										
Total Dissolved Solids	1010	10	1.0	mg/l	1000		101	90-110			
Duplicate Analyzed: 02/11/2010 (10B130	300-DUP1)				Sou	rce: ITB)770-04				
Total Dissolved Solids	122	10	1.0	mg/l		120			2	10	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10B1480 Extracted: 02/12/10	-										
Blank Analyzed: 02/12/2010 (10B1480-B	LK1)										
Perchlorate	ND	4.0	0.90	ug/l							
LCS Analyzed: 02/12/2010 (10B1480-BS	1)										
Perchlorate	25.1	4.0	0.90	ug/l	25.0		100	85-115			
Matrix Spike Analyzed: 02/12/2010 (10B	1480-MS1)				Sou	rce: ITB(0567-01				
Perchlorate	24.4	4.0	0.90	ug/l	25.0	ND	97	80-120			
Matrix Spike Dup Analyzed: 02/12/2010	(10B1480-MS	SD1)			Sou	rce: ITB(0567-01				
Perchlorate	24.2	4.0	0.90	ug/l	25.0	ND	97	80-120	0.5	20	
Batch: 10B1557 Extracted: 02/12/10	-										
Blank Analyzed: 02/12/2010 (10B1557-B	LK1)										
Total Suspended Solids	ND	10	1.0	mg/l							
LCS Analyzed: 02/12/2010 (10B1557-BS	1)										
Total Suspended Solids	992	10	1.0	mg/l	1000		99	85-115			
Duplicate Analyzed: 02/12/2010 (10B155	557-DUP1) Source: I'						0768-01				
Total Suspended Solids	ND	10	1.0	mg/l		ND				10	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

ASTM 5174-91

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 53280 Extracted: 02/23/10											
Matrix Spike Dup Analyzed: 02/26/2010	(F0B09047000	1D)			Sou	rce: F0B(9047000	1			
Total Uranium	30	1.4	0.4	pCi/L	27.7	0.566	106	62-150	1	20	
Matrix Spike Analyzed: 02/26/2010 (F0E	8090470001S)				Sou	rce: F0B(9047000	1			
Total Uranium	29.7	1.4	0.4	pCi/L	27.7	0.566	105	62-150			
Blank Analyzed: 02/26/2010 (F0B220000	280B)				Sou	rce:					
Total Uranium	0.046	0.693	0.21	pCi/L				-			U
LCS Analyzed: 02/26/2010 (F0B2200002	80C)				Sou	rce:					
Total Uranium	30.2	0.7	0.2	pCi/L	27.7		109	90-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA 900.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 43108 Extracted: 02/10/10											
Matrix Spike Analyzed: 02/18/2010 (F0	3090470001S)				Sou	irce: F0B()9047000	1			
Gross Alpha	47.2	3	1	pCi/L	49.4	2	91	35-150			
Gross Beta	79	4	1.5	pCi/L	68	3.9	110	54-150			
Duplicate Analyzed: 02/18/2010 (F0B09	0470001X)				Sou	rce: F0B)9047000	1			
Gross Alpha	0.84	3	0.94	pCi/L		2		-			U
Gross Beta	3.2	4	1.5	pCi/L		3.9		-			Jb
Blank Analyzed: 02/19/2010 (F0B12000	0108B)				Sou	irce:					
Gross Alpha	-0.28	2	0.87	pCi/L				-			U
Gross Beta	-0.23	4	1.1	pCi/L				-			U
LCS Analyzed: 02/19/2010 (F0B1200001	08C)				Sou	irce:					
Gross Alpha	34.8	3	1.2	pCi/L	49.4		70	62-134			
Gross Beta	71.6	4	1	pCi/L	68		105	58-133			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA 901.1 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 42136 Extracted: 02/11/10											
Duplicate Analyzed: 02/19/2010 (F0B09	0470001X)				Sou	rce: F0B()9047000	1			
Cesium 137	1.2	20	14	pCi/L		-2.9		-			U
Potassium 40	-50	NA	200	pCi/L		-100		-			U
Blank Analyzed: 02/19/2010 (F0B11000	0136B)				Sou	rce:					
Cesium 137	1.8	20	14	pCi/L				-			U
Potassium 40	-80	NA	210	pCi/L				-			U
LCS Analyzed: 02/19/2010 (F0B110000	136C)				Sou	rce:					
Americium 241	140000	NA	500	pCi/L	141000		99	87-110			
Cobalt 60	88000	NA	200	pCi/L	87900		100	89-110			
Cesium 137	52900	20	200	pCi/L	53100		100	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA 903.0 MOD

Analyte <u>Batch: 41160 Extracted: 02/10/10</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 02/26/2010 (F0B09 Radium (226)	0467001X) 0.07	1	0.29	pCi/L	Sou	rce: F0B09 0.089	046700	1			U
Blank Analyzed: 02/26/2010 (F0B10000 Radium (226)	0160B) 0.092	1	0.14	pCi/L	Sou	rce:		-			U
LCS Analyzed: 02/26/2010 (F0B100000 Radium (226)	160C) 10.4	1	0.2	pCi/L	Sou 11.3	rce:	93	68-136			

TestAmerica Irvine Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA 904 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 60257 Extracted: 03/01/10											
Blank Analyzed: 03/05/2010 (F0C01000	0257B)				Sou	rce:					
Radium 228	0.08	1	0.39	pCi/L				-			U
LCS Analyzed: 03/05/2010 (F0C010000	257C)				Sou	rce:					
Radium 228	6.23	1	0.39	pCi/L	6.4		97	60-142			
LCS Dup Analyzed: 03/05/2010 (F0C01	0000257L)				Sou	rce:					
Radium 228	6.35	1	0.4	pCi/L	6.4		99	60-142	2	40	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA 905 MOD

Analyte <u>Batch: 41162 Extracted: 02/10/10</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %RF	%REC C Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 02/19/2010 (F0B09 Strontium 90	-0.15	3	0.42	pCi/L	Sou	rce: F0B090475 -0.05	001 -			U
Blank Analyzed: 02/19/2010 (F0B10000 Strontium 90	0162B) -0.15	3	0.38	pCi/L	Sou	rce:	-			U
LCS Analyzed: 02/19/2010 (F0B100000 Strontium 90	162C) 6.82	3	0.34	pCi/L	Sou 6.8	rce: 100	80-130			

TestAmerica Irvine Kathleen A. Robb For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA 906.0 MOD

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 49035 Extracted: 02/18/10											
Duplicate Analyzed: 02/18/2010 (F0B09	0470001X)				Sou	rce: F0B0)9047000	1			
Tritium	80	500	92	pCi/L		114		-			U
Matrix Spike Analyzed: 02/18/2010 (F0)	3090473001S)				Sou	rce: ITB0	773-02				
Tritium	4650	500	90	pCi/L	4530	122	100	62-147			
Blank Analyzed: 02/18/2010 (F0B18000	0035B)				Sou	rce:					
Tritium	165	500	95	pCi/L				-			Jb
LCS Analyzed: 02/18/2010 (F0B1800000	035C)				Sou	rce:					
Tritium	4440	500	90	pCi/L	4530		98	85-112			

