
### **APPENDIX G**

## **Section 3**

Outfall 001 - February 6, 2010

MECX Data Validation Report





## DATA VALIDATION REPORT

## **Boeing SSFL NPDES**

SAMPLE DELIVERY GROUP: ITB0887

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITB0887 Project Manager: B. Kelly

Matrix: Water
QC Level: IV

No. of Samples: 4
No. of Reanalyses/Dilutions: 1

Laboratory: TestAmerica-Irvine

**Table 1. Sample Identification** 

| Client ID                         | Laboratory<br>ID  | Sub-<br>Laboratory ID                           | Matrix | Collected              | Method                                                                                                                                                                                                      |
|-----------------------------------|-------------------|-------------------------------------------------|--------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outfall 001<br>(Grab)             | ITB0887-01        |                                                 | Water  | 2/5/10 1:40<br>PM      | 120.1, 8015M                                                                                                                                                                                                |
| Trip Blank                        | ITB0887-02        |                                                 | Water  | 2/6/10<br>11:15 AM     | 624                                                                                                                                                                                                         |
| Outfall 001                       | ITB0887-<br>04RE1 | G0B100422-<br>001                               | Water  | 2/6/10<br>11:15 AM     | 1613B                                                                                                                                                                                                       |
| Outfall 001<br>(Comp)             | ITB0887-04        | G0B100422-<br>001,<br>F0B090486-<br>001, 987726 | Water  | 2/5/10 1:40<br>PM      | 180.1, 200.7, 200.7 (Diss),<br>200.8, 200.8 (Diss), 245.1,<br>245.1 (Diss), 625, 900.0,<br>901.1, 903.0, 904, 905,<br>906.0, 1613B, 8315M,<br>SM2340B, SM2340B<br>(Diss), SM2540D,<br>SM5310B, ASTM 5174-91 |
| Outfall 001<br>(Composite)<br>Dup | ITB0887-05        |                                                 | Water  | 2/6/2010<br>6:40:00 AM | SM2340B                                                                                                                                                                                                     |

#### **II. Sample Management**

No anomalies were observed regarding sample management. The samples were received at ambient temperature at TestAmerica-St. Louis and although the case narrative reported that the samples were received with the temperature limits at Truesdail, the sample receiving documentation noted the temperature to be 14°C. Due to the non volatile nature of these analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact at TestAmerica-St. Louis and TestAmerica-West Sacramento. As the samples were delivered by courier to the remaining laboratories, no custody seals were required. If necessary, the client ID was added to the sample result summary by the reviewer.

### **Data Qualifier Reference Table**

| Qualifie | er Organics                                                                                                                                                                                                                                                             | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

### **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of standards used for the calibration was incorrect                    |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| Е         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| 1         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

### **Qualification Code Reference Table Cont.**

| D         | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р         | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ       | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *11, *111 | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: March 27, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{x}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - O GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - o Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for all target compounds except 2,3,7,8-TCDD, 1,2,3,7,8-PeCDF, and 2,3,4,7,8-PeCDF. Most detects in the method blank did not meet ratio criteria and were reported as EMPCs; however, due to the extent of contamination present in the method blank, it was the reviewer's professional opinion that those results be utilized to qualify applicable sample results.

Isomers present in the sample between the EDLs and RLs were qualified as nondetected, "U," at the levels of contamination. The sample results for totals HpCDD and TCDF were qualified as nondetected, "U," as the same peaks comprising the totals were present in the method blank. Total PeCDF in the sample did not contain the same peaks as the method blank and was therefore not qualified. Remaining total results were qualified as estimated, "J," as only a portion of the total was considered method blank contamination. The method blank result for OCDD was insufficient to qualify the sample result.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed
  for polychlorinated dioxins/furans by EPA Method 1613. The laboratory performed a
  confirmation analysis for 2,3,7,8-TCDF; however, as the initial result was previously
  qualified as nondetected for method blank contamination, the confirmation result was
  rejected, "R," in favor of the original result.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any isomers reported as EMPCs and not previously qualified as method blank contamination were qualified as estimated and nondetected, "UJ," at the level of the EMPC. Any total results reported as EMPCs or including EMPCs were qualified as estimated, "J." Any detects reported below the EDL, or between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

### B. EPA METHOD 8315M—Hydrazines

Reviewed By: P. Meeks

Date Reviewed: March 23, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 8315M, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was derivitized within three days of collection and analyzed within 3 days of derivitization.
- Calibration: Calibration criteria were met. The initial calibration r<sup>2</sup> values were ≥0.995. The ICV and QCS recoveries were within 85-115%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

### C. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 21, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, 245.1, and SM2340B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: The measured mass for beryllium was >0.1 amu from the true value in the analytical sequence associated with dissolved copper. As the mass of copper is closer to the mass of magnesium, which was acceptably measured, no qualifications were required. The remaining mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Boron was detected in the dissolved method blank at 45.3 μg/L; therefore, dissolved boron detected in the sample was qualified as nondetected, "U," at the level of contamination. Method blanks and CCBs had no other applicable detects.
- Interference Check Samples: Recoveries were within the method- (200.7) or laboratory- (200.8) established control limits, except for potassium in the ICSAB 200.7 total analysis. As the concentration of potassium in the site sample was less than 5% of the ICSAB concentration, no qualifications were required. Boron was reported in the ICSAs associated with the total and dissolved analyses at -41 and -75 μg/L, respectively; however, the concentration of the interfering analyte, iron, was not sufficient to cause matrix interference in the site sample. Most analytes were detected in the 200.8 ICSA; however the reviewer was unable to determine if these detects were due to level contamination of the standard. There were no other target compounds present in the ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.

 Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the 200.7 total and dissolved analytes. The recoveries and RPDs were within method-established QC limits. Method accuracy for the remaining analytes was evaluated based on LCS results.

- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All sample internal standard intensities were within 60-125% of the internal standard intensities measured in the initial calibration blank. Copper was not bracketed by an internal standard of lower mass; therefore, copper detected in the sample was qualified as estimated, "J."
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. The 200.8 analytes were reported from a 2x dilution due to matrix interference. Dissolved chromium was not reported on the sample result summary or the QC summaries. Dissolved chromium was not detected in the dissolved fraction and all QC results were acceptable.

When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 23, 2010

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

Holding Times: The aliquots for total uranium and radium-228 were prepared beyond 3x
the five-day holding time for unpreserved samples; therefore, total uranium in the sample

was qualified as estimated, "J," and nondetected radium-228 was rejected, "R." Aliquots for gross alpha and gross beta were prepared beyond the five-day analytical holding time for unpreserved samples; therefore, the detected results for these analytes were qualified as estimated, "J." Aliquots for radium-226, strontium-90, and gamma spectroscopy were prepared within the five-day holding time for unpreserved aqueous samples. The tritium sample was analyzed within 180 days of collection.

• Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha and radium-226 detector efficiencies were less than 20%; therefore, the results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

The reviewer noted that the KPA preparation log was not signed as reviewed.

- Blanks: Tritium was detected in the method blank but was not detected in the site samples. There were no other analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries and radium-228 RPD were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
  data package. The sample results and MDAs reported on the sample result form were
  verified against the raw data and no calculation or transcription errors were noted. Any
  detects between the MDA and the reporting limit were qualified as estimated, "J," and
  coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
  valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

### E. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: P. Meeks

Date Reviewed: March 23. 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The %RSD for di-n-octyl phthalate exceeded the control limit and the r² value for benzoic aicd was less than the control limit; therefore, the nondetected results for these compounds were qualified as estimated, "UJ." Initial calibration average RRFs were ≥0.05 and the remaining %RSDs ≤15% or r² values were ≥0.995. The second source ICV had %Ds above 20% for benzyl alcohol, hexachlorobutadiene, 2,4-dinitrophenol, pentachlorophenol, 4,6-dinitro-2-methylphenol, and n-nitrosodiphenylamine; therefore, the nondetected results for these compound were qualified as estimated, "UJ." The ICV RRFs were ≥0.05 and the remaining %Ds ≤20%. The continuing calibration associated with the sample analysis had %Ds above 20% for benzoic acid, hexachlorocyclopentadiene, and di-n-octyl phthalate; therefore, the nondetected results for these compounds were qualified as estimated, "UJ." The continuing calibration RRFs were ≥0.05 and the remaining %Ds ≤20%.
- Blanks: The reviewer noted an unreported detect for n-nitrosodimethylamine in the method blank at 0.60 μg/L; however, the analyte was not detected in the site sample. Method blanks had no other target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.

• Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
   -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

### F. EPA METHOD 8015B—Extractable Total Fuel Hydrocarbons (EFHs)

Reviewed By: P. Meeks

Date Reviewed: March 23, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Total Fuel Hydrocarbons (DVP-8, Rev. 0), EPA Method 8015B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within 14 days of collection and analyzed within 40 days of extraction.
- Calibration: Calibration criteria were met. Initial calibration %RSDs were ≤20% and continuing calibration %Ds ≤15%.
- Blanks: The method blank had no target compound detect above the MDL.

 Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.

- Surrogate Recovery: The recovery was within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy was based on the LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. GRO (C4-C12) was reported. Review of the sample chromatogram and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ" in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

#### G. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 23, 2010

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the  $MEC^{x}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 180.1, SM2540D, SM5310B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: All analytical holding times were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. Balance calibration check logs were acceptable.
- Blanks: Method blanks and CCBs had no detects.

 Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.

- Laboratory Duplicates: A laboratory duplicate analysis was performed for specific conductance. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification.

In order to report the result within the linear range of the calibration, turbidity was reported from a 10× dilution. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

### TRUESDAIL LABORATORIES, INC.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 [714] 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client:

Test America - Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614-5817

Attention:

Joseph Doak Water / 1 Sample

Sample: Project Name:

ITB0887

Project Number: Method Number: ITB0887 EPA 8315 (Modified)

Investigation:

Hydrazines

REPORT

Laboratory No: 987726

Report Date: February 11, 2010

Sampling Date: February 6, 2010 Receiving Date: February 8, 2010

Extraction Date: February 8, 2010
Analysis Date: February 9, 2010

Analysis Date: Febru

Reported By: JS

**Analytical Results** 

|                 |                    | Sample      | Dilution | Monomethyl | u-Dimethyl | Hydrazine | Qualifier |
|-----------------|--------------------|-------------|----------|------------|------------|-----------|-----------|
| Sample ID       | Sample Description | Amount (mL) | Factor   | Hydrazine  | Hydrazine  |           | Codes     |
| 708690-MB       | Method Blank       | 100         | 1        | → ND       | % ND       | ₹ ND      | None      |
| 987726 Outfal   | 1 001 ITB0887-04   | 100         | 1        | ○ ND       | ∪ ND       | OND       | None      |
| MDL             |                    |             |          | 0.857      | 1.42       | 0.452     |           |
| PQL             |                    |             |          | 5.0        | 5.0        | 1.00      |           |
| Sample Reportin | g Limits           |             |          | 5.0        | 5.0        | 1.00      |           |

Note: Results based on detector #1 (UV=365nm) data.

LEVEL IV

Linda Saetern, Project Manager

Analytical Services, Truesdail Laboratories, Inc.

# Analysis not valo docked

PM 3/29/10

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

# Validated Sample Result Forms ITB0887

| Sample Name                            | Outfall 001 (C | Composite)                             | Matri     | x Type:  | WATER               | 7                | alidation Le                       | vel: IV                   |  |
|----------------------------------------|----------------|----------------------------------------|-----------|----------|---------------------|------------------|------------------------------------|---------------------------|--|
| Lab Sample Name:                       | ITB0887-04     | Sam                                    | ple Date: | 2/6/2010 | 6:40:00 AM          |                  |                                    |                           |  |
| Analyte                                | CAS No         | Result<br>Value                        | RL        | MDL      | Result<br>Units     | Lab<br>Qualifier | Validation<br>Qualifier            | Validation<br>Notes       |  |
| Total Uranium                          | 7440-61-1      | 0.369                                  | 0.693     | 0.21     | pCi/L               | Jb               | J                                  | H,DNQ                     |  |
| Analysis Metho                         | ed EPA         | 120.1                                  |           |          |                     |                  |                                    |                           |  |
| Sample Name                            | Outfall 001 (0 | 1 (Grab) Matrix Type: Water Validation |           |          |                     |                  | alidation Le                       | n Level: IV               |  |
| Lab Sample Name:                       | ITB0887-01     | Sam                                    | ple Date: | 2/6/2010 | 10:20:00 AM         |                  |                                    |                           |  |
| Analyte                                | CAS No         | Result<br>Value                        | RL        | MDL      | Result<br>Units     | Lab<br>Qualifier | Validation<br>Qualifier            | Validation<br>Notes       |  |
| Specific Conductance                   | NA             | 130                                    | 1.0       | 1.0      | uS/cm               |                  |                                    |                           |  |
| Analysis Metho                         | d EPA          | 180.1                                  |           |          |                     |                  |                                    |                           |  |
| •                                      |                |                                        |           |          |                     |                  |                                    |                           |  |
| Sample Name                            | Outfall 001 (0 | Composite)                             | Matri     | x Type:  | Water               | V                | alidation Le                       | vel: IV                   |  |
| _                                      | Outfall 001 (C | •                                      |           | • •      | Water<br>6:40:00 AM | V                | alidation Le                       | vel: IV                   |  |
| Sample Name  Lab Sample Name:  Analyte |                | •                                      |           | • •      |                     | Lab<br>Qualifier | Validation Le Validation Qualifier | vel: IV  Validation Notes |  |

Monday, April 05, 2010 Page 1 of 9

### Analysis Method EPA 200.7

| Sample Name      | Outfall 001 (C | Composite       | ) Matri   | ix Type: | Water           | Validation Level: IV |                         |                     |
|------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name: | ITB0887-04     | Sam             | ple Date: | 2/6/2010 | 6:40:00 AM      |                      |                         |                     |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Arsenic          | 7440-38-2      | ND              | 10        | 7.0      | ug/l            |                      | U                       |                     |
| Barium           | 7440-39-3      | 0.076           | 0.010     | 0.0060   | mg/l            |                      |                         |                     |
| Beryllium        | 7440-41-7      | ND              | 2.0       | 0.90     | ug/l            |                      | U                       |                     |
| Boron            | 7440-42-8      | 0.042           | 0.050     | 0.020    | mg/l            | Ja                   | J                       | DNQ                 |
| Calcium          | 7440-70-2      | 13              | 0.10      | 0.050    | mg/l            | MHA                  |                         |                     |
| Chromium         | 7440-47-3      | 11              | 5.0       | 2.0      | ug/l            |                      |                         |                     |
| Cobalt           | 7440-48-4      | 2.5             | 10        | 2.0      | ug/l            | Ja                   | J                       | DNQ                 |
| Iron             | 7439-89-6      | 9.7             | 0.040     | 0.015    | mg/l            | MHA                  |                         |                     |
| Magnesium        | 7439-95-4      | 5.4             | 0.020     | 0.012    | mg/l            |                      |                         |                     |
| Manganese        | 7439-96-5      | 150             | 20        | 7.0      | ug/l            |                      |                         |                     |
| Nickel           | 7440-02-0      | 6.1             | 10        | 2.0      | ug/l            | Ja                   | J                       | DNQ                 |
| Vanadium         | 7440-62-2      | 20              | 10        | 3.0      | ug/l            |                      |                         |                     |
| Zinc             | 7440-66-6      | 34              | 20        | 6.0      | ug/l            |                      |                         |                     |

## Analysis Method EPA 200.7-Diss

| Sample Name      | Outfall 001 (0 | Composite       | ) Matri   | іх Туре: | Water           | Validation Level: IV |                         |                     |  |
|------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|--|
| Lab Sample Name: | ITB0887-04     | Sam             | ple Date: | 2/6/2010 | 6:40:00 AM      |                      |                         |                     |  |
| Analyte          | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Arsenic          | 7440-38-2      | ND              | 10        | 7.0      | ug/l            |                      | U                       |                     |  |
| Barium           | 7440-39-3      | 0.015           | 0.010     | 0.0060   | mg/l            |                      |                         |                     |  |
| Beryllium        | 7440-41-7      | ND              | 2.0       | 0.90     | ug/l            |                      | U                       |                     |  |
| Boron            | 7440-42-8      | ND              | 0.070     | 0.020    | mg/l            | В                    | U                       | В                   |  |
| Calcium          | 7440-70-2      | 11              | 0.10      | 0.050    | mg/l            | MHA                  |                         |                     |  |
| Cobalt           | 7440-48-4      | ND              | 10        | 2.0      | ug/l            |                      | U                       |                     |  |
| Iron             | 7439-89-6      | 0.64            | 0.040     | 0.015    | mg/l            |                      |                         |                     |  |
| Magnesium        | 7439-95-4      | 3.2             | 0.020     | 0.012    | mg/l            |                      |                         |                     |  |
| Manganese        | 7439-96-5      | ND              | 20        | 7.0      | ug/l            |                      | U                       |                     |  |
| Nickel           | 7440-02-0      | ND              | 10        | 2.0      | ug/l            |                      | U                       |                     |  |
| Vanadium         | 7440-62-2      | ND              | 10        | 3.0      | ug/l            |                      | U                       |                     |  |
| Zinc             | 7440-66-6      | 10              | 20        | 6.0      | ug/l            | Ja                   | J                       | DNQ                 |  |

Monday, April 05, 2010 Page 2 of 9

| Analysis Method EPA 200. | <b>Analysis</b> | Method | EPA | 200.8 |
|--------------------------|-----------------|--------|-----|-------|
|--------------------------|-----------------|--------|-----|-------|

| Sample Name      | Outfall 001 (C | Composite                                  | e) Matri    | ix Type: | Water           | 7                    | Validation Le           | vel: IV             |  |
|------------------|----------------|--------------------------------------------|-------------|----------|-----------------|----------------------|-------------------------|---------------------|--|
| Lab Sample Name: | ITB0887-04     | Sam                                        | ple Date:   | 2/6/2010 | 6:40:00 AM      |                      |                         |                     |  |
| Analyte          | CAS No         | Result<br>Value                            | RL          | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Antimony         | 7440-36-0      | ND                                         | 4.0         | 0.60     | ug/l            | RL1                  | U                       |                     |  |
| Cadmium          | 7440-43-9      | ND                                         | 2.0         | 0.20     | ug/l            | RL1                  | U                       |                     |  |
| Copper           | 7440-50-8      | 14.3                                       | 4.0         | 1.0      | ug/l            |                      | J                       | *III                |  |
| Lead             | 7439-92-1      | 6.4                                        | 2.0         | 0.40     | ug/l            |                      |                         |                     |  |
| Selenium         | 7782-49-2      | 1.3                                        | 4.0         | 1.0      | ug/l            | RL1, Ja              | J                       | DNQ                 |  |
| Silver           | 7440-22-4      | ND                                         | 2.0         | 0.20     | ug/l            | RL1                  | U                       |                     |  |
| Thallium         | 7440-28-0      | ND                                         | 2.0         | 0.40     | ug/l            | RL1                  | U                       |                     |  |
| Analysis Metho   | od EPA         | 200.8-I                                    | <i>Diss</i> |          |                 |                      |                         |                     |  |
| Sample Name      | Outfall 001 (C | Outfall 001 (Composite) Matrix Type: Water |             |          | V               | Validation Level: IV |                         |                     |  |
| Lab Sample Name: | ITB0887-04     | Sam                                        | ple Date:   | 2/6/2010 | 6:40:00 AM      |                      |                         |                     |  |
| Analyte          | CAS No         | Result<br>Value                            | RL          | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Antimony         | 7440-36-0      | ND                                         | 2.0         | 0.30     | ug/l            |                      | U                       |                     |  |
| Cadmium          | 7440-43-9      | ND                                         | 1.0         | 0.10     | ug/l            |                      | U                       |                     |  |
| Copper           | 7440-50-8      | 2.3                                        | 2.0         | 0.50     | ug/l            |                      | J                       | *III                |  |
| ead              | 7439-92-1      | ND                                         | 1.0         | 0.20     | ug/l            |                      | U                       |                     |  |
| elenium          | 7782-49-2      | ND                                         | 2.0         | 0.50     | ug/l            |                      | U                       |                     |  |
| Silver           | 7440-22-4      | ND                                         | 1.0         | 0.10     | ug/l            |                      | U                       |                     |  |
| Γhallium         | 7440-28-0      | ND                                         | 1.0         | 0.20     | ug/l            |                      | U                       |                     |  |
| Analysis Metho   | od EPA         | 245.1                                      |             |          |                 |                      |                         |                     |  |
| Sample Name      | Outfall 001 (C | Composite                                  | ) Matri     | іх Туре: | Water           | 7                    | Validation Le           | vel: IV             |  |
| Lab Sample Name: | ITB0887-04     | Sam                                        | ple Date:   | 2/6/2010 | 6:40:00 AM      |                      |                         |                     |  |
| Analyte          | CAS No         | Result<br>Value                            | RL          | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Mercury          | 7439-97-6      | ND                                         | 0.20        | 0.10     | ug/l            |                      | U                       |                     |  |
| Analysis Metho   | od EPA         | 245.1-I                                    | <i>Diss</i> |          |                 |                      |                         |                     |  |
| Sample Name      | Outfall 001 (C | Composite                                  | ) Matri     | іх Туре: | Water           | V                    | Validation Le           | vel: IV             |  |
| Lab Sample Name: | ITB0887-04     | Sam                                        | ple Date:   | 2/6/2010 | 6:40:00 AM      |                      |                         |                     |  |
| Analyte          | CAS No         | Result<br>Value                            | RL          | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |  |
| Mercury          | 7439-97-6      | ND                                         | 0.20        | 0.10     | ug/l            |                      | U                       |                     |  |
|                  |                |                                            |             |          |                 |                      |                         |                     |  |

Monday, April 05, 2010 Page 3 of 9

| Sample Name                        | Outfall 001 (0 | Composite       | ) Matr    | ix Type: | Water           | Validation Level: IV |                         |                     |
|------------------------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name:                   | ITB0887-04     | Sam             | ple Date: | 2/6/2010 | 6:40:00 AM      |                      |                         |                     |
| Analyte                            | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| 1,2,4-Trichlorobenzene             | 120-82-1       | ND              | 0.94      | 0.094    | ug/l            |                      | U                       |                     |
| 1,2-Dichlorobenzene                | 95-50-1        | ND              | 0.47      | 0.094    | ug/l            |                      | U                       |                     |
| 1,2-<br>Diphenylhydrazine/Azobenze | 103-33-3       | ND              | 0.94      | 0.094    | ug/l            |                      | U                       |                     |
| 1,3-Dichlorobenzene                | 541-73-1       | ND              | 0.47      | 0.094    | ug/l            |                      | U                       |                     |
| 1,4-Dichlorobenzene                | 106-46-7       | ND              | 0.47      | 0.19     | ug/l            |                      | U                       |                     |
| 2,4,5-Trichlorophenol              | 95-95-4        | ND              | 1.9       | 0.19     | ug/l            |                      | U                       |                     |
| 2,4,6-Trichlorophenol              | 88-06-2        | ND              | 0.94      | 0.094    | ug/l            |                      | U                       |                     |
| 2,4-Dichlorophenol                 | 120-83-2       | ND              | 1.9       | 0.19     | ug/l            |                      | U                       |                     |
| 2,4-Dimethylphenol                 | 105-67-9       | ND              | 1.9       | 0.28     | ug/l            |                      | U                       |                     |
| 2,4-Dinitrophenol                  | 51-28-5        | ND              | 4.7       | 0.85     | ug/l            |                      | UJ                      | С                   |
| 2,4-Dinitrotoluene                 | 121-14-2       | ND              | 4.7       | 0.19     | ug/l            |                      | U                       |                     |
| 2,6-Dinitrotoluene                 | 606-20-2       | ND              | 4.7       | 0.094    | ug/l            |                      | U                       |                     |
| 2-Chloronaphthalene                | 91-58-7        | ND              | 0.47      | 0.094    | ug/l            |                      | U                       |                     |
| 2-Chlorophenol                     | 95-57-8        | ND              | 0.94      | 0.19     | ug/l            |                      | U                       |                     |
| 2-Methylnaphthalene                | 91-57-6        | ND              | 0.94      | 0.094    | ug/l            |                      | U                       |                     |
| 2-Methylphenol                     | 95-48-7        | ND              | 1.9       | 0.094    | ug/l            |                      | U                       |                     |
| 2-Nitroaniline                     | 88-74-4        | ND              | 4.7       | 0.094    | ug/l            |                      | U                       |                     |
| 2-Nitrophenol                      | 88-75-5        | ND              | 1.9       | 0.094    | ug/l            |                      | U                       |                     |
| 3,3'-Dichlorobenzidine             | 91-94-1        | ND              | 4.7       | 4.7      | ug/l            |                      | U                       |                     |
| 3-Nitroaniline                     | 99-09-2        | ND              | 4.7       | 0.19     | ug/l            |                      | U                       |                     |
| 4,6-Dinitro-2-methylphenol         | 534-52-1       | ND              | 4.7       | 0.19     | ug/l            |                      | UJ                      | С                   |
| 4-Bromophenyl phenyl ether         | 101-55-3       | ND              | 0.94      | 0.094    | ug/l            |                      | U                       |                     |
| 4-Chloro-3-methylphenol            | 59-50-7        | ND              | 1.9       | 0.19     | ug/l            |                      | U                       |                     |
| 4-Chloroaniline                    | 106-47-8       | ND              | 1.9       | 0.094    | ug/l            |                      | U                       |                     |
| 4-Chlorophenyl phenyl ether        | 7005-72-3      | ND              | 0.47      | 0.094    | ug/l            |                      | U                       |                     |
| 4-Methylphenol                     | 106-44-5       | ND              | 4.7       | 0.19     | ug/l            |                      | U                       |                     |
| 4-Nitroaniline                     | 100-01-6       | ND              | 4.7       | 0.47     | ug/l            |                      | U                       |                     |
| 4-Nitrophenol                      | 100-02-7       | ND              | 4.7       | 2.4      | ug/l            |                      | U                       |                     |
| Acenaphthene                       | 83-32-9        | ND              | 0.47      | 0.094    | ug/l            |                      | U                       |                     |
| Acenaphthylene                     | 208-96-8       | ND              | 0.47      | 0.094    | ug/l            |                      | U                       |                     |
| Aniline                            | 62-53-3        | ND              | 9.4       | 0.28     | ug/l            |                      | U                       |                     |
| Anthracene                         | 120-12-7       | ND              | 0.47      | 0.094    | ug/l            |                      | U                       |                     |
| Benzidine                          | 92-87-5        | ND              | 4.7       | 4.7      | ug/l            |                      | U                       |                     |
| Benzo(a)anthracene                 | 56-55-3        | ND              | 4.7       | 0.094    | ug/l            |                      | U                       |                     |
| Benzo(a)pyrene                     | 50-32-8        | ND              | 1.9       | 0.094    | ug/l            |                      | U                       |                     |
| Monday, April 05, 2010             |                |                 |           |          |                 |                      |                         | Page 4 of 9         |

## Analysis Method EPA 625

| Benzo(b)fluoranthene        | 205-99-2 | ND   | 1.9  | 0.094 | ug/l |    | U  |     |
|-----------------------------|----------|------|------|-------|------|----|----|-----|
| Benzo(g,h,i)perylene        | 191-24-2 | ND   | 4.7  | 0.094 | ug/l |    | U  |     |
| Benzo(k)fluoranthene        | 207-08-9 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Benzoic acid                | 65-85-0  | ND   | 19   | 2.8   | ug/l |    | UJ | C   |
| Benzyl alcohol              | 100-51-6 | ND   | 4.7  | 0.094 | ug/l |    | UJ | C   |
| Bis(2-chloroethoxy)methane  | 111-91-1 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Bis(2-chloroethyl)ether     | 111-44-4 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Bis(2-chloroisopropyl)ether | 108-60-1 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Bis(2-ethylhexyl)phthalate  | 117-81-7 | ND   | 4.7  | 1.6   | ug/l |    | U  |     |
| Butyl benzyl phthalate      | 85-68-7  | ND   | 4.7  | 0.66  | ug/l |    | U  |     |
| Chrysene                    | 218-01-9 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Dibenz(a,h)anthracene       | 53-70-3  | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Dibenzofuran                | 132-64-9 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Diethyl phthalate           | 84-66-2  | 0.13 | 0.94 | 0.094 | ug/l | Ja | J  | DNQ |
| Dimethyl phthalate          | 131-11-3 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Di-n-butyl phthalate        | 84-74-2  | ND   | 1.9  | 0.19  | ug/l |    | U  |     |
| Di-n-octyl phthalate        | 117-84-0 | ND   | 4.7  | 0.094 | ug/l |    | UJ | C   |
| Fluoranthene                | 206-44-0 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Fluorene                    | 86-73-7  | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Hexachlorobenzene           | 118-74-1 | ND   | 0.94 | 0.094 | ug/l |    | U  |     |
| Hexachlorobutadiene         | 87-68-3  | ND   | 1.9  | 0.19  | ug/l |    | UJ | C   |
| Hexachlorocyclopentadiene   | 77-47-4  | ND   | 4.7  | 0.094 | ug/l |    | UJ | C   |
| Hexachloroethane            | 67-72-1  | ND   | 2.8  | 0.19  | ug/l |    | U  |     |
| Indeno(1,2,3-cd)pyrene      | 193-39-5 | ND   | 1.9  | 0.094 | ug/l |    | U  |     |
| Isophorone                  | 78-59-1  | ND   | 0.94 | 0.094 | ug/l |    | U  |     |
| Naphthalene                 | 91-20-3  | ND   | 0.94 | 0.094 | ug/l |    | U  |     |
| Nitrobenzene                | 98-95-3  | ND   | 0.94 | 0.094 | ug/l |    | U  |     |
| N-Nitrosodimethylamine      | 62-75-9  | ND   | 1.9  | 0.094 | ug/l |    | U  |     |
| N-Nitroso-di-n-propylamine  | 621-64-7 | ND   | 1.9  | 0.094 | ug/l |    | U  |     |
| N-Nitrosodiphenylamine      | 86-30-6  | ND   | 0.94 | 0.094 | ug/l |    | UJ | C   |
| Pentachlorophenol           | 87-86-5  | ND   | 1.9  | 0.094 | ug/l |    | UJ | С   |
| Phenanthrene                | 85-01-8  | ND   | 0.47 | 0.094 | ug/l |    | U  |     |
| Phenol                      | 108-95-2 | ND   | 0.94 | 0.28  | ug/l |    | U  |     |
| Pyrene                      | 129-00-0 | ND   | 0.47 | 0.094 | ug/l |    | U  |     |

Monday, April 05, 2010 Page 5 of 9

## Analysis Method EPA 8015 Mod.

| Outfall 001 (C                                                                                 | irab)                                                                                                                              | Matri                                                                                                                                                                                                                                                                                          | x Type:                                                                                                                                                                                                                                                                                                                      | Water                                                                                                                                                                                                                                                                                                                                          | V                   | alidation Le                            | vel: IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITB0887-01                                                                                     | Sam                                                                                                                                | ple Date:                                                                                                                                                                                                                                                                                      | 2/6/2010                                                                                                                                                                                                                                                                                                                     | 10:20:00 AM                                                                                                                                                                                                                                                                                                                                    |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CAS No                                                                                         | Result<br>Value                                                                                                                    | RL                                                                                                                                                                                                                                                                                             | MDL                                                                                                                                                                                                                                                                                                                          | Result<br>Units                                                                                                                                                                                                                                                                                                                                | Lab<br>Qualifier    | Validation<br>Qualifier                 | Validation<br>Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8006-61-9                                                                                      | 25                                                                                                                                 | 100                                                                                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                                                                                                           | ug/l                                                                                                                                                                                                                                                                                                                                           | Ja                  | J                                       | DNQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| od EPA 9                                                                                       | 900.0 N                                                                                                                            | 10D                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Outfall 001 (C                                                                                 | Composite                                                                                                                          | ) Matri                                                                                                                                                                                                                                                                                        | х Туре:                                                                                                                                                                                                                                                                                                                      | WATER                                                                                                                                                                                                                                                                                                                                          | V                   | alidation Le                            | vel: IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ITB0887-04                                                                                     | Sam                                                                                                                                | ple Date:                                                                                                                                                                                                                                                                                      | 2/6/2010                                                                                                                                                                                                                                                                                                                     | 6:40:00 AM                                                                                                                                                                                                                                                                                                                                     |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CAS No                                                                                         | Result<br>Value                                                                                                                    | RL                                                                                                                                                                                                                                                                                             | MDL                                                                                                                                                                                                                                                                                                                          | Result<br>Units                                                                                                                                                                                                                                                                                                                                | Lab<br>Qualifier    | Validation<br>Qualifier                 | Validation<br>Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12587-46-1                                                                                     | 6.9                                                                                                                                | 3                                                                                                                                                                                                                                                                                              | 1.6                                                                                                                                                                                                                                                                                                                          | pCi/L                                                                                                                                                                                                                                                                                                                                          |                     | J                                       | Н,С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12587-47-2                                                                                     | 8.1                                                                                                                                | 4                                                                                                                                                                                                                                                                                              | 1.2                                                                                                                                                                                                                                                                                                                          | pCi/L                                                                                                                                                                                                                                                                                                                                          |                     | 1                                       | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| od EPA 9                                                                                       | 901.1 N                                                                                                                            | 10D                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Outfall 001 (C                                                                                 | Composite                                                                                                                          | ) Matri                                                                                                                                                                                                                                                                                        | х Туре:                                                                                                                                                                                                                                                                                                                      | WATER                                                                                                                                                                                                                                                                                                                                          | V                   | alidation Le                            | vel: IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ITB0887-04                                                                                     | Sam                                                                                                                                | ple Date:                                                                                                                                                                                                                                                                                      | 2/6/2010                                                                                                                                                                                                                                                                                                                     | 6:40:00 AM                                                                                                                                                                                                                                                                                                                                     |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CAS No                                                                                         | Result<br>Value                                                                                                                    | RL                                                                                                                                                                                                                                                                                             | MDL                                                                                                                                                                                                                                                                                                                          | Result<br>Units                                                                                                                                                                                                                                                                                                                                | Lab<br>Qualifier    | Validation<br>Qualifier                 | Validation<br>Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                |                                                                                                                                    | 20                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                           | C: /I                                                                                                                                                                                                                                                                                                                                          | T T                 | U                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10045-97-3                                                                                     | 1.3                                                                                                                                | 20                                                                                                                                                                                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                           | pCi/L                                                                                                                                                                                                                                                                                                                                          | U                   | U                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10045-97-3<br>13966-00-2                                                                       | 1.3<br>-180                                                                                                                        | 0                                                                                                                                                                                                                                                                                              | 290                                                                                                                                                                                                                                                                                                                          | pCi/L                                                                                                                                                                                                                                                                                                                                          | U                   | Ü                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13966-00-2                                                                                     |                                                                                                                                    | 0                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                |                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13966-00-2                                                                                     | -180<br>203.0 M                                                                                                                    | 0<br>MOD                                                                                                                                                                                                                                                                                       | 290                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                | U                   |                                         | vel: IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13966-00-2<br>od EPA 9                                                                         | -180<br>903.0 M                                                                                                                    | 0 MOD Matri                                                                                                                                                                                                                                                                                    | 290<br><b>x Type:</b>                                                                                                                                                                                                                                                                                                        | pCi/L                                                                                                                                                                                                                                                                                                                                          | U                   | U                                       | vel: IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13966-00-2<br>od EPA 9<br>Outfall 001 (C                                                       | -180<br>903.0 M                                                                                                                    | 0 MOD Matri                                                                                                                                                                                                                                                                                    | 290<br><b>x Type:</b>                                                                                                                                                                                                                                                                                                        | pCi/L<br>WATER                                                                                                                                                                                                                                                                                                                                 | U                   | U                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13966-00-2<br>od EPA 9<br>Outfall 001 (C<br>ITB0887-04                                         | -180 PO3.0 M Composite Sam Result                                                                                                  | 0  MOD  Matri ple Date:                                                                                                                                                                                                                                                                        | 290<br><b>x Type:</b><br>2/6/2010                                                                                                                                                                                                                                                                                            | pCi/L WATER 6:40:00 AM Result                                                                                                                                                                                                                                                                                                                  | U V                 | U  Validation Le  Validation            | Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13966-00-2  od EPA 9  Outfall 001 (C  ITB0887-04  CAS No  13982-63-3                           | -180 PO3.0 M Composite Sam Result Value                                                                                            | 0 MOD Matri ple Date: RL                                                                                                                                                                                                                                                                       | 290<br><b>x Type:</b> 2/6/2010 <b>MDL</b>                                                                                                                                                                                                                                                                                    | pCi/L WATER 6:40:00 AM Result Units                                                                                                                                                                                                                                                                                                            | U V Lab Qualifier   | U  Validation Le  Validation  Qualifier | Validation<br>Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13966-00-2  od EPA 9  Outfall 001 (C  ITB0887-04  CAS No  13982-63-3                           | -180 PO3.0 M Composite Sam Result Value 0.06                                                                                       | O Matri ple Date: RL                                                                                                                                                                                                                                                                           | 290<br><b>x Type:</b> 2/6/2010 <b>MDL</b>                                                                                                                                                                                                                                                                                    | pCi/L WATER 6:40:00 AM Result Units                                                                                                                                                                                                                                                                                                            | U V Lab Qualifier U | U  Validation Le  Validation  Qualifier | Validation<br>Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13966-00-2  od EPA 9  Outfall 001 (C  ITB0887-04  CAS No  13982-63-3  od EPA 9                 | Composite Sam Result Value 0.06 004 MC                                                                                             | O Matri ple Date: RL                                                                                                                                                                                                                                                                           | 290  x Type: 2/6/2010  MDL  0.21  x Type:                                                                                                                                                                                                                                                                                    | pCi/L  WATER 6:40:00 AM  Result Units  pCi/L                                                                                                                                                                                                                                                                                                   | U V Lab Qualifier U | Validation Le Validation Qualifier UJ   | Validation<br>Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13966-00-2  od EPA 9  Outfall 001 (C  ITB0887-04  CAS No  13982-63-3  od EPA 9  Outfall 001 (C | Composite Sam Result Value 0.06 004 MC                                                                                             | O Matri ple Date: RL  DD  Matri                                                                                                                                                                                                                                                                | 290  x Type: 2/6/2010  MDL  0.21  x Type:                                                                                                                                                                                                                                                                                    | pCi/L  WATER 6:40:00 AM  Result Units  pCi/L  WATER                                                                                                                                                                                                                                                                                            | U V Lab Qualifier U | Validation Le Validation Qualifier UJ   | Validation<br>Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                | CAS No  8006-61-9  od EPA 9  Outfall 001 (C ITB0887-04  CAS No  12587-46-1 12587-47-2  od EPA 9  Outfall 001 (C ITB0887-04  CAS No | CAS No Result Value    8006-61-9   25     25     26   EPA 900.0 M     Outfall 001 (Composite ITB0887-04   Sam     CAS No Result Value     12587-46-1   6.9     12587-47-2   8.1     Od EPA 901.1 M     Outfall 001 (Composite ITB0887-04   Sam     CAS No Result Value     CAS No Result Value | CAS No Result RL Value    8006-61-9   25   100     Od EPA 900.0 MOD     Outfall 001 (Composite)   Matri   ITB0887-04   Sample Date:   CAS No Result RL Value     12587-46-1   6.9   3     12587-47-2   8.1   4     Od EPA 901.1 MOD     Outfall 001 (Composite)   Matri   ITB0887-04   Sample Date:   CAS No Result RL Value | CAS No Result RL MDL  8006-61-9 25 100 25  25 100 25  26 EPA 900.0 MOD  Outfall 001 (Composite) Matrix Type:  ITB0887-04 Sample Date: 2/6/2010  CAS No Result RL MDL  Value  12587-46-1 6.9 3 1.6  12587-47-2 8.1 4 1.2  26 EPA 901.1 MOD  Outfall 001 (Composite) Matrix Type:  ITB0887-04 Sample Date: 2/6/2010  CAS No Result RL MDL  Value | CAS No              | CAS No Result RL Value                  | CAS No   Result   Value   Value   Validation   Value   Value   Validation   Vali |