TestAmerica Irvine Kathleen A. Robb For Heather Clark Project Manager

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA-5 1613B

		Reportin	g		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 47247 Extracted: 02/16/10											
Blank Analyzed: 02/18/2010 (G0B1600	00 247 B)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.0000052	0.00005	0.0000015	ug/L	500	ite.					J
1,2,3,4,6,7,8-HpCDF	0.0000032	0.00005	0.0000013	ug/L ug/L				-			, Ј, Q
1,2,3,4,7,8,9-HpCDF	0.0000039	0.00005	0.0000013	ug/L ug/L				_			<i>J</i> , Q <i>J</i> , Q
1,2,3,4,7,8-HxCDD	0.0000025	0.00005	0.0000023	ug/L ug/L				_			э, <u>ए</u> Ј
1,2,3,4,7,8-HxCDF	0.0000037	0.00005	0.0000011	ug/L				-			Ј, Q
1,2,3,6,7,8-HxCDD	0.000003	0.00005	0.0000011	ug/L				_			<i>J</i> , <u>Q</u> <i>J</i> , <i>Q</i>
1,2,3,6,7,8-HxCDF	0.0000034	0.00005	0.0000011	ug/L				-			υ, <u>φ</u> J, Q
1,2,3,7,8,9-HxCDD	0.0000032	0.00005	0.0000011	ug/L				-			υ, <u>φ</u> J, Q
1,2,3,7,8,9-HxCDF	0.0000033	0.00005	0.00000079	ug/L				-			J
1,2,3,7,8-PeCDD	0.0000024	0.00005	0.000003	ug/L				-			J, Q
1,2,3,7,8-PeCDF	ND	0.00005	0.0000016	ug/L				-			-, <u>2</u>
2,3,4,6,7,8-HxCDF	0.0000029	0.00005	0.000001	ug/L				-			J, Q
2,3,4,7,8-PeCDF	ND	0.00005	0.0000014	ug/L				-			., <u>2</u>
2,3,7,8-TCDD	ND	0.00001	0.0000008	ug/L				-			
2,3,7,8-TCDF	0.00000096	0.00001	0.000001	ug/L				-			J, Q
OCDD	0.000013	0.0001	0.000003	ug/L				-			J
OCDF	0.000008	0.0001	0.0000021	ug/L				-			J
Total HpCDD	0.0000052	0.00005	0.0000015	ug/L				-			J
Total HpCDF	0.0000068	0.00005	0.000002	ug/L				-			J, Q
Total HxCDD	0.000014	0.00005	0.0000013	ug/L				-			J, Q
Total HxCDF	0.000013	0.00005	0.00000079	ug/L				-			J, Q
Total PeCDD	0.0000058	0.00005	0.000003	ug/L				-			J, Q
Total PeCDF	0.0000011	0.00005	0.000001	ug/L				-			J, Q
Total TCDD	0.0000016	0.00001	0.00000072	ug/L				-			J, Q
Total TCDF	0.00000096	0.00001	0.000001	ug/L				-			J, Q
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0023			ug/L	0.002		115	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.002			ug/L	0.002		100	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0021			ug/L	0.002		104	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0017			ug/L	0.002		85	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0017			ug/L	0.002		85	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0016			ug/L	0.002		79	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0017			ug/L	0.002		83	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.002			ug/L	0.002		100	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0014			ug/L	0.002		69	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0014			ug/L	0.002		68	24-185			

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA-5 1613B

		Reporting	-		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 47247 Extracted: 02/16/10											
Blank Analyzed: 02/18/2010 (G0B1600	00247B)				Sou	rce:					
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0017			ug/L	0.002		84	28-136			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0014			ug/L	0.002		70	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0013			ug/L	0.002		67	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0015			ug/L	0.002		74	24-169			
Surrogate: 13C-OCDD	0.0047			ug/L	0.004		116	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00076			ug/L	0.0008		95	35-197			
LCS Analyzed: 02/18/2010 (G0B16000	0247C)				Sou	rce:					
1,2,3,4,6,7,8-HpCDD	0.00109	0.00005	0.0000041	ug/L	0.002		0	70-140			a, Ba
1,2,3,4,6,7,8-HpCDF	0.00111	0.00005	0.0000047	ug/L	0.002		0	82-122			a, Ba
1,2,3,4,7,8,9-HpCDF	0.00109	0.00005	0.0000059	ug/L	0.002		0	78-138			a, Ba
1,2,3,4,7,8-HxCDD	0.00113	0.00005	0.0000012	ug/L	0.002		0	70-164			a, Ba
1,2,3,4,7,8-HxCDF	0.00116	0.00005	0.00000098	ug/L	0.002		0	72-134			a, Ba
1,2,3,6,7,8-HxCDD	0.00111	0.00005	0.0000011	ug/L	0.002		0	76-134			a, Ba
1,2,3,6,7,8-HxCDF	0.0011	0.00005	0.0000088	ug/L	0.002		0	84-130			a, Ba
1,2,3,7,8,9-HxCDD	0.00113	0.00005	0.00000092	ug/L	0.002		0	64-162			a, Ba
1,2,3,7,8,9-HxCDF	0.00109	0.00005	0.00000074	ug/L	0.002		0	78-130			a, Ba
1,2,3,7,8-PeCDD	0.00108	0.00005	0.0000031	ug/L	0.002		0	70-142			a, Ba
1,2,3,7,8-PeCDF	0.00111	0.00005	0.0000023	ug/L	0.001		111	80-134			
2,3,4,6,7,8-HxCDF	0.00113	0.00005	0.0000009	ug/L	0.002		0	70-156			a, Ba
2,3,4,7,8-PeCDF	0.00114	0.00005	0.0000026	ug/L	0.001		114	68-160			
2,3,7,8-TCDD	0.000199	0.00001	0.0000014	ug/L	0.0002		99	67-158			
2,3,7,8-TCDF	0.000219	0.00001	0.00000096	ug/L	0.002		0	75-158			a, Ba
OCDD	0.00208	0.0001	0.0000051	ug/L	0.002		0	78-144			a, Ba
OCDF	0.00191	0.0001	0.0000025	ug/L	0.002		0	63-170			a, Ba
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00206			ug/L	0.002		103	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00184			ug/L	0.002		92	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0018			ug/L	0.002		90	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0015			ug/L	0.002		75	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00167			ug/L	0.002		83	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00167			ug/L	0.002		83	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00155			ug/L	0.002		77	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00171			ug/L	0.002		86	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00139			ug/L	0.002		70	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00137			ug/L	0.002		68	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00149			ug/L	0.002		74	22-176			

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

0.000733

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

31-191

92

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Surrogate: 37Cl4-2,3,7,8-TCDD

Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

METHOD BLANK/QC DATA

EPA-5 1613B

Analyte Batch: 47247 Extracted: 02/16/10	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 02/18/2010 (G0B160000	247C)				Sou	rce:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0014			ug/L	0.002		70	13-328			
Surrogate: 13C-2,3,7,8-TCDD	0.00147			ug/L	0.002		74	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00153			ug/L	0.002		76	22-152			
Surrogate: 13C-OCDD	0.00408			ug/L	0.004		102	13-199			

ug/L

0.0008

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITB0773-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.19	4.8	15

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
ITB0773-02	Antimony-200.8	Antimony	ug/l	0.52	2.0	6
ITB0773-02	Boron-200.7	Boron	mg/l	0.053	0.050	1
ITB0773-02	Cadmium-200.8	Cadmium	ug/l	0.058	1.0	4
ITB0773-02	Chloride - 300.0	Chloride	mg/l	5.38	0.50	150
ITB0773-02	Copper-200.8	Copper	ug/l	4.08	2.0	14
ITB0773-02	Fluoride SM4500F,C	Fluoride	mg/l	0.20	0.10	1.6
ITB0773-02	Lead-200.8	Lead	ug/l	3.52	1.0	5.2
ITB0773-02	Nickel-200.7	Nickel	ug/l	1.17	10	100
ITB0773-02	Nitrogen, NO3+NO2 -N EPA 30	0.0 Nitrate/Nitrite-N	mg/l	0.55	0.26	10
ITB0773-02	Perchlorate 314.0 - Default	Perchlorate	ug/l	0	4.0	6
ITB0773-02	Sulfate-300.0	Sulfate	mg/l	9.95	0.50	250
ITB0773-02	TDS - SM2540C	Total Dissolved Solids	mg/l	79	10	850
ITB0773-02	Thallium-200.8	Thallium	ug/l	0.023	1.0	2

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
		Complianc	e Check			
		ytical testing of this data set were c the compliance limits appear in bol	• •	e limits recei	ived from	
						Compliance

TestAmerica Irvine

Kathleen A. Robb For Heather Clark
Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

DATA QUALIFIERS AND DEFINITIONS

- **a** Spiked analyte recovery is outside stated control limits.
- **B** Analyte was detected in the associated Method Blank.
- **Ba** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- J Estimated result. Result is less than the reporting limit.
- Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- **Jb** Result is greater than sample detection limit but less than stated reporting limit.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M13 The sample spiked had a pH of less than 2. 2-Chloroethylvinylether degrades under acidic conditions.
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- **M-3** Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
- **MHA** Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- **R-3** The RPD exceeded the acceptance limit due to sample matrix effects.
- U Result is less than the sample detection limit.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: ITB0773

Sampled: 02/05/10 Received: 02/05/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 1664A	Water	Х	Х
EPA 200.7-Diss	Water	Х	Х
EPA 200.7	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 218.6	Water	Х	Х
EPA 245.1-Diss	Water	Х	Х
EPA 245.1	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 525.2	Water		
EPA 608	Water	Х	Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х
Filtration	Water	N/A	N/A
SM 2540D	Water	Х	Х
SM 4500-F-C	Water	Х	Х
SM2340B-Diss	Water		
SM2340B	Water	Х	Х
SM2540C	Water	Х	
SM4500CN-E	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-Acute 96hr Samples: ITB0773-01

Analysis Performed: Level 4 Data Package Samples: ITB0773-01

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

estAmerica

THE LEADER IN ENVIRONMENTAL TESTIN	IG	17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297					
MWH-Pasadena/Boeing	Project ID:	Annual Outfall 009	a . i i				
618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	Report Number:	ITB0773	Sampled: Received:				
Attention: Bronwyn Kelly	Report Number.	1120772	Received.	02/03/10			
EMS Laboratories California Cert #1119							
117 W. Bellevue Drive - Pasadena, CA 91105							
Analysis Performed: Asbestos-TEM (100. Samples: ITB0773-02	2 - DW)						
Analysis Performed: EDD + Level 4 Samples: ITB0773-02							
TestAmerica St. Louis							
13715 Rider Trail North - Earth City, MO 63045							
Method Performed: ASTM 5174-91 Samples: ITB0773-02							
Method Performed: EPA 900.0 MOD Samples: ITB0773-02							
Method Performed: EPA 901.1 MOD Samples: ITB0773-02							
Method Performed: EPA 903.0 MOD Samples: ITB0773-02							

- Method Performed: EPA 904 MOD Samples: ITB0773-02RE1
- Method Performed: EPA 905 MOD Samples: ITB0773-02

Method Performed: EPA 906.0 MOD Samples: ITB0773-02

TestAmerica West Sacramento

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITB0773-02

TestAmerica Irvine

Kathleen A. Robb For Heather Clark Project Manager

Test America Version 6/29/09

-

CHAIN OF CUSTODY FORM

Page 1 of 2

																			JI	B	70	73
Client Name// MWH-Arca 618 Michillind Arcadia, CA Test America	dia la Ave, S 91007	uite 200	bak	Annual GRAB	Boeing-SSFL NPDES Annual Outfall 009 GRAB Stormwater at WS-13				dd	ш						A	NALYSIS R	EQUI	RED			Field readings: (Log in and include in report Temp and pH) Temp °F = 49,5
Project Mana Sampler:	-		<u> </u>	Phone I (626) 50 Fax Nu (626) 50 Sam	68-669 mber: 68-651	1		& Grease (1664-HEM)	624, Xylenes +	VOCs 624 +A+A+2CVE	Cr (VI) (218.6)	Acute Toxicity										pH = マ, Z Time of readings = ンイミルの 1145
Description	Matrix	Туре	# of Cont			Preservative	Bottle #	? IIO	vocs	Š) ວັ	Acu										Comments
Outfall 009	w	1L Amber	2	25/10	0 (145	нсі	1A, 1B	х														
Outfall 009	w	VOAs	3		5 P	HCI	2A, 2B, 2C		X	L												
Outfall 009	w	VOAs	3	+	2	None	3A, 3B, 3C🗸		ļ	X						<u> </u>						
Trip Blanks	w	VOAs	3	2/5/10		HCI	4A, 4B, 4C√		X													
Trip Blanks	W	VOAs		2510		None	5A, 5B, 5CV		ļ	X												
Outfall 009	w	500 mL Poly	1	2/5/10		None	6 5				x						<u> </u>	••			ļ	
Outfall 009		1 Gal Cube	<u> '</u>	Z/5/10	1147	None	7 y					x										
			┼──						-								<u> </u>					
	<u> </u>								 							· · ·					<u> </u>	/
			<u> </u>																		├/	3540,10
									1								<u>}</u>				-/	~ ~ juli
																					\square	
Polinguished Du	<u>ر</u>	hese Samp	les	are the G	Grab Po		utfall 009 fo	r this	stor	m eve	ent. C	Comp	osite	sam	ples v				be added	to this	workor	der.
Relinquished By	fl/	1 1	Date/1	-/0	15:		Received By	Ų	M			e/Time		30	7	24 Hou	round time: (Chei ur: ur:		72 Hour: 5 Day:			10 Day:
Relinquisted By	() h	up/	Jate/ I	5-10			Regeived By		4			e/Time رے e/Time	ঀ৸	د ر	470	Sample Intact:	e Integrity: (Checl	k)	On Ice:	<u>x</u>		
[(_					Requirements: (Ch vel IV:		All Level IV:			

2.1 M254

Ś

-

CHAIN OF CUSTODY FORM

Client Name//		:											ALYS	SIS REQUIRED										
MWH-Arca					ig-SSFL I			Pb as			Γ	+	ᆕᆇᆠ		Î		S							
618 Michillind		Suite 200			al Outfal	009		Cu, F Tess a				inor	0), Jota 0), Jota		11		Pb, ss a							
Arcadia, CA	91007				water at	WS-13		Cd, C lardne		orate		Diaz	6) (0 06)				dne.							
Test America	Contact	: Joseph Do	bak		mater at					chic		os, I	seta 905 m (s		$ \rangle$		Cd, Cu, Pb, Hardness as							
								S: Sb, PP, F	(s	Per	1	Srift	903. 903. 903.				á d							
								ti, +	suer	L T		loc	G - S - S - S - S - S - S - S - S - S -				als: 9				Con	ments		
Project Mana	ger: Bro	nwyn Kelly		Phon	e Numbe	r:		Recoverable Metals: , V, TI, Fe, AI, Ni, + P) ₃	onge	02-1		Ū	0.0) 0.0) 0.0 0.0 0.0 0.0 0.0	di +			Meta Al, N	~						
		•		(626)	568-669	1		Fe,	allo	3+N		ÇB	(900) (900) (901) (901) (901)	+	City		Fe,	0.2						
Sampler:	Du	NON			lumber:			Š F	pug	2	l vi	es/P	Pha H-3) PH-	(625	l [ð		, TI,	s (10						
Sample	Sample	Container			568-651 mpling	5		°, < Re	TCDD (and all congeners)	Cl ⁻ , SO ₄ , NO ₃ +NO ₂ -N, F, Perchlorate	, TSS	Pesticides/PCBs , Chlorpyrifos, Diazinon PP	ss Ai) mu) mu) jane (CS-1	SVOCs (625)	Chrentc Toxicity	Cyanide	Total Dissolved Metals: Sb, Cd, Cu, Pb, Hg, B, V, Tl, Fe, Al, Ni + PP, Hardness CaCO ₃	Asbestos (100.2)						
Description	Matrix	Туре	# of Cont.		te/Time	Preservative	Bottle #	Total Recoverable Metal Hg. B, V, TI, Fe, AI, Ni, + CaCO ₃	TCE	ō	TDS,	Pes	Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)	svo	- U U	Cya	Tota Hg, CaC	Asb						
Outfall 009	w	1L Poly	1	25	12 1344	HNO ₃	8A °	x													high f	ew.		
Outfall 009 Dup	W	1L Poly	1		1	HNO ₃	8B `	x													• 5			
Outfall 009	w	1L Amber	2			None	9A, 9B'		х															
Outfall 009	w	500 mL Poly	2			None	10A, 10B			x					4									
Outfall 009	w	500 mL Poly	2		Γ	None	11A, 11B				x													
Outfall 009	w	1L Amber	2			None	12A, 12B					X												
Outfall 009	w	2.5 Gal Cube	1		1	None	13A °						x								Unfiltered a	nd unpreserved		
Outlan 009	, vv	500 mL Amber	1			None	13B े								Π						ar	alysis		
· Outfall 009	w	1L Amber	2			None	14A, 14B						_	х	\Box									
Outrail 000		-T-Gal-Poly-			+	None	د 15		-		ļ		50		-*-							1		
Outfall 009	w	500 mL Poly	1		1	NaOH	16									x								
Outfall 009	w	1L Poly	1		1	None	17 "										×					hrs of receipt at ab		
Outfall 009	w	1L Poly	1	251	1344	None	18 🏓											х			high	May		
				$\left[\begin{array}{c} \cdot \end{array} \right]$	•																Iniah	flow		
													Outfall 009 for											
Relinquished By			Date/1		ese mus	t be addec	Received B		ord	er for		Page		fall 0	09 fo	or the same event. ITurn-around time: (Check)								
I tellinguisticorby	1-h	1		• •	. سرر	7.		into	A / / /	kh							ur:		72 Hour: _		10 Day:			
7111	//J</td <td>42</td> <td>-2</td> <td>-10</td> <td>12-1</td> <td>>0</td> <td>Ma</td> <td>X [] //</td> <td>w</td> <td>]] .</td> <td>Z-S</td> <td>-/0</td> <td>15:3</td> <td>0</td> <td></td> <td>1</td> <td>ur:</td> <td></td> <td>5 Day: _</td> <td></td> <td>Normal:</td> <td>·</td>	42	-2	-10	12-1	>0	Ma	X [] //	w]] .	Z-S	-/0	15:3	0		1	ur:		5 Day: _		Normal:	·		
Relinquished By	·						Received B	<u>¥</u>	$+ \not\!\!/$		Date	e/Time:				1								
Alal	1	and the	7,	C 1	. 10	:20			4			~1	્ળ ૧૧ હ	νυ		Sampl	e Integrity: (C	(heck		1				
1900		//////	-	5-10	' 17	-10										Intact:			On Ice: _	A-				
Relinquished By	₹	\mathcal{N}	Date/T	ime:			Received B	ý			Date	e/Time:				Date	a mirame - t-	Cher	5	1				
		1															Requirements	. (Criec	k) All Level I	V:	NPDES Level	vX_		
							I									1		- ה-ו						
																		, `		117	-5			
																				V(L)) /			