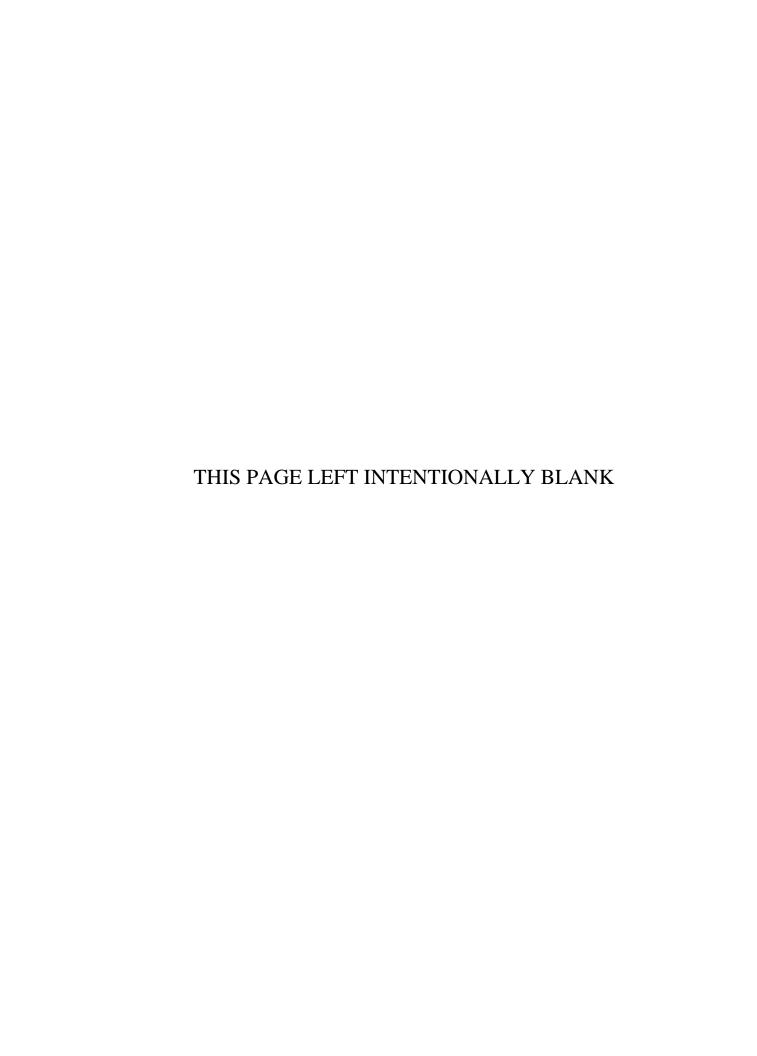
Monday, April 05, 2010 Page 6 of 9

## Analysis Method EPA 905 MOD

| Sample Name                   | Outfall 001 (C | Composite)      | Matri     | х Туре:  | WATER           | 7                | Validation Le           | evel: IV            |  |  |
|-------------------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|--|--|
| Lab Sample Name:              | ITB0887-04     | Samj            | ole Date: | 2/6/2010 | 6:40:00 AM      |                  |                         |                     |  |  |
| Analyte                       | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |  |  |
| Strontium 90                  | 10098-97-2     | -0.24           | 3         | 0.64     | pCi/L           | U                | U                       |                     |  |  |
| Analysis Method EPA 906.0 MOD |                |                 |           |          |                 |                  |                         |                     |  |  |
| Sample Name                   | Outfall 001 (C | Composite)      | Matri     | x Type:  | WATER           | 7                | Validation Le           | evel: IV            |  |  |
| Lab Sample Name:              | ITB0887-04     | Samj            | ole Date: | 2/6/2010 | 6:40:00 AM      |                  |                         |                     |  |  |
| Analyte                       | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |  |  |
| Tritium                       | 10028-17-8     | 65              | 500       | 96       | pCi/L           | U                | U                       |                     |  |  |

Monday, April 05, 2010 Page 7 of 9

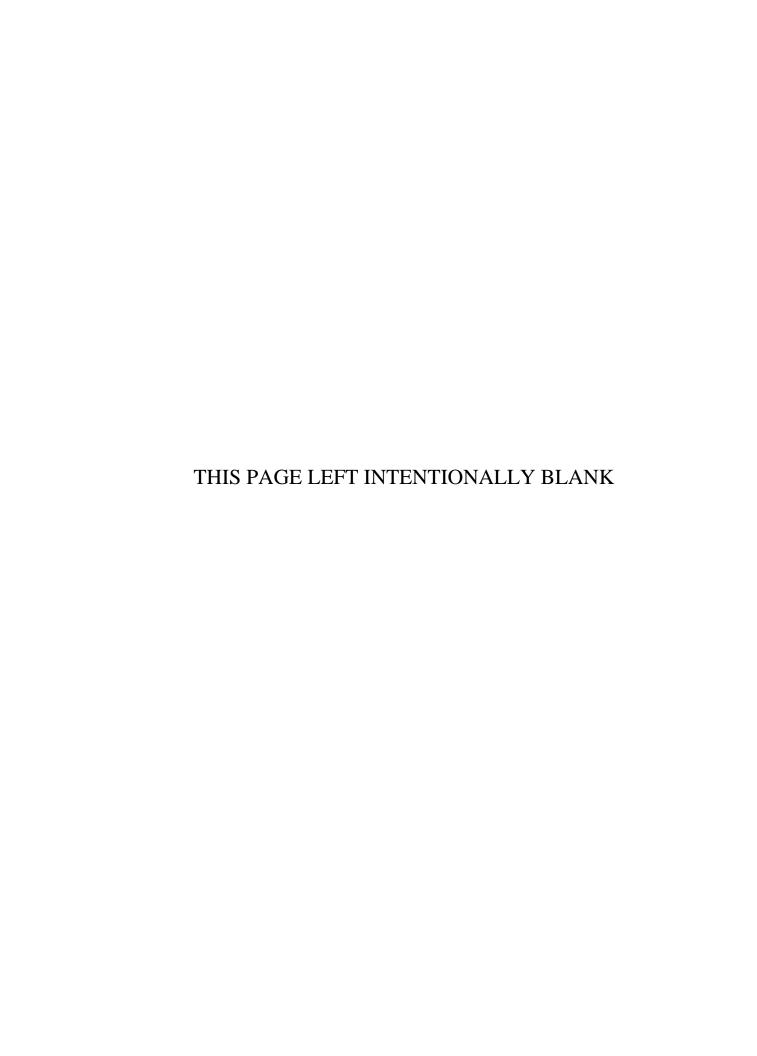
## Analysis Method EPA-5 1613B


| Sample Name            | Outfall 001 (C | omposite)       | ) Matri   | x Type:     | VATER           | V                | alidation Le            | vel: IV             |
|------------------------|----------------|-----------------|-----------|-------------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:       | ITB0887-04     | Sam             | ple Date: | 2/6/2010 6: | 40:00 AM        |                  |                         |                     |
| Analyte                | CAS No         | Result<br>Value | RL        | MDL         | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| 1,2,3,4,6,7,8-HpCDD    | 35822-46-9     | ND              | 0.000047  | 0.0000018   | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,4,6,7,8-HpCDF    | 67562-39-4     | ND              | 0.000047  | 0.0000017   | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,4,7,8,9-HpCDF    | 55673-89-7     | ND              | 0.000012  | 0.0000025   | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,4,7,8-HxCDD      | 39227-28-6     | ND              | 0.00001   | 0.0000022   | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,4,7,8-HxCDF      | 70648-26-9     | ND              | 0.000047  | 0.0000013   | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,6,7,8-HxCDD      | 57653-85-7     | ND              | 0.000011  | 0.000002    | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,6,7,8-HxCDF      | 57117-44-9     | ND              | 0.0000088 | 0.0000012   | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,7,8,9-HxCDD      | 19408-74-3     | ND              | 0.000047  | 0.0000019   | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,7,8,9-HxCDF      | 72918-21-9     | ND              | 0.000047  | 0.0000015   | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,7,8-PeCDD        | 40321-76-4     | ND              | 0.000047  | 0.0000023   | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,7,8-PeCDF        | 57117-41-6     | 0.000006        | 0.000047  | 0.0000012   | ug/L            | J                | J                       | DNQ                 |
| 2,3,4,6,7,8-HxCDF      | 60851-34-5     | ND              | 0.0000099 | 0.0000012   | ug/L            | J, Q, Ba         | U                       | В                   |
| 2,3,4,7,8-PeCDF        | 57117-31-4     | ND              | 0.0000082 | 0.0000015   | ug/L            | J, Q             | UJ                      | *III                |
| 2,3,7,8-TCDD           | 1746-01-6      | ND              | 0.0000094 | 0.0000014   | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDF           | 51207-31-9     | ND              | 0.0000094 | 0.000002    | ug/L            |                  | R                       | D                   |
| 2,3,7,8-TCDF           | 51207-31-9     | ND              | 0.0000015 | 0.0000006   | ug/L            | J, Q, Ba         | U                       | В                   |
| OCDD                   | 3268-87-9      | 0.00028         | 0.000094  | 0.0000016   | ug/L            | Ba               |                         |                     |
| OCDF                   | 39001-02-0     | ND              | 0.000094  | 0.0000014   | ug/L            | J, Ba            | U                       | В                   |
| Total HpCDD            | 37871-00-4     | ND              | 0.000047  | 0.0000018   | ug/L            | J, Ba            | U                       | В                   |
| Total HpCDF            | 38998-75-3     | 0.000042        | 0.000042  | 0.0000017   | ug/L            | J, Q, Ba         | J                       | B,DNQ,*III          |
| Total HxCDD            | 34465-46-8     | 0.000034        | 0.000034  | 0.0000019   | ug/L            | J, Q, Ba         | J                       | B,DNQ,*III          |
| Total HxCDF            | 55684-94-1     | 0.000045        | 0.000045  | 0.0000012   | ug/L            | J, Q, Ba         | J                       | B,DNQ,*III          |
| Total PeCDD            | 36088-22-9     | 0.000011        | 0.000011  | 0.0000023   | ug/L            | J, Q, Ba         | J                       | B,DNQ,*III          |
| Total PeCDF            | 30402-15-4     | 0.000016        | 0.000016  | 0.0000007   | ug/L            | J, Q, Ba         | J                       | DNQ, *III           |
| Total TCDD             | 41903-57-5     | ND              | 0.0000094 | 0.0000014   | ug/L            |                  | U                       |                     |
| Total TCDF             | 55722-27-5     | ND              | 0.0000015 | 0.0000006   | ug/L            | J, Q, Ba         | U                       | В                   |
| Analysis Metho         | d SM 25        | 540D            |           |             |                 |                  |                         |                     |
| Sample Name            | Outfall 001 (C | omposite)       | Matri     | x Type:     | Vater           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:       | ITB0887-04     | Sam             | ple Date: | 2/6/2010 6: | 40:00 AM        |                  |                         |                     |
| Analyte                | CAS No         | Result<br>Value | RL        | MDL         | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Suspended Solids | TSS            | 170             | 20        | 2.0         | mg/l            |                  |                         |                     |

Monday, April 05, 2010 Page 8 of 9

## Analysis Method SM2340B

| Sample Name             | Outfall 001 (0 | Composite)      | ) Matri   | x Type:  | Water           |                  | alidation Le            | evel: IV            |
|-------------------------|----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:        | ITB0887-04     | Sam             | ple Date: | 2/6/2010 | 6:40:00 AM      |                  |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Hardness as CaCO3       |                | 54              | 0.33      | 0.17     | mg/l            |                  |                         |                     |
| Sample Name             | Outfall 001 (0 | Composite       | ) D Matri | x Type:  | Water           | V                | alidation Le            | vel: IV             |
| <b>Lab Sample Name:</b> | ITB0887-05     | Sam             | ple Date: | 2/6/2010 | 6:40:00 AM      |                  |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Hardness as CaCO3       |                | 55              | 0.33      | 0.17     | mg/l            |                  |                         |                     |
| Analysis Metho          | od SM23        | 840B-Di         | iss       |          |                 |                  |                         |                     |
| Sample Name             | Outfall 001 (0 | Composite       | ) Matri   | х Туре:  | Water           | V                | alidation Le            | vel: IV             |
| <b>Lab Sample Name:</b> | ITB0887-04     | Sam             | ple Date: | 2/6/2010 | 6:40:00 AM      |                  |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Hardness as CaCO3       |                | 41              | 0.33      | 0.17     | mg/l            |                  |                         |                     |
| Analysis Metho          | od SM53        | 810B            |           |          |                 |                  |                         |                     |
| Sample Name             | Outfall 001 (0 | Composite       | ) Matri   | х Туре:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:        | ITB0887-04     | Sam             | ple Date: | 2/6/2010 | 6:40:00 AM      |                  |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Organic Carbon    | TOC            | 12              | 1.0       | 0.50     | mg/l            |                  |                         |                     |


Monday, April 05, 2010 Page 9 of 9



## APPENDIX G

## **Section 4**

Outfall 001 - February 6, 2010 Test America Analytical Laboratory Report





#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/06/10

Received: 02/06/10 Revised: 04/09/10 14:26

#### NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: Final revised report to correct units and merge .pdf file of Radchem. Copper in 3 sig figs.

Revised report to include surrogates for the 625 analysis.

| LABORATORY ID | CLIENT ID               | MATRIX |
|---------------|-------------------------|--------|
| ITB0887-01    | Outfall 001 (Grab)      | Water  |
| ITB0887-02    | Trip Blank              | Water  |
| ITB0887-04    | Outfall 001 (Composite) | Water  |

Reviewed By:

**TestAmerica Irvine** 

Debby Wilson For Heather Clark Project Manager

Debby Wilson



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001

Sampled: 02/06/10 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)**

| Analyte                                            | Method        | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|---------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-01 (Outfall 001 (Grab) - Water) |               |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: ug/l                              |               |         |              |                    |                  |                    |                   |                  |                    |
| GRO (C4 - C12)                                     | EPA 8015 Mod. | 10B1582 | 25           | 100                | 25               | 1                  | 02/12/10          | 02/12/10         | Ja                 |
| Surrogate: 4-BFB (FID) (65-140%)                   |               |         |              |                    | 97 %             |                    |                   |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001

Sampled: 02/06/10 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### EXTRACTABLE FUEL HYDROCARBONS (EPA 3510C/EPA 8015B)

| Analyte                                            | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-01 (Outfall 001 (Grab) - Water) |           |         |              |                    | Sample           | d: 02/06/1         | 10                |                  |                    |
| Reporting Units: ug/l                              |           |         |              |                    |                  |                    |                   |                  |                    |
| DRO (C13 - C28)                                    | EPA 8015B | 10B1526 | 47           | 94                 | ND               | 0.943              | 02/12/10          | 02/12/10         |                    |
| Surrogate: n-Octacosane (45-120%)                  |           |         |              |                    | 47 %             |                    |                   |                  |                    |



MWH-Pasadena/Boeing Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10 Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                   | Method      | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|-------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-01 (Outfall 001 (Gral  | o) - Water) |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: ug/l                     |             |         |              |                    | •                |                    |                   |                  |                    |
| Benzene                                   | EPA 624     | 10B0840 | 0.28         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Bromodichloromethane                      | EPA 624     | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Bromoform                                 | EPA 624     | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Bromomethane                              | EPA 624     | 10B0840 | 0.42         | 1.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Carbon tetrachloride                      | EPA 624     | 10B0840 | 0.28         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Chlorobenzene                             | EPA 624     | 10B0840 | 0.36         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Chloroethane                              | EPA 624     | 10B0840 | 0.40         | 1.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Chloroform                                | EPA 624     | 10B0840 | 0.33         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Chloromethane                             | EPA 624     | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Dibromochloromethane                      | EPA 624     | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,2-Dichlorobenzene                       | EPA 624     | 10B0840 | 0.32         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,3-Dichlorobenzene                       | EPA 624     | 10B0840 | 0.35         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,4-Dichlorobenzene                       | EPA 624     | 10B0840 | 0.37         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1-Dichloroethane                        | EPA 624     | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,2-Dichloroethane                        | EPA 624     | 10B0840 | 0.28         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1-Dichloroethene                        | EPA 624     | 10B0840 | 0.42         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| cis-1,2-Dichloroethene                    | EPA 624     | 10B0840 | 0.32         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| trans-1,2-Dichloroethene                  | EPA 624     | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,2-Dichloropropane                       | EPA 624     | 10B0840 | 0.35         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| cis-1,3-Dichloropropene                   | EPA 624     | 10B0840 | 0.22         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| trans-1,3-Dichloropropene                 | EPA 624     | 10B0840 | 0.32         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,2-Dichloro-1,1,2-trifluoroethane        | EPA 624     | 10B0840 | 1.1          | 2.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Ethylbenzene                              | EPA 624     | 10B0840 | 0.25         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Methylene chloride                        | EPA 624     | 10B0840 | 0.95         | 1.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1,2,2-Tetrachloroethane                 | EPA 624     | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Tetrachloroethene                         | EPA 624     | 10B0840 | 0.32         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Toluene                                   | EPA 624     | 10B0840 | 0.36         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1,1-Trichloroethane                     | EPA 624     | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1,2-Trichloroethane                     | EPA 624     | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Trichloroethene                           | EPA 624     | 10B0840 | 0.26         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Trichlorofluoromethane                    | EPA 624     | 10B0840 | 0.34         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Trichlorotrifluoroethane (Freon 113)      | EPA 624     | 10B0840 | 0.50         | 5.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Vinyl chloride                            | EPA 624     | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Xylenes, Total                            | EPA 624     | 10B0840 | 0.90         | 1.5                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Cyclohexane                               | EPA 624     | 10B0840 | 0.40         | 1.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%) |             |         |              |                    | 91 %             |                    |                   |                  |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%) |             |         |              |                    | 91 %             |                    |                   |                  |                    |
| Surrogate: Dibromofluoromethane (80-1209  |             |         |              |                    | 106 %            |                    |                   |                  |                    |
| Surrogate: Dibromofluoromethane (80-1209  | %)          |         |              |                    | 106 %            |                    |                   |                  |                    |
| Surrogate: Toluene-d8 (80-120%)           |             |         |              |                    | 107 %            |                    |                   |                  |                    |
| Surrogate: Toluene-d8 (80-120%)           |             |         |              |                    | 107 %            |                    |                   |                  |                    |
| Test America Irvine                       |             |         |              |                    |                  |                    |                   |                  |                    |

#### **TestAmerica Irvine**

Debby Wilson For Heather Clark Project Manager

Sampled: 02/06/10



#### THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887 Received: 02/06/10

#### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                                            | Method  | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------------------------------------|---------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| •                                                                  |         |         |              |                    |                  |                    |                   | j u              |                    |
| Sample ID: ITB0887-02 (Trip Blank - Water<br>Reporting Units: ug/l | 1)      |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Benzene                                                            | EPA 624 | 10B0840 | 0.28         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Bromodichloromethane                                               | EPA 624 | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Bromoform                                                          | EPA 624 | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Bromomethane                                                       | EPA 624 | 10B0840 | 0.42         | 1.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Carbon tetrachloride                                               | EPA 624 | 10B0840 | 0.28         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Chlorobenzene                                                      | EPA 624 | 10B0840 | 0.36         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Chloroethane                                                       | EPA 624 | 10B0840 | 0.40         | 1.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Chloroform                                                         | EPA 624 | 10B0840 | 0.33         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Chloromethane                                                      | EPA 624 | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Dibromochloromethane                                               | EPA 624 | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,2-Dichlorobenzene                                                | EPA 624 | 10B0840 | 0.32         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,3-Dichlorobenzene                                                | EPA 624 | 10B0840 | 0.35         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,4-Dichlorobenzene                                                | EPA 624 | 10B0840 | 0.37         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1-Dichloroethane                                                 | EPA 624 | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,2-Dichloroethane                                                 | EPA 624 | 10B0840 | 0.28         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1-Dichloroethene                                                 | EPA 624 | 10B0840 | 0.42         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| cis-1,2-Dichloroethene                                             | EPA 624 | 10B0840 | 0.32         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| trans-1,2-Dichloroethene                                           | EPA 624 | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,2-Dichloropropane                                                | EPA 624 | 10B0840 | 0.35         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| cis-1,3-Dichloropropene                                            | EPA 624 | 10B0840 | 0.22         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| trans-1,3-Dichloropropene                                          | EPA 624 | 10B0840 | 0.32         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,2-Dichloro-1,1,2-trifluoroethane                                 | EPA 624 | 10B0840 | 1.1          | 2.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Ethylbenzene                                                       | EPA 624 | 10B0840 | 0.25         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Methylene chloride                                                 | EPA 624 | 10B0840 | 0.95         | 1.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1,2,2-Tetrachloroethane                                          | EPA 624 | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Tetrachloroethene                                                  | EPA 624 | 10B0840 | 0.32         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Toluene                                                            | EPA 624 | 10B0840 | 0.36         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1,1-Trichloroethane                                              | EPA 624 | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 1,1,2-Trichloroethane                                              | EPA 624 | 10B0840 | 0.30         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Trichloroethene                                                    | EPA 624 | 10B0840 | 0.26         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Trichlorofluoromethane                                             | EPA 624 | 10B0840 | 0.34         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Trichlorotrifluoroethane (Freon 113)                               | EPA 624 | 10B0840 | 0.50         | 5.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Vinyl chloride                                                     | EPA 624 | 10B0840 | 0.40         | 0.50               | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Xylenes, Total                                                     | EPA 624 | 10B0840 | 0.90         | 1.5                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Cyclohexane                                                        | EPA 624 | 10B0840 | 0.40         | 1.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%)                          | )       |         |              |                    | 92 %             |                    |                   |                  |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%)                          | )       |         |              |                    | 92 %             |                    |                   |                  |                    |
| Surrogate: Dibromofluoromethane (80-120%)                          | )       |         |              |                    | 104 %            |                    |                   |                  |                    |
| Surrogate: Dibromofluoromethane (80-120%)                          | )       |         |              |                    | 104 %            |                    |                   |                  |                    |
| Surrogate: Toluene-d8 (80-120%)                                    |         |         |              |                    | 108 %            |                    |                   |                  |                    |
| Surrogate: Toluene-d8 (80-120%)                                    |         |         |              |                    | 108 %            |                    |                   |                  |                    |
| TT 4 A                                                             |         |         |              |                    |                  |                    |                   |                  |                    |

#### **TestAmerica Irvine**

Debby Wilson For Heather Clark Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001

Sampled: 02/06/10 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### PURGEABLES-- GC/MS (EPA 624)

| Analyte                                   | Method     | Batch   | MDL<br>Limit      | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|------------|---------|-------------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-01 (Outfall 001 (Grab  | ) - Water) |         |                   |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: ug/l                     |            |         |                   |                    | -                |                    |                   |                  |                    |
| Acrolein                                  | EPA 624    | 10B0840 | 4.0               | 5.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Acrylonitrile                             | EPA 624    | 10B0840 | 1.2               | 2.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 2-Chloroethyl vinyl ether                 | EPA 624    | 10B0840 | 1.8               | 5.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%) | )          |         |                   |                    | 91 %             |                    |                   |                  |                    |
| Surrogate: Dibromofluoromethane (80-120%  | 5)         |         |                   |                    | 106 %            |                    |                   |                  |                    |
| Surrogate: Toluene-d8 (80-120%)           |            |         |                   |                    | 107 %            |                    |                   |                  |                    |
| Sample ID: ITB0887-02 (Trip Blank - Wate  | er)        |         | Sampled: 02/06/10 |                    |                  |                    |                   |                  |                    |
| Reporting Units: ug/l                     |            |         |                   |                    |                  |                    |                   |                  |                    |
| Acrolein                                  | EPA 624    | 10B0840 | 4.0               | 5.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Acrylonitrile                             | EPA 624    | 10B0840 | 1.2               | 2.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| 2-Chloroethyl vinyl ether                 | EPA 624    | 10B0840 | 1.8               | 5.0                | ND               | 1                  | 02/08/10          | 02/09/10         |                    |
| Surrogate: 4-Bromofluorobenzene (80-120%) | )          |         |                   |                    | 92 %             |                    |                   |                  |                    |
| Surrogate: Dibromofluoromethane (80-120%  | 5)         |         |                   |                    | 104 %            |                    |                   |                  |                    |
| Surrogate: Toluene-d8 (80-120%)           |            |         |                   |                    | 108 %            |                    |                   |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001 Sampled: 02/06/10

Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

## 1,4-DIOXANE BY GCMS - SINGLE ION MONITORING (SIM)

|                                       |                    |         | MDL   | Reporting | Sample | Dilution   | Date      | Date     | Data       |
|---------------------------------------|--------------------|---------|-------|-----------|--------|------------|-----------|----------|------------|
| Analyte                               | Method             | Batch   | Limit | Limit     | Result | Factor     | Extracted | Analyzed | Qualifiers |
| Sample ID: ITB0887-04 (Outfall 001 (C | omposite) - Water) |         |       |           | Sample | d: 02/06/1 | 0         |          |            |
| Reporting Units: ug/l                 |                    |         |       |           |        |            |           |          |            |
| 1,4-Dioxane                           | EPA 8260B-SIM      | 10B0317 | 1.0   | 2.0       | ND     | 1          | 02/08/10  | 02/08/10 |            |
| Surrogate: Dibromofluoromethane (80-1 | 20%)               |         |       |           | 100 %  |            |           |          |            |



Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10 Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                        |                    |         | MDL   | Reporting | Sample | Dilution    | Date      | Date     | Data       |
|----------------------------------------|--------------------|---------|-------|-----------|--------|-------------|-----------|----------|------------|
| Analyte                                | Method             | Batch   | Limit | Limit     | Result | Factor      | Extracted | Analyzed | Qualifiers |
| Sample ID: ITB0887-04 (Outfall 001 (Co | omposite) - Water) |         |       |           | Sample | ed: 02/06/1 | 10        |          |            |
| Reporting Units: ug/l                  |                    |         |       |           |        |             |           |          |            |
| Acenaphthene                           | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Acenaphthylene                         | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Aniline                                | EPA 625            | 10B1159 | 0.28  | 9.4       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Anthracene                             | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Benzidine                              | EPA 625            | 10B1159 | 4.7   | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Benzo(a)anthracene                     | EPA 625            | 10B1159 | 0.094 | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Benzo(a)pyrene                         | EPA 625            | 10B1159 | 0.094 | 1.9       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Benzo(b)fluoranthene                   | EPA 625            | 10B1159 | 0.094 | 1.9       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Benzo(g,h,i)perylene                   | EPA 625            | 10B1159 | 0.094 | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Benzo(k)fluoranthene                   | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Benzoic acid                           | EPA 625            | 10B1159 | 2.8   | 19        | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Benzyl alcohol                         | EPA 625            | 10B1159 | 0.094 | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 4-Bromophenyl phenyl ether             | EPA 625            | 10B1159 | 0.094 | 0.94      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Butyl benzyl phthalate                 | EPA 625            | 10B1159 | 0.66  | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 4-Chloro-3-methylphenol                | EPA 625            | 10B1159 | 0.19  | 1.9       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 4-Chloroaniline                        | EPA 625            | 10B1159 | 0.094 | 1.9       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Bis(2-chloroethoxy)methane             | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Bis(2-chloroethyl)ether                | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Bis(2-chloroisopropyl)ether            | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Bis(2-ethylhexyl)phthalate             | EPA 625            | 10B1159 | 1.6   | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 2-Chloronaphthalene                    | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 2-Chlorophenol                         | EPA 625            | 10B1159 | 0.19  | 0.94      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 4-Chlorophenyl phenyl ether            | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Chrysene                               | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Dibenz(a,h)anthracene                  | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Dibenzofuran                           | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Di-n-butyl phthalate                   | EPA 625            | 10B1159 | 0.19  | 1.9       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 1,2-Dichlorobenzene                    | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 1,3-Dichlorobenzene                    | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 1,4-Dichlorobenzene                    | EPA 625            | 10B1159 | 0.19  | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 3,3'-Dichlorobenzidine                 | EPA 625            | 10B1159 | 4.7   | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 2,4-Dichlorophenol                     | EPA 625            | 10B1159 | 0.19  | 1.9       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Diethyl phthalate                      | EPA 625            | 10B1159 | 0.094 | 0.94      | 0.13   | 0.943       | 02/10/10  | 02/15/10 | Ja         |
| 2,4-Dimethylphenol                     | EPA 625            | 10B1159 | 0.28  | 1.9       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Dimethyl phthalate                     | EPA 625            | 10B1159 | 0.094 | 0.47      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 4,6-Dinitro-2-methylphenol             | EPA 625            | 10B1159 | 0.19  | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 2,4-Dinitrophenol                      | EPA 625            | 10B1159 | 0.85  | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 2,4-Dinitrotoluene                     | EPA 625            | 10B1159 | 0.19  | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 2,6-Dinitrotoluene                     | EPA 625            | 10B1159 | 0.094 | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| Di-n-octyl phthalate                   | EPA 625            | 10B1159 | 0.094 | 4.7       | ND     | 0.943       | 02/10/10  | 02/15/10 |            |
| 1,2-Diphenylhydrazine/Azobenzene       | EPA 625            | 10B1159 | 0.094 | 0.94      | ND     | 0.943       | 02/10/10  | 02/15/10 |            |

#### **TestAmerica Irvine**



Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10 Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                   | Method           | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 001 (Comp  | oosite) - Water) | - cont. |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: ug/l                     | ,                |         |              |                    | ошпри            |                    |                   |                  |                    |
| Fluoranthene                              | EPA 625          | 10B1159 | 0.094        | 0.47               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Fluorene                                  | EPA 625          | 10B1159 | 0.094        | 0.47               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Hexachlorobenzene                         | EPA 625          | 10B1159 | 0.094        | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Hexachlorobutadiene                       | EPA 625          | 10B1159 | 0.19         | 1.9                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Hexachlorocyclopentadiene                 | EPA 625          | 10B1159 | 0.094        | 4.7                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Hexachloroethane                          | EPA 625          | 10B1159 | 0.19         | 2.8                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Indeno(1,2,3-cd)pyrene                    | EPA 625          | 10B1159 | 0.094        | 1.9                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Isophorone                                | EPA 625          | 10B1159 | 0.094        | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 2-Methylnaphthalene                       | EPA 625          | 10B1159 | 0.094        | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 2-Methylphenol                            | EPA 625          | 10B1159 | 0.094        | 1.9                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 4-Methylphenol                            | EPA 625          | 10B1159 | 0.19         | 4.7                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Naphthalene                               | EPA 625          | 10B1159 | 0.094        | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 2-Nitroaniline                            | EPA 625          | 10B1159 | 0.094        | 4.7                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 3-Nitroaniline                            | EPA 625          | 10B1159 | 0.19         | 4.7                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 4-Nitroaniline                            | EPA 625          | 10B1159 | 0.47         | 4.7                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Nitrobenzene                              | EPA 625          | 10B1159 | 0.094        | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 2-Nitrophenol                             | EPA 625          | 10B1159 | 0.094        | 1.9                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 4-Nitrophenol                             | EPA 625          | 10B1159 | 2.4          | 4.7                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| N-Nitroso-di-n-propylamine                | EPA 625          | 10B1159 | 0.094        | 1.9                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| N-Nitrosodimethylamine                    | EPA 625          | 10B1159 | 0.094        | 1.9                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| N-Nitrosodiphenylamine                    | EPA 625          | 10B1159 | 0.094        | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Pentachlorophenol                         | EPA 625          | 10B1159 | 0.094        | 1.9                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Phenanthrene                              | EPA 625          | 10B1159 | 0.094        | 0.47               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Phenol                                    | EPA 625          | 10B1159 | 0.28         | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Pyrene                                    | EPA 625          | 10B1159 | 0.094        | 0.47               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 1,2,4-Trichlorobenzene                    | EPA 625          | 10B1159 | 0.094        | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 2,4,5-Trichlorophenol                     | EPA 625          | 10B1159 | 0.19         | 1.9                | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| 2,4,6-Trichlorophenol                     | EPA 625          | 10B1159 | 0.094        | 0.94               | ND               | 0.943              | 02/10/10          | 02/15/10         |                    |
| Surrogate: 2,4,6-Tribromophenol (40-120%) |                  |         |              |                    | 96 %             |                    |                   |                  |                    |
| Surrogate: 2-Fluorobiphenyl (50-120%)     |                  |         |              |                    | 75 %             |                    |                   |                  |                    |
| Surrogate: 2-Fluorophenol (30-120%)       |                  |         |              |                    | 59 %             |                    |                   |                  |                    |
| Surrogate: Nitrobenzene-d5 (45-120%)      |                  |         |              |                    | 75 %             |                    |                   |                  |                    |
| Surrogate: Phenol-d6 (35-120%)            |                  |         |              |                    | 65 %             |                    |                   |                  |                    |
| Surrogate: Terphenyl-d14 (50-125%)        |                  |         |              |                    | 86 %             |                    |                   |                  |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001 Sampled: 02/06/10 Received: 02/06/10

Report Number: ITB0887

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

## **ORGANOCHLORINE PESTICIDES (EPA 608)**

| Analyte                                   | Method           | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------|------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 001 (Comp  | osita) Watan)    |         |              |                    | 6 1              |                    |                   | •                |                    |
| Reporting Units: ug/l                     | oosite) - water) |         |              |                    | Sample           | d: 02/06/1         | 10                |                  |                    |
| 4.4'-DDD                                  | EPA 608          | 10B1291 | 0.0019       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         | С                  |
| 4,4'-DDE                                  | EPA 608          | 10B1291 | 0.0028       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         | C                  |
| 4,4'-DDT                                  | EPA 608          | 10B1291 | 0.0038       | 0.0094             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Aldrin                                    | EPA 608          | 10B1291 | 0.0014       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| alpha-BHC                                 | EPA 608          | 10B1291 | 0.0024       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
|                                           |                  |         |              |                    |                  |                    |                   |                  |                    |
| beta-BHC                                  | EPA 608          | 10B1291 | 0.0038       | 0.0094             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| delta-BHC                                 | EPA 608          | 10B1291 | 0.0033       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Dieldrin                                  | EPA 608          | 10B1291 | 0.0019       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Endosulfan I                              | EPA 608          | 10B1291 | 0.0019       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Endosulfan II                             | EPA 608          | 10B1291 | 0.0028       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Endosulfan sulfate                        | EPA 608          | 10B1291 | 0.0028       | 0.0094             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Endrin                                    | EPA 608          | 10B1291 | 0.0019       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         | C                  |
| Endrin aldehyde                           | EPA 608          | 10B1291 | 0.0019       | 0.0094             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Endrin ketone                             | EPA 608          | 10B1291 | 0.0028       | 0.0094             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| gamma-BHC (Lindane)                       | EPA 608          | 10B1291 | 0.0028       | 0.019              | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Heptachlor                                | EPA 608          | 10B1291 | 0.0028       | 0.0094             | ND               | 0.943              | 02/11/10          | 02/13/10         | C                  |
| Heptachlor epoxide                        | EPA 608          | 10B1291 | 0.0024       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Methoxychlor                              | EPA 608          | 10B1291 | 0.0033       | 0.0047             | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Chlordane                                 | EPA 608          | 10B1291 | 0.038        | 0.094              | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Toxaphene                                 | EPA 608          | 10B1291 | 0.24         | 0.47               | ND               | 0.943              | 02/11/10          | 02/13/10         |                    |
| Surrogate: Decachlorobiphenyl (45-120%)   |                  |         |              |                    | 71 %             |                    |                   |                  |                    |
| Surrogate: Decachlorobiphenyl (45-120%)   |                  |         |              |                    | 71 %             |                    |                   |                  |                    |
| Surrogate: Tetrachloro-m-xylene (35-115%) |                  |         |              |                    | 54 %             |                    |                   |                  |                    |
| Surrogate: Tetrachloro-m-xylene (35-115%) |                  |         |              |                    | 54 %             |                    |                   |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001 Sampled: 02/06/10

Report Number: ITB0887 Received: 02/06/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

# **TOTAL PCBS (EPA 608)**

| Analyte                                 | Method           | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------------|------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 001 (Com | posite) - Water) | - cont. |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: ug/l                   |                  |         |              |                    |                  |                    |                   |                  |                    |
| Aroclor 1016                            | EPA 608          | 10B1291 | 0.24         | 0.47               | ND               | 0.943              | 02/11/10          | 02/12/10         |                    |
| Aroclor 1221                            | EPA 608          | 10B1291 | 0.24         | 0.47               | ND               | 0.943              | 02/11/10          | 02/12/10         |                    |
| Aroclor 1232                            | EPA 608          | 10B1291 | 0.24         | 0.47               | ND               | 0.943              | 02/11/10          | 02/12/10         |                    |
| Aroclor 1242                            | EPA 608          | 10B1291 | 0.24         | 0.47               | ND               | 0.943              | 02/11/10          | 02/12/10         |                    |
| Aroclor 1248                            | EPA 608          | 10B1291 | 0.24         | 0.47               | ND               | 0.943              | 02/11/10          | 02/12/10         |                    |
| Aroclor 1254                            | EPA 608          | 10B1291 | 0.24         | 0.47               | ND               | 0.943              | 02/11/10          | 02/12/10         |                    |
| Aroclor 1260                            | EPA 608          | 10B1291 | 0.24         | 0.47               | ND               | 0.943              | 02/11/10          | 02/12/10         |                    |
| Surrogate: Decachlorobiphenyl (45-120%) |                  |         |              |                    | 76 %             |                    |                   |                  |                    |



MWH-Pasadena/Boeing

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10 Attention: Bronwyn Kelly

### HEXANE EXTRACTABLE MATERIAL

| Analyte                                            | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-01 (Outfall 001 (Grab) - Water) |           |         |              |                    | Sample           | d: 02/06/1         | 0                 |                  |                    |
| Reporting Units: mg/l                              |           |         |              |                    |                  |                    |                   |                  |                    |
| Hexane Extractable Material (Oil &                 | EPA 1664A | 10B1991 | 1.4          | 4.9                | ND               | 1                  | 02/17/10          | 02/17/10         |                    |
| Grease)                                            |           |         |              |                    |                  |                    |                   |                  |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001 Sampled: 02/06/10

Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **METALS**

|                                        |                    | 1       | VILL I A     | LIS                |                  |                    |                   |                  |                    |
|----------------------------------------|--------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                | Method             | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: ITB0887-04 (Outfall 001 (Co | omposite) - Water) |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: mg/l                  |                    |         |              |                    |                  |                    |                   |                  |                    |
| Hardness as CaCO3                      | SM2340B            | [CALC]  | N/A          | 0.33               | 54               | 1                  | 02/08/10          | 02/08/10         |                    |
| Barium                                 | EPA 200.7          | 10B0874 | 0.0060       | 0.010              | 0.076            | 1                  | 02/08/10          | 02/08/10         |                    |
| Boron                                  | EPA 200.7          | 10B0874 | 0.020        | 0.050              | 0.042            | 1                  | 02/08/10          | 02/08/10         | Ja                 |
| Calcium                                | EPA 200.7          | 10B0874 | 0.050        | 0.10               | 13               | 1                  | 02/08/10          | 02/08/10         | MHA                |
| Iron                                   | EPA 200.7          | 10B0874 | 0.015        | 0.040              | 9.7              | 1                  | 02/08/10          | 02/08/10         | MHA                |
| Magnesium                              | EPA 200.7          | 10B0874 | 0.012        | 0.020              | 5.4              | 1                  | 02/08/10          | 02/08/10         |                    |
| Sample ID: ITB0887-04 (Outfall 001 (Co | omposite) - Water) |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: ug/l                  |                    |         |              |                    |                  |                    |                   |                  |                    |
| Mercury                                | EPA 245.1          | 10B0921 | 0.10         | 0.20               | ND               | 1                  | 02/08/10          | 02/08/10         |                    |
| Arsenic                                | EPA 200.7          | 10B0874 | 7.0          | 10                 | ND               | 1                  | 02/08/10          | 02/08/10         |                    |
| Antimony                               | EPA 200.8          | 10B0879 | 0.60         | 4.0                | ND               | 2                  | 02/08/10          | 02/08/10         | RL1                |
| Beryllium                              | EPA 200.7          | 10B0874 | 0.90         | 2.0                | ND               | 1                  | 02/08/10          | 02/08/10         |                    |
| Chromium                               | EPA 200.7          | 10B0874 | 2.0          | 5.0                | 11               | 1                  | 02/08/10          | 02/08/10         |                    |
| Cobalt                                 | EPA 200.7          | 10B0874 | 2.0          | 10                 | 2.5              | 1                  | 02/08/10          | 02/08/10         | Ja                 |
| Manganese                              | EPA 200.7          | 10B0874 | 7.0          | 20                 | 150              | 1                  | 02/08/10          | 02/08/10         |                    |
| Nickel                                 | EPA 200.7          | 10B0874 | 2.0          | 10                 | 6.1              | 1                  | 02/08/10          | 02/08/10         | Ja                 |
| Cadmium                                | EPA 200.8          | 10B0879 | 0.20         | 2.0                | ND               | 2                  | 02/08/10          | 02/08/10         | RL1                |
| Vanadium                               | EPA 200.7          | 10B0874 | 3.0          | 10                 | 20               | 1                  | 02/08/10          | 02/08/10         |                    |
| Zinc                                   | EPA 200.7          | 10B0874 | 6.0          | 20                 | 34               | 1                  | 02/08/10          | 02/08/10         |                    |
| Copper                                 | EPA 200.8          | 10B0879 | 1.00         | 4.00               | 14.3             | 2                  | 02/08/10          | 02/08/10         |                    |
| Lead                                   | EPA 200.8          | 10B0879 | 0.40         | 2.0                | 6.4              | 2                  | 02/08/10          | 02/08/10         |                    |
| Selenium                               | EPA 200.8          | 10B0879 | 1.0          | 4.0                | 1.3              | 2                  | 02/08/10          | 02/08/10         | RL1, Ja            |
| Silver                                 | EPA 200.8          | 10B0879 | 0.20         | 2.0                | ND               | 2                  | 02/08/10          | 02/08/10         | RL1                |
| Thallium                               | EPA 200.8          | 10B0879 | 0.40         | 2.0                | ND               | 2                  | 02/08/10          | 02/08/10         | RL1                |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001 Sampled: 02/06/10

Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **DISSOLVED METALS**

|                                      |                     | 210001  | _ ,          |                    |                  |                    |                   |                  |                    |
|--------------------------------------|---------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                              | Method              | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| <del>-</del>                         |                     |         |              |                    |                  |                    |                   | J                |                    |
| Sample ID: ITB0887-04 (Outfall 001 ( | Composite) - Water) |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: mg/l                |                     |         |              |                    |                  |                    |                   |                  |                    |
| Hardness as CaCO3                    | SM2340B-Diss        | [CALC]  | N/A          | 0.33               | 41               | 1                  | 02/15/10          | 02/16/10         |                    |
| Barium                               | EPA 200.7-Diss      | 10B1846 | 0.0060       | 0.010              | 0.015            | 1                  | 02/15/10          | 02/16/10         |                    |
| Boron                                | EPA 200.7-Diss      | 10B1846 | 0.020        | 0.050              | 0.070            | 1                  | 02/15/10          | 02/16/10         | В                  |
| Calcium                              | EPA 200.7-Diss      | 10B1846 | 0.050        | 0.10               | 11               | 1                  | 02/15/10          | 02/16/10         | MHA                |
| Iron                                 | EPA 200.7-Diss      | 10B1846 | 0.015        | 0.040              | 0.64             | 1                  | 02/15/10          | 02/16/10         |                    |
| Magnesium                            | EPA 200.7-Diss      | 10B1846 | 0.012        | 0.020              | 3.2              | 1                  | 02/15/10          | 02/16/10         |                    |
| Sample ID: ITB0887-04 (Outfall 001 ( | Composite) - Water) |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: ug/l                |                     |         |              |                    |                  |                    |                   |                  |                    |
| Mercury                              | EPA 245.1-Diss      | 10B1953 | 0.10         | 0.20               | ND               | 1                  | 02/16/10          | 02/16/10         |                    |
| Arsenic                              | EPA 200.7-Diss      | 10B1846 | 7.0          | 10                 | ND               | 1                  | 02/15/10          | 02/16/10         |                    |
| Antimony                             | EPA 200.8-Diss      | 10B1845 | 0.30         | 2.0                | ND               | 1                  | 02/15/10          | 02/17/10         |                    |
| Beryllium                            | EPA 200.7-Diss      | 10B1846 | 0.90         | 2.0                | ND               | 1                  | 02/15/10          | 02/16/10         |                    |
| Cobalt                               | EPA 200.7-Diss      | 10B1846 | 2.0          | 10                 | ND               | 1                  | 02/15/10          | 02/16/10         |                    |
| Manganese                            | EPA 200.7-Diss      | 10B1846 | 7.0          | 20                 | ND               | 1                  | 02/15/10          | 02/16/10         |                    |
| Nickel                               | EPA 200.7-Diss      | 10B1846 | 2.0          | 10                 | ND               | 1                  | 02/15/10          | 02/16/10         |                    |
| Cadmium                              | EPA 200.8-Diss      | 10B1845 | 0.10         | 1.0                | ND               | 1                  | 02/15/10          | 02/17/10         |                    |
| Vanadium                             | EPA 200.7-Diss      | 10B1846 | 3.0          | 10                 | ND               | 1                  | 02/15/10          | 02/16/10         |                    |
| Zinc                                 | EPA 200.7-Diss      | 10B1846 | 6.0          | 20                 | 10               | 1                  | 02/15/10          | 02/16/10         | Ja                 |
| Copper                               | EPA 200.8-Diss      | 10B2106 | 0.500        | 2.00               | 2.35             | 1                  | 02/17/10          | 02/17/10         |                    |
| Lead                                 | EPA 200.8-Diss      | 10B1845 | 0.20         | 1.0                | ND               | 1                  | 02/15/10          | 02/17/10         |                    |
| Selenium                             | EPA 200.8-Diss      | 10B1845 | 0.50         | 2.0                | ND               | 1                  | 02/15/10          | 02/17/10         |                    |
| Silver                               | EPA 200.8-Diss      | 10B1845 | 0.10         | 1.0                | ND               | 1                  | 02/15/10          | 02/17/10         |                    |
| Thallium                             | EPA 200.8-Diss      | 10B1845 | 0.20         | 1.0                | ND               | 1                  | 02/15/10          | 02/17/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001

Sampled: 02/06/10 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **DISSOLVED INORGANICS**

| Analyte                                            | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-01 (Outfall 001 (Grab) - Water) |           |         |              |                    | Sample           | d: 02/06/1         | 0                 |                  |                    |
| Reporting Units: ug/l                              |           |         |              |                    |                  |                    |                   |                  |                    |
| Chromium VI                                        | EPA 218.6 | 10B0756 | 0.25         | 1.0                | ND               | 1                  | 02/06/10          | 02/06/10         |                    |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### **INORGANICS**

| Analyte                                                           | Method              | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------------------------------|---------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 001 (                              | Composite) - Water) |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: mg/l                                             |                     |         |              |                    |                  |                    |                   |                  |                    |
| Ammonia-N (Distilled)                                             | SM4500NH3-C         | 10B1575 | 0.50         | 0.50               | 0.56             | 1                  | 02/12/10          | 02/12/10         |                    |
| <b>Biochemical Oxygen Demand</b>                                  | SM5210B             | 10B0795 | 0.50         | 2.0                | 2.2              | 1                  | 02/07/10          | 02/12/10         |                    |
| Chloride                                                          | EPA 300.0           | 10B0807 | 0.25         | 0.50               | 4.6              | 1                  | 02/07/10          | 02/07/10         |                    |
| Fluoride                                                          | SM 4500-F-C         | 10B0814 | 0.020        | 0.10               | 0.22             | 1                  | 02/08/10          | 02/08/10         | В                  |
| Nitrate-N                                                         | EPA 300.0           | 10B0807 | 0.060        | 0.11               | 0.40             | 1                  | 02/07/10          | 02/07/10         |                    |
| Nitrite-N                                                         | EPA 300.0           | 10B0807 | 0.090        | 0.15               | ND               | 1                  | 02/07/10          | 02/07/10         |                    |
| Nitrate/Nitrite-N                                                 | EPA 300.0           | 10B0807 | 0.15         | 0.26               | 0.40             | 1                  | 02/07/10          | 02/07/10         |                    |
| Sulfate                                                           | EPA 300.0           | 10B0807 | 0.20         | 0.50               | 8.8              | 1                  | 02/07/10          | 02/07/10         |                    |
| Surfactants (MBAS)                                                | SM5540-C            | 10B0757 | 0.025        | 0.10               | ND               | 1                  | 02/06/10          | 02/06/10         |                    |
| <b>Total Dissolved Solids</b>                                     | SM2540C             | 10B1487 | 1.0          | 10                 | 150              | 1                  | 02/12/10          | 02/12/10         |                    |
| Total Organic Carbon                                              | SM5310B             | 10B1284 | 0.50         | 1.0                | 12               | 1                  | 02/11/10          | 02/11/10         |                    |
| <b>Total Suspended Solids</b>                                     | SM 2540D            | 10B1607 | 2.0          | 20                 | 170              | 1                  | 02/12/10          | 02/12/10         |                    |
| Sample ID: ITB0887-01 (Outfall 001 (<br>Reporting Units: ml/l     | Grab) - Water)      |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Total Settleable Solids                                           | SM2540F             | 10B0770 | 0.10         | 0.10               | ND               | 1                  | 02/07/10          | 02/07/10         |                    |
| Sample ID: ITB0887-04 (Outfall 001 (<br>Reporting Units: NTU      | Composite) - Water) |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Turbidity                                                         | EPA 180.1           | 10B0771 | 0.40         | 10                 | 160              | 10                 | 02/07/10          | 02/07/10         |                    |
| Sample ID: ITB0887-01 (Outfall 001 (<br>Reporting Units: ug/l     | Grab) - Water)      |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Total Cyanide                                                     | SM4500CN-E          | 10B1250 | 2.2          | 5.0                | ND               | 1                  | 02/10/10          | 02/10/10         |                    |
| Sample ID: ITB0887-04 (Outfall 001 (<br>Reporting Units: ug/l     | Composite) - Water) |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Perchlorate                                                       | EPA 314.0           | 10B1001 | 0.90         | 4.0                | ND               | 1                  | 02/09/10          | 02/09/10         |                    |
| Sample ID: ITB0887-01 (Outfall 001 (<br>Reporting Units: umhos/cm | Grab) - Water)      |         |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Specific Conductance                                              | EPA 120.1           | 10B1489 | 1.0          | 1.0                | 130              | 1                  | 02/12/10          | 02/12/10         |                    |

#### **TestAmerica Irvine**

Sampled: 02/06/10

Received: 02/06/10



#### THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

EPA-5 1613B

| Analyte                                | Method             | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result |            | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|--------------------|-------|--------------|--------------------|------------------|------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 001 (C  | omposite) - Water) |       |              |                    | Sample           | d: 02/06/1 | 10                |                  |                    |
| Reporting Units: ug/L                  | omposite, water,   |       |              |                    | Sample           | u. 02/00/1 | 10                |                  |                    |
| 1,2,3,4,6,7,8-HpCDD                    | EPA-5 1613B        | 47247 | 0.0000018    | 3 0.000047         | 0.000042         | 0.95       | 02/16/10          | 02/18/10         | J, Ba              |
| 1,2,3,4,6,7,8-HpCDF                    | EPA-5 1613B        | 47247 |              | 7 0.000047         | 0.000017         | 0.95       | 02/16/10          | 02/18/10         | J, Ba              |
| 2,3,7,8-TCDF                           | EPA-5 1613B        | 47247 | 0.0000006    | 50.0000094         | 0.0000015        |            | 02/16/10          | 02/18/10         | J, Q, Ba           |
| 1,2,3,4,7,8,9-HpCDF                    | EPA-5 1613B        | 47247 | 0.0000023    | 5 0.000047         | 0.000012         | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| 1,2,3,4,7,8-HxCDD                      | EPA-5 1613B        | 47247 |              | 2 0.000047         | 0.00001          | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| 1,2,3,4,7,8-HxCDF                      | EPA-5 1613B        | 47247 | 0.0000013    | 3 0.000047         | 0.00001          | 0.95       | 02/16/10          | 02/18/10         | J, Ba              |
| 1,2,3,6,7,8-HxCDD                      | EPA-5 1613B        | 47247 | 0.000002     | 0.000047           | 0.000011         | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| 1,2,3,6,7,8-HxCDF                      | EPA-5 1613B        | 47247 | 0.0000012    | 2 0.000047         | 0.0000088        | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| 1,2,3,7,8,9-HxCDD                      | EPA-5 1613B        | 47247 | 0.0000019    | 0.000047           | 0.000011         | 0.95       | 02/16/10          | 02/18/10         | J, Ba              |
| 1,2,3,7,8,9-HxCDF                      | EPA-5 1613B        | 47247 | 0.0000013    | 5 0.000047         | 0.000012         | 0.95       | 02/16/10          | 02/18/10         | J, Ba              |
| 1,2,3,7,8-PeCDD                        | EPA-5 1613B        | 47247 | 0.0000023    | 3 0.000047         | 0.0000082        | 0.95       | 02/16/10          | 02/18/10         | J, Ba              |
| 1,2,3,7,8-PeCDF                        | EPA-5 1613B        | 47247 | 0.0000012    | 2 0.000047         | 0.0000067        | 0.95       | 02/16/10          | 02/18/10         | J                  |
| 2,3,4,6,7,8-HxCDF                      | EPA-5 1613B        | 47247 | 0.0000012    | 2 0.000047         | 0.0000099        | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| 2,3,4,7,8-PeCDF                        | EPA-5 1613B        | 47247 | 0.0000013    | 5 0.000047         | 0.0000082        | 0.95       | 02/16/10          | 02/18/10         | J, Q               |
| 2,3,7,8-TCDD                           | EPA-5 1613B        | 47247 | 0.0000014    | 4 0.0000094        | ND               | 0.95       | 02/16/10          | 02/18/10         |                    |
| OCDD                                   | EPA-5 1613B        | 47247 | 0.000001     | 6 0.000094         | 0.00028          | 0.95       | 02/16/10          | 02/18/10         | Ba                 |
| OCDF                                   | EPA-5 1613B        | 47247 | 0.0000014    | 4 0.000094         | 0.00005          | 0.95       | 02/16/10          | 02/18/10         | J, Ba              |
| Total HpCDD                            | EPA-5 1613B        | 47247 | 0.0000018    | 3 0.000047         | 0.000072         | 0.95       | 02/16/10          | 02/18/10         | J, Ba              |
| Total HpCDF                            | EPA-5 1613B        | 47247 | 0.000001     | 7 0.000047         | 0.000042         | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| Total HxCDD                            | EPA-5 1613B        | 47247 | 0.0000019    | 9 0.000047         | 0.000034         | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| Total HxCDF                            | EPA-5 1613B        | 47247 | 0.0000012    | 2 0.000047         | 0.000045         | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| Total PeCDD                            | EPA-5 1613B        | 47247 | 0.0000023    | 3 0.000047         | 0.000011         | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| Total PeCDF                            | EPA-5 1613B        | 47247 | 0.0000007    | 8 0.000047         | 0.000016         | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| Total TCDD                             | EPA-5 1613B        | 47247 | 0.0000014    | 4 0.0000094        | ND               | 0.95       | 02/16/10          | 02/18/10         |                    |
| Total TCDF                             | EPA-5 1613B        | 47247 | 0.0000006    | 50.0000094         | 0.0000015        | 0.95       | 02/16/10          | 02/18/10         | J, Q, Ba           |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%)  | )                  |       |              |                    | 69 %             |            |                   |                  |                    |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-197  | · /                |       |              |                    | 82 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23 | 3-140%)            |       |              |                    | 66 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28 | 3-143%)            |       |              |                    | 71 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26 | 5-138%)            |       |              |                    | 62 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-1 |                    |       |              |                    | 69 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1 | <i>'</i>           |       |              |                    | 71 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-1 |                    |       |              |                    | 67 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1 | *                  |       |              |                    | 75 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1 |                    |       |              |                    | 68 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDD (25-18  |                    |       |              |                    | 52 %             |            |                   |                  |                    |
| Surrogate: 13C-1,2,3,7,8-PeCDF (24-18. |                    |       |              |                    | 54 %             |            |                   |                  |                    |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1 |                    |       |              |                    | 74 %             |            |                   |                  |                    |
| Surrogate: 13C-2,3,4,7,8-PeCDF (21-176 |                    |       |              |                    | 53 %             |            |                   |                  |                    |
| Surrogate: 13C-2,3,7,8-TCDD (25-164%)  | )                  |       |              |                    | 63 %             |            |                   |                  |                    |
| Surrogate: 13C-OCDD (17-157%)          |                    |       |              |                    | 53 %             |            |                   |                  |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

#### **EPA-5 1613B**

| Analyte                                 | Method           | Batch        | MDL<br>Limit | Limit     | Sample<br>Result | Factor     | Extracted Extracted | Date<br>Analyzed | Qualifiers |
|-----------------------------------------|------------------|--------------|--------------|-----------|------------------|------------|---------------------|------------------|------------|
| Sample ID: ITB0887-04RE1 (Outfall 001   | (Composite) - Wa | ter) - cont. |              |           | Sample           | d: 02/06/1 | 10                  |                  |            |
| Reporting Units: ug/L                   |                  |              |              |           |                  |            |                     |                  |            |
| 2,3,7,8-TCDF                            | EPA-5 1613B      | 47247        | 0.000002     | 0.0000094 | ND               | 0.95       | 02/16/10            | 02/19/10         |            |
| Surrogate: 13C-2,3,7,8-TCDF (24-169%)   |                  |              |              |           | 76 %             |            |                     |                  |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD (35-197%) | 5)               |              |              |           | 81 %             |            |                     |                  |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001 Sampled: 02/06/10

Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **ASTM 5174-91**

| Analyte                              | Method       | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|--------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 001 ( |              |       |              | Sample             | ed: 02/06/1      | 10                 |                   |                  |                    |
| Reporting Units: pCi/L               |              |       |              |                    |                  |                    |                   |                  |                    |
| Total Uranium                        | ASTM 5174-91 | 53280 | 0.21         | 0.693              | 0.369            | 1                  | 02/23/10          | 02/26/10         | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001

Sampled: 02/06/10 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **EPA 900.0 MOD**

| Analyte                          | Method                  | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------|-------------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 0 | 01 (Composite) - Water) |       |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: pCi/L           |                         |       |              |                    |                  |                    |                   |                  |                    |
| Gross Alpha                      | EPA 900.0 MOD           | 43108 | 1.6          | 3                  | 6.9              | 1                  | 02/10/10          | 02/19/10         |                    |
| Gross Beta                       | EPA 900.0 MOD           | 43108 | 1.2          | 4                  | 8.1              | 1                  | 02/10/10          | 02/19/10         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001 Sampled: 02/06/10

Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **EPA 901.1 MOD**

| Analyte                          | Method                   | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |  |
|----------------------------------|--------------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|--|
| Sample ID: ITB0887-04 (Outfall ( | 001 (Composite) - Water) |       |              | Sampled: 02/06/10  |                  |                    |                   |                  |                    |  |
| Reporting Units: pCi/L           |                          |       |              |                    |                  |                    |                   |                  |                    |  |
| Cesium 137                       | EPA 901.1 MOD            | 42136 | 15           | 20                 | 1.3              | 1                  | 02/11/10          | 02/19/10         | U                  |  |
| Potassium 40                     | EPA 901.1 MOD            | 42136 | 290          | NA                 | -180             | 1                  | 02/11/10          | 02/19/10         | U                  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001

Sampled: 02/06/10 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### **EPA 903.0 MOD**

| Analyte                           | Method                  | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------|-------------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 00 | 01 (Composite) - Water) |       |              |                    | Sample           | d: 02/06/1         | 10                |                  |                    |
| Reporting Units: pCi/L            |                         |       |              |                    |                  |                    |                   |                  |                    |
| Radium (226)                      | EPA 903.0 MOD           | 41160 | 0.21         | 1                  | 0.06             | 1                  | 02/10/10          | 02/26/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10 Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887 Received
Attention: Bronwyn Kelly

### **EPA 904 MOD**

| Analyte                             | Method              | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------|---------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04RE1 (Outfall 0 | 01 (Composite) - Wa | ter)  |              | Sampled: 02/06/10  |                  |                    |                   |                  |                    |
| Reporting Units: pCi/L              |                     |       |              |                    |                  |                    |                   |                  |                    |
| Radium 228                          | EPA 904 MOD         | 60257 | 0.41         | 1                  | 0.18             | 1                  | 03/01/10          | 03/05/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10 Attention: Bronwyn Kelly

### **EPA 905 MOD**

| Analyte                            | Method                 | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|------------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 00) | 1 (Composite) - Water) |       |              |                    | Sample           | d: 02/06/1         | 10                |                  |                    |
| Reporting Units: pCi/L             |                        |       |              |                    |                  |                    |                   |                  |                    |
| Strontium 90                       | EPA 905 MOD            | 41162 | 0.64         | 3                  | -0.24            | 1                  | 02/10/10          | 02/19/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10 Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887 Attention: Bronwyn Kelly

### **EPA 906.0 MOD**

| Analyte                           | Method                 | Batch | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------|------------------------|-------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: ITB0887-04 (Outfall 00 | 1 (Composite) - Water) |       |              |                    | Sample           | ed: 02/06/1        | 10                |                  |                    |
| Reporting Units: pCi/L            |                        |       |              |                    |                  |                    |                   |                  |                    |
| Tritium                           | EPA 906.0 MOD          | 49035 | 96           | 500                | 65               | 1                  | 02/18/10          | 02/18/10         | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001 Sampled: 02/06/10

Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### SHORT HOLD TIME DETAIL REPORT

|                                            | Hold Time<br>(in days) | Date/Time<br>Sampled | Date/Time<br>Received | Date/Time<br>Extracted | Date/Time<br>Analyzed |
|--------------------------------------------|------------------------|----------------------|-----------------------|------------------------|-----------------------|
| Sample ID: Outfall 001 (Grab) (ITB0887-01) | - Water                |                      |                       |                        |                       |
| EPA 218.6                                  | 1                      | 02/06/2010 10:20     | 02/06/2010 17:00      | 02/06/2010 19:20       | 02/06/2010 20:27      |
| EPA 624                                    | 3                      | 02/06/2010 10:20     | 02/06/2010 17:00      | 02/08/2010 00:00       | 02/09/2010 01:19      |
| SM2540F                                    | 2                      | 02/06/2010 10:20     | 02/06/2010 17:00      | 02/07/2010 08:03       | 02/07/2010 09:00      |
| Sample ID: Trip Blank (ITB0887-02) - Water | r                      |                      |                       |                        |                       |
| EPA 624                                    | 3                      | 02/06/2010 10:20     | 02/06/2010 17:00      | 02/08/2010 00:00       | 02/09/2010 01:49      |
| Sample ID: Outfall 001 (Composite) (ITB088 | 7-04) - Water          |                      |                       |                        |                       |
| EPA 180.1                                  | 2                      | 02/06/2010 06:40     | 02/06/2010 17:00      | 02/07/2010 08:03       | 02/07/2010 08:30      |
| EPA 300.0                                  | 2                      | 02/06/2010 06:40     | 02/06/2010 17:00      | 02/07/2010 18:15       | 02/07/2010 18:31      |
| SM5210B                                    | 2                      | 02/06/2010 06:40     | 02/06/2010 17:00      | 02/07/2010 11:58       | 02/12/2010 16:10      |
| SM5540-C                                   | 2                      | 02/06/2010 06:40     | 02/06/2010 17:00      | 02/06/2010 20:00       | 02/06/2010 20:36      |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)**

| Analyte                                | Result                                       | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|----------------------------------------------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10B1582 Extracted: 02/12/10     | <u>)                                    </u> |                    |     |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/12/2010 (10B1582-B  | LK1)                                         |                    |     |       |                |                  |         |                |     |              |                    |
| GRO (C4 - C12)                         | ND                                           | 100                | 25  | ug/l  |                |                  |         |                |     |              |                    |
| Surrogate: 4-BFB (FID)                 | 9.01                                         |                    |     | ug/l  | 10.0           |                  | 90      | 65-140         |     |              |                    |
| LCS Analyzed: 02/12/2010 (10B1582-BS   | 1)                                           |                    |     |       |                |                  |         |                |     |              |                    |
| GRO (C4 - C12)                         | 824                                          | 100                | 25  | ug/l  | 800            |                  | 103     | 80-120         |     |              |                    |
| Surrogate: 4-BFB (FID)                 | 14.1                                         |                    |     | ug/l  | 10.0           |                  | 141     | 65-140         |     |              | Z2                 |
| Matrix Spike Analyzed: 02/12/2010 (10B | 81582-MS1)                                   |                    |     |       | Sou            | rce: ITB         | 1073-01 |                |     |              |                    |
| GRO (C4 - C12)                         | 296                                          | 100                | 25  | ug/l  | 220            | ND               | 134     | 65-140         |     |              |                    |
| Surrogate: 4-BFB (FID)                 | 8.45                                         |                    |     | ug/l  | 10.0           |                  | 84      | 65-140         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/12/2010  | (10B1582-M                                   | SD1)               |     |       | Sou            | rce: ITB         | 1073-01 |                |     |              |                    |
| GRO (C4 - C12)                         | 267                                          | 100                | 25  | ug/l  | 220            | ND               | 122     | 65-140         | 10  | 20           |                    |
| Surrogate: 4-BFB (FID)                 | 8.42                                         |                    |     | ug/l  | 10.0           |                  | 84      | 65-140         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing P:

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### EXTRACTABLE FUEL HYDROCARBONS (EPA 3510C/EPA 8015B)

| Analyte                               | Result  | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|---------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 10B1526 Extracted: 02/12/10    | _       |                    |     |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 02/12/2010 (10B1526-B | LK1)    |                    |     |       |                |                  |      |                |     |              |                    |
| DRO (C13 - C28)                       | ND      | 100                | 50  | ug/l  |                |                  |      |                |     |              |                    |
| EFH (C10 - C28)                       | ND      | 100                | 50  | ug/l  |                |                  |      |                |     |              |                    |
| Surrogate: n-Octacosane               | 145     |                    |     | ug/l  | 200            |                  | 72   | 45-120         |     |              |                    |
| LCS Analyzed: 02/12/2010 (10B1526-BS  | 1)      |                    |     |       |                |                  |      |                |     |              | MNR1               |
| EFH (C10 - C28)                       | 547     | 100                | 50  | ug/l  | 1000           |                  | 55   | 40-115         |     |              |                    |
| Surrogate: n-Octacosane               | 116     |                    |     | ug/l  | 200            |                  | 58   | 45-120         |     |              |                    |
| LCS Dup Analyzed: 02/12/2010 (10B1520 | 6-BSD1) |                    |     |       |                |                  |      |                |     |              |                    |
| EFH (C10 - C28)                       | 584     | 100                | 50  | ug/l  | 1000           |                  | 58   | 40-115         | 7   | 25           |                    |
| Surrogate: n-Octacosane               | 125     |                    |     | ug/l  | 200            |                  | 63   | 45-120         |     |              |                    |

MWH-Pasadena/Boeing

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10
Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

|                                      |        | Reporting |      |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|--------------------------------------|--------|-----------|------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                              | Result | Limit     | MDL  | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 10B0840 Extracted: 02/08/     | 10     |           |      |       |       |        |      |        |     |       |            |
|                                      |        |           |      |       |       |        |      |        |     |       |            |
| Blank Analyzed: 02/08/2010 (10B0840  | -BLK1) |           |      |       |       |        |      |        |     |       |            |
| Benzene                              | ND     | 0.50      | 0.28 | ug/l  |       |        |      |        |     |       |            |
| Bromodichloromethane                 | ND     | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| Bromoform                            | ND     | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| Bromomethane                         | ND     | 1.0       | 0.42 | ug/l  |       |        |      |        |     |       |            |
| Carbon tetrachloride                 | ND     | 0.50      | 0.28 | ug/l  |       |        |      |        |     |       |            |
| Chlorobenzene                        | ND     | 0.50      | 0.36 | ug/l  |       |        |      |        |     |       |            |
| Chloroethane                         | ND     | 1.0       | 0.40 | ug/l  |       |        |      |        |     |       |            |
| Chloroform                           | ND     | 0.50      | 0.33 | ug/l  |       |        |      |        |     |       |            |
| Chloromethane                        | ND     | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| Dibromochloromethane                 | ND     | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichlorobenzene                  | ND     | 0.50      | 0.32 | ug/l  |       |        |      |        |     |       |            |
| 1,3-Dichlorobenzene                  | ND     | 0.50      | 0.35 | ug/l  |       |        |      |        |     |       |            |
| 1,4-Dichlorobenzene                  | ND     | 0.50      | 0.37 | ug/l  |       |        |      |        |     |       |            |
| 1,1-Dichloroethane                   | ND     | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichloroethane                   | ND     | 0.50      | 0.28 | ug/l  |       |        |      |        |     |       |            |
| 1,1-Dichloroethene                   | ND     | 0.50      | 0.42 | ug/l  |       |        |      |        |     |       |            |
| cis-1,2-Dichloroethene               | ND     | 0.50      | 0.32 | ug/l  |       |        |      |        |     |       |            |
| trans-1,2-Dichloroethene             | ND     | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichloropropane                  | ND     | 0.50      | 0.35 | ug/l  |       |        |      |        |     |       |            |
| cis-1,3-Dichloropropene              | ND     | 0.50      | 0.22 | ug/l  |       |        |      |        |     |       |            |
| trans-1,3-Dichloropropene            | ND     | 0.50      | 0.32 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichloro-1,1,2-trifluoroethane   | ND     | 2.0       | 1.1  | ug/l  |       |        |      |        |     |       |            |
| Ethylbenzene                         | ND     | 0.50      | 0.25 | ug/l  |       |        |      |        |     |       |            |
| Methylene chloride                   | ND     | 1.0       | 0.95 | ug/l  |       |        |      |        |     |       |            |
| 1,1,2,2-Tetrachloroethane            | ND     | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| Tetrachloroethene                    | ND     | 0.50      | 0.32 | ug/l  |       |        |      |        |     |       |            |
| Toluene                              | ND     | 0.50      | 0.36 | ug/l  |       |        |      |        |     |       |            |
| 1,1,1-Trichloroethane                | ND     | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| 1,1,2-Trichloroethane                | ND     | 0.50      | 0.30 | ug/l  |       |        |      |        |     |       |            |
| Trichloroethene                      | ND     | 0.50      | 0.26 | ug/l  |       |        |      |        |     |       |            |
| Trichlorofluoromethane               | ND     | 0.50      | 0.34 | ug/l  |       |        |      |        |     |       |            |
| Trichlorotrifluoroethane (Freon 113) | ND     | 5.0       | 0.50 | ug/l  |       |        |      |        |     |       |            |
| Vinyl chloride                       | ND     | 0.50      | 0.40 | ug/l  |       |        |      |        |     |       |            |
| Xylenes, Total                       | ND     | 1.5       | 0.90 | ug/l  |       |        |      |        |     |       |            |
| Cyclohexane                          | ND     | 1.0       | 0.40 | ug/l  |       |        |      |        |     |       |            |
|                                      |        |           |      |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                  | Result   | Reporting<br>Limit | MDL  | Units  | Spike<br>Level | Source | %REC  | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------|----------|--------------------|------|--------|----------------|--------|-------|--------|------|--------------|--------------------|
| ·                                        |          | Limit              | MIDL | Cilits | Level          | Kesuit | /OKEC | Limits | KI D | Limit        | Quanners           |
| <b>Batch:</b> 10B0840 Extracted: 02/08/1 | <u>0</u> |                    |      |        |                |        |       |        |      |              |                    |
| Blank Analyzed: 02/08/2010 (10B0840-l    | BLK1)    |                    |      |        |                |        |       |        |      |              |                    |
| Surrogate: 4-Bromofluorobenzene          | 23.4     |                    |      | ug/l   | 25.0           |        | 94    | 80-120 |      |              |                    |
| Surrogate: Dibromofluoromethane          | 25.6     |                    |      | ug/l   | 25.0           |        | 102   | 80-120 |      |              |                    |
| Surrogate: Toluene-d8                    | 27.0     |                    |      | ug/l   | 25.0           |        | 108   | 80-120 |      |              |                    |
| LCS Analyzed: 02/08/2010 (10B0840-B      | S1)      |                    |      |        |                |        |       |        |      |              |                    |
| Benzene                                  | 23.2     | 0.50               | 0.28 | ug/l   | 25.0           |        | 93    | 70-120 |      |              |                    |
| Bromodichloromethane                     | 24.0     | 0.50               | 0.30 | ug/l   | 25.0           |        | 96    | 70-135 |      |              |                    |
| Bromoform                                | 20.1     | 0.50               | 0.40 | ug/l   | 25.0           |        | 81    | 55-130 |      |              |                    |
| Bromomethane                             | 28.6     | 1.0                | 0.42 | ug/l   | 25.0           |        | 115   | 65-140 |      |              |                    |
| Carbon tetrachloride                     | 24.9     | 0.50               | 0.28 | ug/l   | 25.0           |        | 99    | 65-140 |      |              |                    |
| Chlorobenzene                            | 24.7     | 0.50               | 0.36 | ug/l   | 25.0           |        | 99    | 75-120 |      |              |                    |
| Chloroethane                             | 26.6     | 1.0                | 0.40 | ug/l   | 25.0           |        | 107   | 60-140 |      |              |                    |
| Chloroform                               | 24.0     | 0.50               | 0.33 | ug/l   | 25.0           |        | 96    | 70-130 |      |              |                    |
| Chloromethane                            | 28.4     | 0.50               | 0.40 | ug/l   | 25.0           |        | 114   | 50-140 |      |              |                    |
| Dibromochloromethane                     | 22.3     | 0.50               | 0.40 | ug/l   | 25.0           |        | 89    | 70-140 |      |              |                    |
| 1,2-Dichlorobenzene                      | 24.5     | 0.50               | 0.32 | ug/l   | 25.0           |        | 98    | 75-120 |      |              |                    |
| 1,3-Dichlorobenzene                      | 25.1     | 0.50               | 0.35 | ug/l   | 25.0           |        | 100   | 75-120 |      |              |                    |
| 1,4-Dichlorobenzene                      | 24.6     | 0.50               | 0.37 | ug/l   | 25.0           |        | 99    | 75-120 |      |              |                    |
| 1,1-Dichloroethane                       | 23.8     | 0.50               | 0.40 | ug/l   | 25.0           |        | 95    | 70-125 |      |              |                    |
| 1,2-Dichloroethane                       | 23.1     | 0.50               | 0.28 | ug/l   | 25.0           |        | 92    | 60-140 |      |              |                    |
| 1,1-Dichloroethene                       | 26.6     | 0.50               | 0.42 | ug/l   | 25.0           |        | 106   | 70-125 |      |              |                    |
| cis-1,2-Dichloroethene                   | 26.5     | 0.50               | 0.32 | ug/l   | 25.0           |        | 106   | 70-125 |      |              |                    |
| trans-1,2-Dichloroethene                 | 25.9     | 0.50               | 0.30 | ug/l   | 25.0           |        | 104   | 70-125 |      |              |                    |
| 1,2-Dichloropropane                      | 21.7     | 0.50               | 0.35 | ug/l   | 25.0           |        | 87    | 70-125 |      |              |                    |
| cis-1,3-Dichloropropene                  | 25.8     | 0.50               | 0.22 | ug/l   | 25.0           |        | 103   | 75-125 |      |              |                    |
| trans-1,3-Dichloropropene                | 19.9     | 0.50               | 0.32 | ug/l   | 25.0           |        | 80    | 70-125 |      |              |                    |
| Ethylbenzene                             | 25.0     | 0.50               | 0.25 | ug/l   | 25.0           |        | 100   | 75-125 |      |              |                    |
| Methylene chloride                       | 24.0     | 1.0                | 0.95 | ug/l   | 25.0           |        | 96    | 55-130 |      |              |                    |
| 1,1,2,2-Tetrachloroethane                | 25.5     | 0.50               | 0.30 | ug/l   | 25.0           |        | 102   | 55-130 |      |              |                    |
| Tetrachloroethene                        | 25.2     | 0.50               | 0.32 | ug/l   | 25.0           |        | 101   | 70-125 |      |              |                    |
| Toluene                                  | 24.1     | 0.50               | 0.36 | ug/l   | 25.0           |        | 96    | 70-120 |      |              |                    |
| 1,1,1-Trichloroethane                    | 24.2     | 0.50               | 0.30 | ug/l   | 25.0           |        | 97    | 65-135 |      |              |                    |
| 1,1,2-Trichloroethane                    | 24.2     | 0.50               | 0.30 | ug/l   | 25.0           |        | 97    | 70-125 |      |              |                    |
| Trichloroethene                          | 25.6     | 0.50               | 0.26 | ug/l   | 25.0           |        | 102   | 70-125 |      |              |                    |
| Trichlorofluoromethane                   | 28.1     | 0.50               | 0.34 | ug/l   | 25.0           |        | 112   | 65-145 |      |              |                    |
| Vinyl chloride                           | 33.6     | 0.50               | 0.40 | ug/l   | 25.0           |        | 134   | 55-135 |      |              |                    |
| Toot A marina Invina                     |          |                    |      |        |                |        |       |        |      |              |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                                | Result     | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source    | %REC    | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|------|-------|----------------|-----------|---------|--------|------|--------------|--------------------|
| •                                      |            | Limit              | MIDL | Units | Levei          | Result    | /0KEC   | Limits | KI D | Lillit       | Quanners           |
| Batch: 10B0840 Extracted: 02/08/10     | <u>)</u>   |                    |      |       |                |           |         |        |      |              |                    |
| LCS Analyzed: 02/08/2010 (10B0840-BS   | 1)         |                    |      |       |                |           |         |        |      |              |                    |
| Xylenes, Total                         | 77.5       | 1.5                | 0.90 | ug/l  | 75.0           |           | 103     | 70-125 |      |              |                    |
| Surrogate: 4-Bromofluorobenzene        | 25.5       |                    |      | ug/l  | 25.0           |           | 102     | 80-120 |      |              |                    |
| Surrogate: Dibromofluoromethane        | 26.0       |                    |      | ug/l  | 25.0           |           | 104     | 80-120 |      |              |                    |
| Surrogate: Toluene-d8                  | 26.4       |                    |      | ug/l  | 25.0           |           | 105     | 80-120 |      |              |                    |
| Matrix Spike Analyzed: 02/08/2010 (10B | 30840-MS1) |                    |      |       | Sou            | rce: ITB( | 0892-01 |        |      |              |                    |
| Benzene                                | 24.9       | 0.50               | 0.28 | ug/l  | 25.0           | ND        | 100     | 65-125 |      |              |                    |
| Bromodichloromethane                   | 27.4       | 0.50               | 0.30 | ug/l  | 25.0           | ND        | 109     | 70-135 |      |              |                    |
| Bromoform                              | 22.2       | 0.50               | 0.40 | ug/l  | 25.0           | ND        | 89      | 55-135 |      |              |                    |
| Bromomethane                           | 30.0       | 1.0                | 0.42 | ug/l  | 25.0           | ND        | 120     | 55-145 |      |              |                    |
| Carbon tetrachloride                   | 25.9       | 0.50               | 0.28 | ug/l  | 25.0           | ND        | 103     | 65-140 |      |              |                    |
| Chlorobenzene                          | 26.9       | 0.50               | 0.36 | ug/l  | 25.0           | ND        | 108     | 75-125 |      |              |                    |
| Chloroethane                           | 28.3       | 1.0                | 0.40 | ug/l  | 25.0           | ND        | 113     | 55-140 |      |              |                    |
| Chloroform                             | 27.1       | 0.50               | 0.33 | ug/l  | 25.0           | ND        | 108     | 65-135 |      |              |                    |
| Chloromethane                          | 29.6       | 0.50               | 0.40 | ug/l  | 25.0           | ND        | 118     | 45-145 |      |              |                    |
| Dibromochloromethane                   | 25.1       | 0.50               | 0.40 | ug/l  | 25.0           | ND        | 100     | 65-140 |      |              |                    |
| 1,2-Dichlorobenzene                    | 26.3       | 0.50               | 0.32 | ug/l  | 25.0           | ND        | 105     | 75-125 |      |              |                    |
| 1,3-Dichlorobenzene                    | 27.5       | 0.50               | 0.35 | ug/l  | 25.0           | ND        | 110     | 75-125 |      |              |                    |
| 1,4-Dichlorobenzene                    | 27.0       | 0.50               | 0.37 | ug/l  | 25.0           | ND        | 108     | 75-125 |      |              |                    |
| 1,1-Dichloroethane                     | 26.2       | 0.50               | 0.40 | ug/l  | 25.0           | ND        | 105     | 65-130 |      |              |                    |
| 1,2-Dichloroethane                     | 25.0       | 0.50               | 0.28 | ug/l  | 25.0           | ND        | 100     | 60-140 |      |              |                    |
| 1,1-Dichloroethene                     | 27.3       | 0.50               | 0.42 | ug/l  | 25.0           | ND        | 109     | 60-130 |      |              |                    |
| cis-1,2-Dichloroethene                 | 29.2       | 0.50               | 0.32 | ug/l  | 25.0           | ND        | 117     | 65-130 |      |              |                    |
| trans-1,2-Dichloroethene               | 27.6       | 0.50               | 0.30 | ug/l  | 25.0           | ND        | 111     | 65-130 |      |              |                    |
| 1,2-Dichloropropane                    | 24.3       | 0.50               | 0.35 | ug/l  | 25.0           | ND        | 97      | 65-130 |      |              |                    |
| cis-1,3-Dichloropropene                | 29.5       | 0.50               | 0.22 | ug/l  | 25.0           | ND        | 118     | 70-130 |      |              |                    |
| trans-1,3-Dichloropropene              | 22.6       | 0.50               | 0.32 | ug/l  | 25.0           | ND        | 90      | 65-135 |      |              |                    |
| Ethylbenzene                           | 26.3       | 0.50               | 0.25 | ug/l  | 25.0           | ND        | 105     | 65-130 |      |              |                    |
| Methylene chloride                     | 26.0       | 1.0                | 0.95 | ug/l  | 25.0           | ND        | 104     | 50-135 |      |              |                    |
| 1,1,2,2-Tetrachloroethane              | 26.1       | 0.50               | 0.30 | ug/l  | 25.0           | ND        | 104     | 55-135 |      |              |                    |
| Tetrachloroethene                      | 26.4       | 0.50               | 0.32 | ug/l  | 25.0           | ND        | 106     | 65-130 |      |              |                    |
| Toluene                                | 25.9       | 0.50               | 0.36 | ug/l  | 25.0           | ND        | 104     | 70-125 |      |              |                    |
| 1,1,1-Trichloroethane                  | 25.8       | 0.50               | 0.30 | ug/l  | 25.0           | ND        | 103     | 65-140 |      |              |                    |
| 1,1,2-Trichloroethane                  | 26.8       | 0.50               | 0.30 | ug/l  | 25.0           | ND        | 107     | 65-130 |      |              |                    |
| Trichloroethene                        | 26.8       | 0.50               | 0.26 | ug/l  | 25.0           | ND        | 107     | 65-125 |      |              |                    |
| Trichlorofluoromethane                 | 29.0       | 0.50               | 0.34 | ug/l  | 25.0           | ND        | 116     | 60-145 |      |              |                    |
| Tost A moving Inving                   |            |                    |      |       |                |           |         |        |      |              |                    |