LABORATORY REPORT

Date: February 10, 2010

Client: Test America – Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Joseph Doak "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-10020602-001 Sample ID.: ITB0773-01

Sample Control: The sample was received by ATL in a chilled state, within the recommended hold time and with the chain of custody record attached.

Date Sampled:	02/05/10
Date Received:	02/06/10
Temp. Received:	1.0°C
Chlorine (TRC):	0.0 mg/1
Date Tested:	02/06/10 to 02/10/10

Sample Analysis: The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Sample ID. ITB0773-01 $\frac{\text{Results}}{100\%}$ Survival (TUa = 0.0)

Quality Control:

Reviewed and approved by:

Joseph A. LeMay Laboratory Director

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of the Laboratory's name for advertising or publicity purpose without authorization is prohibited.

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-10020602-001 Client/ID: TestAmerica ITB0773-01

Start Date: 02/06/2010

TEST SUMMARY

TEST DATA

Species: *Pimephales promelas*. Age: <u>//</u> (1-14) days. Regulations: NPDES. Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs. Number of replicates: 2. Dilution water: Moderately hard reconstituted water. Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs. Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10. QA/QC Batch No.: RT-100202.

			DOI DAIT				
		°C	DO	pH	# I	Dead	Analyst & Time
					A	В	of Readings
INITIAL	Control	20.5	8.8	7.8	0	0	Rm 1200
	100%	20.1	11.4	7.9	0	0	1200
24 Hr	Control	19.6	8.4	7.8	0	0	2
24111	100%	19.6	8.3	7.8	0	0	1200
48 Hr	Control	19.6	8.2	7.6	0	0	2
48 11	100%	19.6	8.3	7.7	0	0	1200
Renewal	Control	19.9	8.5	7.6	0	0	7
Kenewai	100%	2014	10.9	7.5	U	0	1200
72 Hr	Control	19.8	8.3	7.7	0	0	L- 1200
72 HI	100%	19.7	7.4	7.8	0	0	1200
06.11-	Control	20.2	6.7	7.4	0	0	for
96 Hr	100%	20.0	5.6	7.3	0	0	1300

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: <u>29</u>; Conductivity: <u>81</u> umho; Temp: 1.0°C; DO: <u>11.4</u> mg/l; Alkalinity: <u>27</u> mg/l; Hardness: <u>25</u> mg/l; NH₃-N: <u>0.4</u> mg/l. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / Mo

Control: Alkalinity: <u>[19]</u> mg/l; Hardness: <u>94</u>mg/l; Conductivity: <u>330</u> umho. Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No. Sample used for renewal is the original sample kept at 0-6°C with minimal headspace. Dissolved Oxygen (DO) readings in mg/l O₂.

 RESULTS

 Percent Survival In:
 Control:
 100% Sample:
 100% %

SUBCONTRACT ORDER TestAmerica Irvine

ITB0773

SENDING LABORATORY:		RECEIVING LABORAT	ORY:					
TestAmerica Irvine		Aquatic Testing Labo	pratories-SUB					
17461 Derian Avenue. Sui	te 100	4350 Transport Stree	treet, Unit 107					
Irvine, CA 92614		Ventura, CA 93003						
Phone: (949) 261-1022		Phone :(805) 650-05	46					
Fax: (949) 260-3297		Fax: (805) 650-0756						
Project Manager: Joseph D	loak	Project Location: CA Receipt Temperature:						
Standard TAT is requested	unless specific due	date is requested. => Due Date:	Initials:					
· · · ·	unless specific due		Initials: Comments					
-		date is requested. => Due Date: Expires						
Analysis	Units	Expires						
Analysis	Units	Expires	Comments FH minnow, EPA/821-R02-012, Sub to					
Analysis Sample ID: ITB0773-01 (Out	Units fall 009 Grab - Water % Survival	Expires r) Sampled: 02/05/10 11:45	Comments					
Analysis Sample ID: ITB0773-01 (Outf Bioassay-Acute 96hr	Units fall 009 Grab - Water % Survival	Expires r) <u>Sampled: 02/05/10 11:45</u> 02/06/10 23:45	Comments FH minnow, EPA/821-R02-012, Sub to					

QUS W Released/By Date/Time 2-6-10 2 (In Released By Date/Time

Date/Time 2-6-10 Received By him

Received By

<u>2-10-10 1</u>122 Date/Time Page 1 of 1

REFERENCE TOXICANT DATA

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-100202

Species: *Pimephales promel*as. Age: <u>/3</u> days old. Regulations: NPDES. Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs. Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

TEST SUMMARY

Source: In-lab culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers. Aeration: None. Number of organisms per chamber: 10. Photoperiod: 16/8 hrs light/dark.

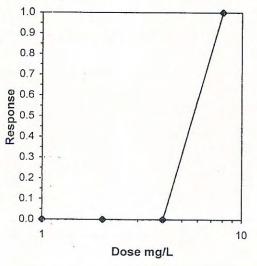
TEST DATA

		INITIAI				24 Hr					48 Hr					
Date/Time:	2-2-	-10	1200	2-3	-10		13	00	2-	. 4-10		120	2)			
Analyst:		R	~			h	-				en		-			
	°C	DO	рН	°C	DO	pН		Dead	°C	DO	pН		Dead			
Control	19.6	011	71	19.4	7.9	24	A	B	600	21	29	A	B			
1.0 mg/l		8.4	7.6		,	7.4	0	0	19.2	7.1	7.9	0	0			
	19.6	8.5	7.6	19.2	8.0	7.4	0	0	19.2	7.3	7.7	D	0			
2.0 mg/l	19.6	8.5	7.7	19.1	8.0	7.4	0	0	19.1	2.2	7.6	0	0			
4.0 mg/l	19.6	8.5	2.7	19.1	7.6	7.4	0	0	19.1	7.2	7.6	0	0			
8.0 mg/l	19.6	8.6	7.7	19.0	6.8	7.3	W	10		-		-				
	F	RENEWA	AL .			72 Hr					96 Hr					
Date/Time:	2-4	-10	1200	2-5	-10		1200)	2-4	0-10		11	30			
Analyst:		R			/	en					R					
	°C	DO	рН	°C	DO	pН		Dead	°C	DO	pН		ead			
Control	19.5	8.8	20	10 m	211	211	A	B	0	10	04	A	В			
1.0 mg/l	19.5	8.8	7.8		7.4	7.4	0	0	20.6	6.3	7.4	0	0			
2.0 mg/l	19.5	8.9	7.8 7.8	19.4	7.4	7.4	0	0	20.6	6.6	7.4	0	0			
4.0 mg/l	19.5	8.9	7.8	19.2	7.4	7.4	0	0	20.6	6.5	7.4	0	0			
8.0 mg/l		-		-	-	-	-	-	-	-	-		-			
Comments: Control: Alkalinity: <u>69</u> mg/l; Hardness: <u>94</u> mg/l; Conductivity: <u>330</u> umho. SDS: Alkalinity: <u>68</u> mg/l; Hardness: <u>94</u> mg/l; Conductivity: <u>333</u> umho.																
Concentration-response relationship acceptable? (see attached computer analysis): Yes (response curve normal)																