#### **TestAmerica Irvine**



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

## METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

| Analyte                               | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC   | %REC   | RPD  | RPD<br>Limit | Data<br>Oualifiers |
|---------------------------------------|--------------|--------------------|------|-------|----------------|------------------|--------|--------|------|--------------|--------------------|
| ·                                     |              | Limit              | WIDE | Chits | Level          | resure           | /UKEC  | Limits | KI D | Limit        | Quamiers           |
| Batch: 10B0840 Extracted: 02/08/1     | <u>.0</u>    |                    |      |       |                |                  |        |        |      |              |                    |
| Matrix Spike Analyzed: 02/08/2010 (10 | B0840-MS1)   |                    |      |       | Sou            | rce: ITB(        | 892-01 |        |      |              |                    |
| Vinyl chloride                        | 34.1         | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 137    | 45-140 |      |              |                    |
| Xylenes, Total                        | 83.0         | 1.5                | 0.90 | ug/l  | 75.0           | ND               | 111    | 60-130 |      |              |                    |
| Surrogate: 4-Bromofluorobenzene       | 26.5         |                    |      | ug/l  | 25.0           |                  | 106    | 80-120 |      |              |                    |
| Surrogate: Dibromofluoromethane       | 26.8         |                    |      | ug/l  | 25.0           |                  | 107    | 80-120 |      |              |                    |
| Surrogate: Toluene-d8                 | 26.7         |                    |      | ug/l  | 25.0           |                  | 107    | 80-120 |      |              |                    |
| Matrix Spike Dup Analyzed: 02/08/201  | 0 (10B0840-M | SD1)               |      |       | Sou            | rce: ITB(        | 892-01 |        |      |              |                    |
| Benzene                               | 23.8         | 0.50               | 0.28 | ug/l  | 25.0           | ND               | 95     | 65-125 | 4    | 20           |                    |
| Bromodichloromethane                  | 25.6         | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 102    | 70-135 | 7    | 20           |                    |
| Bromoform                             | 21.2         | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 85     | 55-135 | 5    | 25           |                    |
| Bromomethane                          | 29.2         | 1.0                | 0.42 | ug/l  | 25.0           | ND               | 117    | 55-145 | 3    | 25           |                    |
| Carbon tetrachloride                  | 25.1         | 0.50               | 0.28 | ug/l  | 25.0           | ND               | 100    | 65-140 | 3    | 25           |                    |
| Chlorobenzene                         | 26.0         | 0.50               | 0.36 | ug/l  | 25.0           | ND               | 104    | 75-125 | 3    | 20           |                    |
| Chloroethane                          | 26.8         | 1.0                | 0.40 | ug/l  | 25.0           | ND               | 107    | 55-140 | 5    | 25           |                    |
| Chloroform                            | 25.4         | 0.50               | 0.33 | ug/l  | 25.0           | ND               | 102    | 65-135 | 6    | 20           |                    |
| Chloromethane                         | 28.7         | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 115    | 45-145 | 3    | 25           |                    |
| Dibromochloromethane                  | 23.7         | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 95     | 65-140 | 6    | 25           |                    |
| 1,2-Dichlorobenzene                   | 25.2         | 0.50               | 0.32 | ug/l  | 25.0           | ND               | 101    | 75-125 | 4    | 20           |                    |
| 1,3-Dichlorobenzene                   | 26.2         | 0.50               | 0.35 | ug/l  | 25.0           | ND               | 105    | 75-125 | 5    | 20           |                    |
| 1,4-Dichlorobenzene                   | 25.9         | 0.50               | 0.37 | ug/l  | 25.0           | ND               | 103    | 75-125 | 4    | 20           |                    |
| 1,1-Dichloroethane                    | 25.1         | 0.50               | 0.40 | ug/l  | 25.0           | ND               | 100    | 65-130 | 4    | 20           |                    |
| 1,2-Dichloroethane                    | 23.4         | 0.50               | 0.28 | ug/l  | 25.0           | ND               | 94     | 60-140 | 6    | 20           |                    |
| 1,1-Dichloroethene                    | 26.4         | 0.50               | 0.42 | ug/l  | 25.0           | ND               | 106    | 60-130 | 3    | 20           |                    |
| cis-1,2-Dichloroethene                | 27.3         | 0.50               | 0.32 | ug/l  | 25.0           | ND               | 109    | 65-130 | 7    | 20           |                    |
| trans-1,2-Dichloroethene              | 26.2         | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 105    | 65-130 | 6    | 20           |                    |
| 1,2-Dichloropropane                   | 23.2         | 0.50               | 0.35 | ug/l  | 25.0           | ND               | 93     | 65-130 | 5    | 20           |                    |
| cis-1,3-Dichloropropene               | 28.0         | 0.50               | 0.22 | ug/l  | 25.0           | ND               | 112    | 70-130 | 5    | 20           |                    |
| trans-1,3-Dichloropropene             | 20.9         | 0.50               | 0.32 | ug/l  | 25.0           | ND               | 84     | 65-135 | 8    | 25           |                    |
| Ethylbenzene                          | 25.5         | 0.50               | 0.25 | ug/l  | 25.0           | ND               | 102    | 65-130 | 3    | 20           |                    |
| Methylene chloride                    | 25.0         | 1.0                | 0.95 | ug/l  | 25.0           | ND               | 100    | 50-135 | 4    | 20           |                    |
| 1,1,2,2-Tetrachloroethane             | 24.5         | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 98     | 55-135 | 6    | 30           |                    |
| Tetrachloroethene                     | 25.8         | 0.50               | 0.32 | ug/l  | 25.0           | ND               | 103    | 65-130 | 2    | 20           |                    |
| Toluene                               | 24.8         | 0.50               | 0.36 | ug/l  | 25.0           | ND               | 99     | 70-125 | 4    | 20           |                    |
| 1,1,1-Trichloroethane                 | 25.1         | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 100    | 65-140 | 3    | 20           |                    |
| 1,1,2-Trichloroethane                 | 24.4         | 0.50               | 0.30 | ug/l  | 25.0           | ND               | 97     | 65-130 | 9    | 25           |                    |
| Trichloroethene                       | 25.8         | 0.50               | 0.26 | ug/l  | 25.0           | ND               | 103    | 65-125 | 4    | 20           |                    |
|                                       |              |                    |      |       |                |                  |        |        |      |              |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

## METHOD BLANK/QC DATA

### **PURGEABLES BY GC/MS (EPA 624)**

|                                       |             | Reporting |      |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|---------------------------------------|-------------|-----------|------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                               | Result      | Limit     | MDL  | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B0840 Extracted: 02/08/10    | _           |           |      |       |       |           |         |        |     |       |            |
| Matrix Spike Dup Analyzed: 02/08/2010 | (10B0840-MS | D1)       |      |       | Sou   | rce: ITB( | 0892-01 |        |     |       |            |
| Trichlorofluoromethane                | 28.2        | 0.50      | 0.34 | ug/l  | 25.0  | ND        | 113     | 60-145 | 3   | 25    |            |
| Vinyl chloride                        | 33.1        | 0.50      | 0.40 | ug/l  | 25.0  | ND        | 132     | 45-140 | 3   | 30    |            |
| Xylenes, Total                        | 81.0        | 1.5       | 0.90 | ug/l  | 75.0  | ND        | 108     | 60-130 | 2   | 20    |            |
| Surrogate: 4-Bromofluorobenzene       | 25.8        |           |      | ug/l  | 25.0  |           | 103     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane       | 26.7        |           |      | ug/l  | 25.0  |           | 107     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                 | 26.3        |           |      | ug/l  | 25.0  |           | 105     | 80-120 |     |       |            |

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **PURGEABLES-- GC/MS (EPA 624)**

|                                        |            | Reporting |     |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|-----|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B0840 Extracted: 02/08/10     | <u>.</u>   |           |     |       |       |           |         |        |     |       |            |
|                                        |            |           |     |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/08/2010 (10B0840-B  | LK1)       |           |     |       |       |           |         |        |     |       |            |
| Acrolein                               | ND         | 5.0       | 4.0 | ug/l  |       |           |         |        |     |       |            |
| Acrylonitrile                          | ND         | 2.0       | 1.2 | ug/l  |       |           |         |        |     |       |            |
| 2-Chloroethyl vinyl ether              | ND         | 5.0       | 1.8 | ug/l  |       |           |         |        |     |       |            |
| Surrogate: 4-Bromofluorobenzene        | 23.4       |           |     | ug/l  | 25.0  |           | 94      | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 25.6       |           |     | ug/l  | 25.0  |           | 102     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 27.0       |           |     | ug/l  | 25.0  |           | 108     | 80-120 |     |       |            |
| LCS Analyzed: 02/08/2010 (10B0840-BS   | 1)         |           |     |       |       |           |         |        |     |       |            |
| 2-Chloroethyl vinyl ether              | 13.8       | 5.0       | 1.8 | ug/l  | 25.0  |           | 55      | 25-170 |     |       |            |
| Surrogate: 4-Bromofluorobenzene        | 25.5       |           |     | ug/l  | 25.0  |           | 102     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 26.0       |           |     | ug/l  | 25.0  |           | 104     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 26.4       |           |     | ug/l  | 25.0  |           | 105     | 80-120 |     |       |            |
| Matrix Spike Analyzed: 02/08/2010 (10B | 0840-MS1)  |           |     |       | Sou   | rce: ITB( | 0892-01 |        |     |       |            |
| 2-Chloroethyl vinyl ether              | 13.8       | 5.0       | 1.8 | ug/l  | 25.0  | ND        | 55      | 25-170 |     |       |            |
| Surrogate: 4-Bromofluorobenzene        | 26.5       |           |     | ug/l  | 25.0  |           | 106     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 26.8       |           |     | ug/l  | 25.0  |           | 107     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 26.7       |           |     | ug/l  | 25.0  |           | 107     | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 02/08/2010  | (10B0840-M | ISD1)     |     |       | Sou   | rce: ITB( | 0892-01 |        |     |       |            |
| 2-Chloroethyl vinyl ether              | 12.8       | 5.0       | 1.8 | ug/l  | 25.0  | ND        | 51      | 25-170 | 7   | 25    |            |
| Surrogate: 4-Bromofluorobenzene        | 25.8       |           |     | ug/l  | 25.0  |           | 103     | 80-120 |     |       |            |
| Surrogate: Dibromofluoromethane        | 26.7       |           |     | ug/l  | 25.0  |           | 107     | 80-120 |     |       |            |
| Surrogate: Toluene-d8                  | 26.3       |           |     | ug/l  | 25.0  |           | 105     | 80-120 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

## METHOD BLANK/QC DATA

# 1,4-DIOXANE BY GCMS - SINGLE ION MONITORING (SIM)

| Analyte                                | Result     | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10B0317 Extracted: 02/08/10     | -          |                    |     |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/08/2010 (10B0317-B  | LK1)       |                    |     |       |                |                  |         |                |     |              |                    |
| 1,4-Dioxane                            | ND         | 2.0                | 1.0 | ug/l  |                |                  |         |                |     |              |                    |
| Surrogate: Dibromofluoromethane        | 0.980      |                    |     | ug/l  | 1.00           |                  | 98      | 80-120         |     |              |                    |
| LCS Analyzed: 02/08/2010 (10B0317-BS)  | 1)         |                    |     |       |                |                  |         |                |     |              |                    |
| 1,4-Dioxane                            | 9.80       | 2.0                | 1.0 | ug/l  | 10.0           |                  | 98      | 70-125         |     |              |                    |
| Surrogate: Dibromofluoromethane        | 0.960      |                    |     | ug/l  | 1.00           |                  | 96      | 80-120         |     |              |                    |
| Matrix Spike Analyzed: 02/08/2010 (10B | 0317-MS1)  |                    |     |       | Sou            | rce: ITB(        | 0632-01 |                |     |              |                    |
| 1,4-Dioxane                            | 9.00       | 2.0                | 1.0 | ug/l  | 10.0           | ND               | 90      | 70-130         |     |              |                    |
| Surrogate: Dibromofluoromethane        | 1.03       |                    |     | ug/l  | 1.00           |                  | 103     | 80-120         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/08/2010  | (10B0317-M | SD1)               |     |       | Sou            | rce: ITB(        | 0632-01 |                |     |              |                    |
| 1,4-Dioxane                            | 9.37       | 2.0                | 1.0 | ug/l  | 10.0           | ND               | 94      | 70-130         | 4   | 30           |                    |
| Surrogate: Dibromofluoromethane        | 1.02       |                    |     | ug/l  | 1.00           |                  | 102     | 80-120         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

RPD

Data

Project ID: Annual Outfall 001

Annual Outfall 001

Sampled: 02/06/10 Report Number: ITB0887 Received: 02/06/10

Spike

Source

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Reporting

|                                       |                                              | Reporting |      |       | Spike | Source |      | %REC   |     | KPD   | Data       |
|---------------------------------------|----------------------------------------------|-----------|------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                               | Result                                       | Limit     | MDL  | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 10B1159 Extracted: 02/10/10    | <u>)                                    </u> |           |      |       |       |        |      |        |     |       |            |
|                                       |                                              |           |      |       |       |        |      |        |     |       |            |
| Blank Analyzed: 02/15/2010 (10B1159-B | BLK1)                                        |           |      |       |       |        |      |        |     |       |            |
| Acenaphthene                          | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Acenaphthylene                        | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Aniline                               | ND                                           | 10        | 0.30 | ug/l  |       |        |      |        |     |       |            |
| Anthracene                            | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Benzidine                             | ND                                           | 5.0       | 5.0  | ug/l  |       |        |      |        |     |       |            |
| Benzo(a)anthracene                    | ND                                           | 5.0       | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Benzo(a)pyrene                        | ND                                           | 2.0       | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Benzo(b)fluoranthene                  | ND                                           | 2.0       | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Benzo(g,h,i)perylene                  | ND                                           | 5.0       | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Benzo(k)fluoranthene                  | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Benzoic acid                          | ND                                           | 20        | 3.0  | ug/l  |       |        |      |        |     |       |            |
| Benzyl alcohol                        | ND                                           | 5.0       | 0.10 | ug/l  |       |        |      |        |     |       |            |
| 4-Bromophenyl phenyl ether            | ND                                           | 1.0       | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Butyl benzyl phthalate                | ND                                           | 5.0       | 0.70 | ug/l  |       |        |      |        |     |       |            |
| 4-Chloro-3-methylphenol               | ND                                           | 2.0       | 0.20 | ug/l  |       |        |      |        |     |       |            |
| 4-Chloroaniline                       | ND                                           | 2.0       | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Bis(2-chloroethoxy)methane            | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Bis(2-chloroethyl)ether               | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Bis(2-chloroisopropyl)ether           | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Bis(2-ethylhexyl)phthalate            | ND                                           | 5.0       | 1.7  | ug/l  |       |        |      |        |     |       |            |
| 2-Chloronaphthalene                   | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| 2-Chlorophenol                        | ND                                           | 1.0       | 0.20 | ug/l  |       |        |      |        |     |       |            |
| 4-Chlorophenyl phenyl ether           | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Chrysene                              | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Dibenz(a,h)anthracene                 | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Dibenzofuran                          | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| Di-n-butyl phthalate                  | ND                                           | 2.0       | 0.20 | ug/l  |       |        |      |        |     |       |            |
| 1,2-Dichlorobenzene                   | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| 1,3-Dichlorobenzene                   | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
| 1,4-Dichlorobenzene                   | ND                                           | 0.50      | 0.20 | ug/l  |       |        |      |        |     |       |            |
| 3,3'-Dichlorobenzidine                | ND                                           | 5.0       | 5.0  | ug/l  |       |        |      |        |     |       |            |
| 2,4-Dichlorophenol                    | ND                                           | 2.0       | 0.20 | ug/l  |       |        |      |        |     |       |            |
| Diethyl phthalate                     | ND                                           | 1.0       | 0.10 | ug/l  |       |        |      |        |     |       |            |
| 2,4-Dimethylphenol                    | ND                                           | 2.0       | 0.30 | ug/l  |       |        |      |        |     |       |            |
| Dimethyl phthalate                    | ND                                           | 0.50      | 0.10 | ug/l  |       |        |      |        |     |       |            |
|                                       |                                              |           |      |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10
Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                               | Result   | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC  | %REC   | RPD | RPD<br>Limit | Data<br>Qualifiers |
|---------------------------------------|----------|--------------------|------|-------|----------------|------------------|-------|--------|-----|--------------|--------------------|
| •                                     |          | Ziiiii             | WIDE | Circs | Ecver          | resure           | /UILE | Limits | I L | Limit        | Quantiers          |
| Batch: 10B1159 Extracted: 02/10/10    | <u>)</u> |                    |      |       |                |                  |       |        |     |              |                    |
| Blank Analyzed: 02/15/2010 (10B1159-E | RLK1)    |                    |      |       |                |                  |       |        |     |              |                    |
| 4,6-Dinitro-2-methylphenol            | ND       | 5.0                | 0.20 | ug/l  |                |                  |       |        |     |              |                    |
| 2,4-Dinitrophenol                     | ND       | 5.0                | 0.90 | ug/l  |                |                  |       |        |     |              |                    |
| 2,4-Dinitrotoluene                    | ND       | 5.0                | 0.20 | ug/l  |                |                  |       |        |     |              |                    |
| 2,6-Dinitrotoluene                    | ND       | 5.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Di-n-octyl phthalate                  | ND       | 5.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 1,2-Diphenylhydrazine/Azobenzene      | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Fluoranthene                          | ND       | 0.50               | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Fluorene                              | ND       | 0.50               | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Hexachlorobenzene                     | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Hexachlorobutadiene                   | ND       | 2.0                | 0.20 | ug/l  |                |                  |       |        |     |              |                    |
| Hexachlorocyclopentadiene             | ND       | 5.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Hexachloroethane                      | ND       | 3.0                | 0.20 | ug/l  |                |                  |       |        |     |              |                    |
| Indeno(1,2,3-cd)pyrene                | ND       | 2.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Isophorone                            | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 2-Methylnaphthalene                   | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 2-Methylphenol                        | ND       | 2.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 4-Methylphenol                        | ND       | 5.0                | 0.20 | ug/l  |                |                  |       |        |     |              |                    |
| Naphthalene                           | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 2-Nitroaniline                        | ND       | 5.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 3-Nitroaniline                        | ND       | 5.0                | 0.20 | ug/l  |                |                  |       |        |     |              |                    |
| 4-Nitroaniline                        | ND       | 5.0                | 0.50 | ug/l  |                |                  |       |        |     |              |                    |
| Nitrobenzene                          | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 2-Nitrophenol                         | ND       | 2.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 4-Nitrophenol                         | ND       | 5.0                | 2.5  | ug/l  |                |                  |       |        |     |              |                    |
| N-Nitroso-di-n-propylamine            | ND       | 2.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| N-Nitrosodimethylamine                | ND       | 2.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| N-Nitrosodiphenylamine                | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Pentachlorophenol                     | ND       | 2.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Phenanthrene                          | ND       | 0.50               | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Phenol                                | ND       | 1.0                | 0.30 | ug/l  |                |                  |       |        |     |              |                    |
| Pyrene                                | ND       | 0.50               | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 1,2,4-Trichlorobenzene                | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| 2,4,5-Trichlorophenol                 | ND       | 2.0                | 0.20 | ug/l  |                |                  |       |        |     |              |                    |
| 2,4,6-Trichlorophenol                 | ND       | 1.0                | 0.10 | ug/l  |                |                  |       |        |     |              |                    |
| Surrogate: 2,4,6-Tribromophenol       | 20.9     |                    |      | ug/l  | 20.0           |                  | 104   | 40-120 |     |              |                    |
| 1                                     |          |                    |      | 5     |                |                  |       |        |     |              |                    |

#### **TestAmerica Irvine**

Sampled: 02/06/10

Received: 02/06/10



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

## METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                 | Result | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC                                    | %REC   | RPD | RPD<br>Limit | Data<br>Oualifiers |
|-----------------------------------------|--------|--------------------|------|-------|----------------|------------------|-----------------------------------------|--------|-----|--------------|--------------------|
| •                                       |        |                    |      |       |                |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |     |              | <b>C</b>           |
| <b>Batch: 10B1159 Extracted: 02/10/</b> | 10     |                    |      |       |                |                  |                                         |        |     |              |                    |
| Blank Analyzed: 02/15/2010 (10B1159     | -BLK1) |                    |      |       |                |                  |                                         |        |     |              |                    |
| Surrogate: 2-Fluorobiphenyl             | 10.3   |                    |      | ug/l  | 10.0           |                  | 103                                     | 50-120 |     |              |                    |
| Surrogate: 2-Fluorophenol               | 14.7   |                    |      | ug/l  | 20.0           |                  | 74                                      | 30-120 |     |              |                    |
| Surrogate: Nitrobenzene-d5              | 8.54   |                    |      | ug/l  | 10.0           |                  | 85                                      | 45-120 |     |              |                    |
| Surrogate: Phenol-d6                    | 15.2   |                    |      | ug/l  | 20.0           |                  | 76                                      | 35-120 |     |              |                    |
| Surrogate: Terphenyl-d14                | 10.2   |                    |      | ug/l  | 10.0           |                  | 102                                     | 50-125 |     |              |                    |
| LCS Analyzed: 02/15/2010 (10B1159-I     | 3S1)   |                    |      |       |                |                  |                                         |        |     |              |                    |
| Acenaphthene                            | 8.64   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 86                                      | 60-120 |     |              |                    |
| Acenaphthylene                          | 9.02   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 90                                      | 60-120 |     |              |                    |
| Aniline                                 | 7.16   | 10                 | 0.30 | ug/l  | 10.0           |                  | 72                                      | 35-120 |     |              | Ja                 |
| Anthracene                              | 9.24   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 92                                      | 65-120 |     |              |                    |
| Benzidine                               | 5.98   | 5.0                | 5.0  | ug/l  | 10.0           |                  | 60                                      | 30-160 |     |              |                    |
| Benzo(a)anthracene                      | 9.58   | 5.0                | 0.10 | ug/l  | 10.0           |                  | 96                                      | 65-120 |     |              |                    |
| Benzo(a)pyrene                          | 9.92   | 2.0                | 0.10 | ug/l  | 10.0           |                  | 99                                      | 55-130 |     |              |                    |
| Benzo(b)fluoranthene                    | 9.96   | 2.0                | 0.10 | ug/l  | 10.0           |                  | 100                                     | 55-125 |     |              |                    |
| Benzo(g,h,i)perylene                    | 11.1   | 5.0                | 0.10 | ug/l  | 10.0           |                  | 111                                     | 45-135 |     |              |                    |
| Benzo(k)fluoranthene                    | 9.34   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 93                                      | 50-125 |     |              |                    |
| Benzoic acid                            | 8.18   | 20                 | 3.0  | ug/l  | 10.0           |                  | 82                                      | 25-120 |     |              | Ja                 |
| Benzyl alcohol                          | 8.10   | 5.0                | 0.10 | ug/l  | 10.0           |                  | 81                                      | 50-120 |     |              |                    |
| 4-Bromophenyl phenyl ether              | 9.46   | 1.0                | 0.10 | ug/l  | 10.0           |                  | 95                                      | 60-120 |     |              |                    |
| Butyl benzyl phthalate                  | 10.2   | 5.0                | 0.70 | ug/l  | 10.0           |                  | 102                                     | 55-130 |     |              |                    |
| 4-Chloro-3-methylphenol                 | 8.26   | 2.0                | 0.20 | ug/l  | 10.0           |                  | 83                                      | 60-120 |     |              |                    |
| 4-Chloroaniline                         | 7.82   | 2.0                | 0.10 | ug/l  | 10.0           |                  | 78                                      | 55-120 |     |              |                    |
| Bis(2-chloroethoxy)methane              | 8.26   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 83                                      | 55-120 |     |              |                    |
| Bis(2-chloroethyl)ether                 | 7.66   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 77                                      | 50-120 |     |              |                    |
| Bis(2-chloroisopropyl)ether             | 7.12   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 71                                      | 45-120 |     |              |                    |
| Bis(2-ethylhexyl)phthalate              | 10.1   | 5.0                | 1.7  | ug/l  | 10.0           |                  | 101                                     | 65-130 |     |              |                    |
| 2-Chloronaphthalene                     | 8.34   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 83                                      | 60-120 |     |              |                    |
| 2-Chlorophenol                          | 7.78   | 1.0                | 0.20 | ug/l  | 10.0           |                  | 78                                      | 45-120 |     |              |                    |
| 4-Chlorophenyl phenyl ether             | 10.1   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 101                                     | 65-120 |     |              |                    |
| Chrysene                                | 9.58   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 96                                      | 65-120 |     |              |                    |
| Dibenz(a,h)anthracene                   | 10.2   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 102                                     | 50-135 |     |              |                    |
| Dibenzofuran                            | 9.46   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 95                                      | 65-120 |     |              |                    |
| Di-n-butyl phthalate                    | 9.34   | 2.0                | 0.20 | ug/l  | 10.0           |                  | 93                                      | 60-125 |     |              |                    |
| 1,2-Dichlorobenzene                     | 7.14   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 71                                      | 40-120 |     |              |                    |
| 1,3-Dichlorobenzene                     | 6.68   | 0.50               | 0.10 | ug/l  | 10.0           |                  | 67                                      | 35-120 |     |              |                    |
|                                         |        |                    |      |       |                |                  |                                         |        |     |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001

Annual Outfall 001

Sampled: 02/06/10 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                        |        | Reporting |      |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|----------------------------------------|--------|-----------|------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                                | Result | Limit     | MDL  | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 10B1159 Extracted: 02/10</b> | /10    |           |      |       |       |        |      |        |     |       |            |
|                                        |        |           |      |       |       |        |      |        |     |       |            |
| LCS Analyzed: 02/15/2010 (10B1159-     | ·BS1)  |           |      |       |       |        |      |        |     |       |            |
| 1,4-Dichlorobenzene                    | 6.72   | 0.50      | 0.20 | ug/l  | 10.0  |        | 67   | 35-120 |     |       |            |
| 3,3'-Dichlorobenzidine                 | 8.16   | 5.0       | 5.0  | ug/l  | 10.0  |        | 82   | 45-135 |     |       |            |
| 2,4-Dichlorophenol                     | 8.26   | 2.0       | 0.20 | ug/l  | 10.0  |        | 83   | 55-120 |     |       |            |
| Diethyl phthalate                      | 9.78   | 1.0       | 0.10 | ug/l  | 10.0  |        | 98   | 55-120 |     |       |            |
| 2,4-Dimethylphenol                     | 7.00   | 2.0       | 0.30 | ug/l  | 10.0  |        | 70   | 40-120 |     |       |            |
| Dimethyl phthalate                     | 10.2   | 0.50      | 0.10 | ug/l  | 10.0  |        | 102  | 30-120 |     |       |            |
| 4,6-Dinitro-2-methylphenol             | 8.02   | 5.0       | 0.20 | ug/l  | 10.0  |        | 80   | 45-120 |     |       |            |
| 2,4-Dinitrophenol                      | 8.18   | 5.0       | 0.90 | ug/l  | 10.0  |        | 82   | 40-120 |     |       |            |
| 2,4-Dinitrotoluene                     | 9.60   | 5.0       | 0.20 | ug/l  | 10.0  |        | 96   | 65-120 |     |       |            |
| 2,6-Dinitrotoluene                     | 9.78   | 5.0       | 0.10 | ug/l  | 10.0  |        | 98   | 65-120 |     |       |            |
| Di-n-octyl phthalate                   | 10.1   | 5.0       | 0.10 | ug/l  | 10.0  |        | 101  | 65-135 |     |       |            |
| 1,2-Diphenylhydrazine/Azobenzene       | 8.90   | 1.0       | 0.10 | ug/l  | 10.0  |        | 89   | 60-120 |     |       |            |
| Fluoranthene                           | 9.30   | 0.50      | 0.10 | ug/l  | 10.0  |        | 93   | 60-120 |     |       |            |
| Fluorene                               | 9.88   | 0.50      | 0.10 | ug/l  | 10.0  |        | 99   | 65-120 |     |       |            |
| Hexachlorobenzene                      | 9.10   | 1.0       | 0.10 | ug/l  | 10.0  |        | 91   | 60-120 |     |       |            |
| Hexachlorobutadiene                    | 6.16   | 2.0       | 0.20 | ug/l  | 10.0  |        | 62   | 40-120 |     |       |            |
| Hexachlorocyclopentadiene              | 6.54   | 5.0       | 0.10 | ug/l  | 10.0  |        | 65   | 25-120 |     |       |            |
| Hexachloroethane                       | 6.02   | 3.0       | 0.20 | ug/l  | 10.0  |        | 60   | 35-120 |     |       |            |
| Indeno(1,2,3-cd)pyrene                 | 10.7   | 2.0       | 0.10 | ug/l  | 10.0  |        | 107  | 45-135 |     |       |            |
| Isophorone                             | 8.36   | 1.0       | 0.10 | ug/l  | 10.0  |        | 84   | 50-120 |     |       |            |
| 2-Methylnaphthalene                    | 8.12   | 1.0       | 0.10 | ug/l  | 10.0  |        | 81   | 55-120 |     |       |            |
| 2-Methylphenol                         | 7.62   | 2.0       | 0.10 | ug/l  | 10.0  |        | 76   | 50-120 |     |       |            |
| 4-Methylphenol                         | 7.82   | 5.0       | 0.20 | ug/l  | 10.0  |        | 78   | 50-120 |     |       |            |
| Naphthalene                            | 7.80   | 1.0       | 0.10 | ug/l  | 10.0  |        | 78   | 55-120 |     |       |            |
| 2-Nitroaniline                         | 9.98   | 5.0       | 0.10 | ug/l  | 10.0  |        | 100  | 65-120 |     |       |            |
| 3-Nitroaniline                         | 10.2   | 5.0       | 0.20 | ug/l  | 10.0  |        | 102  | 60-120 |     |       |            |
| 4-Nitroaniline                         | 9.78   | 5.0       | 0.50 | ug/l  | 10.0  |        | 98   | 55-125 |     |       |            |
| Nitrobenzene                           | 7.98   | 1.0       | 0.10 | ug/l  | 10.0  |        | 80   | 55-120 |     |       |            |
| 2-Nitrophenol                          | 8.60   | 2.0       | 0.10 | ug/l  | 10.0  |        | 86   | 50-120 |     |       |            |
| 4-Nitrophenol                          | 10.6   | 5.0       | 2.5  | ug/l  | 10.0  |        | 106  | 45-120 |     |       |            |
| N-Nitroso-di-n-propylamine             | 7.64   | 2.0       | 0.10 | ug/l  | 10.0  |        | 76   | 45-120 |     |       |            |
| N-Nitrosodimethylamine                 | 8.18   | 2.0       | 0.10 | ug/l  | 10.0  |        | 82   | 45-120 |     |       |            |
| N-Nitrosodiphenylamine                 | 9.40   | 1.0       | 0.10 | ug/l  | 10.0  |        | 94   | 60-120 |     |       |            |
| Pentachlorophenol                      | 8.12   | 2.0       | 0.10 | ug/l  | 10.0  |        | 81   | 50-120 |     |       |            |
| Phenanthrene                           | 9.14   | 0.50      | 0.10 | ug/l  | 10.0  |        | 91   | 65-120 |     |       |            |
|                                        |        |           |      |       |       |        |      |        |     |       |            |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC   | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|------------|--------------------|-------|-------|----------------|------------------|---------|--------|-----|--------------|--------------------|
| Batch: 10B1159 Extracted: 02/10/10     | 0          |                    |       |       |                |                  |         |        |     |              |                    |
| Batta. 10B1137 Extracted. 02/10/10     | <u>o</u>   |                    |       |       |                |                  |         |        |     |              |                    |
| LCS Analyzed: 02/15/2010 (10B1159-BS   | S1)        |                    |       |       |                |                  |         |        |     |              |                    |
| Phenol                                 | 7.70       | 1.0                | 0.30  | ug/l  | 10.0           |                  | 77      | 40-120 |     |              |                    |
| Pyrene                                 | 9.56       | 0.50               | 0.10  | ug/l  | 10.0           |                  | 96      | 55-125 |     |              |                    |
| 1,2,4-Trichlorobenzene                 | 7.14       | 1.0                | 0.10  | ug/l  | 10.0           |                  | 71      | 45-120 |     |              |                    |
| 2,4,5-Trichlorophenol                  | 9.00       | 2.0                | 0.20  | ug/l  | 10.0           |                  | 90      | 55-120 |     |              |                    |
| 2,4,6-Trichlorophenol                  | 8.56       | 1.0                | 0.10  | ug/l  | 10.0           |                  | 86      | 55-120 |     |              |                    |
| Surrogate: 2,4,6-Tribromophenol        | 20.9       |                    |       | ug/l  | 20.0           |                  | 104     | 40-120 |     |              |                    |
| Surrogate: 2-Fluorobiphenyl            | 8.88       |                    |       | ug/l  | 10.0           |                  | 89      | 50-120 |     |              |                    |
| Surrogate: 2-Fluorophenol              | 13.7       |                    |       | ug/l  | 20.0           |                  | 69      | 30-120 |     |              |                    |
| Surrogate: Nitrobenzene-d5             | 8.20       |                    |       | ug/l  | 10.0           |                  | 82      | 45-120 |     |              |                    |
| Surrogate: Phenol-d6                   | 14.9       |                    |       | ug/l  | 20.0           |                  | 75      | 35-120 |     |              |                    |
| Surrogate: Terphenyl-d14               | 9.58       |                    |       | ug/l  | 10.0           |                  | 96      | 50-125 |     |              |                    |
| Matrix Spike Analyzed: 02/15/2010 (101 | B1159-MS1) |                    |       |       | Sou            | rce: ITB         | 0810-01 |        |     |              |                    |
| Acenaphthene                           | 8.02       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 82      | 60-120 |     |              |                    |
| Acenaphthylene                         | 7.22       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 74      | 60-120 |     |              |                    |
| Aniline                                | ND         | 9.8                | 0.29  | ug/l  | 9.80           | ND               |         | 35-120 |     |              | M2                 |
| Anthracene                             | 7.84       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 80      | 65-120 |     |              |                    |
| Benzidine                              | ND         | 4.9                | 4.9   | ug/l  | 9.80           | ND               |         | 30-160 |     |              | M2                 |
| Benzo(a)anthracene                     | 8.73       | 4.9                | 0.098 | ug/l  | 9.80           | ND               | 89      | 65-120 |     |              |                    |
| Benzo(a)pyrene                         | 8.22       | 2.0                | 0.098 | ug/l  | 9.80           | ND               | 84      | 55-130 |     |              |                    |
| Benzo(b)fluoranthene                   | 9.22       | 2.0                | 0.098 | ug/l  | 9.80           | ND               | 94      | 55-125 |     |              |                    |
| Benzo(g,h,i)perylene                   | 9.82       | 4.9                | 0.098 | ug/l  | 9.80           | ND               | 100     | 45-135 |     |              |                    |
| Benzo(k)fluoranthene                   | 8.45       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 86      | 55-125 |     |              |                    |
| Benzoic acid                           | 11.6       | 20                 | 2.9   | ug/l  | 9.80           | ND               | 118     | 25-125 |     |              | Ja                 |
| Benzyl alcohol                         | 7.59       | 4.9                | 0.098 | ug/l  | 9.80           | ND               | 77      | 40-120 |     |              |                    |
| 4-Bromophenyl phenyl ether             | 8.25       | 0.98               | 0.098 | ug/l  | 9.80           | ND               | 84      | 60-120 |     |              |                    |
| Butyl benzyl phthalate                 | 9.51       | 4.9                | 0.69  | ug/l  | 9.80           | ND               | 97      | 55-130 |     |              |                    |
| 4-Chloro-3-methylphenol                | 3.18       | 2.0                | 0.20  | ug/l  | 9.80           | ND               | 32      | 60-120 |     |              | M2                 |
| 4-Chloroaniline                        | ND         | 2.0                | 0.098 | ug/l  | 9.80           | ND               |         | 55-120 |     |              | M2                 |
| Bis(2-chloroethoxy)methane             | 7.12       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 73      | 50-120 |     |              |                    |
| Bis(2-chloroethyl)ether                | 7.29       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 74      | 50-120 |     |              |                    |
| Bis(2-chloroisopropyl)ether            | 6.71       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 68      | 45-120 |     |              |                    |
| Bis(2-ethylhexyl)phthalate             | 9.55       | 4.9                | 1.7   | ug/l  | 9.80           | ND               | 97      | 65-130 |     |              |                    |
| 2-Chloronaphthalene                    | 6.92       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 71      | 60-120 |     |              |                    |
| 2-Chlorophenol                         | 6.12       | 0.98               | 0.20  | ug/l  | 9.80           | ND               | 62      | 45-120 |     |              |                    |
| 4-Chlorophenyl phenyl ether            | 9.33       | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 95      | 65-120 |     |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001 MWH-Pasadena/Boeing

Annual Outfall 001 618 Michillinda Avenue, Suite 200 Sampled: 02/06/10 Received: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887 Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte                                  | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source    | %REC    | %REC    | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------|------------|--------------------|-------|-------|----------------|-----------|---------|---------|-----|--------------|--------------------|
| -                                        |            | Lillit             | MDL   | Units | Level          | Result    | 70KEC   | Lillits | KFD | Lillit       | Quanners           |
| <b>Batch: 10B1159 Extracted: 02/10/1</b> | <u>0</u>   |                    |       |       |                |           |         |         |     |              |                    |
| M                                        | D1150 MC1) |                    |       |       | C              | TTD/      | 0010.01 |         |     |              |                    |
| Matrix Spike Analyzed: 02/15/2010 (10)   | <i>'</i>   | 0.40               | 0.000 | /1    |                | rce: ITB( |         | 65.100  |     |              |                    |
| Chrysene                                 | 8.61       | 0.49               | 0.098 | ug/l  | 9.80           | ND        | 88      | 65-120  |     |              |                    |
| Dibenz(a,h)anthracene                    | 8.78       | 0.49               | 0.098 | ug/l  | 9.80           | ND        | 90      | 45-135  |     |              |                    |
| Dibenzofuran                             | 8.84       | 0.49               | 0.098 | ug/l  | 9.80           | ND        | 90      | 65-120  |     |              |                    |
| Di-n-butyl phthalate                     | 8.59       | 2.0                | 0.20  | ug/l  | 9.80           | ND        | 88      | 60-125  |     |              |                    |
| 1,2-Dichlorobenzene                      | 9.25       | 0.49               | 0.098 | ug/l  | 9.80           | ND        | 94      | 40-120  |     |              |                    |
| 1,3-Dichlorobenzene                      | 6.55       | 0.49               | 0.098 | ug/l  | 9.80           | ND        | 67      | 35-120  |     |              |                    |
| 1,4-Dichlorobenzene                      | 6.53       | 0.49               | 0.20  | ug/l  | 9.80           | ND        | 67      | 35-120  |     |              |                    |
| 3,3'-Dichlorobenzidine                   | ND         | 4.9                | 4.9   | ug/l  | 9.80           | ND        |         | 45-135  |     |              | M2                 |
| 2,4-Dichlorophenol                       | 5.47       | 2.0                | 0.20  | ug/l  | 9.80           | ND        | 56      | 55-120  |     |              |                    |
| Diethyl phthalate                        | 10.1       | 0.98               | 0.098 | ug/l  | 9.80           | ND        | 103     | 55-120  |     |              |                    |
| 2,4-Dimethylphenol                       | ND         | 2.0                | 0.29  | ug/l  | 9.80           | ND        |         | 40-120  |     |              | M2                 |
| Dimethyl phthalate                       | 9.53       | 0.49               | 0.098 | ug/l  | 9.80           | ND        | 97      | 30-120  |     |              |                    |
| 4,6-Dinitro-2-methylphenol               | 10.7       | 4.9                | 0.20  | ug/l  | 9.80           | ND        | 109     | 45-120  |     |              |                    |
| 2,4-Dinitrophenol                        | 11.4       | 4.9                | 0.88  | ug/l  | 9.80           | ND        | 116     | 40-120  |     |              |                    |
| 2,4-Dinitrotoluene                       | 9.41       | 4.9                | 0.20  | ug/l  | 9.80           | ND        | 96      | 65-120  |     |              |                    |
| 2,6-Dinitrotoluene                       | 10.3       | 4.9                | 0.098 | ug/l  | 9.80           | ND        | 105     | 65-120  |     |              |                    |
| Di-n-octyl phthalate                     | 9.51       | 4.9                | 0.098 | ug/l  | 9.80           | ND        | 97      | 65-135  |     |              |                    |
| 1,2-Diphenylhydrazine/Azobenzene         | 9.12       | 0.98               | 0.098 | ug/l  | 9.80           | ND        | 93      | 60-120  |     |              |                    |
| Fluoranthene                             | 8.51       | 0.49               | 0.098 | ug/l  | 9.80           | ND        | 87      | 60-120  |     |              |                    |
| Fluorene                                 | 9.31       | 0.49               | 0.098 | ug/l  | 9.80           | ND        | 95      | 65-120  |     |              |                    |
| Hexachlorobenzene                        | 8.04       | 0.98               | 0.098 | ug/l  | 9.80           | ND        | 82      | 60-120  |     |              |                    |
| Hexachlorobutadiene                      | 6.39       | 2.0                | 0.20  | ug/l  | 9.80           | ND        | 65      | 40-120  |     |              |                    |
| Hexachlorocyclopentadiene                | 6.39       | 4.9                | 0.098 | ug/l  | 9.80           | ND        | 65      | 25-120  |     |              |                    |
| Hexachloroethane                         | 6.14       | 2.9                | 0.20  | ug/l  | 9.80           | ND        | 63      | 35-120  |     |              |                    |
| Indeno(1,2,3-cd)pyrene                   | 9.31       | 2.0                | 0.098 | ug/l  | 9.80           | ND        | 95      | 40-135  |     |              |                    |
| Isophorone                               | 7.65       | 0.98               | 0.098 | ug/l  | 9.80           | 0.333     | 75      | 50-120  |     |              |                    |
| 2-Methylnaphthalene                      | 6.78       | 0.98               | 0.098 | ug/l  | 9.80           | ND        | 69      | 55-120  |     |              |                    |
| 2-Methylphenol                           | 0.451      | 2.0                | 0.098 | ug/l  | 9.80           | ND        | 5       | 50-120  |     |              | M2, Ja             |
| 4-Methylphenol                           | 0.275      | 4.9                | 0.20  | ug/l  | 9.80           | ND        | 3       | 50-120  |     |              | M2, Ja             |
| Naphthalene                              | 7.12       | 0.98               | 0.098 | ug/l  | 9.80           | ND        | 73      | 55-120  |     |              |                    |
| 2-Nitroaniline                           | 5.57       | 4.9                | 0.098 | ug/l  | 9.80           | ND        | 57      | 65-120  |     |              | M2                 |
| 3-Nitroaniline                           | ND         | 4.9                | 0.20  | ug/l  | 9.80           | ND        |         | 60-120  |     |              | M2                 |
| 4-Nitroaniline                           | 1.00       | 4.9                | 0.49  | ug/l  | 9.80           | ND        | 10      | 55-125  |     |              | M2, Ja             |
| Nitrobenzene                             | 11.9       | 0.98               | 0.098 | ug/l  | 9.80           | ND        | 121     | 55-120  |     |              | M1                 |
| 2-Nitrophenol                            | 12.4       | 2.0                | 0.098 | ug/l  | 9.80           | ND        | 126     | 50-120  |     |              | M1                 |
| *                                        |            |                    |       | J     |                |           |         |         |     |              |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| Matrix Spike Analyzed: 02/15/2010 (10B1159-MS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte                           | Result          | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC   | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|--------------------|-------|-------|----------------|------------------|---------|--------|-----|--------------|--------------------|
| Matrix Spike Analyzed: 02/15/2010 (1081159-MS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                 | 10/10           |                    |       |       |                |                  |         |        |     |              |                    |
| 4-Nitrophenol         16.5         4.9         2.5         ug/l         9.80         ND         168         45-120         H         Mality No. Nitroso-di-n-propylamine         7.57         2.0         0.098         ug/l         9.80         ND         75         45-120         H         A         P         A         A         45-120         H         A         A         1.0         N         N         N         75         45-120         H         A         1.0         N         N         0.93         Ug/l         9.80         ND         93         0-120         H         A         1.0         A         1.0         N         0.98         ND         93         0-120         H         A         1.0         0.0         0.0         0.0         0.0         N         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Batch. 10B1137 Extracted. 02/1    | 10/10           |                    |       |       |                |                  |         |        |     |              |                    |
| N-Nitrosod-din-propylamine 7.57 2.0 0.098 ugl 9.80 ND 75 45-120 ND 75 45-120 ND 75 ND 75 45-120 ND 75 ND 75 45-120 ND 75 | Matrix Spike Analyzed: 02/15/2010 | (10B1159-MS1)   |                    |       |       | Sou            | rce: ITB         | 0810-01 |        |     |              |                    |
| N-Nitrosodinenlylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Nitrophenol                     | 16.5            | 4.9                | 2.5   | ug/l  | 9.80           | ND               | 168     | 45-120 |     |              | MI                 |
| N-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-Nitroso-di-n-propylamine        | 7.57            | 2.0                | 0.098 | ug/l  | 9.80           | ND               | 77      | 45-120 |     |              |                    |
| Penachlorophenol   9,12   2,0   0,098   1g/l   9,80   ND   93   50-120   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N-Nitrosodimethylamine            | 7.31            | 2.0                | 0.098 | ug/l  | 9.80           | ND               | 75      | 45-120 |     |              |                    |
| Phenolithrene   8.33   0.49   0.098   ug/l   9.80   ND   85   65-120   File   File   File   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00     | N-Nitrosodiphenylamine            | 6.55            | 0.98               | 0.098 | ug/1  | 9.80           | ND               | 67      | 60-120 |     |              |                    |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pentachlorophenol                 | 9.12            | 2.0                | 0.098 | ug/1  | 9.80           | ND               | 93      | 50-120 |     |              |                    |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phenanthrene                      | 8.33            | 0.49               | 0.098 | ug/1  | 9.80           | ND               | 85      | 65-120 |     |              |                    |
| 1.2,4-Trichlorobenzene 6.88 0.98 0.098 ugl 9.80 ND 70 45-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phenol                            | 7.92            | 0.98               | 0.29  | ug/1  | 9.80           | ND               | 81      | 40-120 |     |              |                    |
| 2.4.5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pyrene                            | 8.88            | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 91      | 55-125 |     |              |                    |
| 2,4,6-Trichlorophenol   9,18   0,98   0,98   ugl   19,80   ND   94   55-120   Surrogate: 2,4,6-Trithromophenol   17,4   ugl   19,6   ugl   19,6   30   30-120   Surrogate: 2-Fluorophpenyl   6,96   ugl   19,6   ugl   19,6   30-120   Surrogate: 2-Fluorophenyl   6,96   ugl   19,6   ugl   19,6   30-120   Surrogate: Nitrobenzene-d5   7,65   ugl   19,6   ugl   19,6   30-120   Surrogate: Phenol-d6   8,53   ugl   19,6   ugl   19,6   30-120   Surrogate: Phenol-d6   8,53   ugl   19,6   ugl    | 1,2,4-Trichlorobenzene            | 6.88            | 0.98               | 0.098 | ug/l  | 9.80           | ND               | 70      | 45-120 |     |              |                    |
| Surrogate: 2,4,6-Tribromophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,4,5-Trichlorophenol             | 9.37            | 2.0                | 0.20  | ug/l  | 9.80           | ND               | 96      | 55-120 |     |              |                    |
| Surrogate: 2-Fluorophenol   8.49   19.6   19.6   19.6   14.3   30-120   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6    | 2,4,6-Trichlorophenol             | 9.18            | 0.98               | 0.098 | ug/l  | 9.80           | ND               | 94      | 55-120 |     |              |                    |
| Surrogate: 2-Fluorophenol   8.49   19.6   19.6   19.6   19.5   19.6   19.5   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6   19.6      | Surrogate: 2,4,6-Tribromophenol   | 17.4            |                    |       | ug/l  | 19.6           |                  | 89      | 40-120 |     |              |                    |
| Surrogate: Nitrobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Surrogate: 2-Fluorobiphenyl       | 6.96            |                    |       | ug/l  | 9.80           |                  | 71      | 50-120 |     |              |                    |
| Surrogate: Phenol-d6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surrogate: 2-Fluorophenol         | 8.49            |                    |       | ug/l  | 19.6           |                  | 43      | 30-120 |     |              |                    |
| Matrix Spike Dup Analyzed: 02/15/2010 (10B1159-MSD1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surrogate: Nitrobenzene-d5        | 7.65            |                    |       | ug/l  | 9.80           |                  | 78      | 45-120 |     |              |                    |
| Matrix Spike Dup Analyzed: 02/15/2010 (10B1159-MSDI)         Source: ITB0810-01           Acenaphthene         7.43         0.49         0.098         ug/l         9.80         ND         76         60-120         8         25           Acenaphthylene         6.16         0.49         0.098         ug/l         9.80         ND         76         60-120         16         25           Aniline         ND         9.8         0.29         ug/l         9.80         ND         75-120         4         25           Anthracene         7.53         0.49         0.098         ug/l         9.80         ND         7         65-120         4         25           Benzidine         ND         4.9         4.9         ug/l         9.80         ND         7         65-120         4         25           Benzidine         ND         4.9         0.098         ug/l         9.80         ND         81         65-120         6         20           Benzo(a)anthracene         8.20         4.9         0.098         ug/l         9.80         ND         81         55-130         4         25           Benzo(a)pyrene         7.90         2.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surrogate: Phenol-d6              | 8.53            |                    |       | ug/l  | 19.6           |                  | 44      | 35-120 |     |              |                    |
| Acenaphthene         7.43         0.49         0.098         ug/l         9.80         ND         76         60-120         8         25           Acenaphthylene         6.16         0.49         0.098         ug/l         9.80         ND         63         60-120         16         25           Aniline         ND         9.8         0.29         ug/l         9.80         ND         77         65-120         4         25           Anthracene         7.53         0.49         0.098         ug/l         9.80         ND         77         65-120         4         25           Benzidine         ND         4.9         4.9         ug/l         9.80         ND         77         65-120         4         25           Benzidine         ND         4.9         4.9         ug/l         9.80         ND         84         65-120         6         20           Benzidine         ND         2.0         0.098         ug/l         9.80         ND         81         55-130         4         25           Benzo(a)aphracene         8.47         2.0         0.098         ug/l         9.80         ND         86         55-125         8 </td <td>Surrogate: Terphenyl-d14</td> <td>8.73</td> <td></td> <td></td> <td>ug/l</td> <td>9.80</td> <td></td> <td>89</td> <td>50-125</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surrogate: Terphenyl-d14          | 8.73            |                    |       | ug/l  | 9.80           |                  | 89      | 50-125 |     |              |                    |
| Acenaphthylene         6.16         0.49         0.098         ug/l         9.80         ND         63         60-120         16         25           Aniline         ND         9.8         0.29         ug/l         9.80         ND         35-120         30         M2           Anthracene         7.53         0.49         0.098         ug/l         9.80         ND         77         65-120         4         25           Benzidine         ND         4.9         4.9         ug/l         9.80         ND         77         65-120         4         25           Benzidine         ND         4.9         4.9         ug/l         9.80         ND         30-160         35         M2           Benzidine         ND         4.9         4.9         0.098         ug/l         9.80         ND         84         65-120         6         20           Benzidine         7.90         2.0         0.098         ug/l         9.80         ND         81         55-130         4         25           Benzid(b)fluoranthene         8.47         2.0         0.098         ug/l         9.80         ND         83         55-125         8         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix Spike Dup Analyzed: 02/15/ | 2010 (10B1159-N | (ISD1)             |       |       | Sou            | rce: ITB         | 0810-01 |        |     |              |                    |
| Aniline ND 9.8 0.29 ug/l 9.80 ND 35-120 30 M2  Anthracene 7.53 0.49 0.098 ug/l 9.80 ND 77 65-120 4 25  Benzidine ND 4.9 4.9 ug/l 9.80 ND 30-160 35 M2  Benzo(a)anthracene 8.20 4.9 0.098 ug/l 9.80 ND 84 65-120 6 20  Benzo(a)pyrene 7.90 2.0 0.098 ug/l 9.80 ND 81 55-130 4 25  Benzo(b)fluoranthene 8.47 2.0 0.098 ug/l 9.80 ND 86 55-125 8 25  Benzo(g,h,i)perylene 9.24 4.9 0.098 ug/l 9.80 ND 86 55-125 8 25  Benzo(k)fluoranthene 8.18 0.49 0.098 ug/l 9.80 ND 94 45-135 6 30  Benzo(k)fluoranthene 8.18 0.49 0.098 ug/l 9.80 ND 83 55-125 3 30  Benzoic acid 10.2 20 2.9 ug/l 9.80 ND 83 55-125 13 30 Ja  Benzyl alcohol 6.84 4.9 0.098 ug/l 9.80 ND 104 25-125 13 30 Ja  Benzyl alcohol 6.84 4.9 0.098 ug/l 9.80 ND 70 40-120 10 30  4-Bromophenyl phenyl ether 8.04 0.98 0.098 ug/l 9.80 ND 82 60-120 3 25  Butyl benzyl phthalate 9.35 4.9 0.69 ug/l 9.80 ND 95 55-130 2 25  4-Chloro-3-methylphenol 5.67 2.0 0.20 ug/l 9.80 ND 58 60-120 56 25 M2, R-3  4-Chloroaniline ND 2.0 0.098 ug/l 9.80 ND 55-120 56 25 M2, R-3  4-Chloroaniline ND 2.0 0.098 ug/l 9.80 ND 55-120 56 25 M2, R-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acenaphthene                      | 7.43            | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 76      | 60-120 | 8   | 25           |                    |
| Anthracene 7.53 0.49 0.098 ug/l 9.80 ND 77 65-120 4 25  Benzidine ND 4.9 4.9 ug/l 9.80 ND 30-160 35 M2  Benzo(a)anthracene 8.20 4.9 0.098 ug/l 9.80 ND 84 65-120 6 20  Benzo(a)pyrene 7.90 2.0 0.098 ug/l 9.80 ND 81 55-130 4 25  Benzo(b)fluoranthene 8.47 2.0 0.098 ug/l 9.80 ND 86 55-125 8 25  Benzo(g,h,i)perylene 9.24 4.9 0.098 ug/l 9.80 ND 86 55-125 8 25  Benzo(k)fluoranthene 8.18 0.49 0.098 ug/l 9.80 ND 83 55-125 3 30  Benzo(k)fluoranthene 8.18 0.49 0.098 ug/l 9.80 ND 83 55-125 3 30  Benzoic acid 10.2 20 2.9 ug/l 9.80 ND 83 55-125 13 30 Ja  Benzoic acid 6.84 4.9 0.098 ug/l 9.80 ND 104 25-125 13 30 Ja  Benzyl alcohol 6.84 4.9 0.098 ug/l 9.80 ND 70 40-120 10 30  4-Bromophenyl phenyl ether 8.04 0.98 0.098 ug/l 9.80 ND 82 60-120 3 25  Butyl benzyl phthalate 9.35 4.9 0.69 ug/l 9.80 ND 95 55-130 2 25  4-Chloro-3-methylphenol 5.67 2.0 0.20 ug/l 9.80 ND 58 60-120 56 25 M2, R-3  4-Chloro-aniline ND 2.0 0.098 ug/l 9.80 ND 55-120 56 25 M2, R-3  4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 6.16            | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 63      | 60-120 | 16  | 25           |                    |
| Benzo(a)anthracene   R.20   A.9      | Aniline                           | ND              | 9.8                | 0.29  | ug/l  | 9.80           | ND               |         | 35-120 |     | 30           | M2                 |
| Benzo(a)anthracene         8.20         4.9         0.098         ug/l         9.80         ND         84         65-120         6         20           Benzo(a)pyrene         7.90         2.0         0.098         ug/l         9.80         ND         81         55-130         4         25           Benzo(b)fluoranthene         8.47         2.0         0.098         ug/l         9.80         ND         86         55-125         8         25           Benzo(g,h,i)perylene         9.24         4.9         0.098         ug/l         9.80         ND         94         45-135         6         30           Benzo(k)fluoranthene         8.18         0.49         0.098         ug/l         9.80         ND         83         55-125         3         30           Benzoic acid         10.2         20         2.9         ug/l         9.80         ND         104         25-125         13         30         Ja           Benzyl alcohol         6.84         4.9         0.098         ug/l         9.80         ND         70         40-120         10         30           4-Bromophenyl phenyl ether         8.04         0.98         ug/l         9.80         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anthracene                        | 7.53            | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 77      | 65-120 | 4   | 25           |                    |
| Benzo(a)anthracene         8.20         4.9         0.098         ug/l         9.80         ND         84         65-120         6         20           Benzo(a)pyrene         7.90         2.0         0.098         ug/l         9.80         ND         81         55-130         4         25           Benzo(b)fluoranthene         8.47         2.0         0.098         ug/l         9.80         ND         86         55-125         8         25           Benzo(g,h,i)perylene         9.24         4.9         0.098         ug/l         9.80         ND         94         45-135         6         30           Benzo(k)fluoranthene         8.18         0.49         0.098         ug/l         9.80         ND         83         55-125         3         30           Benzoic acid         10.2         20         2.9         ug/l         9.80         ND         104         25-125         13         30         Ja           Benzyl alcohol         6.84         4.9         0.098         ug/l         9.80         ND         70         40-120         10         30           4-Bromophenyl phenyl ether         8.04         0.98         ug/l         9.80         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzidine                         | ND              | 4.9                | 4.9   | ug/l  | 9.80           | ND               |         | 30-160 |     | 35           | M2                 |
| Benzo(b)fluoranthene         8.47         2.0         0.098         ug/l         9.80         ND         86         55-125         8         25           Benzo(g,h,i)perylene         9.24         4.9         0.098         ug/l         9.80         ND         94         45-135         6         30           Benzo(k)fluoranthene         8.18         0.49         0.098         ug/l         9.80         ND         83         55-125         3         30           Benzoic acid         10.2         20         2.9         ug/l         9.80         ND         104         25-125         13         30         Ja           Benzyl alcohol         6.84         4.9         0.098         ug/l         9.80         ND         70         40-120         10         30           4-Bromophenyl phenyl ether         8.04         0.98         0.098         ug/l         9.80         ND         82         60-120         3         25           Butyl benzyl phthalate         9.35         4.9         0.69         ug/l         9.80         ND         95         55-130         2         25         M2, R-3           4-Chloro-3-methylphenol         5.67         2.0         0.098 <td>Benzo(a)anthracene</td> <td>8.20</td> <td>4.9</td> <td>0.098</td> <td></td> <td>9.80</td> <td>ND</td> <td>84</td> <td>65-120</td> <td>6</td> <td>20</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzo(a)anthracene                | 8.20            | 4.9                | 0.098 |       | 9.80           | ND               | 84      | 65-120 | 6   | 20           |                    |
| Benzo(b)fluoranthene         8.47         2.0         0.098         ug/l         9.80         ND         86         55-125         8         25           Benzo(g,h,i)perylene         9.24         4.9         0.098         ug/l         9.80         ND         94         45-135         6         30           Benzo(k)fluoranthene         8.18         0.49         0.098         ug/l         9.80         ND         83         55-125         3         30           Benzoic acid         10.2         20         2.9         ug/l         9.80         ND         104         25-125         13         30         Ja           Benzyl alcohol         6.84         4.9         0.098         ug/l         9.80         ND         70         40-120         10         30           4-Bromophenyl phenyl ether         8.04         0.98         0.098         ug/l         9.80         ND         82         60-120         3         25           Butyl benzyl phthalate         9.35         4.9         0.69         ug/l         9.80         ND         95         55-130         2         25         M2, R-3           4-Chloro-3-methylphenol         5.67         2.0         0.098 <td>Benzo(a)pyrene</td> <td>7.90</td> <td>2.0</td> <td>0.098</td> <td>ug/l</td> <td>9.80</td> <td>ND</td> <td>81</td> <td>55-130</td> <td>4</td> <td>25</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzo(a)pyrene                    | 7.90            | 2.0                | 0.098 | ug/l  | 9.80           | ND               | 81      | 55-130 | 4   | 25           |                    |
| Benzo(k)fluoranthene         8.18         0.49         0.098         ug/l         9.80         ND         83         55-125         3         30           Benzoic acid         10.2         20         2.9         ug/l         9.80         ND         104         25-125         13         30         Ja           Benzyl alcohol         6.84         4.9         0.098         ug/l         9.80         ND         70         40-120         10         30           4-Bromophenyl phenyl ether         8.04         0.98         0.098         ug/l         9.80         ND         82         60-120         3         25           Butyl benzyl phthalate         9.35         4.9         0.69         ug/l         9.80         ND         95         55-130         2         25           4-Chloro-3-methylphenol         5.67         2.0         0.20         ug/l         9.80         ND         58         60-120         56         25         M2, R-3           4-Chloroaniline         ND         2.0         0.098         ug/l         9.80         ND         55-120         56         25         M2, R-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzo(b)fluoranthene              | 8.47            | 2.0                | 0.098 | ug/l  | 9.80           | ND               | 86      | 55-125 | 8   | 25           |                    |
| Benzoic acid         10.2         20         2.9         ug/l         9.80         ND         104         25-125         13         30         Ja           Benzyl alcohol         6.84         4.9         0.098         ug/l         9.80         ND         70         40-120         10         30           4-Bromophenyl phenyl ether         8.04         0.98         0.098         ug/l         9.80         ND         82         60-120         3         25           Butyl benzyl phthalate         9.35         4.9         0.69         ug/l         9.80         ND         95         55-130         2         25           4-Chloro-3-methylphenol         5.67         2.0         0.20         ug/l         9.80         ND         58         60-120         56         25         M2, R-3           4-Chloroaniline         ND         2.0         0.098         ug/l         9.80         ND         55-120         25         M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo(g,h,i)perylene              | 9.24            | 4.9                | 0.098 | ug/l  | 9.80           | ND               | 94      | 45-135 | 6   | 30           |                    |
| Benzyl alcohol         6.84         4.9         0.098         ug/l         9.80         ND         70         40-120         10         30           4-Bromophenyl phenyl ether         8.04         0.98         0.098         ug/l         9.80         ND         82         60-120         3         25           Butyl benzyl phthalate         9.35         4.9         0.69         ug/l         9.80         ND         95         55-130         2         25           4-Chloro-3-methylphenol         5.67         2.0         0.20         ug/l         9.80         ND         58         60-120         56         25         M2, R-3           4-Chloroaniline         ND         2.0         0.098         ug/l         9.80         ND         55-120         25         M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzo(k)fluoranthene              | 8.18            | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 83      | 55-125 | 3   | 30           |                    |
| 4-Bromophenyl phenyl ether       8.04       0.98       0.098       ug/l       9.80       ND       82       60-120       3       25         Butyl benzyl phthalate       9.35       4.9       0.69       ug/l       9.80       ND       95       55-130       2       25         4-Chloro-3-methylphenol       5.67       2.0       0.20       ug/l       9.80       ND       58       60-120       56       25       M2, R-3         4-Chloroaniline       ND       2.0       0.098       ug/l       9.80       ND       55-120       25       M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzoic acid                      | 10.2            | 20                 | 2.9   | ug/l  | 9.80           | ND               | 104     | 25-125 | 13  | 30           | Ja                 |
| Butyl benzyl phthalate         9.35         4.9         0.69         ug/l         9.80         ND         95         55-130         2         25           4-Chloro-3-methylphenol         5.67         2.0         0.20         ug/l         9.80         ND         58         60-120         56         25         M2, R-3           4-Chloroaniline         ND         2.0         0.098         ug/l         9.80         ND         55-120         25         M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzyl alcohol                    | 6.84            | 4.9                | 0.098 | ug/l  | 9.80           | ND               | 70      | 40-120 | 10  | 30           |                    |
| Butyl benzyl phthalate         9.35         4.9         0.69         ug/l         9.80         ND         95         55-130         2         25           4-Chloro-3-methylphenol         5.67         2.0         0.20         ug/l         9.80         ND         58         60-120         56         25         M2, R-3           4-Chloroaniline         ND         2.0         0.098         ug/l         9.80         ND         55-120         25         M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Bromophenyl phenyl ether        | 8.04            | 0.98               | 0.098 | ug/l  | 9.80           | ND               | 82      | 60-120 | 3   | 25           |                    |
| 4-Chloroaniline ND 2.0 0.098 ug/l 9.80 ND 55-120 25 <i>M</i> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 9.35            | 4.9                | 0.69  | ug/l  | 9.80           | ND               | 95      | 55-130 | 2   | 25           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Chloro-3-methylphenol           | 5.67            | 2.0                | 0.20  | ug/l  | 9.80           | ND               | 58      | 60-120 | 56  | 25           | M2, R-3            |
| Bis(2-chloroethoxy)methane 6.57 0.49 0.098 ug/l 9.80 ND 67 50-120 8 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Chloroaniline                   | ND              | 2.0                | 0.098 | ug/l  | 9.80           | ND               |         | 55-120 |     | 25           | M2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bis(2-chloroethoxy)methane        | 6.57            | 0.49               | 0.098 | ug/l  | 9.80           | ND               | 67      | 50-120 | 8   | 25           |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10 Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887
Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

|                                       |              | Reporting |       |       | Spike | Source    |         | %REC   |     | RPD   | Data        |
|---------------------------------------|--------------|-----------|-------|-------|-------|-----------|---------|--------|-----|-------|-------------|
| Analyte                               | Result       | Limit     | MDL   | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers  |
| Batch: 10B1159 Extracted: 02/10/1     | <u>0</u>     |           |       |       |       |           |         |        |     |       |             |
|                                       |              |           |       |       |       |           |         |        |     |       |             |
| Matrix Spike Dup Analyzed: 02/15/2010 | ) (10B1159-N | ISD1)     |       |       | Sou   | rce: ITB( | 0810-01 |        |     |       |             |
| Bis(2-chloroethyl)ether               | 6.73         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 69      | 50-120 | 8   | 25    |             |
| Bis(2-chloroisopropyl)ether           | 5.22         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 53      | 45-120 | 25  | 25    |             |
| Bis(2-ethylhexyl)phthalate            | 9.18         | 4.9       | 1.7   | ug/l  | 9.80  | ND        | 94      | 65-130 | 4   | 25    |             |
| 2-Chloronaphthalene                   | 6.53         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 67      | 60-120 | 6   | 20    |             |
| 2-Chlorophenol                        | 6.31         | 0.98      | 0.20  | ug/l  | 9.80  | ND        | 64      | 45-120 | 3   | 25    |             |
| 4-Chlorophenyl phenyl ether           | 8.71         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 89      | 65-120 | 7   | 25    |             |
| Chrysene                              | 7.92         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 81      | 65-120 | 8   | 25    |             |
| Dibenz(a,h)anthracene                 | 8.53         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 87      | 45-135 | 3   | 30    |             |
| Dibenzofuran                          | 8.02         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 82      | 65-120 | 10  | 25    |             |
| Di-n-butyl phthalate                  | 8.43         | 2.0       | 0.20  | ug/l  | 9.80  | ND        | 86      | 60-125 | 2   | 25    |             |
| 1,2-Dichlorobenzene                   | 6.98         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 71      | 40-120 | 28  | 25    | R           |
| 1,3-Dichlorobenzene                   | 5.14         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 52      | 35-120 | 24  | 25    |             |
| 1,4-Dichlorobenzene                   | 5.04         | 0.49      | 0.20  | ug/l  | 9.80  | ND        | 51      | 35-120 | 26  | 25    | R           |
| 3,3'-Dichlorobenzidine                | ND           | 4.9       | 4.9   | ug/l  | 9.80  | ND        |         | 45-135 |     | 25    | M2          |
| 2,4-Dichlorophenol                    | 5.73         | 2.0       | 0.20  | ug/l  | 9.80  | ND        | 58      | 55-120 | 5   | 25    |             |
| Diethyl phthalate                     | 9.02         | 0.98      | 0.098 | ug/l  | 9.80  | ND        | 92      | 55-120 | 11  | 30    |             |
| 2,4-Dimethylphenol                    | ND           | 2.0       | 0.29  | ug/l  | 9.80  | ND        |         | 40-120 |     | 25    | M2          |
| Dimethyl phthalate                    | 8.84         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 90      | 30-120 | 7   | 30    |             |
| 4,6-Dinitro-2-methylphenol            | 9.63         | 4.9       | 0.20  | ug/l  | 9.80  | ND        | 98      | 45-120 | 11  | 25    |             |
| 2,4-Dinitrophenol                     | 11.0         | 4.9       | 0.88  | ug/l  | 9.80  | ND        | 112     | 40-120 | 4   | 25    |             |
| 2,4-Dinitrotoluene                    | 8.65         | 4.9       | 0.20  | ug/l  | 9.80  | ND        | 88      | 65-120 | 8   | 25    |             |
| 2,6-Dinitrotoluene                    | 9.69         | 4.9       | 0.098 | ug/l  | 9.80  | ND        | 99      | 65-120 | 6   | 20    |             |
| Di-n-octyl phthalate                  | 9.45         | 4.9       | 0.098 | ug/l  | 9.80  | ND        | 96      | 65-135 | 0.6 | 20    |             |
| 1,2-Diphenylhydrazine/Azobenzene      | 8.37         | 0.98      | 0.098 | ug/l  | 9.80  | ND        | 85      | 60-120 | 9   | 25    |             |
| Fluoranthene                          | 8.12         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 83      | 60-120 | 5   | 25    |             |
| Fluorene                              | 8.59         | 0.49      | 0.098 | ug/l  | 9.80  | ND        | 88      | 65-120 | 8   | 25    |             |
| Hexachlorobenzene                     | 7.73         | 0.98      | 0.098 | ug/l  | 9.80  | ND        | 79      | 60-120 | 4   | 25    |             |
| Hexachlorobutadiene                   | 4.96         | 2.0       | 0.20  | ug/l  | 9.80  | ND        | 51      | 40-120 | 25  | 25    |             |
| Hexachlorocyclopentadiene             | 5.55         | 4.9       | 0.098 | ug/l  | 9.80  | ND        | 57      | 25-120 | 14  | 30    |             |
| Hexachloroethane                      | 4.47         | 2.9       | 0.20  | ug/l  | 9.80  | ND        | 46      | 35-120 | 31  | 25    | R           |
| Indeno(1,2,3-cd)pyrene                | 9.18         | 2.0       | 0.098 | ug/l  | 9.80  | ND        | 94      | 40-135 | 1   | 30    |             |
| Isophorone                            | 6.82         | 0.98      | 0.098 | ug/l  | 9.80  | 0.333     | 66      | 50-120 | 11  | 25    |             |
| 2-Methylnaphthalene                   | 6.06         | 0.98      | 0.098 | ug/l  | 9.80  | ND        | 62      | 55-120 | 11  | 20    |             |
| 2-Methylphenol                        | 1.49         | 2.0       | 0.098 | ug/l  | 9.80  | ND        | 15      | 50-120 | 107 | 25    | M2, R-3, Ja |
| 4-Methylphenol                        | 1.18         | 4.9       | 0.20  | ug/l  | 9.80  | ND        | 12      | 50-120 | 124 | 25    | M2, R-3, Ja |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

| . 17                                    | D 14          | Reporting | MDI   | <b>T</b> T •4 | Spike | Source    | 0/ DEC  | %REC   | DDD | RPD   | Data        |
|-----------------------------------------|---------------|-----------|-------|---------------|-------|-----------|---------|--------|-----|-------|-------------|
| Analyte                                 | Result        | Limit     | MDL   | Units         | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers  |
| <b>Batch: 10B1159 Extracted: 02/10/</b> | <u>/10</u>    |           |       |               |       |           |         |        |     |       |             |
| M 4 : 5 ! D 4 1 1 00/15/20              | 10 (10D1150 M | (CD4)     |       |               | 6     | TTD/      | 0010 01 |        |     |       |             |
| Matrix Spike Dup Analyzed: 02/15/20     | `             | ,         |       |               |       | rce: ITB( |         |        |     |       |             |
| Naphthalene                             | 6.24          | 0.98      | 0.098 | ug/l          | 9.80  | ND        | 64      | 55-120 | 13  | 25    |             |
| 2-Nitroaniline                          | 3.16          | 4.9       | 0.098 | ug/l          | 9.80  | ND        | 32      | 65-120 | 55  | 25    | M2, R-3, Ja |
| 3-Nitroaniline                          | ND            | 4.9       | 0.20  | ug/l          | 9.80  | ND        |         | 60-120 |     | 25    | M2          |
| 4-Nitroaniline                          | ND            | 4.9       | 0.49  | ug/l          | 9.80  | ND        |         | 55-125 |     | 25    | M2          |
| Nitrobenzene                            | 9.80          | 0.98      | 0.098 | ug/l          | 9.80  | ND        | 100     | 55-120 | 19  | 25    |             |
| 2-Nitrophenol                           | 9.75          | 2.0       | 0.098 | ug/l          | 9.80  | ND        | 99      | 50-120 | 24  | 25    |             |
| 4-Nitrophenol                           | 13.3          | 4.9       | 2.5   | ug/l          | 9.80  | ND        | 136     | 45-120 | 21  | 30    | M1          |
| N-Nitroso-di-n-propylamine              | 6.45          | 2.0       | 0.098 | ug/l          | 9.80  | ND        | 66      | 45-120 | 16  | 25    |             |
| N-Nitrosodimethylamine                  | 6.84          | 2.0       | 0.098 | ug/l          | 9.80  | ND        | 70      | 45-120 | 7   | 25    |             |
| N-Nitrosodiphenylamine                  | 6.57          | 0.98      | 0.098 | ug/l          | 9.80  | ND        | 67      | 60-120 | 0.3 | 25    |             |
| Pentachlorophenol                       | 8.57          | 2.0       | 0.098 | ug/l          | 9.80  | ND        | 87      | 50-120 | 6   | 25    |             |
| Phenanthrene                            | 7.94          | 0.49      | 0.098 | ug/l          | 9.80  | ND        | 81      | 65-120 | 5   | 25    |             |
| Phenol                                  | 9.53          | 0.98      | 0.29  | ug/l          | 9.80  | ND        | 97      | 40-120 | 18  | 25    |             |
| Pyrene                                  | 8.33          | 0.49      | 0.098 | ug/l          | 9.80  | ND        | 85      | 55-125 | 6   | 25    |             |
| 1,2,4-Trichlorobenzene                  | 5.45          | 0.98      | 0.098 | ug/l          | 9.80  | ND        | 56      | 45-120 | 23  | 20    | R           |
| 2,4,5-Trichlorophenol                   | 8.51          | 2.0       | 0.20  | ug/l          | 9.80  | ND        | 87      | 55-120 | 10  | 30    |             |
| 2,4,6-Trichlorophenol                   | 8.06          | 0.98      | 0.098 | ug/l          | 9.80  | ND        | 82      | 55-120 | 13  | 30    |             |
| Surrogate: 2,4,6-Tribromophenol         | 16.4          |           |       | ug/l          | 19.6  |           | 83      | 40-120 |     |       |             |
| Surrogate: 2-Fluorobiphenyl             | 6.69          |           |       | ug/l          | 9.80  |           | 68      | 50-120 |     |       |             |
| Surrogate: 2-Fluorophenol               | 9.96          |           |       | ug/l          | 19.6  |           | 51      | 30-120 |     |       |             |
| Surrogate: Nitrobenzene-d5              | 6.75          |           |       | ug/l          | 9.80  |           | 69      | 45-120 |     |       |             |
| Surrogate: Phenol-d6                    | 10.6          |           |       | ug/l          | 19.6  |           | 54      | 35-120 |     |       |             |
| Surrogate: Terphenyl-d14                | 8.06          |           |       | ug/l          | 9.80  |           | 82      | 50-125 |     |       |             |
| O                                       |               |           |       |               |       |           | -       |        |     |       |             |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 001 MWH-Pasadena/Boeing