No (dose interrupted indicated or non-normal)

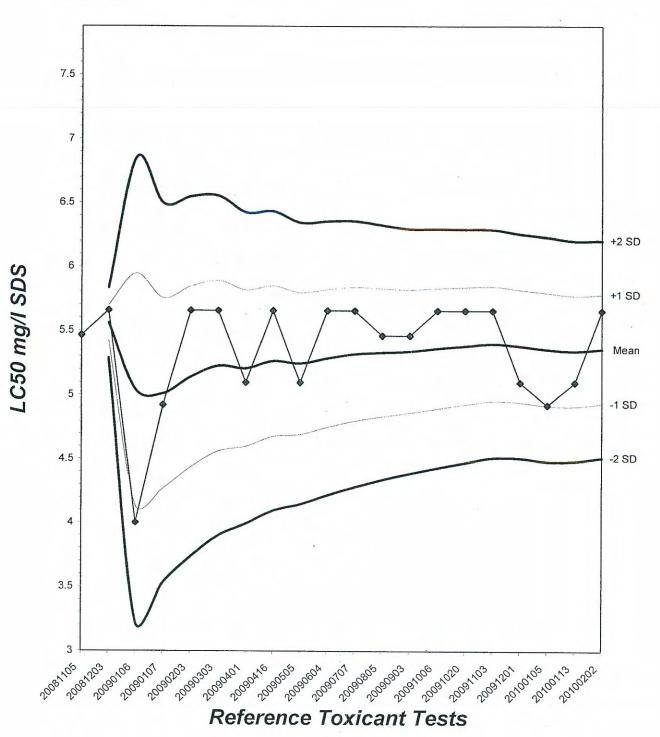
				Acute Fish Test-96	Hr Survivai	
Start Date: End Date: Sample Date: Comments:	2/2/2010 2/6/2010 2/2/2010	11:30	Lab ID:	RT100202f CAATL-Aquatic Testing Lab ACUTE-EPA-821-R-02-012		REF-Ref Toxicant SDS-Sodium dodecyl sulfate PP-Pimephales promelas
Conc-mg/L	1	2				
D-Control	1.0000	1.0000				
1	1.0000	1.0000				
2	1.0000	1.0000				

4 8


1.0000 0.0000 1.0000

			Tra	ansform:	Arcsin Sc	uare Root	t	 Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Equality of variance cannot be confirmed				


		Graphical Method	
Trim Level	EC50		
0.0%	5.6569		

5.6569

Fathead Minnow Acute Laboratory Control Chart

CV% = 7.91

-

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO .: P.T-100202
SOURCE: In-Lab Culture
DATE HATCHED:
APPROXIMATE QUANTITY:
GENERAL APPEARANCE:
MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:
DATE USED IN LAB: $1 \le 1 \le 0$
AVERAGE FISH WEIGHT: 0,006 gm

LOADING LIMITS: 0.65 gm/liter @ 20°C, 0.40 gm/liter @ 25°C

Approximately 1000 fish per 10 liters limit if held overnight for acclimation without filtration @ 20°C for fish with a mean weight of 0.006 gm.

Approximately 650 fish per 10 liters limit if held overnight for acclimation without filtration @ 25°C for fish with a mean weight of 0.006 gm.

200 ml test solution volume = 0.013 gm mean fish weight limit @ 20° C; 0.008 @ 25° C 250 ml test solution volume = 0.016 gm mean fish weight limit @ 20° C; 0.010 @ 25° C

ACCLIMATION WATER QUALITY:

Temp.: <u>19-6</u> °C	pH: <u>7-6</u> An	nmonia: <u>20-1</u>	_mg/l NH ₃ -N
DO: $\underline{\mathcal{S}}, \underline{\mathcal{Y}} mg/l$	Alkalinity: <u>69</u> mg/l	Hardness:	94_mg/l

READINGS RECORDED BY:

DATE: 2-3-10

Test Temperature Chart

Test No: RT-100202 Date Tested: 02/02/10 to 02/06/10 Acceptable Range: 20+/- 1°C

DATE:	February 15, 2010
CUSTOMER:	Test America, Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614
ATTENTION:	Joseph Doak
REPORT NO:	135399
REFERENCE:	ITB0773
SUBJECT:	ANALYSIS OF WATER SAMPLES FOR ASBESTOS BY TEM
ACCREDITATION:	California Dept. of Health Services ELAP 1119
The date and times o	f collection, receipt, ozonation, filtration, and analysis are as follows:
SAMPLE NO:	ITB0773-02
DATE COLLECTED:	2/5/10 at 1344
RECEIVED:	2/8/10 at 0932
OZONATED:	2/8/10 at 1000 to 1300
FILTERED:	2/8/10 at 1317
ANALYZED:	2/10/10

The sample was analyzed for fibers >10 um to conform with the drinking water document, EPA 600 E 94 134, 100.2. This regulation calls for an MCL (maximum contaminant level) of 7 MFL (millions of fibers per liter) and an analytical sensitivity of 0.2 MFL.

The analytical sensitivity of 0.2 MFL was not reached due to turbidity.

The results of the analysis and the detection limit(s) are summarized on the following page(s), accompanied by the chain of custody.

Respectfully submitted, EMS Laboratories, Inc.

BMKACK

B.M. Kolk Laboratory Director BMK/mt

Note: The report shall not be reproduced, except in full, without the written approval of EMS Laboratories, Inc. Note: The results of the analysis are based upon the sample submitted to the laboratory. No representation is made regarding the sampling area other than that implied by the analytical results for the immediate vicinity of the samples analyzed as calculated from the data presented with those samples. All the analytical quality control data meet the requirement of the procedure unless otherwise indicated. Any deviation or exclusion from the test method is noted in this cover letter. Unless otherwise noted in this cover letter the samples were received properly

packaged, clearly identified and intact. The results have been corrected for the field blank or EMS blank if analyte is detected in the blank.

ANALYSIS OF WATER BY TEM (EPA-600 R 94 134) EPA 100.2

LAB NO: CLIENT:	135399 Test America 2/10/2010				,		
			FILTER	MEDIA DATA			
Laboratory	Client	Туре	Diameter	Effective Area	No. of G.O.	Analyzed	Sample
I.D.	i.D.		mm	mm^2		Area, mm^2	Volume (ml)
135399-2	ITB0773-02*	PC	47	1017	10	0.094	5

* FOR FIBERS > 10um ONLY

ANALYTICAL RESULTS

Laboratory	Client		of Asbesto		Detection	CON	CENTRAT	ION (MFL)
I.D.	I.D.	All Sizes	5-9.9um	>10um	Limit (MFL)	All Sizes	5-9.9um	>10um
135399-2	ITB0773-02*	-	-	N.D.	2.2	-	-	< 2.2
							ļ	
			1					
						1		

* FOR FIBERS > 10um ONLY

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

ach

Authorized Signature

PC - Polycarbonate MCE - Mixed cellulose ester G.O. - Grid Openings Str - Structures MFL - Millions of fibers per liter TEM-7A (2009Rev.)