Annual Outfall 001 618 Michillinda Avenue, Suite 200 Sampled: 02/06/10

Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10 Attention: Bronwyn Kelly

### METHOD BLANK/QC DATA

### **ORGANOCHLORINE PESTICIDES (EPA 608)**

| Analysta                                  | Dogult                                       | Reporting<br>Limit | MDI    | Unita | Spike<br>Level | Source | 0/ DEC | %REC   | DDD | RPD   | Data<br>Qualifiers |
|-------------------------------------------|----------------------------------------------|--------------------|--------|-------|----------------|--------|--------|--------|-----|-------|--------------------|
| Analyte                                   | Result                                       | Limit              | MDL    | Units | Levei          | Result | %REC   | Limits | RPD | Limit | Quaimers           |
| <b>Batch:</b> 10B1291 Extracted: 02/11/10 | <u>)                                    </u> |                    |        |       |                |        |        |        |     |       |                    |
| Blank Analyzed: 02/12/2010 (10B1291-B     | LK1)                                         |                    |        |       |                |        |        |        |     |       |                    |
| 4,4'-DDD                                  | ND                                           | 0.0050             | 0.0020 | ug/l  |                |        |        |        |     |       |                    |
| 4,4'-DDE                                  | ND                                           | 0.0050             | 0.0030 | ug/l  |                |        |        |        |     |       |                    |
| 4,4'-DDT                                  | ND                                           | 0.010              | 0.0040 | ug/l  |                |        |        |        |     |       |                    |
| Aldrin                                    | ND                                           | 0.0050             | 0.0015 | ug/l  |                |        |        |        |     |       |                    |
|                                           |                                              |                    |        |       |                |        |        |        |     |       |                    |
| alpha-BHC                                 | ND                                           | 0.0050             | 0.0025 | ug/l  |                |        |        |        |     |       |                    |
| beta-BHC                                  | ND                                           | 0.010              | 0.0040 | ug/l  |                |        |        |        |     |       |                    |
| delta-BHC                                 | ND                                           | 0.0050             | 0.0035 | ug/l  |                |        |        |        |     |       |                    |
| Dieldrin                                  | ND                                           | 0.0050             | 0.0020 | ug/l  |                |        |        |        |     |       |                    |
| Endosulfan I                              | ND                                           | 0.0050             | 0.0020 | ug/l  |                |        |        |        |     |       |                    |
| Endosulfan II                             | ND                                           | 0.0050             | 0.0030 | ug/l  |                |        |        |        |     |       |                    |
| Endosulfan sulfate                        | ND                                           | 0.010              | 0.0030 | ug/l  |                |        |        |        |     |       |                    |
| Endrin                                    | ND                                           | 0.0050             | 0.0020 | ug/l  |                |        |        |        |     |       |                    |
| Endrin aldehyde                           | ND                                           | 0.010              | 0.0020 | ug/l  |                |        |        |        |     |       |                    |
| Endrin ketone                             | ND                                           | 0.010              | 0.0030 | ug/l  |                |        |        |        |     |       |                    |
| gamma-BHC (Lindane)                       | ND                                           | 0.020              | 0.0030 | ug/l  |                |        |        |        |     |       |                    |
| Heptachlor                                | ND                                           | 0.010              | 0.0030 | ug/l  |                |        |        |        |     |       |                    |
| Heptachlor epoxide                        | ND                                           | 0.0050             | 0.0025 | ug/l  |                |        |        |        |     |       |                    |
| Methoxychlor                              | ND                                           | 0.0050             | 0.0035 | ug/l  |                |        |        |        |     |       |                    |
| Chlordane                                 | ND                                           | 0.10               | 0.040  | ug/l  |                |        |        |        |     |       |                    |
| Toxaphene                                 | ND                                           | 0.50               | 0.25   | ug/l  |                |        |        |        |     |       |                    |
| Surrogate: Decachlorobiphenyl             | 0.387                                        |                    |        | ug/l  | 0.500          |        | 77     | 45-120 |     |       |                    |
| Surrogate: Decachlorobiphenyl             | 0.387                                        |                    |        | ug/l  | 0.500          |        | 77     | 45-120 |     |       |                    |
| Surrogate: Tetrachloro-m-xylene           | 0.240                                        |                    |        | ug/l  | 0.500          |        | 48     | 35-115 |     |       |                    |
| Surrogate: Tetrachloro-m-xylene           | 0.240                                        |                    |        | ug/l  | 0.500          |        | 48     | 35-115 |     |       |                    |
| LCS Analyzed: 02/12/2010 (10B1291-BS      | 1)                                           |                    |        |       |                |        |        |        |     |       |                    |
| 4,4'-DDD                                  | 0.464                                        | 0.0050             | 0.0020 | ug/l  | 0.500          |        | 93     | 55-120 |     |       |                    |
| 4,4'-DDE                                  | 0.418                                        | 0.0050             | 0.0030 | ug/l  | 0.500          |        | 84     | 50-120 |     |       |                    |
| 4,4'-DDT                                  | 0.450                                        | 0.010              | 0.0040 | ug/l  | 0.500          |        | 90     | 55-120 |     |       |                    |
| Aldrin                                    | 0.374                                        | 0.0050             | 0.0015 | ug/l  | 0.500          |        | 75     | 40-115 |     |       |                    |
|                                           |                                              |                    |        | -     |                |        |        |        |     |       |                    |
| alpha-BHC                                 | 0.369                                        | 0.0050             | 0.0025 | ug/l  | 0.500          |        | 74     | 45-115 |     |       |                    |
| beta-BHC                                  | 0.361                                        | 0.010              | 0.0040 | ug/l  | 0.500          |        | 72     | 55-115 |     |       |                    |
| delta-BHC                                 | 0.404                                        | 0.0050             | 0.0035 | ug/l  | 0.500          |        | 81     | 55-115 |     |       |                    |
| Dieldrin                                  | 0.434                                        | 0.0050             | 0.0020 | ug/l  | 0.500          |        | 87     | 55-115 |     |       |                    |
| TestAmerica Irvine                        |                                              |                    |        |       |                |        |        |        |     |       |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **ORGANOCHLORINE PESTICIDES (EPA 608)**

| Analyta                                   | Result                                       | Reporting<br>Limit | MDL    | Units | Spike<br>Level | Source    | %REC    | %REC   | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|----------------------------------------------|--------------------|--------|-------|----------------|-----------|---------|--------|-----|--------------|--------------------|
| Analyte                                   |                                              | Lillit             | MIDL   | Units | Level          | Result    | 70KEC   | Limits | KFD | Lillit       | Quanners           |
| <b>Batch:</b> 10B1291 Extracted: 02/11/10 | <u>)                                    </u> |                    |        |       |                |           |         |        |     |              |                    |
|                                           |                                              |                    |        |       |                |           |         |        |     |              |                    |
| LCS Analyzed: 02/12/2010 (10B1291-BS      | <i>'</i>                                     |                    |        |       |                |           |         |        |     |              |                    |
| Endosulfan I                              | 0.423                                        | 0.0050             | 0.0020 | ug/l  | 0.500          |           | 85      | 55-115 |     |              |                    |
| Endosulfan II                             | 0.464                                        | 0.0050             | 0.0030 | ug/l  | 0.500          |           | 93      | 55-120 |     |              |                    |
| Endosulfan sulfate                        | 0.431                                        | 0.010              | 0.0030 | ug/l  | 0.500          |           | 86      | 60-120 |     |              |                    |
| Endrin                                    | 0.477                                        | 0.0050             | 0.0020 | ug/l  | 0.500          |           | 95      | 55-115 |     |              |                    |
| Endrin aldehyde                           | 0.393                                        | 0.010              | 0.0020 | ug/l  | 0.500          |           | 79      | 50-120 |     |              |                    |
| Endrin ketone                             | 0.454                                        | 0.010              | 0.0030 | ug/l  | 0.500          |           | 91      | 55-120 |     |              |                    |
| gamma-BHC (Lindane)                       | 0.381                                        | 0.020              | 0.0030 | ug/l  | 0.500          |           | 76      | 45-115 |     |              |                    |
| Heptachlor                                | 0.415                                        | 0.010              | 0.0030 | ug/l  | 0.500          |           | 83      | 45-115 |     |              |                    |
| Heptachlor epoxide                        | 0.407                                        | 0.0050             | 0.0025 | ug/l  | 0.500          |           | 81      | 55-115 |     |              |                    |
| Methoxychlor                              | 0.485                                        | 0.0050             | 0.0035 | ug/l  | 0.500          |           | 97      | 60-120 |     |              |                    |
| Surrogate: Decachlorobiphenyl             | 0.394                                        |                    |        | ug/l  | 0.500          |           | 79      | 45-120 |     |              |                    |
| Surrogate: Decachlorobiphenyl             | 0.394                                        |                    |        | ug/l  | 0.500          |           | 79      | 45-120 |     |              |                    |
| Surrogate: Tetrachloro-m-xylene           | 0.339                                        |                    |        | ug/l  | 0.500          |           | 68      | 35-115 |     |              |                    |
| Surrogate: Tetrachloro-m-xylene           | 0.339                                        |                    |        | ug/l  | 0.500          |           | 68      | 35-115 |     |              |                    |
| Matrix Spike Analyzed: 02/12/2010 (10E    | 31291-MS1)                                   |                    |        |       | Sou            | ırce: ITB | 0602-01 |        |     |              |                    |
| 4,4'-DDD                                  | 0.362                                        | 0.019              | 0.0075 | ug/l  | 0.472          | ND        | 77      | 50-125 |     |              |                    |
| 4,4'-DDE                                  | 0.530                                        | 0.019              | 0.011  | ug/l  | 0.472          | ND        | 112     | 45-125 |     |              |                    |
| 4,4'-DDT                                  | 0.402                                        | 0.038              | 0.015  | ug/l  | 0.472          | ND        | 85      | 50-125 |     |              |                    |
| Aldrin                                    | 0.386                                        | 0.019              | 0.0057 | ug/l  | 0.472          | ND        | 82      | 35-120 |     |              |                    |
| alpha-BHC                                 | 0.372                                        | 0.019              | 0.0094 | ug/l  | 0.472          | ND        | 79      | 40-120 |     |              |                    |
|                                           |                                              |                    |        |       |                |           |         |        |     |              |                    |
| beta-BHC                                  | 0.186                                        | 0.038              | 0.015  | ug/l  | 0.472          | ND        | 39      | 50-120 |     |              | M2                 |
| delta-BHC                                 | 0.314                                        | 0.019              | 0.013  | ug/l  | 0.472          | ND        | 67      | 50-120 |     |              |                    |
| Dieldrin                                  | 0.390                                        | 0.019              | 0.0075 | ug/l  | 0.472          | ND        | 83      | 50-120 |     |              |                    |
| Endosulfan I                              | 0.475                                        | 0.019              | 0.0075 | ug/l  | 0.472          | ND        | 101     | 50-120 |     |              |                    |
| Endosulfan II                             | 0.390                                        | 0.019              | 0.011  | ug/l  | 0.472          | ND        | 83      | 50-125 |     |              |                    |
| Endosulfan sulfate                        | 0.333                                        | 0.038              | 0.011  | ug/l  | 0.472          | ND        | 71      | 55-125 |     |              |                    |
| Endrin                                    | 0.413                                        | 0.019              | 0.0075 | ug/l  | 0.472          | ND        | 88      | 50-120 |     |              |                    |
| Endrin aldehyde                           | 0.190                                        | 0.038              | 0.0075 | ug/l  | 0.472          | ND        | 40      | 45-125 |     |              | M2                 |
| Endrin ketone                             | 0.342                                        | 0.038              | 0.011  | ug/l  | 0.472          | ND        | 72      | 50-125 |     |              |                    |
| gamma-BHC (Lindane)                       | 0.371                                        | 0.075              | 0.011  | ug/l  | 0.472          | ND        | 79      | 40-120 |     |              |                    |
| Heptachlor                                | 0.452                                        | 0.038              | 0.011  | ug/l  | 0.472          | ND        | 96      | 40-120 |     |              |                    |
| Heptachlor epoxide                        | 0.450                                        | 0.019              | 0.0094 | ug/l  | 0.472          | ND        | 95      | 50-120 |     |              |                    |
| Methoxychlor                              | 0.447                                        | 0.019              | 0.013  | ug/l  | 0.472          | ND        | 95      | 55-125 |     |              |                    |
| Surrogate: Decachlorobiphenyl             | 0.418                                        |                    |        | ug/l  | 0.472          |           | 89      | 45-120 |     |              |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **ORGANOCHLORINE PESTICIDES (EPA 608)**

| Ameliote                                  | D14        | Reporting | MDI    | TI24- | Spike | Source    | 0/DEC   | %REC   | DDD | RPD   | Data       |
|-------------------------------------------|------------|-----------|--------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                   | Result     | Limit     | MDL    | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 10B1291 Extracted: 02/11/10</b> | _          |           |        |       |       |           |         |        |     |       |            |
|                                           |            |           |        |       | ~     |           |         |        |     |       |            |
| Matrix Spike Analyzed: 02/12/2010 (10B    | ,          |           |        |       |       | rce: ITB( |         |        |     |       |            |
| Surrogate: Decachlorobiphenyl             | 0.418      |           |        | ug/l  | 0.472 |           | 89      | 45-120 |     |       |            |
| Surrogate: Tetrachloro-m-xylene           | 0.220      |           |        | ug/l  | 0.472 |           | 47      | 35-115 |     |       |            |
| Surrogate: Tetrachloro-m-xylene           | 0.220      |           |        | ug/l  | 0.472 |           | 47      | 35-115 |     |       |            |
| Matrix Spike Dup Analyzed: 02/12/2010     | (10B1291-M | ISD1)     |        |       | Sou   | rce: ITB( | 0602-01 |        |     |       |            |
| 4,4'-DDD                                  | 0.364      | 0.019     | 0.0075 | ug/l  | 0.472 | ND        | 77      | 50-125 | 0.5 | 30    |            |
| 4,4'-DDE                                  | 0.527      | 0.019     | 0.011  | ug/l  | 0.472 | ND        | 112     | 45-125 | 0.7 | 30    |            |
| 4,4'-DDT                                  | 0.396      | 0.038     | 0.015  | ug/l  | 0.472 | ND        | 84      | 50-125 | 1   | 30    |            |
| Aldrin                                    | 0.384      | 0.019     | 0.0057 | ug/l  | 0.472 | ND        | 81      | 35-120 | 0.6 | 30    |            |
| alpha-BHC                                 | 0.367      | 0.019     | 0.0094 | ug/l  | 0.472 | ND        | 78      | 40-120 | 1   | 30    |            |
|                                           |            |           |        |       |       |           |         |        |     |       |            |
| beta-BHC                                  | 0.196      | 0.038     | 0.015  | ug/l  | 0.472 | ND        | 42      | 50-120 | 5   | 30    | M2         |
| delta-BHC                                 | 0.313      | 0.019     | 0.013  | ug/l  | 0.472 | ND        | 66      | 50-120 | 0.2 | 30    |            |
| Dieldrin                                  | 0.387      | 0.019     | 0.0075 | ug/l  | 0.472 | ND        | 82      | 50-120 | 0.7 | 30    |            |
| Endosulfan I                              | 0.471      | 0.019     | 0.0075 | ug/l  | 0.472 | ND        | 100     | 50-120 | 1   | 30    |            |
| Endosulfan II                             | 0.393      | 0.019     | 0.011  | ug/l  | 0.472 | ND        | 83      | 50-125 | 0.7 | 30    |            |
| Endosulfan sulfate                        | 0.346      | 0.038     | 0.011  | ug/l  | 0.472 | ND        | 73      | 55-125 | 4   | 30    |            |
| Endrin                                    | 0.409      | 0.019     | 0.0075 | ug/l  | 0.472 | ND        | 87      | 50-120 | 1   | 30    |            |
| Endrin aldehyde                           | 0.197      | 0.038     | 0.0075 | ug/l  | 0.472 | ND        | 42      | 45-125 | 4   | 30    | M2         |
| Endrin ketone                             | 0.338      | 0.038     | 0.011  | ug/l  | 0.472 | ND        | 72      | 50-125 | 1   | 30    |            |
| gamma-BHC (Lindane)                       | 0.368      | 0.075     | 0.011  | ug/l  | 0.472 | ND        | 78      | 40-120 | 0.6 | 30    |            |
| Heptachlor                                | 0.441      | 0.038     | 0.011  | ug/l  | 0.472 | ND        | 93      | 40-120 | 3   | 30    |            |
| Heptachlor epoxide                        | 0.447      | 0.019     | 0.0094 | ug/l  | 0.472 | ND        | 95      | 50-120 | 0.7 | 30    |            |
| Methoxychlor                              | 0.442      | 0.019     | 0.013  | ug/l  | 0.472 | ND        | 94      | 55-125 | 1   | 30    |            |
| Surrogate: Decachlorobiphenyl             | 0.407      |           |        | ug/l  | 0.472 |           | 86      | 45-120 |     |       |            |
| Surrogate: Decachlorobiphenyl             | 0.407      |           |        | ug/l  | 0.472 |           | 86      | 45-120 |     |       |            |
| Surrogate: Tetrachloro-m-xylene           | 0.264      |           |        | ug/l  | 0.472 |           | 56      | 35-115 |     |       |            |
| Surrogate: Tetrachloro-m-xylene           | 0.264      |           |        | ug/l  | 0.472 |           | 56      | 35-115 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **TOTAL PCBS (EPA 608)**

|                                        |              | Reporting |      |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|--------------|-----------|------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result       | Limit     | MDL  | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B1291 Extracted: 02/11/1      | <u>0</u>     |           |      |       |       |          |         |        |     |       |            |
|                                        |              |           |      |       |       |          |         |        |     |       |            |
| Blank Analyzed: 02/11/2010 (10B1291-l  | BLK1)        |           |      |       |       |          |         |        |     |       |            |
| Aroclor 1016                           | ND           | 0.50      | 0.25 | ug/l  |       |          |         |        |     |       |            |
| Aroclor 1221                           | ND           | 0.50      | 0.25 | ug/l  |       |          |         |        |     |       |            |
| Aroclor 1232                           | ND           | 0.50      | 0.25 | ug/l  |       |          |         |        |     |       |            |
| Aroclor 1242                           | ND           | 0.50      | 0.25 | ug/l  |       |          |         |        |     |       |            |
| Aroclor 1248                           | ND           | 0.50      | 0.25 | ug/l  |       |          |         |        |     |       |            |
| Aroclor 1254                           | ND           | 0.50      | 0.25 | ug/l  |       |          |         |        |     |       |            |
| Aroclor 1260                           | ND           | 0.50      | 0.25 | ug/l  |       |          |         |        |     |       |            |
| Surrogate: Decachlorobiphenyl          | 0.422        |           |      | ug/l  | 0.500 |          | 84      | 45-120 |     |       |            |
| LCS Analyzed: 02/11/2010 (10B1291-B    | S2)          |           |      |       |       |          |         |        |     |       |            |
| Aroclor 1016                           | 2.94         | 0.50      | 0.25 | ug/l  | 4.00  |          | 74      | 50-115 |     |       |            |
| Aroclor 1260                           | 3.60         | 0.50      | 0.25 | ug/1  | 4.00  |          | 90      | 60-120 |     |       |            |
| Surrogate: Decachlorobiphenyl          | 0.432        |           |      | ug/l  | 0.500 |          | 86      | 45-120 |     |       |            |
| Matrix Spike Analyzed: 02/11/2010 (10) | B1291-MS2)   |           |      |       | Sou   | rce: ITB | 0602-01 |        |     |       |            |
| Aroclor 1016                           | 4.30         | 0.47      | 0.24 | ug/l  | 3.77  | ND       | 114     | 45-120 |     |       |            |
| Aroclor 1260                           | 3.32         | 0.47      | 0.24 | ug/l  | 3.77  | ND       | 88      | 55-125 |     |       |            |
| Surrogate: Decachlorobiphenyl          | 0.388        |           |      | ug/l  | 0.472 |          | 82      | 45-120 |     |       |            |
| Matrix Spike Dup Analyzed: 02/11/2010  | 0 (10B1291-N | ISD2)     |      |       | Sou   | rce: ITB | 0602-01 |        |     |       |            |
| Aroclor 1016                           | 4.36         | 0.47      | 0.24 | ug/l  | 3.77  | ND       | 116     | 45-120 | 1   | 30    |            |
| Aroclor 1260                           | 3.32         | 0.47      | 0.24 | ug/l  | 3.77  | ND       | 88      | 55-125 | 0.2 | 25    |            |
| Surrogate: Decachlorobiphenyl          | 0.383        |           |      | ug/l  | 0.472 |          | 81      | 45-120 |     |       |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### HEXANE EXTRACTABLE MATERIAL

| Analyte                                    | Result  | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|--------------------------------------------|---------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 10B1991 Extracted: 02/17/10         | -       |                    |     |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 02/17/2010 (10B1991-Bl     | LK1)    |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | ND      | 5.0                | 1.4 | mg/l  |                |                  |      |                |     |              |                    |
| LCS Analyzed: 02/17/2010 (10B1991-BS)      | 1)      |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 20.5    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 102  | 78-114         |     |              |                    |
| LCS Dup Analyzed: 02/17/2010 (10B199)      | 1-BSD1) |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 20.2    | 5.0                | 1.4 | mg/l  | 20.0           |                  | 101  | 78-114         | 1   | 11           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

#### **METALS**

|                                        |        | Reporting |        |       | Spike | Source |      | %REC   |     | RPD   | Data       |
|----------------------------------------|--------|-----------|--------|-------|-------|--------|------|--------|-----|-------|------------|
| Analyte                                | Result | Limit     | MDL    | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 10B0874 Extracted: 02/08/10     | _      |           |        |       |       |        |      |        |     |       |            |
|                                        |        |           |        |       |       |        |      |        |     |       |            |
| Blank Analyzed: 02/08/2010 (10B0874-B) | LK1)   |           |        |       |       |        |      |        |     |       |            |
| Arsenic                                | ND     | 10        | 7.0    | ug/l  |       |        |      |        |     |       |            |
| Barium                                 | ND     | 0.010     | 0.0060 | mg/l  |       |        |      |        |     |       |            |
| Beryllium                              | ND     | 2.0       | 0.90   | ug/l  |       |        |      |        |     |       |            |
| Boron                                  | ND     | 0.050     | 0.020  | mg/l  |       |        |      |        |     |       |            |
| Calcium                                | ND     | 0.10      | 0.050  | mg/l  |       |        |      |        |     |       |            |
| Chromium                               | ND     | 5.0       | 2.0    | ug/l  |       |        |      |        |     |       |            |
| Cobalt                                 | ND     | 10        | 2.0    | ug/l  |       |        |      |        |     |       |            |
| Iron                                   | ND     | 0.040     | 0.015  | mg/l  |       |        |      |        |     |       |            |
| Magnesium                              | ND     | 0.020     | 0.012  | mg/l  |       |        |      |        |     |       |            |
| Manganese                              | ND     | 20        | 7.0    | ug/l  |       |        |      |        |     |       |            |
| Nickel                                 | ND     | 10        | 2.0    | ug/l  |       |        |      |        |     |       |            |
| Vanadium                               | ND     | 10        | 3.0    | ug/l  |       |        |      |        |     |       |            |
| Zinc                                   | ND     | 20        | 6.0    | ug/l  |       |        |      |        |     |       |            |
| LCS Analyzed: 02/08/2010 (10B0874-BS)  | 1)     |           |        |       |       |        |      |        |     |       |            |
| Arsenic                                | 489    | 10        | 7.0    | ug/l  | 500   |        | 98   | 85-115 |     |       |            |
| Barium                                 | 0.490  | 0.010     | 0.0060 | mg/l  | 0.500 |        | 98   | 85-115 |     |       |            |
| Beryllium                              | 486    | 2.0       | 0.90   | ug/l  | 500   |        | 97   | 85-115 |     |       |            |
| Boron                                  | 0.503  | 0.050     | 0.020  | mg/l  | 0.500 |        | 101  | 85-115 |     |       |            |
| Calcium                                | 2.44   | 0.10      | 0.050  | mg/l  | 2.50  |        | 98   | 85-115 |     |       |            |
| Chromium                               | 473    | 5.0       | 2.0    | ug/l  | 500   |        | 95   | 85-115 |     |       |            |
| Cobalt                                 | 462    | 10        | 2.0    | ug/l  | 500   |        | 92   | 85-115 |     |       |            |
| Iron                                   | 0.474  | 0.040     | 0.015  | mg/l  | 0.500 |        | 95   | 85-115 |     |       |            |
| Magnesium                              | 2.41   | 0.020     | 0.012  | mg/l  | 2.50  |        | 96   | 85-115 |     |       |            |
| Manganese                              | 474    | 20        | 7.0    | ug/l  | 500   |        | 95   | 85-115 |     |       |            |
| Nickel                                 | 476    | 10        | 2.0    | ug/l  | 500   |        | 95   | 85-115 |     |       |            |
| Vanadium                               | 475    | 10        | 3.0    | ug/l  | 500   |        | 95   | 85-115 |     |       |            |
| Zinc                                   | 474    | 20        | 6.0    | ug/l  | 500   |        | 95   | 85-115 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **METALS**

|                                        |            | Reporting |        |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|--------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL    | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B0874 Extracted: 02/08/10     | 0          |           |        |       |       |           |         |        |     |       |            |
|                                        | _          |           |        |       |       |           |         |        |     |       |            |
| Matrix Spike Analyzed: 02/08/2010 (101 | 30874-MS1) |           |        |       | Sou   | rce: ITB( | 0887-04 |        |     |       |            |
| Arsenic                                | 479        | 10        | 7.0    | ug/l  | 500   | ND        | 96      | 70-130 |     |       |            |
| Barium                                 | 0.560      | 0.010     | 0.0060 | mg/l  | 0.500 | 0.0762    | 97      | 70-130 |     |       |            |
| Beryllium                              | 488        | 2.0       | 0.90   | ug/l  | 500   | ND        | 98      | 70-130 |     |       |            |
| Boron                                  | 0.528      | 0.050     | 0.020  | mg/l  | 0.500 | 0.0420    | 97      | 70-130 |     |       |            |
| Calcium                                | 15.2       | 0.10      | 0.050  | mg/l  | 2.50  | 12.7      | 101     | 70-130 |     |       | MHA        |
| Chromium                               | 484        | 5.0       | 2.0    | ug/l  | 500   | 10.6      | 95      | 70-130 |     |       |            |
| Cobalt                                 | 466        | 10        | 2.0    | ug/l  | 500   | 2.50      | 93      | 70-130 |     |       |            |
| Iron                                   | 9.51       | 0.040     | 0.015  | mg/l  | 0.500 | 9.71      | -40     | 70-130 |     |       | MHA        |
| Magnesium                              | 7.65       | 0.020     | 0.012  | mg/l  | 2.50  | 5.35      | 92      | 70-130 |     |       |            |
| Manganese                              | 620        | 20        | 7.0    | ug/l  | 500   | 151       | 94      | 70-130 |     |       |            |
| Nickel                                 | 482        | 10        | 2.0    | ug/l  | 500   | 6.05      | 95      | 70-130 |     |       |            |
| Vanadium                               | 493        | 10        | 3.0    | ug/l  | 500   | 20.1      | 95      | 70-130 |     |       |            |
| Zinc                                   | 505        | 20        | 6.0    | ug/l  | 500   | 33.9      | 94      | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 02/08/2010  | (10B0874-M | SD1)      |        |       | Sou   | rce: ITB( | 0887-04 |        |     |       |            |
| Arsenic                                | 487        | 10        | 7.0    | ug/l  | 500   | ND        | 97      | 70-130 | 2   | 20    |            |
| Barium                                 | 0.572      | 0.010     | 0.0060 | mg/l  | 0.500 | 0.0762    | 99      | 70-130 | 2   | 20    |            |
| Beryllium                              | 490        | 2.0       | 0.90   | ug/l  | 500   | ND        | 98      | 70-130 | 0.5 | 20    |            |
| Boron                                  | 0.544      | 0.050     | 0.020  | mg/l  | 0.500 | 0.0420    | 100     | 70-130 | 3   | 20    |            |
| Calcium                                | 15.4       | 0.10      | 0.050  | mg/l  | 2.50  | 12.7      | 107     | 70-130 | 1   | 20    | MHA        |
| Chromium                               | 489        | 5.0       | 2.0    | ug/l  | 500   | 10.6      | 96      | 70-130 | 1   | 20    |            |
| Cobalt                                 | 474        | 10        | 2.0    | ug/l  | 500   | 2.50      | 94      | 70-130 | 2   | 20    |            |
| Iron                                   | 9.03       | 0.040     | 0.015  | mg/l  | 0.500 | 9.71      | -137    | 70-130 | 5   | 20    | MHA        |
| Magnesium                              | 7.76       | 0.020     | 0.012  | mg/l  | 2.50  | 5.35      | 96      | 70-130 | 1   | 20    |            |
| Manganese                              | 623        | 20        | 7.0    | ug/1  | 500   | 151       | 94      | 70-130 | 0.6 | 20    |            |
| Nickel                                 | 493        | 10        | 2.0    | ug/1  | 500   | 6.05      | 97      | 70-130 | 2   | 20    |            |
| Vanadium                               | 504        | 10        | 3.0    | ug/1  | 500   | 20.1      | 97      | 70-130 | 2   | 20    |            |
| Zinc                                   | 516        | 20        | 6.0    | ug/l  | 500   | 33.9      | 96      | 70-130 | 2   | 20    |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

METHOD BLANK/QC DATA

### **METALS**

| Analyte                                   | Result     | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source   | %REC    | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|------------|--------------------|-------|-------|----------------|----------|---------|--------|------|--------------|--------------------|
| ·                                         |            | Limit              | MDL   | Cints | Level          | Result   | /UKEC   | Limits | KI D | Limit        | Quantiers          |
| <b>Batch: 10B0879 Extracted: 02/08/10</b> | <u> </u>   |                    |       |       |                |          |         |        |      |              |                    |
| Blank Analyzed: 02/08/2010 (10B0879-B     | LK1)       |                    |       |       |                |          |         |        |      |              |                    |
| Antimony                                  | ND         | 2.0                | 0.30  | ug/l  |                |          |         |        |      |              |                    |
| Cadmium                                   | ND         | 1.0                | 0.10  | ug/l  |                |          |         |        |      |              |                    |
| Copper                                    | ND         | 2.00               | 0.500 | ug/l  |                |          |         |        |      |              |                    |
| Lead                                      | ND         | 1.0                | 0.20  | ug/l  |                |          |         |        |      |              |                    |
| Selenium                                  | ND         | 2.0                | 0.50  | ug/l  |                |          |         |        |      |              |                    |
| Silver                                    | ND         | 1.0                | 0.10  | ug/l  |                |          |         |        |      |              |                    |
| Thallium                                  | ND         | 1.0                | 0.20  | ug/l  |                |          |         |        |      |              |                    |
| LCS Analyzed: 02/08/2010 (10B0879-BS      | 1)         |                    |       |       |                |          |         |        |      |              |                    |
| Antimony                                  | 87.8       | 2.0                | 0.30  | ug/l  | 80.0           |          | 110     | 85-115 |      |              |                    |
| Cadmium                                   | 87.1       | 1.0                | 0.10  | ug/l  | 80.0           |          | 109     | 85-115 |      |              |                    |
| Copper                                    | 80.1       | 2.00               | 0.500 | ug/l  | 80.0           |          | 100     | 85-115 |      |              |                    |
| Lead                                      | 85.6       | 1.0                | 0.20  | ug/l  | 80.0           |          | 107     | 85-115 |      |              |                    |
| Selenium                                  | 83.7       | 2.0                | 0.50  | ug/l  | 80.0           |          | 105     | 85-115 |      |              |                    |
| Silver                                    | 84.2       | 1.0                | 0.10  | ug/l  | 80.0           |          | 105     | 85-115 |      |              |                    |
| Thallium                                  | 85.9       | 1.0                | 0.20  | ug/l  | 80.0           |          | 107     | 85-115 |      |              |                    |
| Matrix Spike Analyzed: 02/08/2010 (10B    | 0879-MS1)  |                    |       |       | Sou            | rce: ITB | 0856-01 |        |      |              |                    |
| Antimony                                  | 88.1       | 2.0                | 0.30  | ug/l  | 80.0           | 1.47     | 108     | 70-130 |      |              |                    |
| Cadmium                                   | 84.9       | 1.0                | 0.10  | ug/l  | 80.0           | 0.186    | 106     | 70-130 |      |              |                    |
| Copper                                    | 82.8       | 2.00               | 0.500 | ug/l  | 80.0           | 1.22     | 102     | 70-130 |      |              |                    |
| Lead                                      | 80.0       | 1.0                | 0.20  | ug/l  | 80.0           | 1.52     | 98      | 70-130 |      |              |                    |
| Selenium                                  | 80.2       | 2.0                | 0.50  | ug/l  | 80.0           | 1.12     | 99      | 70-130 |      |              |                    |
| Silver                                    | 81.6       | 1.0                | 0.10  | ug/l  | 80.0           | ND       | 102     | 70-130 |      |              |                    |
| Thallium                                  | 82.8       | 1.0                | 0.20  | ug/l  | 80.0           | ND       | 104     | 70-130 |      |              |                    |
| Matrix Spike Dup Analyzed: 02/08/2010     | (10B0879-M | ISD1)              |       |       | Sou            | rce: ITB | 0856-01 |        |      |              |                    |
| Antimony                                  | 85.6       | 2.0                | 0.30  | ug/l  | 80.0           | 1.47     | 105     | 70-130 | 3    | 20           |                    |
| Cadmium                                   | 83.1       | 1.0                | 0.10  | ug/l  | 80.0           | 0.186    | 104     | 70-130 | 2    | 20           |                    |
| Copper                                    | 80.2       | 2.00               | 0.500 | ug/l  | 80.0           | 1.22     | 99      | 70-130 | 3    | 20           |                    |
| Lead                                      | 78.9       | 1.0                | 0.20  | ug/l  | 80.0           | 1.52     | 97      | 70-130 | 1    | 20           |                    |
| Selenium                                  | 79.4       | 2.0                | 0.50  | ug/l  | 80.0           | 1.12     | 98      | 70-130 | 1    | 20           |                    |
| Silver                                    | 79.4       | 1.0                | 0.10  | ug/l  | 80.0           | ND       | 99      | 70-130 | 3    | 20           |                    |
| Thallium                                  | 81.4       | 1.0                | 0.20  | ug/l  | 80.0           | ND       | 102     | 70-130 | 2    | 20           |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

#### **METALS**

| Analyte                                              | Result    | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result |         | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------------|-----------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10B0921 Extracted: 02/08/10                   | -         |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/08/2010 (10B0921-Bl               | LK1)      |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                              | ND        | 0.20               | 0.10 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/08/2010 (10B0921-BS)                | 1)        |                    |      |       |                |                  |         |                |     |              |                    |
| Mercury                                              | 8.22      | 0.20               | 0.10 | ug/l  | 8.00           |                  | 103     | 85-115         |     |              |                    |
| Matrix Spike Analyzed: 02/08/2010 (10B               | 0921-MS1) |                    |      |       | Sou            | rce: ITB(        | 0263-07 |                |     |              |                    |
| Mercury                                              | 8.24      | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 103     | 70-130         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/08/2010 (10B0921-MSD1) |           |                    |      |       | Sou            | rce: ITB(        | 0263-07 |                |     |              |                    |
| Mercury                                              | 8.09      | 0.20               | 0.10 | ug/l  | 8.00           | ND               | 101     | 70-130         | 2   | 20           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

|                                        |           | Reporting |      |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|----------------------------------------|-----------|-----------|------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                | Result    | Limit     | MDL  | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B1845 Extracted: 02/15/10     | _         |           |      |       |       |           |         |        |     |       |            |
|                                        |           |           |      |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/16/2010 (10B1845-B  | LK1)      |           |      |       |       |           |         |        |     |       |            |
| Antimony                               | ND        | 2.0       | 0.30 | ug/l  |       |           |         |        |     |       |            |
| Cadmium                                | ND        | 1.0       | 0.10 | ug/l  |       |           |         |        |     |       |            |
| Lead                                   | ND        | 1.0       | 0.20 | ug/l  |       |           |         |        |     |       |            |
| Selenium                               | ND        | 2.0       | 0.50 | ug/l  |       |           |         |        |     |       |            |
| Silver                                 | ND        | 1.0       | 0.10 | ug/l  |       |           |         |        |     |       |            |
| Thallium                               | ND        | 1.0       | 0.20 | ug/l  |       |           |         |        |     |       |            |
| LCS Analyzed: 02/16/2010 (10B1845-BS   | 1)        |           |      |       |       |           |         |        |     |       |            |
| Antimony                               | 81.7      | 2.0       | 0.30 | ug/l  | 80.0  |           | 102     | 85-115 |     |       |            |
| Cadmium                                | 81.8      | 1.0       | 0.10 | ug/l  | 80.0  |           | 102     | 85-115 |     |       |            |
| Lead                                   | 84.1      | 1.0       | 0.20 | ug/l  | 80.0  |           | 105     | 85-115 |     |       |            |
| Selenium                               | 82.4      | 2.0       | 0.50 | ug/l  | 80.0  |           | 103     | 85-115 |     |       |            |
| Silver                                 | 84.4      | 1.0       | 0.10 | ug/l  | 80.0  |           | 105     | 85-115 |     |       |            |
| Thallium                               | 87.0      | 1.0       | 0.20 | ug/l  | 80.0  |           | 109     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 02/16/2010 (10B | 1845-MS1) |           |      |       | Sou   | rce: ITB  | 1082-03 |        |     |       |            |
| Antimony                               | 82.8      | 20        | 3.0  | ug/l  | 80.0  | ND        | 103     | 70-130 |     |       |            |
| Cadmium                                | 81.7      | 10        | 1.0  | ug/l  | 80.0  | 1.14      | 101     | 70-130 |     |       |            |
| Lead                                   | 74.3      | 10        | 2.0  | ug/l  | 80.0  | ND        | 93      | 70-130 |     |       |            |
| Selenium                               | 88.1      | 20        | 5.0  | ug/l  | 80.0  | 10.3      | 97      | 70-130 |     |       |            |
| Silver                                 | 82.2      | 10        | 1.0  | ug/l  | 80.0  | ND        | 103     | 70-130 |     |       |            |
| Thallium                               | 78.4      | 10        | 2.0  | ug/l  | 80.0  | ND        | 98      | 70-130 |     |       |            |
| Matrix Spike Analyzed: 02/16/2010 (10B | 1845-MS2) |           |      |       | Sou   | rce: ITB( | 0888-01 |        |     |       |            |
| Antimony                               | 86.1      | 2.0       | 0.30 | ug/l  | 80.0  | ND        | 108     | 70-130 |     |       |            |
| Cadmium                                | 83.4      | 1.0       | 0.10 | ug/l  | 80.0  | ND        | 104     | 70-130 |     |       |            |
| Lead                                   | 78.5      | 1.0       | 0.20 | ug/l  | 80.0  | ND        | 98      | 70-130 |     |       |            |
| Selenium                               | 83.6      | 2.0       | 0.50 | ug/l  | 80.0  | 0.511     | 104     | 70-130 |     |       |            |
| Silver                                 | 82.6      | 1.0       | 0.10 | ug/l  | 80.0  | ND        | 103     | 70-130 |     |       |            |
| Thallium                               | 85.5      | 1.0       | 0.20 | ug/l  | 80.0  | ND        | 107     | 70-130 |     |       |            |
|                                        |           |           |      |       |       |           |         |        |     |       |            |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

#### **DISSOLVED METALS**

|                                       |                                              | Reporting |        |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|---------------------------------------|----------------------------------------------|-----------|--------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                               | Result                                       | Limit     | MDL    | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B1845 Extracted: 02/15/10    | <u>)                                    </u> |           |        |       |       |          |         |        |     |       |            |
|                                       |                                              |           |        |       |       |          |         |        |     |       |            |
| Matrix Spike Dup Analyzed: 02/16/2010 |                                              |           |        |       |       | rce: ITB | 1082-03 |        |     |       |            |
| Antimony                              | 85.7                                         | 20        | 3.0    | ug/l  | 80.0  | ND       | 107     | 70-130 | 4   | 20    |            |
| Cadmium                               | 84.8                                         | 10        | 1.0    | ug/l  | 80.0  | 1.14     | 105     | 70-130 | 4   | 20    |            |
| Lead                                  | 76.5                                         | 10        | 2.0    | ug/l  | 80.0  | ND       | 96      | 70-130 | 3   | 20    |            |
| Selenium                              | 93.5                                         | 20        | 5.0    | ug/l  | 80.0  | 10.3     | 104     | 70-130 | 6   | 20    |            |
| Silver                                | 84.5                                         | 10        | 1.0    | ug/l  | 80.0  | ND       | 106     | 70-130 | 3   | 20    |            |
| Thallium                              | 80.8                                         | 10        | 2.0    | ug/l  | 80.0  | ND       | 101     | 70-130 | 3   | 20    |            |
| Batch: 10B1846 Extracted: 02/15/10    | <u>)                                    </u> |           |        |       |       |          |         |        |     |       |            |
| Blank Analyzed: 02/16/2010 (10B1846-E | BLK1)                                        |           |        |       |       |          |         |        |     |       |            |
| Arsenic                               | ND                                           | 10        | 7.0    | ug/l  |       |          |         |        |     |       |            |
| Barium                                | ND                                           | 0.010     | 0.0060 | mg/l  |       |          |         |        |     |       |            |
| Beryllium                             | ND                                           | 2.0       | 0.90   | ug/l  |       |          |         |        |     |       |            |
| Boron                                 | 0.0453                                       | 0.050     | 0.020  | mg/l  |       |          |         |        |     |       | Ja         |
| Calcium                               | 0.0573                                       | 0.10      | 0.050  | mg/l  |       |          |         |        |     |       | Ja         |
| Cobalt                                | ND                                           | 10        | 2.0    | ug/l  |       |          |         |        |     |       |            |
| Iron                                  | 0.0219                                       | 0.040     | 0.015  | mg/l  |       |          |         |        |     |       | Ja         |
| Magnesium                             | 0.0150                                       | 0.020     | 0.012  | mg/l  |       |          |         |        |     |       | Ja         |
| Manganese                             | ND                                           | 20        | 7.0    | ug/l  |       |          |         |        |     |       |            |
| Nickel                                | ND                                           | 10        | 2.0    | ug/l  |       |          |         |        |     |       |            |
| Vanadium                              | ND                                           | 10        | 3.0    | ug/l  |       |          |         |        |     |       |            |
| Zinc                                  | ND                                           | 20        | 6.0    | ug/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 02/16/2010 (10B1846-BS  | 51)                                          |           |        |       |       |          |         |        |     |       |            |
| Arsenic                               | 521                                          | 10        | 7.0    | ug/l  | 500   |          | 104     | 85-115 |     |       |            |
| Barium                                | 0.489                                        | 0.010     | 0.0060 | mg/l  | 0.500 |          | 98      | 85-115 |     |       |            |
| Beryllium                             | 486                                          | 2.0       | 0.90   | ug/l  | 500   |          | 97      | 85-115 |     |       |            |
| Boron                                 | 0.521                                        | 0.050     | 0.020  | mg/l  | 0.500 |          | 104     | 85-115 |     |       |            |
| Calcium                               | 2.42                                         | 0.10      | 0.050  | mg/l  | 2.50  |          | 97      | 85-115 |     |       |            |
| Cobalt                                | 461                                          | 10        | 2.0    | ug/l  | 500   |          | 92      | 85-115 |     |       |            |
| Iron                                  | 0.499                                        | 0.040     | 0.015  | mg/l  | 0.500 |          | 100     | 85-115 |     |       |            |
| Magnesium                             | 2.42                                         | 0.020     | 0.012  | mg/l  | 2.50  |          | 97      | 85-115 |     |       |            |
| Manganese                             | 481                                          | 20        | 7.0    | ug/l  | 500   |          | 96      | 85-115 |     |       |            |
| Nickel                                | 480                                          | 10        | 2.0    | ug/l  | 500   |          | 96      | 85-115 |     |       |            |
| Vanadium                              | 489                                          | 10        | 3.0    | ug/l  | 500   |          | 98      | 85-115 |     |       |            |
| Zinc                                  | 499                                          | 20        | 6.0    | ug/l  | 500   |          | 100     | 85-115 |     |       |            |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **DISSOLVED METALS**

| Analyte                                  | Result       | Reporting<br>Limit | MDL    | Units | Spike<br>Level | Source    | %REC    | %REC   | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------|--------------|--------------------|--------|-------|----------------|-----------|---------|--------|-----|--------------|--------------------|
| ·                                        |              | Lillit             | MIDL   | Units | Level          | Result    | 70KEC   | Limits | KrD | Lillit       | Quanners           |
| <b>Batch: 10B1846 Extracted: 02/15/1</b> | <u>0</u>     |                    |        |       |                |           |         |        |     |              |                    |
| Matrix Spike Analyzed: 02/16/2010 (10)   | B1846-MS1)   |                    |        |       | Sou            | rce: ITB( | 0895-01 |        |     |              |                    |
| Arsenic                                  | 543          | 10                 | 7.0    | ug/l  | 500            | ND        | 109     | 70-130 |     |              |                    |
| Barium                                   | 0.525        | 0.010              | 0.0060 | mg/l  | 0.500          | 0.0235    | 100     | 70-130 |     |              |                    |
| Beryllium                                | 503          | 2.0                | 0.90   | ug/l  | 500            | ND        | 101     | 70-130 |     |              |                    |
| Boron                                    | 0.617        | 0.050              | 0.020  | mg/l  | 0.500          | 0.110     | 102     | 70-130 |     |              |                    |
| Calcium                                  | 28.3         | 0.10               | 0.050  | mg/l  | 2.50           | 24.7      | 144     | 70-130 |     |              | MHA                |
| Cobalt                                   | 468          | 10                 | 2.0    | ug/l  | 500            | ND        | 94      | 70-130 |     |              |                    |
| Iron                                     | 0.567        | 0.040              | 0.015  | mg/l  | 0.500          | ND        | 113     | 70-130 |     |              |                    |
| Magnesium                                | 7.76         | 0.020              | 0.012  | mg/l  | 2.50           | 4.98      | 111     | 70-130 |     |              |                    |
| Manganese                                | 686          | 20                 | 7.0    | ug/l  | 500            | 190       | 99      | 70-130 |     |              |                    |
| Nickel                                   | 488          | 10                 | 2.0    | ug/l  | 500            | ND        | 98      | 70-130 |     |              |                    |
| Vanadium                                 | 500          | 10                 | 3.0    | ug/l  | 500            | ND        | 100     | 70-130 |     |              |                    |
| Zinc                                     | 523          | 20                 | 6.0    | ug/l  | 500            | 12.7      | 102     | 70-130 |     |              |                    |
| Matrix Spike Analyzed: 02/16/2010 (10)   | B1846-MS2)   |                    |        |       | Sou            | rce: ITB( | 0887-04 |        |     |              |                    |
| Arsenic                                  | 510          | 10                 | 7.0    | ug/l  | 500            | ND        | 102     | 70-130 |     |              |                    |
| Barium                                   | 0.496        | 0.010              | 0.0060 | mg/l  | 0.500          | 0.0149    | 96      | 70-130 |     |              |                    |
| Beryllium                                | 481          | 2.0                | 0.90   | ug/l  | 500            | ND        | 96      | 70-130 |     |              |                    |
| Boron                                    | 0.549        | 0.050              | 0.020  | mg/l  | 0.500          | 0.0701    | 96      | 70-130 |     |              |                    |
| Calcium                                  | 13.1         | 0.10               | 0.050  | mg/l  | 2.50           | 11.0      | 84      | 70-130 |     |              | MHA                |
| Cobalt                                   | 453          | 10                 | 2.0    | ug/l  | 500            | ND        | 91      | 70-130 |     |              |                    |
| Iron                                     | 1.16         | 0.040              | 0.015  | mg/l  | 0.500          | 0.642     | 104     | 70-130 |     |              |                    |
| Magnesium                                | 5.35         | 0.020              | 0.012  | mg/l  | 2.50           | 3.23      | 85      | 70-130 |     |              |                    |
| Manganese                                | 477          | 20                 | 7.0    | ug/l  | 500            | ND        | 95      | 70-130 |     |              |                    |
| Nickel                                   | 465          | 10                 | 2.0    | ug/l  | 500            | ND        | 93      | 70-130 |     |              |                    |
| Vanadium                                 | 486          | 10                 | 3.0    | ug/l  | 500            | ND        | 97      | 70-130 |     |              |                    |
| Zinc                                     | 497          | 20                 | 6.0    | ug/l  | 500            | 10.3      | 97      | 70-130 |     |              |                    |
| Matrix Spike Dup Analyzed: 02/16/2010    | ) (10B1846-M | SD1)               |        |       | Sou            | rce: ITB( | 0895-01 |        |     |              |                    |
| Arsenic                                  | 534          | 10                 | 7.0    | ug/l  | 500            | ND        | 107     | 70-130 | 2   | 20           |                    |
| Barium                                   | 0.502        | 0.010              | 0.0060 | mg/l  | 0.500          | 0.0235    | 96      | 70-130 | 4   | 20           |                    |
| Beryllium                                | 480          | 2.0                | 0.90   | ug/l  | 500            | ND        | 96      | 70-130 | 5   | 20           |                    |
| Boron                                    | 0.599        | 0.050              | 0.020  | mg/l  | 0.500          | 0.110     | 98      | 70-130 | 3   | 20           |                    |
| Calcium                                  | 27.1         | 0.10               | 0.050  | mg/l  | 2.50           | 24.7      | 96      | 70-130 | 4   | 20           | MHA                |
| Cobalt                                   | 455          | 10                 | 2.0    | ug/l  | 500            | ND        | 91      | 70-130 | 3   | 20           |                    |
| Iron                                     | 0.509        | 0.040              | 0.015  | mg/l  | 0.500          | ND        | 102     | 70-130 | 11  | 20           |                    |
| Magnesium                                | 7.37         | 0.020              | 0.012  | mg/l  | 2.50           | 4.98      | 96      | 70-130 | 5   | 20           |                    |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

# METHOD BLANK/QC DATA

### **DISSOLVED METALS**

|                                        | ]             | Reporting   |       |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|----------------------------------------|---------------|-------------|-------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                | Result        | Limit       | MDL   | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B1846 Extracted: 02/15/10     |               |             |       |       |       |           |         |        |     |       |            |
|                                        | -             |             |       |       |       |           |         |        |     |       |            |
| Matrix Spike Dup Analyzed: 02/16/2010  | (10B1846-MSI  | <b>D1</b> ) |       |       | Sou   | rce: ITB( | 0895-01 |        |     |       |            |
| Manganese                              | 658           | 20          | 7.0   | ug/l  | 500   | 190       | 94      | 70-130 | 4   | 20    |            |
| Nickel                                 | 472           | 10          | 2.0   | ug/l  | 500   | ND        | 94      | 70-130 | 3   | 20    |            |
| Vanadium                               | 480           | 10          | 3.0   | ug/l  | 500   | ND        | 96      | 70-130 | 4   | 20    |            |
| Zinc                                   | 510           | 20          | 6.0   | ug/l  | 500   | 12.7      | 99      | 70-130 | 3   | 20    |            |
| Batch: 10B1953 Extracted: 02/16/10     |               |             |       |       |       |           |         |        |     |       |            |
|                                        |               |             |       |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/16/2010 (10B1953-Bl | LK1)          |             |       |       |       |           |         |        |     |       |            |
| Mercury                                | ND            | 0.20        | 0.10  | ug/l  |       |           |         |        |     |       |            |
| LCS Analyzed: 02/16/2010 (10B1953-BS)  | 1)            |             |       |       |       |           |         |        |     |       |            |
| Mercury                                | 8.15          | 0.20        | 0.10  | ug/l  | 8.00  |           | 102     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 02/16/2010 (10B | 1953-MS1)     |             |       |       | Sou   | rce: ITB( | 907-01  |        |     |       |            |
| Mercury                                | 7.43          | 0.20        | 0.10  | ug/l  | 8.00  | ND        | 93      | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 02/16/2010  | (10B1953-MSI  | <b>D1</b> ) |       |       | Sou   | rce: ITB( | 907-01  |        |     |       |            |
| Mercury                                | 7.66          | 0.20        | 0.10  | ug/l  | 8.00  | ND        | 96      | 70-130 | 3   | 20    |            |
| Batch: 10B2106 Extracted: 02/17/10     |               |             |       |       |       |           |         |        |     |       |            |
|                                        | -             |             |       |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/17/2010 (10B2106-Bl | L <b>K1</b> ) |             |       |       |       |           |         |        |     |       |            |
| Copper                                 | ND            | 2.00        | 0.500 | ug/l  |       |           |         |        |     |       |            |
| LCS Analyzed: 02/17/2010 (10B2106-BS1  | 1)            |             |       |       |       |           |         |        |     |       |            |
| Copper                                 | 77.6          | 2.00        | 0.500 | ug/l  | 80.0  |           | 97      | 85-115 |     |       |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **DISSOLVED METALS**

|                                         |                                                   | Reporting |       |          | Spike   | Source |      | %REC   |     | RPD   | Data       |
|-----------------------------------------|---------------------------------------------------|-----------|-------|----------|---------|--------|------|--------|-----|-------|------------|
| Analyte                                 | Result                                            | Limit     | MDL   | Units    | Level   | Result | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 10B2106 Extracted: 02/17/</b> | 10                                                |           |       |          |         |        |      |        |     |       |            |
| Matrix Spike Analyzed: 02/17/2010 (1    | yzed: 02/17/2010 (10B2106-MS1) Source: ITB1775-07 |           |       |          |         |        |      |        |     |       |            |
| Copper                                  | 76.0                                              | 2.00      | 0.500 | ug/l     | 80.0    | 2.19   | 92   | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 02/17/20     | 10 (10B2106-M                                     |           | Sou   | rce: ITB | 1775-07 |        |      |        |     |       |            |
| Copper                                  | 77.2                                              | 2.00      | 0.500 | ug/l     | 80.0    | 2.19   | 94   | 70-130 | 2   | 20    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **DISSOLVED INORGANICS**

| Analyte                                              | Result    | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|------------------------------------------------------|-----------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10B0756 Extracted: 02/06/10                   | -         |                    |      |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/06/2010 (10B0756-Bl               | LK1)      |                    |      |       |                |                  |         |                |     |              |                    |
| Chromium VI                                          | ND        | 1.0                | 0.25 | ug/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/06/2010 (10B0756-BS1                | 1)        |                    |      |       |                |                  |         |                |     |              |                    |
| Chromium VI                                          | 4.95      | 1.0                | 0.25 | ug/l  | 5.00           |                  | 99      | 90-110         |     |              |                    |
| Matrix Spike Analyzed: 02/06/2010 (10Bo              | 0756-MS1) |                    |      |       | Sou            | rce: ITB         | 0889-01 |                |     |              |                    |
| Chromium VI                                          | 4.80      | 1.0                | 0.25 | ug/l  | 5.00           | ND               | 96      | 90-110         |     |              |                    |
| Matrix Spike Dup Analyzed: 02/06/2010 (10B0756-MSD1) |           |                    |      |       | Sou            | rce: ITB         | 0889-01 |                |     |              |                    |
| Chromium VI                                          | 4.91      | 1.0                | 0.25 | ug/l  | 5.00           | ND               | 98      | 90-110         | 2   | 10           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **INORGANICS**

|                                           |             | Reporting |       |       | Spike | Source    |         | %REC   |     | RPD   | Data       |
|-------------------------------------------|-------------|-----------|-------|-------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                   | Result      | Limit     | MDL   | Units | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| <b>Batch:</b> 10B0757 Extracted: 02/06/10 | -           |           |       |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/06/2010 (10B0757-B     | L IZ 1)     |           |       |       |       |           |         |        |     |       |            |
| Surfactants (MBAS)                        | ND          | 0.10      | 0.050 | mg/l  |       |           |         |        |     |       |            |
| ,                                         |             | 0.10      | 0.050 | mg/r  |       |           |         |        |     |       |            |
| LCS Analyzed: 02/06/2010 (10B0757-BS)     | 1)          |           |       |       |       |           |         |        |     |       |            |
| Surfactants (MBAS)                        | 0.245       | 0.10      | 0.050 | mg/l  | 0.250 |           | 98      | 90-110 |     |       |            |
| Matrix Spike Analyzed: 02/06/2010 (10B    | 0757-MS1)   |           |       |       | Sou   | rce: ITB( | 0702-01 |        |     |       |            |
| Surfactants (MBAS)                        | 0.351       | 0.10      | 0.050 | mg/l  | 0.250 | 0.130     | 88      | 50-125 |     |       |            |
| Matrix Spike Dup Analyzed: 02/06/2010     | (10B0757-MS | SD1)      |       |       | Sou   | rce: ITB( | 702-01  |        |     |       |            |
| Surfactants (MBAS)                        | 0.353       | 0.10      | 0.050 | mg/l  | 0.250 | 0.130     | 89      | 50-125 | 0.4 | 20    |            |
| Batch: 10B0771 Extracted: 02/07/10        | _           |           |       |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/07/2010 (10B0771-B     | LK1)        |           |       |       |       |           |         |        |     |       |            |
| Turbidity                                 | ND          | 1.0       | 0.040 | NTU   |       |           |         |        |     |       |            |
| Duplicate Analyzed: 02/07/2010 (10B077    | 1-DUP1)     |           |       |       | Sou   | rce: ITB( | 0856-01 |        |     |       |            |
| Turbidity                                 | 7.94        | 1.0       | 0.040 | NTU   |       | 7.93      |         |        | 0.1 | 20    |            |
| Batch: 10B0795 Extracted: 02/07/10        | _           |           |       |       |       |           |         |        |     |       |            |
| Blank Analyzed: 02/12/2010 (10B0795-B     | LK1)        |           |       |       |       |           |         |        |     |       |            |
| Biochemical Oxygen Demand                 | ND          | 2.0       | 0.50  | mg/l  |       |           |         |        |     |       |            |
| ,,                                        |             | 2.0       | 0.00  |       |       |           |         |        |     |       |            |
| LCS Analyzed: 02/12/2010 (10B0795-BS)     | •           |           |       |       |       |           |         |        |     |       |            |
| Biochemical Oxygen Demand                 | 198         | 100       | 25    | mg/l  | 198   |           | 100     | 85-115 |     |       |            |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **INORGANICS**

| Analyte                                 | Result    | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|-----------|--------------------|-------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 10B0795 Extracted: 02/07/10      | -         |                    |       |       |                |                  |         |                |     |              |                    |
| LCS Dup Analyzed: 02/12/2010 (10B0795   | 5-BSD1)   |                    |       |       |                |                  |         |                |     |              |                    |
| Biochemical Oxygen Demand               | 201       | 100                | 25    | mg/l  | 198            |                  | 102     | 85-115         | 2   | 20           |                    |
| Batch: 10B0807 Extracted: 02/07/10      | -         |                    |       |       |                |                  |         |                |     |              |                    |
| Blank Analyzed: 02/07/2010 (10B0807-Bl  | LK1)      |                    |       |       |                |                  |         |                |     |              |                    |
| Chloride                                | ND        | 0.50               | 0.25  | mg/l  |                |                  |         |                |     |              |                    |
| Nitrate-N                               | ND        | 0.11               | 0.060 | mg/l  |                |                  |         |                |     |              |                    |
| Nitrite-N                               | ND        | 0.15               | 0.090 | mg/l  |                |                  |         |                |     |              |                    |
| Nitrate/Nitrite-N                       | ND        | 0.26               | 0.15  | mg/l  |                |                  |         |                |     |              |                    |
| Sulfate                                 | ND        | 0.50               | 0.20  | mg/l  |                |                  |         |                |     |              |                    |
| LCS Analyzed: 02/07/2010 (10B0807-BS1   | 1)        |                    |       |       |                |                  |         |                |     |              |                    |
| Chloride                                | 4.79      | 0.50               | 0.25  | mg/l  | 5.00           |                  | 96      | 90-110         |     |              |                    |
| Nitrate-N                               | 1.06      | 0.11               | 0.060 | mg/l  | 1.13           |                  | 94      | 90-110         |     |              |                    |
| Nitrite-N                               | 1.47      | 0.15               | 0.090 | mg/l  | 1.52           |                  | 97      | 90-110         |     |              |                    |
| Sulfate                                 | 9.92      | 0.50               | 0.20  | mg/l  | 10.0           |                  | 99      | 90-110         |     |              |                    |
| Matrix Spike Analyzed: 02/07/2010 (10Bo | 0807-MS1) |                    |       |       | Sou            | rce: ITB(        | 0887-04 |                |     |              |                    |
| Chloride                                | 9.87      | 0.50               | 0.25  | mg/l  | 5.00           | 4.64             | 105     | 80-120         |     |              |                    |
| Nitrate-N                               | 1.52      | 0.11               | 0.060 | mg/l  | 1.13           | 0.404            | 99      | 80-120         |     |              |                    |
| Nitrite-N                               | 1.51      | 0.15               | 0.090 | mg/l  | 1.52           | ND               | 100     | 80-120         |     |              |                    |
| Sulfate                                 | 19.0      | 0.50               | 0.20  | mg/l  | 10.0           | 8.79             | 102     | 80-120         |     |              |                    |
| Matrix Spike Analyzed: 02/07/2010 (10Bo | 0807-MS2) |                    |       |       | Sou            | rce: ITB(        | 0886-01 |                |     |              |                    |
| Chloride                                | 12.1      | 0.50               | 0.25  | mg/l  | 5.00           | 7.33             | 96      | 80-120         |     |              | C8                 |
| Nitrate-N                               | 1.65      | 0.11               | 0.060 | mg/l  | 1.13           | 0.587            | 94      | 80-120         |     |              |                    |
| Nitrite-N                               | 1.50      | 0.15               | 0.090 | mg/l  | 1.52           | ND               | 99      | 80-120         |     |              |                    |
| Sulfate                                 | 16.1      | 0.50               | 0.20  | mg/l  | 10.0           | 7.37             | 88      | 80-120         |     |              | C8                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **INORGANICS**

|                                         |              | Reporting |       |       | Spike | Source    |         | %REC   |      | RPD   | Data       |
|-----------------------------------------|--------------|-----------|-------|-------|-------|-----------|---------|--------|------|-------|------------|
| Analyte                                 | Result       | Limit     | MDL   | Units | Level | Result    | %REC    | Limits | RPD  | Limit | Qualifiers |
| Batch: 10B0807 Extracted: 02/07/10      |              |           |       |       |       |           |         |        |      |       |            |
|                                         | -            |           |       |       |       |           |         |        |      |       |            |
| Matrix Spike Dup Analyzed: 02/07/2010   | (10B0807-MS) | D1)       |       |       | Sou   | rce: ITB0 | 0887-04 |        |      |       |            |
| Chloride                                | 9.84         | 0.50      | 0.25  | mg/l  | 5.00  | 4.64      | 104     | 80-120 | 0.3  | 20    |            |
| Nitrate-N                               | 1.52         | 0.11      | 0.060 | mg/l  | 1.13  | 0.404     | 98      | 80-120 | 0.4  | 20    |            |
| Nitrite-N                               | 1.53         | 0.15      | 0.090 | mg/l  | 1.52  | ND        | 100     | 80-120 | 0.9  | 20    |            |
| Sulfate                                 | 19.0         | 0.50      | 0.20  | mg/l  | 10.0  | 8.79      | 102     | 80-120 | 0.03 | 20    |            |
| Batch: 10B0814 Extracted: 02/08/10      |              |           |       |       |       |           |         |        |      |       |            |
|                                         |              |           |       |       |       |           |         |        |      |       |            |
| Blank Analyzed: 02/08/2010 (10B0814-Bl  | LK1)         |           |       |       |       |           |         |        |      |       |            |
| Fluoride                                | 0.0335       | 0.10      | 0.020 | mg/l  |       |           |         |        |      |       | Ja         |
| LCS Analyzed: 02/08/2010 (10B0814-BS1   | .)           |           |       |       |       |           |         |        |      |       |            |
| Fluoride                                | 1.04         | 0.10      | 0.020 | mg/l  | 1.00  |           | 104     | 90-110 |      |       |            |
| Matrix Spike Analyzed: 02/08/2010 (10Bo | 0814-MS1)    |           |       |       | Sou   | rce: ITB( | 0610-01 |        |      |       |            |
| Fluoride                                | 1.48         | 0.10      | 0.020 | mg/l  | 1.00  | 0.481     | 100     | 80-120 |      |       |            |
| Matrix Spike Dup Analyzed: 02/08/2010   | (10B0814-MS  | D1)       |       |       | Sou   | rce: ITB( | 0610-01 |        |      |       |            |
| Fluoride                                | 1.50         | 0.10      | 0.020 | mg/l  | 1.00  | 0.481     | 101     | 80-120 | 1    | 20    |            |
| Batch: 10B1001 Extracted: 02/09/10      | <u>-</u>     |           |       |       |       |           |         |        |      |       |            |
| Blank Analyzed: 02/09/2010 (10B1001-Bl  | LK1)         |           |       |       |       |           |         |        |      |       |            |
| Perchlorate                             | ND           | 4.0       | 0.90  | ug/l  |       |           |         |        |      |       |            |
| LCS Analyzed: 02/09/2010 (10B1001-BS1   | .)           |           |       |       |       |           |         |        |      |       |            |
| Perchlorate                             | 25.4         | 4.0       | 0.90  | ug/l  | 25.0  |           | 102     | 85-115 |      |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

## METHOD BLANK/QC DATA

### **INORGANICS**

|                                                      |                          | Reporting |      |       | Spike | Source           |         | %REC   |     | RPD   | Data       |
|------------------------------------------------------|--------------------------|-----------|------|-------|-------|------------------|---------|--------|-----|-------|------------|
| Analyte                                              | Result                   | Limit     | MDL  | Units | Level | Result           | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B1001 Extracted: 02/09/10                   | -                        |           |      |       |       |                  |         |        |     |       |            |
| N                                                    | 1001 3/01)               |           |      |       | G     | ITD              | 050.03  |        |     |       |            |
| Matrix Spike Analyzed: 02/09/2010 (10B)              | ,                        | 400       | 00   |       |       | rce: ITB(        |         | 00.120 |     |       |            |
| Perchlorate                                          | 3400                     | 400       | 90   | ug/l  | 2500  | 958              | 98      | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 02/09/2010                | (10B1001-MS              | SD1)      |      |       | Sou   | rce: ITB(        | 950-03  |        |     |       |            |
| Perchlorate                                          | 3610                     | 400       | 90   | ug/l  | 2500  | 958              | 106     | 80-120 | 6   | 20    |            |
| Batch: 10B1250 Extracted: 02/10/10                   |                          |           |      |       |       |                  |         |        |     |       |            |
| <u> </u>                                             | -                        |           |      |       |       |                  |         |        |     |       |            |
| Blank Analyzed: 02/10/2010 (10B1250-Bl               | LK1)                     |           |      |       |       |                  |         |        |     |       |            |
| Total Cyanide                                        | ND                       | 5.0       | 2.2  | ug/l  |       |                  |         |        |     |       |            |
| LCS Analyzed: 02/10/2010 (10B1250-BS)                | D                        |           |      |       |       |                  |         |        |     |       |            |
| Total Cyanide                                        | 190                      | 5.0       | 2.2  | ug/l  | 200   |                  | 95      | 90-110 |     |       |            |
| Matury Spiles Analyzed, 02/10/2010 (10D)             | 1250 MG1)                |           |      |       | Com   | rce: ITB(        | 250.02  |        |     |       |            |
| Matrix Spike Analyzed: 02/10/2010 (10B Total Cyanide | 1 <b>250-MS1)</b><br>187 | 5.0       | 2.2  | n ~/1 | 200   | rce: 11 Bu<br>ND | 94      | 70-115 |     |       |            |
| Total Cyanide                                        | 10/                      | 3.0       | 2.2  | ug/l  | 200   | ND               | 94      | /0-113 |     |       |            |
| Matrix Spike Dup Analyzed: 02/10/2010                | (10B1250-MS              | SD1)      |      |       | Sou   | rce: ITB(        | 0359-02 |        |     |       |            |
| Total Cyanide                                        | 182                      | 5.0       | 2.2  | ug/l  | 200   | ND               | 91      | 70-115 | 3   | 15    |            |
| Batch: 10B1284 Extracted: 02/11/10                   |                          |           |      |       |       |                  |         |        |     |       |            |
|                                                      | _                        |           |      |       |       |                  |         |        |     |       |            |
| Blank Analyzed: 02/11/2010 (10B1284-Bl               | L <b>K1</b> )            |           |      |       |       |                  |         |        |     |       |            |
| Total Organic Carbon                                 | ND                       | 1.0       | 0.50 | mg/l  |       |                  |         |        |     |       |            |
| LCS Analyzed: 02/11/2010 (10B1284-BS)                | 1)                       |           |      |       |       |                  |         |        |     |       |            |
| Total Organic Carbon                                 | 10.0                     | 1.0       | 0.50 | mg/l  | 10.0  |                  | 100     | 90-110 |     |       |            |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **INORGANICS**

|                                         |             | Reporting |      |          | Spike | Source    |         | %REC   |     | RPD   | Data       |
|-----------------------------------------|-------------|-----------|------|----------|-------|-----------|---------|--------|-----|-------|------------|
| Analyte                                 | Result      | Limit     | MDL  | Units    | Level | Result    | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 10B1284 Extracted: 02/11/10      | _           |           |      |          |       |           |         |        |     |       |            |
|                                         |             |           |      |          |       |           |         |        |     |       |            |
| Matrix Spike Analyzed: 02/11/2010 (10B) | 1284-MS1)   |           |      |          | Sou   | rce: ITB1 | 1082-01 |        |     |       |            |
| Total Organic Carbon                    | 9.13        | 1.0       | 0.50 | mg/l     | 5.00  | 4.47      | 93      | 80-120 |     |       |            |
| Matrix Spike Dup Analyzed: 02/11/2010   | (10B1284-MS | D1)       |      |          | Sou   | rce: ITB1 | 1082-01 |        |     |       |            |
| Total Organic Carbon                    | 9.43        | 1.0       | 0.50 | mg/l     | 5.00  | 4.47      | 99      | 80-120 | 3   | 20    |            |
| Batch: 10B1487 Extracted: 02/12/10      |             |           |      |          |       |           |         |        |     |       |            |
| <u> </u>                                | -           |           |      |          |       |           |         |        |     |       |            |
| Blank Analyzed: 02/12/2010 (10B1487-Bl  | LK1)        |           |      |          |       |           |         |        |     |       |            |
| Total Dissolved Solids                  | ND          | 10        | 1.0  | mg/l     |       |           |         |        |     |       |            |
| LCS Analyzed: 02/12/2010 (10B1487-BS1   | 1)          |           |      |          |       |           |         |        |     |       |            |
| Total Dissolved Solids                  | 1010        | 10        | 1.0  | mg/l     | 1000  |           | 101     | 90-110 |     |       |            |
| Duplicate Analyzed: 02/12/2010 (10B148' | 7-DUP1)     |           |      |          | Sou   | rce: ITB1 | 1082-01 |        |     |       |            |
| Total Dissolved Solids                  | 2140        | 10        | 1.0  | mg/l     |       | 2150      |         |        | 0.7 | 10    |            |
| Batch: 10B1489 Extracted: 02/12/10      |             |           |      |          |       |           |         |        |     |       |            |
| Daten. 10D1409 Extracted. 02/12/10      | -           |           |      |          |       |           |         |        |     |       |            |
| Blank Analyzed: 02/12/2010 (10B1489-Bl  | LK1)        |           |      |          |       |           |         |        |     |       |            |
| Specific Conductance                    | ND          | NA        | 0.0  | umhos/cm |       |           |         |        |     |       |            |
| LCS Analyzed: 02/12/2010 (10B1489-BS1   | 1)          |           |      |          |       |           |         |        |     |       |            |
| Specific Conductance                    | ND          | NA        | 0.0  | umhos/cm | 0.00  |           |         | 90-110 |     |       |            |
| Duplicate Analyzed: 02/12/2010 (10B1489 | 9-DUP1)     |           |      |          | Sou   | rce: ITB( | 0887-01 |        |     |       |            |
| Specific Conductance                    | ND          | NA        | 0.0  | umhos/cm |       | 0.00      |         |        |     | 5     |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