Analysis of Water by Transmission Electron Microscopy (EPA-600 R 94 134) EPA 100.2

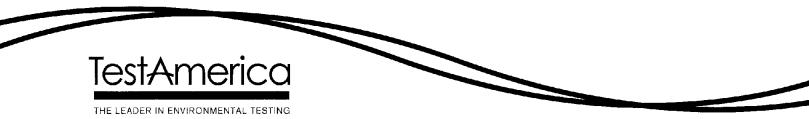
EMS No.	135399	Client	Test America	
Sample No. ITB0	773-02		Date Analyzed	2/10/2010
Fibers > 10 µm in	length (chrysotile)		BDL*	MFL
Mass (chrysotile)			0	ug/L
More/Less than 5	Fibers			
in Sample (chryso	tile)		LESS	
Poisson 95% Con	fidence Interval		0 to8	MFL
Detection Limit			2.2	MFL

* BDL : Below Detection Limit; MFL: Million Fibers per Liter

Particle Size Distribution (Chrysotile)

Particle Length - Microns

O -0.49	0.50 - 0.99	1.00 - 1.49	1.50 - 1.99	2.00 - 2.49	2.5 - 4.99	5.00 - 9.99	10 & UP	
0	0	0	0	0	0	0	0	
			Particle Widt	h - Microns				
O04	.0509	.114	.1519	.224	.2549	.5099	1 & UP	
0	0	0	0	0	0	0	0	
Aspect Ratio L/W								
0 - 9.9	10 - 19.9	20 - 29.9	30 - 39.9	40 - 49.9	50 - 99	100 - 199	200 & UP	
0	0	0	0	0	0	0	0	


TEM 7B (1994)

Analysis of Water by Transmission Electron Microscopy (EPA-600/4-83-043)

135399		Date Analyzed	2/10/2010
est America			
MS BLANK			
		ND	MFL
(chrysotile)		ND	MFL
		0	ug/L
		1 599	
		LLOO	_
		0.01	MFL
	est America MS BLANK	est America MS BLANK (chrysotile) Fibers	est America MS BLANK <u>ND</u> (chrysotile) <u>ND</u> 0 Fibers tile) <u>LESS</u>

Particle Size Distribution (Chrysotile)

Particle Length - Microns							
O -0.49	0.50 - 0.99	1.00 - 1.49	1.50 - 1.99	2.00 - 2.49	2.5 & UP		
0	0	00	0	0	0		
		Particle Width	- Microns				
O04	.0509	.114	.1519	.224	.25 & UP		
0	0	0	0	0	0		
		Aspect Rat	io L/W				
0 - 9.9	10 - 19.9	20 - 29.9	30 - 39.9	40 - 49.9	50 & UP		
0	0	0	0	0	0		

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

REVISED

PROJECT NO. ITB0773

MWH-Pasadena Boeing

Lot #: F0B090473

Joseph Doak

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Kay **£**lay

Project Manager

March 17, 2010

Case Narrative LOT NUMBER: F0B090473 Revised 03-17-10

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on February 9, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements, except as noted below.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Report revised to report the KPA uranium results in pCi/L.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

Radium-228 by GFPC (EPA 904 MOD)

The Radium 228 LCS analyte recovery is outside the lower QC limit, indicating a potential negative bias for the analyte. Samples were sent to re-extract. Re-extract LCS recovered within acceptable QC limits. The data is reported.

Affected Samples:

F0B090473 (1): ITB0773-02

SUBCONTRACT ORDER TestAmerica Irvine

ITB0773

F0B090473

SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	TestAmerica St. Louis
17461 Derian Avenue. Suite 100	13715 Rider Trail North
Irvine, CA 92614	Earth City, MO 63045
Phone: (949) 261-1022	Phone :(314) 298-8566
Fax: (949) 260-3297	Fax: (314) 298-8757
Project Manager: Joseph Doak	Project Location: CA - CALIFORNIA
Client: MWH-Pasadena/Boeing	Receipt Temperature: <u>°C</u> Ice: Y / N

Analysis	Units	Due	Expires	Interlab Price S	urch	Comments				
Sample ID: ITB0773-02 (Outfall 009 Composite - Water) Sampled: 02/05/10 13:44										
Gamma Spec-O ·	mg/kg	02/16/10	02/05/11 13:44		50%	Out St Louis, k-40 and cs-137 only, DC NOT FILTER!				
Gross Alpha-O	pCi/L	02/16/10	08/04/10 13:44	\$90.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!				
Gross Beta-O	pCi/L	02/16/10	08/04/10 13:44	\$90.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!				
Level 4 Data Package - Out	N/A	02/16/10	03/05/10 13:44	\$0.00	0%					
Radium, Combined-O 🕇	pCi/L	02/16/10	02/05/11 13:44	\$200.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!				
Strontium 90-0	pCi/L	02/16/10	02/05/11 13:44	\$140.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!				
Tritium-O 1	pCi/L	02/16/10	02/05/11 13:44	\$80.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!				
Uranium, Combined-O 🚿	pCi/L	02/16/10	02/05/11 13:44	\$100.00	50%	Out St Louis, Boeing permit, DO NOT FILTER!				
Containers Supplied:										
2.5 gal Poly (K) 5	00 mL Am	ber (L)								

@<u>/8/10 17.</u>00 Date/Time Released By

Received By

/<u>8//0 /7'0</u>0 Date/Time Ľ 2.9.10 1180

			9 (1.	70-112	401	
실행하다 것 것 것 같아요. 요즘 같은 것 같아요. 것 같아요.	UPON RECEIPT/FORM	_	U	15 465	494	
Client:	TASmune	-	4	74 464	495	
Quote No:	77435, 55044	-		-01.00		
COC/RFA No:	Golan		122			
Initiated By: 8	SV SV	Ds	ite: 2-9.	10	Time; //00	
			formation			
Shipper: F	edEx UPS DHL Courier C	lient Of	her:	M	ultiple Packages:	у м
Shipping # (s):*					perature (s):**	
1. 4289 2	33 2309 MR 6.			1. <u>an</u>	bien 6.	
2			······	2	7	
3				3	8.	
4	9				9	
5.	10				10.	 A state of the sta
Numbered shipping lines	s correspond to Numbered Sample Temp lines	**San varian	nple must be receive see does NOT affect	d at 4°C ± 2°C- If n the following: Met	ot, note contents below. Temp als-Liquid or Rad tests- Liquid	perature or Solids
Condition (Circle "Y"	for yes, "N" for no and "N/A" for not applicable):				
1 V N	Are there custody seals present on the cooler?	8.	YN	Are there cust	ody seals present on both	tles?
2. Y N/A	Do custody seals on cooler appear to tampered with?	be 9.	YNNA	tampered with	als on bottles appear to l ?	
3. 🕥 N	Were contents of cooler frisked after opening, but before unpacking?	10.	Y N NA	Was sample re make note bel	eccived with proper pH ¹ ow)	? (If not,
4. (D N Sug. P	Sample received with Chain of Custody?	11.	Y N	Sample receiv	ed in proper containers?	
5. 8 N N/A	Does the Chain of Custody match sample ID's on the container(s)?	12.	Y N N/A	Headspace in (If Yes, note sam	VOA or TOX liquid sam ple ID's below)	ples?
6. Y N	Was sample received broken?	13.	X N/A	Was Internal (COC/Workshare received	d?
7. (X N	Is sample volume sufficient for analysis?	14.	YN N/A	Was pH taken	by original TestAmeric	a lab?
	ANL, Sandia) sites, pH of ALL containers receiv			OA, TOX and soils		•
Notes:	<u>1780887</u> <u>(178</u>) 95	0773				
	-88 52 2.9.16	97	4	Dunna	chains u	ph o
	94	98	, <u>~</u> ^	at sol	inquishod	they-
*	88	199	k	adina n	ohert.	ten the later of the second
<u></u> .		0800		<u> </u>		
		0590	T	TBU800	Pallel time is	2 1315:
		0602		-oi rea	4	
	96		······································		······································	
Corrective Action:		······	Informed by:			
Sample(s) proce	ssed "as is"					
Sample(s) on ho roject Management		J If rele	ased, notify: Date:	2-15-10	11	

ADMIN-0004, REVISED 10/21/08 \\Slsvr01\QA\FORMS\ST-LOUIS\ADMIN\Admin004 rev11.doc

.

METHODS SUMMARY

F0B090473

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD	
Gamma Spectroscopy - Cesium-137 & Hits	EPA 901.1 MOD		
Gross Alpha/Beta EPA 900	EPA 900.0 MOD	EPA 900.0	
H-3 by Distillation & LSC	EPA 906.0 MOD		
Radium-226 by GFPC	EPA 903.0 MOD		
Radium-228 by GFPC	EPA 904 MOD		
Strontium 90 by GFPC	EPA 905 MOD		
Total Uranium By Laser Ph osphorimetry	ASTM 5174-91		

References:

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

SAMPLE SUMMARY

F0B090473

WO # SAMPLE# CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
LVF30 001 ITB0773-02	02/05/10	13:44
NOTE (S) : - The analytical results of the samples listed above are presented on the following pages. - All calculations are performed before rounding to avoid round-off errors in calculated results.		

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

TestAmerica Irvine

Client Sample ID: ITB0773-02

Radiochemistry

Lab Sample ID: Work Order: Matrix:	F0B090473-00 LVF30 WATER	01		Date Collec Date Receiv		5/10 1344 9/10 1100	
Parameter	Result	Qual	Total Uncert. (2 σ+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & H	its by EPA 901	.1 MOD		pCi/L	Batch # (0042136	Yld %
Cesium 137	1.8	U	6.7	20.0	12	02/11/10	02/19/10
Potassium 40	-40	U	240		220	02/11/10	02/19/10
Gross Alpha/Beta	EPA 900			pCi/L	Batch # (043108	Yld %
Gross Alpha	1.02	U	0.84	3.00	1.2	02/10/10	02/18/10
Gross Beta	1.65	J	0.71	4.00	0.95	02/10/10	02/18/10
SR-90 BY GFPC E	PA-905 MOD			pCi/L	Batch # (041162	¥ld % 70
Strontium 90	0.20	U	0.25	3.00	0.42	02/10/10	02/19/10
TRITIUM (Distill)) by EPA 906.0	MOD		pCi/L	Batch # (049035	Yld %
Tritium	122	J	77	500	95	02/18/10	02/18/10
Total Uranium by	KPA ASTM 5174-	-91		pCi/L	Batch # (053280	Yld %
Total Uranium	0.264	J	0.031	0.693	0.21	02/23/10	02/26/10
Radium 226 by El	PA 903.0 MOD			pCi/L	Batch # (041160	Yld % 94
Radium (226)	0.29	J	0.16	1.00	0.21	02/10/10	02/26/10
Radium 228 by GF	PC EPA 904 MOD			pCi/L	Batch # (060257	Yld % 89
Radium 228	0.38	J	0.20	1.00	0.28	03/01/10	03/05/10

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

METHOD BLANK REPORT

Radiochemistry

Matrix:	WATER							
Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Radium 228 by 0	GFPC EPA 904 M		pCi/L	Batch #	0060257	Yld %	88	F0C010000-257B
Radium 228	0.08	U	0.23	1.00	0.39		03/01/10	03/05/10
Radium 226 by	EPA 903.0 MOD		pCi/L	Batch #	0041160	Yld %	95	F0B100000-160B
Radium (226)	0.092	U	0.095	1.00	0.14		02/10/10	02/26/10
SR-90 BY GFPC	EPA-905 MOD		pCi/L	Batch #	0041162	Yld %	80 1	F0B100000-162B
Strontium 90	-0.15	U	0.20	3.00	0.38		02/10/10	02/19/10
Gamma Cs-137 &	Hits by EPA 90	1.1 MOD	pCi/L	Batch #	0042136	Yld %]	F0B110000-136B
Cesium 137	1.8	U	7.7	20.0	14		02/11/10	02/19/10
Potassium 40	-80	U	620		210		02/11/10	02/19/10
Gross Alpha/Bet	a EPA 900		pCi/L	Batch #	0043108	Yld %	1	F0B120000-108B
Gross Alpha	-0.28	υ	0.35	2.00	0.87		02/10/10	02/19/10
Gross Beta	-0.23	U	0.62	4.00	1.1		02/10/10	02/19/10
TRITIUM (Distil	1) by EPA 906.	0 MOD	pCi/L	Batch #	0049035	Yld %]	F0B180000-035B
Tritium	165	J	85	500	95		02/18/10	02/18/10
Total Uranium b	by KPA ASTM 517	4-91	pCi/L	Batch #	0053280	Yld %	1	F0B220000-280B
Total Uranium	0.0460	U	0.0057	0.693	0.21		02/23/10	02/26/10

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only

Bold results are greater than the MDC.

Client Lot ID: F0B090473

J Result is greater than sample detection limit but less than stated reporting limit.

II Besult is less than the sample detection limit

Laboratory Control Sample Report

Radiochemistry

Client Lot	ID:	F0B090473
Matrix:		WATER

			Tot	Total			Lab	Sample ID
Parameter	Spike Amount	Result	Uncert. (2 σ+/-)	MDC	% Yld	% Rec	QC Control Limits	
Radium 226 by EP	A 903.0 MOD		pCi/L	903.	0 MOD		FOB	L00000-160C
Radium (226)	11.3	10.4	1.1		0.2	97	93	(68 - 136)
	Batch #:	0041160			Analysis Date:	02/20	5/10	
SR-90 BY GFPC EP	A-905 MOD		pCi/L	905 1	MOD		FOB	L00000-162C
Strontium 90	6.80	6.82	0.7	7	0.34	83	100	(80 - 130)
	Batch #:	0041162			Analysis Date:	02/19	9/10	
Gamma Cs-137 & Hi	ts by EPA 901.1	MOD	pCi/L	901.3	1 MOD		FOB	L10000-136C
Americium 241	141000	140000	110	00	500		99	(87 - 110)
Cesium 137	53100	52900	300	0	200		100	(90 - 110)
Cobalt 60	87900	88000	500	0	200		100	(89 - 110)
	Batch #:	0042136			Analysis Date:	02/19	9/10	
Gross Alpha/Beta	EPA 900		pCi/L	900.	0 MOD		FOB	120000-108C
Gross Beta	68.0	71.6	6,0		1		105	(58 - 133)
	Batch #:	0043108			Analysis Date:	02/19	9/10	
Gross Alpha/Beta	EPA 900		pCi/L	900.0	0 MOD	F0B120000-108C		
Gross Alpha	49.4	34.8	4.3		1.2		70	(62 - 134)
	Batch #:	0043108			Analysis Date:	02/19	9/10	
TRITIUM (Distill)	by EPA 906.0 M	DD	pCi/L	906.	0 MOD		F0B1	L80000-035C
Tritium	4530	4440	460		90		98	(85 - 112)
	Batch #:	0049035			Analysis Date:	02/18	3/10	
Total Uranium by	KPA ASTM 5174-9	1	pCi/L	5174-	-91		FOB	220000-280C
Total Uranium	27.7	30.2	3.6		0.2		109	(90 - 120)
	Batch #:	0053280			Analysis Date:	02/26	5/10	
Total Uranium by	KPA ASTM 5174-9	1	pCi/L	5174	-91		F0B2	220000-280C
Total Uranium	5.54	5.97	0.6	1	0.21		108	(90 - 120)
	Batch #:	0053280			Analysis Date:	02/26	5/10	

NOTE (S)

MDC is determined by instrument performance only

,

Laboratory Control Sample/LCS Duplicate Report

Radiochemistry

Client Lot ID: F0B090473 Matrix: WATER

Parameter Spike Amount			Total				Lab	Lab Sample ID		
		Spike Amount	Uncert. Result $(2 \sigma + / -)$ % Yld		* Rec	QC Control Limits	Precision			
Radium 228 by	Y GFPC	EPA 904 MOD	p	Ci/L 904 MO	D		FOCO	10000-257C		
Radium 228	Spk 2	6.40 6.40	6.23 6.35	0.74 0.77	87 84	97 99	(60 - 142) (60 - 142)	2 %RPI	2	
		Batch #:	0060257		Analysi	s Date:	03/05/10			

MATRIX SPIKE REPORT

Radiochemistry

Client Lot Id:	F0B090473	Date Sampled:	02/05/10
Matrix:	WATER	Date Received:	02/09/10

					Matal	QC Sample	a ID
Parameter	Spike Amount	Spike Result	Total Uncert. (2s+/-)	Spike Sample Yld. Result	Under C.	%YLD %REC	QC Control Limits
TRITIUM (Distill) by EI	A 906.0 MC	D	pCi/L	906.0 MC	Ð	F0B090473	3-001
Tritium	4530	4650	470	122	77	100	(62 - 147)
	Batch #:	0049035	An	alysis Date:	02/18/10		
Gross Alpha/Beta EPA 90	00		pCi/L	900.0 MC	Ð	F0B090470	0-001
Gross Alpha	49.4	47.2	5.2	2.00	0.88	91	(35 - 150)
	Batch #:	0043108	An	alysis Date:	02/18/10		
Gross Alpha/Beta EPA 90	00		pCi/L	900.0 MC	D	F0B090470	0-001
Gross Beta	68.0	79.0	6.6	3.9	1.2	110	(54 - 150)
	Batch #:	0043108	An	alysis Date:	02/18/10		

MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

Radiochemistry

Client Lot I Matrix:		F0B090470 WATER						Sampled: Received:	02/0 02/0		1143 1100
Parameter		Spike Amount	SPIKE Result	Total Uncert. (2 σ+/-)	Spike Yld	SAMPLE Result		Total Uncert. (2g +/-)	% Yld	QC Samp: %Rec	le ID QC Control Limits
Total Uranium	by KP	A ASTM 5	······	pCi/L	5	5174-91			F	080904'	70-001
Total Uranium		27.7	29.7	3.1		0.566	J	0.068		105	(62 - 150)
	Spk2	27.7	30.0	3.1		0.566	J	0.068 Preci	sion:	106 1	(62 - 150) %RPD
		Batch	#: 0 053 280	Ana	alysis d	ate:	02/	26/10			

-

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:	F0B090473	Date Sampled:	02/05/10
Matrix:	WATER	Date Received:	02/09/10

		Tota			Total	ç	C Sample ID	
Parameter	SAMPLE Result	Unce (2σ		DUPLICATE	Uncert. (2 σ+/-)	% Yld	Precisi	ion
Radium 226 by E	PA 903.0 MOD		pCi/L	903.0	MOD	FO	B090467-0	01
Radium (226)	0.089	u 0.0	98 92	2 0.07 1	U 0.16	92	31	%RPD
	Batch	#: 0041	160 (Sample)	0041160) (Duplicate)			
Gamma Cs-137 & H:	its by EPA 90	1.1 MOD	pCi/L	901.1	MOD	F0	B090470-0	01
Cesium 137	-2.9	U 9.0		1.2 1	U 7.8		479	%RPD
Potassium 40	-100	U 430	00	-50	U 230		93	%RPD
	Batch	#: 0042	136 (Sample)	0042136	5 (Duplicate)			
Gross Alpha/Beta	EPA 900		pCi/L	900.0	MOD	F 0	B090470-00	01
Gross Alpha	2.00	J 0.8	8	0.84 0	J 0.66		82	%RPD
Gross Beta	3.9	J 1.2		3.2	J 1.1		20	%RPD
	Batch	#: 0043	108 (Sample)	0043108	(Duplicate)			
TRITIUM (Distill)	by EPA 906.	0 MOD	pCi/L	906.0	MOD	F 0:	B090470-00)1
Tritium	114	J 75		80 t	J 66		35	%RPD
	Batch	#: 0049	035 (Sample)	0049035	(Duplicate)			
SR-90 BY GFPC EI	A-905 MOD		pCi/L	905 MO	D	F0)	B090475-00)1
Strontium 90	-0.05	U 0.2	3 72	-0.15 0	J 0.23	69	97	%RPD
	Batch	#: 0041	162 (Sample)	0041162	(Duplicate)			

NOTE (S)

Data are incomplete without the case narrative. Calculations are performed before rounding to avoid round-off error in calculated results

J Result is greater than sample detection limit but less than stated reporting limit.

SUBCONTRACT ORDER **TestAmerica** Irvine

ITB0773

SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	TestAmerica West Sacramento
17461 Derian Avenue. Suite 100	880 Riverside Parkway
Irvine, CA 92614	West Sacramento, CA 95605
Phone: (949) 261-1022	Phone :(916) 373-5600
Fax: (949) 260-3297	Fax: (916) 372-1059
Project Manager: Joseph Doak	Project Location: CA - CALIFORNIA
Client: MWH-Pasadena/Boeing	Receipt Temperature: <u>°C</u> Ice: Y / N

Analysis	Units	Due	Expires	Interlab Price Surc	Comments				
Sample ID: ITB0773-02 (Outfall 009 Compo	site - Wate	r) Sampled	d: 02/05/10 13:44					
1613-Dioxin-HR-Alta	ug/l	02/16/10	02/12/10 13:44	4 \$375.00 0	% J flags,17 congeners,no TEQ,ug/L,sub=West Sac				
Level 4 + EDD-OUT	N/A	02/16/10	03/05/10 13:44	4 \$0.00 0'	% Excel EDD email to pm,Include Std logs for LvI IV				
Containers Supplied:									
1 L Amber (C)	1 L Amber (D)								

2'00 9 Released By

Øate/Time

I 7:00 Received By Date/Time 宜。 10 Received Date/Time

C Page 1 of 1

Released By

Date/Time

LOT RECEIPT CHECKLIST TestAmerica West Sacramento

CLIENT	_PM_LL_ LOG # 63/28
LOT# (QUANTIMS ID) GOBIO YZO QUOT	
DATE RECEIVED <u>J-9-10</u> TIME RECEIVED DELIVERED BY J FEDEX ON TRAC	85239 Checked (✓) 940
GOLDENSTATE UPS GO-GETTERS	OTHER
TAL COURIER TAL SF VALLEY LOGISTIC	s 🖉
CUSTODY SEAL STATUS HINTACT BROKEN N/A CUSTODY SEAL #(S) Seal	
SHIPPPING CONTAINER(S)	
coc #(s)	
TEMPERATURE BLANK Observed: Corre	cted:/
SAMPLE TEMPERATURE - (TEMPERATURES ARE IN °C)	• · · ·
Observed: 1, 1, 2- Average 1 Corrected Av	4
IR UNIT: #4	
· · · · · · · · · · · · · · · · · · ·	Initials Date
PH MEASURED I YES ANOMALY LABELED BY LABELS CHECKED BY PEER REVIEWNA	
WETC	
METALS NOTIFIED OF FILTER/PRESERVE VIA VERBAL	
COMPLETE SHIPMENT RECEIVED IN GOOD CONDITION APPROPRIATE TEMPERATURES, CONTAINERS, PRESERVA	
CLOUSEAU TEMPERATURE EXCEEDED (2 °C	- 6 °C) ¹ N/A
	COOLING AGENTS USED
	Initials an Date 2/10/16
	Initials an Date 2/10/14
Notes	

*1 Acceptable temperature range for State of Wisconsin samples is \leq 4°C.

Т	T(est	ca W Ar	ne	ric	a	ito	Lot													
	тн	E LEADE	R IN ENV	IRONMEN	VTAL TES	TING			1D: <u>GOB 100420</u>												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
VOA*			17	17	1/	\uparrow		\sim		17	17				17		\rightarrow	$\overline{}$		$\overline{}$	
VOAh*			1 >	1/	1./	\sim	17	\leftarrow	<	\frown	<	<	\leftarrow	\leftarrow	\leftarrow	{>	\checkmark	\leftarrow	<	\vdash	
AGB	2		<u> </u>	1	<u> </u>	<u> </u>			\vdash			\leftarrow	+	\vdash	<u> </u>	\vdash	\vdash	\leftarrow	Y	\vdash	
AGBs	1			1	- <u> </u> `			-	1						+	+	+	- <u> </u>	+	+	
250AGB	-	-													1		-			+	
250AGBs	1		-			+	1		+	1			+	+		-				1	
250AGBn	+	+					+	-		1	-						+		<u> </u>	+	
500AGB	1	-	-	1	+									1		+	1			+	
AGJ		-		1			+			-		-		1				<u> </u>		<u> </u>	
500AGJ	<u> </u>	+		-			+					+	-	1					<u> </u>		
250AGJ		-			+		+								 	<u> </u>			ļ		
125AGJ	1	+	-			+							<u> </u>								
CGJ	<u> </u> ;					1				+		+		<u> </u>							
500CGJ	<u>+</u>		+	<u> </u>	-										 .					<u> </u>	
250CGJ		1			-	+	1		<u> </u>	<u> -,</u>	<u> </u>	•	-								
125CGJ				+	-								-							· ·	
PJ			+					┿								4					
PJn			+				<u> </u>						<u> </u>								
500PJ .			+	+				+													
500PJn		1	 }									<u> </u>				<u> </u>					
500PJna		<u> </u>											<u> </u>								
500PJzn/na	ļ			<u> </u>									·				 				
250PJ			+		<u> </u>					š.				! 							
250PJn			+										<u> </u>								
250PJna			+							`		<u> </u>									
250PJzn/na				I		·												÷			
Acetate Tube								Ye.d.										-1			
"CT													1								
Encore							ļ														
Folder/filter				·									<u>-</u>								
PUF		<u></u>															·				
Petri/Filter		••••••			,																
XAD Trap																					
Ziploc																					
- I							·····													-	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	

Number of VOAs with air bubbles present / total number of VOA's