### **INORGANICS**

|                                               |             | Reporting | 1.501                     | <b>T</b> T •. | Spike | Source    | A/BEG  | %REC   | D.D.D. | RPD   | Data       |
|-----------------------------------------------|-------------|-----------|---------------------------|---------------|-------|-----------|--------|--------|--------|-------|------------|
| Analyte                                       | Result      | Limit     | MDL                       | Units         | Level | Result    | %REC   | Limits | RPD    | Limit | Qualifiers |
| <b>Batch: 10B1575 Extracted: 02/12/10</b>     | -           |           |                           |               |       |           |        |        |        |       |            |
|                                               |             |           |                           |               |       |           |        |        |        |       |            |
| Blank Analyzed: 02/12/2010 (10B1575-Bl        | <i>'</i>    |           |                           |               |       |           |        |        |        |       |            |
| Ammonia-N (Distilled)                         | ND          | 0.50      | 0.50                      | mg/l          |       |           |        |        |        |       |            |
| LCS Analyzed: 02/12/2010 (10B1575-BS1         | 1)          |           |                           |               |       |           |        |        |        |       |            |
| Ammonia-N (Distilled)                         | 10.6        | 0.50      | 0.50                      | mg/l          | 10.0  |           | 106    | 80-115 |        |       |            |
| Matrix Spike Analyzed: 02/12/2010 (10B        | 1575-MS1)   |           |                           |               | Sou   | rce: ITB0 | 887-04 |        |        |       |            |
| Ammonia-N (Distilled)                         | 11.2        | 0.50      | 0.50                      | mg/l          | 10.0  | 0.560     | 106    | 70-120 |        |       |            |
| Matrix Spike Dup Analyzed: 02/12/2010         | (10B1575-MS | D1)       |                           |               | Sou   | rce: ITB0 | 887-04 |        |        |       |            |
| Ammonia-N (Distilled)                         | 11.5        | 0.50      | 0.50                      | mg/l          | 10.0  | 0.560     | 109    | 70-120 | 2      | 15    |            |
| Batch: 10B1607 Extracted: 02/12/10            | _           |           |                           |               |       |           |        |        |        |       |            |
|                                               |             |           |                           |               |       |           |        |        |        |       |            |
| Blank Analyzed: 02/12/2010 (10B1607-Bl        | ,           |           |                           |               |       |           |        |        |        |       |            |
| Total Suspended Solids                        | ND          | 10        | 1.0                       | mg/l          |       |           |        |        |        |       |            |
| LCS Analyzed: 02/12/2010 (10B1607-BS)         | 1)          |           |                           |               |       |           |        |        |        |       |            |
| Total Suspended Solids                        | 990         | 10        | 1.0                       | mg/l          | 1000  |           | 99     | 85-115 |        |       |            |
| <b>Duplicate Analyzed: 02/12/2010 (10B160</b> | 7-DUP1)     |           | <b>Source: ITB0863-01</b> |               |       |           |        |        |        |       |            |
| Total Suspended Solids                        | 14.0        | 10        | 1.0                       | mg/l          |       | 14.0      |        |        | 0      | 10    |            |

%REC



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Reporting

Sampled: 02/06/10 Received: 02/06/10

RPD

Data

### METHOD BLANK/QC DATA

#### EPA-5 1613B

Spike

Source

|                                        |            | Keporung | g          |       | Spike    | Source |      | OKEC   |     | KI D  | Data       |
|----------------------------------------|------------|----------|------------|-------|----------|--------|------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit    | MDL        | Units | Level    | Result | %REC | Limits | RPD | Limit | Qualifiers |
| <b>Batch: 47247 Extracted: 02/16/1</b> | <u>0</u>   |          |            |       |          |        |      |        |     |       |            |
| Blank Analyzed: 02/18/2010 (G0B16      | 0000247B)  |          |            |       | Sou      | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                    | 0.0000052  | 0.00005  | 0.0000015  | ug/L  |          |        |      | -      |     |       | J          |
| 1,2,3,4,6,7,8-HpCDF                    | 0.0000039  | 0.00005  | 0.0000018  | ug/L  |          |        |      | -      |     |       | J, Q       |
| 2,3,7,8-TCDF                           | 0.00000096 | 0.00001  | 0.000001   | ug/L  |          |        |      | -      |     |       | J, Q       |
| 1,2,3,4,7,8,9-HpCDF                    | 0.0000029  | 0.00005  | 0.0000023  | ug/L  |          |        |      | -      |     |       | J, Q       |
| 1,2,3,4,7,8-HxCDD                      | 0.0000046  | 0.00005  | 0.0000014  | ug/L  |          |        |      | -      |     |       | J          |
| 1,2,3,4,7,8-HxCDF                      | 0.0000037  | 0.00005  | 0.0000011  | ug/L  |          |        |      | -      |     |       | J, Q       |
| 1,2,3,6,7,8-HxCDD                      | 0.000003   | 0.00005  | 0.0000014  | ug/L  |          |        |      | -      |     |       | J, Q       |
| 1,2,3,6,7,8-HxCDF                      | 0.0000034  | 0.00005  | 0.0000011  | ug/L  |          |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8,9-HxCDD                      | 0.0000032  | 0.00005  | 0.0000011  | ug/L  |          |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8,9-HxCDF                      | 0.0000033  | 0.00005  | 0.00000079 | ug/L  |          |        |      | -      |     |       | J          |
| 1,2,3,7,8-PeCDD                        | 0.0000024  | 0.00005  | 0.000003   | ug/L  |          |        |      | -      |     |       | J, Q       |
| 1,2,3,7,8-PeCDF                        | ND         | 0.00005  | 0.0000016  | ug/L  |          |        |      | -      |     |       |            |
| 2,3,4,6,7,8-HxCDF                      | 0.0000029  | 0.00005  | 0.000001   | ug/L  |          |        |      | -      |     |       | J, Q       |
| 2,3,4,7,8-PeCDF                        | ND         | 0.00005  | 0.0000014  | ug/L  |          |        |      | -      |     |       |            |
| 2,3,7,8-TCDD                           | ND         | 0.00001  | 0.0000008  | ug/L  |          |        |      | -      |     |       |            |
| OCDD                                   | 0.000013   | 0.0001   | 0.000003   | ug/L  |          |        |      | -      |     |       | J          |
| OCDF                                   | 0.000008   | 0.0001   | 0.0000021  | ug/L  |          |        |      | -      |     |       | J          |
| Total HpCDD                            | 0.0000052  | 0.00005  | 0.0000015  | ug/L  |          |        |      | -      |     |       | J          |
| Total HpCDF                            | 0.0000068  | 0.00005  | 0.000002   | ug/L  |          |        |      | -      |     |       | J, Q       |
| Total HxCDD                            | 0.000014   | 0.00005  | 0.0000013  | ug/L  |          |        |      | -      |     |       | J, Q       |
| Total HxCDF                            | 0.000013   | 0.00005  | 0.00000079 | ug/L  |          |        |      | -      |     |       | J, Q       |
| Total PeCDD                            | 0.0000058  | 0.00005  | 0.000003   | ug/L  |          |        |      | -      |     |       | J, Q       |
| Total PeCDF                            | 0.0000011  | 0.00005  | 0.000001   | ug/L  |          |        |      | -      |     |       | J, Q       |
| Total TCDD                             | 0.0000016  | 0.00001  | 0.00000072 | ug/L  |          |        |      | -      |     |       | J, Q       |
| Total TCDF                             | 0.00000096 | 0.00001  | 0.000001   | ug/L  |          |        |      | -      |     |       | J, Q       |
| Surrogate: 13C-2,3,7,8-TCDF            | 0.0015     |          |            | ug/L  | 0.00200  |        | 74   | 24-169 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD          | 0.00076    |          |            | ug/L  | 0.000800 |        | 95   | 35-197 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD     | 0.0023     |          |            | ug/L  | 0.00200  |        | 115  | 23-140 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF     | 0.002      |          |            | ug/L  | 0.00200  |        | 100  | 28-143 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF     | 0.0021     |          |            | ug/L  | 0.00200  |        | 104  | 26-138 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD       | 0.0017     |          |            | ug/L  | 0.00200  |        | 85   | 32-141 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF       | 0.0017     |          |            | ug/L  | 0.00200  |        | 85   | 26-152 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD       | 0.0016     |          |            | ug/L  | 0.00200  |        | 79   | 28-130 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF       | 0.0017     |          |            | ug/L  | 0.00200  |        | 83   | 26-123 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF       | 0.002      |          |            | ug/L  | 0.00200  |        | 100  | 29-147 |     |       |            |
|                                        |            |          |            |       |          |        |      |        |     |       |            |

#### **TestAmerica Irvine**

%REC

Sampled: 02/06/10

RPD

Data



THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887 Received: 02/06/10

Spike

Source

### METHOD BLANK/QC DATA

#### EPA-5 1613B

Reporting

|                                    |           | Keporun | g          |       | Spike    | Source |      | /OKEC  |     | KI D  | Data       |
|------------------------------------|-----------|---------|------------|-------|----------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result    | Limit   | MDL        | Units | Level    | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 47247 Extracted: 02/16/1    | <u>0</u>  |         |            |       |          |        |      |        |     |       |            |
| Blank Analyzed: 02/18/2010 (G0B16  | 0000247B) |         |            |       | Sou      | rce:   |      |        |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.0014    |         |            | ug/L  | 0.00200  |        | 69   | 25-181 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.0014    |         |            | ug/L  | 0.00200  |        | 68   | 24-185 |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.0017    |         |            | ug/L  | 0.00200  |        | 84   | 28-136 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.0014    |         |            | ug/L  | 0.00200  |        | 70   | 21-178 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.0013    |         |            | ug/L  | 0.00200  |        | 67   | 25-164 |     |       |            |
| Surrogate: 13C-OCDD                | 0.0047    |         |            | ug/L  | 0.00400  |        | 116  | 17-157 |     |       |            |
| LCS Analyzed: 02/18/2010 (G0B160   | 000247C)  |         |            |       | Sou      | rce:   |      |        |     |       |            |
| 1,2,3,4,6,7,8-HpCDD                | 0.00109   | 0.00005 | 0.0000041  | ug/L  | 0.00100  |        | 109  | 70-140 |     |       | Ва         |
| 1,2,3,4,6,7,8-HpCDF                | 0.00111   | 0.00005 | 0.0000047  | ug/L  | 0.00100  |        | 111  | 82-122 |     |       | Ва         |
| 2,3,7,8-TCDF                       | 0.000219  | 0.00001 | 0.00000096 | ug/L  | 0.000200 |        | 109  | 75-158 |     |       | Ва         |
| 1,2,3,4,7,8,9-HpCDF                | 0.00109   | 0.00005 | 0.0000059  | ug/L  | 0.00100  |        | 109  | 78-138 |     |       | Ва         |
| 1,2,3,4,7,8-HxCDD                  | 0.00113   | 0.00005 | 0.0000012  | ug/L  | 0.00100  |        | 113  | 70-164 |     |       | Ва         |
| 1,2,3,4,7,8-HxCDF                  | 0.00116   | 0.00005 | 0.00000098 | ug/L  | 0.00100  |        | 116  | 72-134 |     |       | Ва         |
| 1,2,3,6,7,8-HxCDD                  | 0.00111   | 0.00005 | 0.0000011  | ug/L  | 0.00100  |        | 111  | 76-134 |     |       | Ва         |
| 1,2,3,6,7,8-HxCDF                  | 0.0011    | 0.00005 | 0.00000088 | ug/L  | 0.00100  |        | 110  | 84-130 |     |       | Ва         |
| 1,2,3,7,8,9-HxCDD                  | 0.00113   | 0.00005 | 0.00000092 | ug/L  | 0.00100  |        | 113  | 64-162 |     |       | Ва         |
| 1,2,3,7,8,9-HxCDF                  | 0.00109   | 0.00005 | 0.00000074 | ug/L  | 0.00100  |        | 109  | 78-130 |     |       | Ва         |
| 1,2,3,7,8-PeCDD                    | 0.00108   | 0.00005 | 0.0000031  | ug/L  | 0.00100  |        | 108  | 70-142 |     |       | Ва         |
| 1,2,3,7,8-PeCDF                    | 0.00111   | 0.00005 | 0.0000023  | ug/L  | 0.00100  |        | 111  | 80-134 |     |       |            |
| 2,3,4,6,7,8-HxCDF                  | 0.00113   | 0.00005 | 0.0000009  | ug/L  | 0.00100  |        | 113  | 70-156 |     |       | Ва         |
| 2,3,4,7,8-PeCDF                    | 0.00114   | 0.00005 | 0.0000026  | ug/L  | 0.00100  |        | 114  | 68-160 |     |       |            |
| 2,3,7,8-TCDD                       | 0.000199  | 0.00001 | 0.0000014  | ug/L  | 0.000200 |        | 99   | 67-158 |     |       |            |
| OCDD                               | 0.00208   | 0.0001  | 0.0000051  | ug/L  | 0.00200  |        | 104  | 78-144 |     |       | Ва         |
| OCDF                               | 0.00191   | 0.0001  | 0.0000025  | ug/L  | 0.00200  |        | 95   | 63-170 |     |       | Ва         |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.00153   |         |            | ug/L  | 0.00200  |        | 76   | 22-152 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.000733  |         |            | ug/L  | 0.000800 |        | 92   | 31-191 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDD | 0.00206   |         |            | ug/L  | 0.00200  |        | 103  | 26-166 |     |       |            |
| Surrogate: 13C-1,2,3,4,6,7,8-HpCDF | 0.00184   |         |            | ug/L  | 0.00200  |        | 92   | 21-158 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8,9-HpCDF | 0.0018    |         |            | ug/L  | 0.00200  |        | 90   | 20-186 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDD   | 0.0015    |         |            | ug/L  | 0.00200  |        | 75   | 21-193 |     |       |            |
| Surrogate: 13C-1,2,3,4,7,8-HxCDF   | 0.00167   |         |            | ug/L  | 0.00200  |        | 83   | 19-202 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDD   | 0.00167   |         |            | ug/L  | 0.00200  |        | 83   | 25-163 |     |       |            |
| Surrogate: 13C-1,2,3,6,7,8-HxCDF   | 0.00155   |         |            | ug/L  | 0.00200  |        | 77   | 21-159 |     |       |            |
| Surrogate: 13C-1,2,3,7,8,9-HxCDF   | 0.00171   |         |            | ug/L  | 0.00200  |        | 86   | 17-205 |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDD     | 0.00139   |         |            | ug/L  | 0.00200  |        | 70   | 21-227 |     |       |            |
|                                    |           |         |            |       |          |        |      |        |     |       |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Reporting

Sampled: 02/06/10

RPD

Data

Received: 02/06/10

### METHOD BLANK/QC DATA

#### EPA-5 1613B

Spike Source

|                                    |           | reporting | 5         |       | Spine    | Source |      | /UILL  |     | IXI D | Data       |
|------------------------------------|-----------|-----------|-----------|-------|----------|--------|------|--------|-----|-------|------------|
| Analyte                            | Result    | Limit     | MDL       | Units | Level    | Result | %REC | Limits | RPD | Limit | Qualifiers |
| Batch: 47247 Extracted: 02/16/10   | <u>0</u>  |           |           |       |          |        |      |        |     |       |            |
| LCS Analyzed: 02/18/2010 (G0B1600  | 000247C)  |           |           |       | Sou      | rce:   |      |        |     |       |            |
| Surrogate: 13C-1,2,3,7,8-PeCDF     | 0.00137   |           |           | ug/L  | 0.00200  |        | 68   | 21-192 |     |       |            |
| Surrogate: 13C-2,3,4,6,7,8-HxCDF   | 0.00149   |           |           | ug/L  | 0.00200  |        | 74   | 22-176 |     |       |            |
| Surrogate: 13C-2,3,4,7,8-PeCDF     | 0.0014    |           |           | ug/L  | 0.00200  |        | 70   | 13-328 |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDD        | 0.00147   |           |           | ug/L  | 0.00200  |        | 74   | 20-175 |     |       |            |
| Surrogate: 13C-OCDD                | 0.00408   |           |           | ug/L  | 0.00400  |        | 102  | 13-199 |     |       |            |
| Blank Analyzed: 02/19/2010 (G0B160 | 000247B2) |           |           |       | Sou      | rce:   |      |        |     |       |            |
| 2,3,7,8-TCDF                       | ND        | 0.00001   | 0.0000019 | ug/L  |          |        |      | -      |     |       |            |
| Surrogate: 13C-2,3,7,8-TCDF        | 0.0016    |           |           | ug/L  | 0.00200  |        | 81   | 24-169 |     |       |            |
| Surrogate: 37Cl4-2,3,7,8-TCDD      | 0.00071   |           |           | ug/L  | 0.000800 |        | 89   | 35-197 |     |       |            |
|                                    |           |           |           |       |          |        |      |        |     |       |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

#### **ASTM 5174-91**

| Analyte                                | Result       | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|--------------|--------------------|------|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| Batch: 53280 Extracted: 02/23/10       |              |                    |      |       |                |                  |          |                |     |              |                    |
| Matrix Spike Dup Analyzed: 02/26/2010  | (F0B09047000 | 01D)               |      |       | Sou            | rce: F0B0        | 09047000 | 1              |     |              |                    |
| Total Uranium                          | 30           | 1.4                | 0.4  | pCi/L | 27.7           | 0.566            | 106      | 62-150         | 1   | 20           |                    |
| Matrix Spike Analyzed: 02/26/2010 (F0B | 090470001S)  |                    |      |       | Sou            | rce: F0B         | 09047000 | 1              |     |              |                    |
| Total Uranium                          | 29.7         | 1.4                | 0.4  | pCi/L | 27.7           | 0.566            | 105      | 62-150         |     |              |                    |
| Blank Analyzed: 02/26/2010 (F0B220000  | 280B)        |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Total Uranium                          | 0.046        | 0.693              | 0.21 | pCi/L |                |                  |          | -              |     |              | U                  |
| LCS Analyzed: 02/26/2010 (F0B2200002   | 80C)         |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Total Uranium                          | 30.2         | 0.7                | 0.2  | pCi/L | 27.7           |                  | 109      | 90-120         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

#### **EPA 900.0 MOD**

| Analyte                                 | Result      | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------|-------------|--------------------|------|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| <b>Batch: 43108 Extracted: 02/10/10</b> |             |                    |      |       |                |                  |          |                |     |              |                    |
| Matrix Spike Analyzed: 02/18/2010 (F0B  | 090470001S) |                    |      |       | Sou            | rce: F0B0        | 09047000 | 1              |     |              |                    |
| Gross Alpha                             | 47.2        | 3                  | 1    | pCi/L | 5.54           |                  | 108      | 90-120         |     |              |                    |
| Gross Beta                              | 79          | 4                  | 1.5  | pCi/L | 49.4           | 2                | 91       | 35-150         |     |              |                    |
| Duplicate Analyzed: 02/18/2010 (F0B090  | 470001X)    |                    |      |       | Sou            | rce: F0B0        | 09047000 | 1              |     |              |                    |
| Gross Alpha                             | 0.84        | 3                  | 0.94 | pCi/L | 68.0           | 3.9              | 110      | 54-150         |     |              |                    |
| Gross Beta                              | 3.2         | 4                  | 1.5  | pCi/L |                | 2                |          | -              |     |              | U                  |
| Blank Analyzed: 02/19/2010 (F0B120000   | 108B)       |                    |      |       | Sou            | rce: F0B0        | 09047000 | 1              |     |              |                    |
| Gross Alpha                             | -0.28       | 2                  | 0.87 | pCi/L |                | 3.9              |          | -              |     |              | Jb                 |
| Gross Beta                              | -0.23       | 4                  | 1.1  | pCi/L |                |                  |          | -              |     |              | U                  |
| LCS Analyzed: 02/19/2010 (F0B1200001    | 08C)        |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Gross Alpha                             | 34.8        | 3                  | 1.2  | pCi/L |                |                  |          | -              |     |              | U                  |
| Gross Beta                              | 71.6        | 4                  | 1    | pCi/L | 49.4           |                  | 70       | 62-134         |     |              |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

#### **EPA 901.1 MOD**

| Analyte <u>Batch: 42136 Extracted: 02/11/10</u> | Result    | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------|-----------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 02/19/2010 (F0B09           | 0470001X) |                    |     |       | Sou            | rce: F0B0        | 9047000 | 1              |     |              |                    |
| Cesium 137                                      | 1.2       | 20                 | 14  | pCi/L | 68.0           |                  | 105     | 58-133         |     |              |                    |
| Potassium 40                                    | -50       | NA                 | 200 | pCi/L |                | -2.9             |         | -              |     |              | U                  |
| Blank Analyzed: 02/19/2010 (F0B11000            | 0136B)    |                    |     |       | Sou            | rce: F0B0        | 9047000 | 1              |     |              |                    |
| Cesium 137                                      | 1.8       | 20                 | 14  | pCi/L |                | -100             |         | -              |     |              | U                  |
| Potassium 40                                    | -80       | NA                 | 210 | pCi/L |                |                  |         | -              |     |              | U                  |
| LCS Analyzed: 02/19/2010 (F0B110000)            | 136C)     |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Americium 241                                   | 140000    | NA                 | 500 | pCi/L |                |                  |         | -              |     |              | U                  |
| Cobalt 60                                       | 88000     | NA                 | 200 | pCi/L | 53100          |                  | 100     | 90-110         |     |              |                    |
| Cesium 137                                      | 52900     | 20                 | 200 | pCi/L | 141000         |                  | 99      | 87-110         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

#### **EPA 903.0 MOD**

| Analyte                                | Result   | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|----------------------------------------|----------|--------------------|------|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Batch: 41160 Extracted: 02/10/10       |          |                    |      |       |                |                  |         |                |     |              |                    |
| Duplicate Analyzed: 02/26/2010 (F0B090 | 467001X) |                    |      |       | Sou            | rce:             |         |                |     |              |                    |
| Radium (226)                           | 0.07     | 1                  | 0.29 | pCi/L | 87900          |                  | 100     | 89-110         |     |              |                    |
| Blank Analyzed: 02/26/2010 (F0B100000  | 160B)    |                    |      |       | Sou            | rce: F0B(        | 9046700 | 1              |     |              |                    |
| Radium (226)                           | 0.092    | 1                  | 0.14 | pCi/L |                | 0.089            |         | -              |     |              | U                  |
| LCS Analyzed: 02/26/2010 (F0B1000001   | 60C)     |                    |      |       | Sou            | rce:             |         |                |     |              |                    |
| Radium (226)                           | 10.4     | 1                  | 0.2  | pCi/L |                |                  |         | -              |     |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### METHOD BLANK/QC DATA

#### **EPA 904 MOD**

| Analyte  Batch: 60257 Extracted: 03/01/10           | Result                | Reporting<br>Limit | MDL  | Units | Spike<br>Level  | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-----------------------------------------------------|-----------------------|--------------------|------|-------|-----------------|------------------|------|----------------|-----|--------------|--------------------|
| Blank Analyzed: 03/05/2010 (F0C01000)<br>Radium 228 | 0257B)<br>0.08        | 1                  | 0.39 | pCi/L | <b>Sou</b> 11.3 | rce:             | 93   | 68-136         |     |              |                    |
| LCS Analyzed: 03/05/2010 (F0C0100002) Radium 228    | <b>257C)</b> 6.23     | 1                  | 0.39 | pCi/L | Sou             | rce:             |      | _              |     |              | U                  |
| LCS Dup Analyzed: 03/05/2010 (F0C01) Radium 228     | <b>0000257L)</b> 6.35 | 1                  | 0.4  | pCi/L | <b>Sou</b> 6.40 | rce:             | 97   | 60-142         |     |              |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **EPA 905 MOD**

| Analyte <u>Batch: 41162 Extracted: 02/10/10</u> | Result    | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------------|-----------|--------------------|------|-------|----------------|------------------|----------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 02/19/2010 (F0B09           | 0475001X) |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Strontium 90                                    | -0.15     | 3                  | 0.42 | pCi/L | 6.40           |                  | 99       | 60-142         | 2   | 40           |                    |
| Blank Analyzed: 02/19/2010 (F0B100000           | 0162B)    |                    |      |       | Sou            | rce: F0B         | 09047500 | 1              |     |              |                    |
| Strontium 90                                    | -0.15     | 3                  | 0.38 | pCi/L |                | -0.05            |          | -              |     |              | U                  |
| LCS Analyzed: 02/19/2010 (F0B1000001            | 62C)      |                    |      |       | Sou            | rce:             |          |                |     |              |                    |
| Strontium 90                                    | 6.82      | 3                  | 0.34 | pCi/L |                |                  |          | -              |     |              | U                  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10

Received: 02/06/10

### METHOD BLANK/QC DATA

### **EPA 906.0 MOD**

| Analyte  Batch: 49035 Extracted: 02/18/10 | Result       | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|--------------|--------------------|-----|-------|----------------|------------------|---------|----------------|-----|--------------|--------------------|
| Duplicate Analyzed: 02/18/2010 (F0B090    | 470001X)     |                    |     |       | Sou            | rce: F0B0        | 9047000 | 1              |     |              |                    |
| Tritium                                   | 80           | 500                | 92  | pCi/L | 6.80           |                  | 100     | 80-130         |     |              |                    |
| Matrix Spike Analyzed: 02/18/2010 (F0E    | 3090473001S) |                    |     |       | Sou            | rce: F0B(        | 9047000 | 1              |     |              |                    |
| Tritium                                   | 4650         | 500                | 90  | pCi/L |                | 114              |         | -              |     |              | U                  |
| Blank Analyzed: 02/18/2010 (F0B180000     | 035B)        |                    |     |       | Sou            | rce: F0B(        | 9047300 | 1              |     |              |                    |
| Tritium                                   | 165          | 500                | 95  | pCi/L | 4530           | 122              | 100     | 62-147         |     |              |                    |
| LCS Analyzed: 02/18/2010 (F0B1800000      | 35C)         |                    |     |       | Sou            | rce:             |         |                |     |              |                    |
| Tritium                                   | 4440         | 500                | 90  | pCi/L |                |                  |         | -              |     |              | Jb                 |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10 Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

### DATA QUALIFIERS AND DEFINITIONS

| <b>B</b> Analyte was detected in the associated Method Blank. |  |
|---------------------------------------------------------------|--|
|---------------------------------------------------------------|--|

- Ba Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- C8 Calibration Verification recovery was above the method control limit for this analyte. A high bias may be indicated.
- J Estimated result. Result is less than the reporting limit.
- Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- **Jb** Result is greater than sample detection limit but less than stated reporting limit.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.
- R-3 The RPD exceeded the acceptance limit due to sample matrix effects.
- **RL1** Reporting limit raised due to sample matrix effects.
- U Result is less than the sample detection limit.
- **Z2** Surrogate recovery was above the acceptance limits. Data not impacted.
- **ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

#### ADDITIONAL COMMENTS

#### For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

#### For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

#### For Extractable Fuel Hydrocarbons (EFH, DRO, ORO):

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Annual Outfall 001

Report Number: ITB0887

Sampled: 02/06/10 Received: 02/06/10

### **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EPA 120.1      | Water  | X     | X          |
| EPA 1664A      | Water  | X     | X          |
| EPA 180.1      | Water  | X     | X          |
| EPA 200.7-Diss | Water  | X     | X          |
| EPA 200.7      | Water  | X     | X          |
| EPA 200.8-Diss | Water  | X     | X          |
| EPA 200.8      | Water  | X     | X          |
| EPA 218.6      | Water  | X     | X          |
| EPA 245.1-Diss | Water  | X     | X          |
| EPA 245.1      | Water  | X     | X          |
| EPA 300.0      | Water  | X     | X          |
| EPA 314.0      | Water  | X     | X          |
| EPA 608        | Water  | X     | X          |
| EPA 624        | Water  | X     | X          |
| EPA 625        | Water  | X     | X          |
| EPA 8015 Mod.  | Water  | X     | X          |
| EPA 8015B      | Water  | X     | X          |
| EPA 8260B-SIM  | Water  | X     | X          |
| SM 2540D       | Water  | X     | X          |
| SM 4500-F-C    | Water  | X     | X          |
| SM2340B-Diss   | Water  |       |            |
| SM2340B        | Water  | X     | X          |
| SM2540C        | Water  | X     |            |
| SM2540F        | Water  | X     | X          |
| SM4500CN-E     | Water  | X     | X          |
| SM4500NH3-C    | Water  | X     | X          |
| SM5210B        | Water  | X     | X          |
| SM5310B        | Water  | X     | X          |
| SM5540-C       | Water  | X     | X          |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 001

618 Michillinda Avenue, Suite 200 Annual Outfall 001 Sampled: 02/06/10 Arcadia, CA 91007 Report Number: ITB0887 Received: 02/06/10

Attention: Bronwyn Kelly

### Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: ITB0887-04

Analysis Performed: Bioassay-Acute 96hr

Samples: ITB0887-01

#### TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Method Performed: ASTM 5174-91

Samples: ITB0887-04

Method Performed: EPA 900.0 MOD

Samples: ITB0887-04

Method Performed: EPA 901.1 MOD

Samples: ITB0887-04

Method Performed: EPA 903.0 MOD

Samples: ITB0887-04

Method Performed: EPA 904 MOD

Samples: ITB0887-04RE1

Method Performed: EPA 905 MOD

Samples: ITB0887-04

Method Performed: EPA 906.0 MOD

Samples: ITB0887-04

#### **TestAmerica West Sacramento**

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITB0887-04, ITB0887-04RE1

#### Truesdail Laboratories-SUB California Cert #1237

14201 Franklin Avenue - Tustin, CA 92680 Analysis Performed: Hydrazine

Samples: ITB0887-04

#### **TestAmerica Irvine**

| 2       |
|---------|
| =       |
| Œ       |
| =       |
| FORM    |
|         |
| ш.      |
|         |
| >       |
|         |
| CUSTODY |
| =       |
| 0       |
| 9       |
| _       |
| -       |
| w       |
| -       |
| _       |
| -       |
| u       |
|         |
| 11      |
| _       |
| 9       |
| -       |
| _       |
| Z       |
| =       |
| _       |
| Q.      |
| CHAIN   |
| _       |
|         |
| U       |
|         |

| 59/09    |
|----------|
| rsion 6/ |
| ca %     |
| neri     |
| tAn      |
| S        |

| With Hardcadia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| ager: Bronwyn Kelly Phone Number:    Cable   568-6691   Fax Number:   F  | Field readings:  (Log in and include in report Temp and pH)  Temp °F = FF, 52, 5 |
| Sample Container sed Sampling  W VOAs 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | diesel/jet fuel citvity  Time of readings = $\frac{z}{b}$                        |
| W         VOAs         5         2 €   10         18.2b         HCI         14,18,16,√         X           W         VOAs         3         Mone         2A,2B,2C√         X           W         1L Poly         1         None         3 ✓         X           W         1L Poly         1         None         4 ✓         X           W         150 mL Poly         1         None         5 √         X           W         500 mL Poly         1         None         9A; 9B; 9C,√         X           W         VOAs         3         HCI         10A √         X           W         VOAs         1         HCI         10A √         X           W         VOAs         2         HCI         10A √         X           W         1L Amber         1         None         11B √         X           W         500 mL Poly         2         None         12A;12B²         X           W         1 Gal Cube         1 ½[ip         None         13°         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 9108                                                                           |
| W         VOAs         3         None         2A, 2B, 2CV         X           W         1L Poly         1         None         3 ✓         X           W         1L Poly         1         None         4 ✓         X           W         150 mL Poly         1         None         5 √         X           W         150 mL Poly         1         HCI         6A, 6B √         X           W         VOAs         3         HCI         8A, 8B, 8C √         X           W         VOAs         3         HCI         10A √         X           W         VOAs         1         HCI         10A √         X           W         VOAs         2         HCI         10B, 10C √         X           W         1 L Amber         1         None         11B √         X           W         500 mL Poly         2         None         12A,12B c           W         500 mL Poly         2         None         12A,12B c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                |
| W         500 mL Poly         1         None         3 ✓         X           W         1L Poly         1         None         4 ✓         X           W         150 mL Poly         1         None         5 √         X           W         1L Amber         2         HCI         6A; 6B √         X           W         VOAs         3         HCI         8A; 8B, 8C √         X           W         VOAs         3         HCI         10A √         X           W         VOAs         1         HCI         10A √         X           W         1L Amber         1         None         11B √         X           W         500 mL Poly         2         None         12A; 12B ²         X           W         1 Gal Cube         1 ½[ p         None         13°         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |
| W         1L Poly         1         None         4 ✓         X           W         150 mL Poly         1         None         5 √         X           W         1L Amber         2         HCI         6A, 8B, 8C, ✓         X           W         VOAs         3         HCI         8A, 8B, 8C, ✓         X           W         VOAs         3         HCI         10A √         X           W         VOAs         1         HCI         10A √         X           W         1L Amber         1         None         11B √         X           W         500 mL Poly         2         None         12A,12B <sup>4</sup> X           W         1 Gal Cube         1 ½           None         13°         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24 TAT                                                                           |
| W         150 mL Poly         1         None         5 √         X           W         1L Amber         2         HCI         6A, 6B √         X           W         500 mL Poly         1         NaOH         7 √         X           W         VOAs         3         HCI         8A, 9B, 9C √         X           W         VOAs         1         HCI         10A √         X           W         VOAs         2         HCI         10B, 10C √         X           W         1L Amber         1         None         11B √         X           W         500 mL Poly         2         None         12A, 12B ⁴         X           W         1 Gal Cube         1 ½[ p         None         13³         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| W         1L Amber         2         HCI         6A; 68 ℃           W         VOAs         3         HCI         8A; 8B, 8C; X         N           W         VOAs         1         HCI         10A ♥         X           W         VOAs         1         HCI         10A ♥         X           W         VOAs         2         HCI         10B 10C ♥         N           W         1L Amber         1         None         11B ✓         N           W         500 mL Poly         2         None         12A; 12B €         None         13°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |
| W         500 mL Poly         1         NaOH         7 ✓           W         VOAs         3         HCI         8Å, 8Å, 8C, X           W         VOAs         1         HCI         10A ✓           W         VOAs         2         HCI         10B, 10C ✓           W         1L Amber         1         None         11B ✓           W         500 mL Poly         2         None         12A,12B ⁴           W         1 Gal Cube         1 Lájíp 18Zò         None         13³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
| W         VOAs         3         HCI         8Å, 8Å, 8€, 8℃, X           W         VOAs         1         None         9Å, 9Å, 9Å, 9℃, X           W         VOAs         1         HCI         10A         V           W         VOAs         2         HCI         10B. 10C√           W         1L Amber         1         None         11B √           W         500 mL Poly         2         None         12Å,12B²           W         1 Gal Cube         1         13³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                                |
| W         VOAs         3         None         94,98,9C√           W         VOAs         1         HCI         10A √           W         VOAs         2         HCI         10B,10C √           W         1L Amber         1         None         11A √           W         500 mL Poly         2         None         12A²12B²           W         1 Gal Cube         1 ½[jp i2Q         None         13³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS.                                                                              |
| W         VOAs         1         HCI           W         VOAs         2         HCI           W         1L Amber         1         None           W         500 mL Poly         2         V         None           W         1 Gal Cube         1         LGip R2Q         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| W         VOAs         2         HCI           W         1L Amber         1         None           W         1L Amber         1         None           W         500 mL Poly         2         V         None           W         1 Gal Cube         1         1 Lipip         1000         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × 7000                                                                           |
| W         1L Amber         1         None           W         1L Amber         1         None           W         500 mL Poly         2         V         None           W         1 Gal Cube         1         1 Ligit         10 None         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                |
| W 1. Sol mL Poly 2 None W 1. Gal Cube 1 2/6   D 2/6   None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S1:01   x                                                                        |
| W 500 mL Poly 2 None W 1 Gal Cube 1 1/6 10 1020 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) <u> </u>                                                                       |
| W 1 Gal Cube 1 2/6/10 (020 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                |
| These Samples are the Grab Portion of Outfall 001 for this storm event. Composite sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Composite samples will follow and are to be added to this work order.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74 Hour 72 Hour 10 Day                                                           |
| Retinquished By Date/Time: Received By Date/Time: Date/ | Sample Integrity, (Check) 2 2 9 C                                                |

| ANALYSIS REQUIRED    |                                                                                                 | Pesticide             | 1 + (808<br>tini  4             | TCP, 2,                    | edqlA<br>9,4,5        | WALTH WATER | 24 TAT           |             |             |             | 24 TAT      | . 24 TAT    |             | ×                  | ×           | ×           |    | COC Days 2 of 3 are the composite complex for Outfall 004 for this storm event |
|----------------------|-------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|----------------------------|-----------------------|-------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------|-------------|-------------|----|--------------------------------------------------------------------------------|
|                      |                                                                                                 |                       | SST ,2                          | JiN ,N-e<br>OT ,\yit       | oidhuT                |             |                  |             |             |             |             | ×           | ×           |                    |             |             |    | thing for O                                                                    |
|                      | chlorate                                                                                        | л <del>,</del> F, Рег |                                 | l) stnetc                  |                       |             |                  |             |             | ×           | ×           |             |             |                    |             |             | de | noeito cama                                                                    |
|                      | aCO <sub>3</sub>                                                                                | -                     | ll cong                         | , Co, V,<br>(and a         | TCDE                  |             |                  | ×           | ×           |             |             |             |             |                    |             |             | 1  | are the com                                                                    |
| L                    | J, Pb, Hg, B,<br>Ni, Se, Ag,                                                                    | Be, Cd,               | , sA , de                       | 3 'UM 'e                   | Ba, Fe                | 14A 🗸 ×     | 14B / ×          | 15A,45B     | 16 1        | 17A, 17B    | 18A, 18B    | 7. 61       | 20Å, 20B    | 21 1               | 22K, 22B    | 23A, 23B    |    | Dage 3 of 3                                                                    |
|                      | PDES<br>001                                                                                     |                       |                                 |                            | Preservative          | HNO3        | HNO <sub>3</sub> | None 15     | None        | None 17     | None 18     | None        | None 20     | H <sub>2</sub> SO₄ | None 22     | None 23     |    | Da 2 20 C 01                                                                   |
| Project:             | Boeing-SSFL NPDES<br>Annual Outfall 001<br>COMPOSITE                                            |                       | Phone Number:<br>(626) 568-6691 | Fax Number: (626) 568-6515 | Sampling<br>Date/Time | 46/10 0840  |                  |             |             |             | *           |             |             |                    | À           | 46 10 0840  |    | 700                                                                            |
| В                    |                                                                                                 | 4                     | 9 8                             | H (9)                      | # of<br>Cont.         | 1 7         | -                | 2           | +           | 2           | 2           | 1           | 2           | -                  | 2           | 2 4         | 1  | +                                                                              |
|                      | - 6                                                                                             |                       | <u>}</u>                        |                            |                       | >           | _                | -e-         | >           | oly         | oly         | oly         | yoc         | oly                | er          | Je .        | +  | -                                                                              |
|                      | Suite 200                                                                                       |                       | ronwyn Ke                       | Sear S                     | e Container           | 1L Poly     | 1L Poly          | 1L Amber    | 1L Poly     | 500 mL Poly | 500 mL Poly | 500 mL Poly | 500 mL Poly | 500 mL Poty        | 1L Amber    | 1L Amber    |    |                                                                                |
| Addres               | dia<br>la Ave,<br>91007                                                                         | 5                     | ger: B                          | c)mean                     | Sample<br>Matrix      | 8           | 3                | 8           | 8           | 3           | 8           | N           | 8           | 8                  | 8           | 8           |    |                                                                                |
| Client Name/Address: | MWWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Incent Door |                       | Project Manager: Bronwyn Kelly  | Sampler:                   | Sample<br>Description | Outfall 001 | Outfall 001 Dup  | Outfall 001        | Outfall 001 | Outfall 001 |    |                                                                                |

|                      |                                                                                                                                                                                                                                   | Comments                                                   |                       |                    |              | Unfiltered and unpreserved | analysis     |                |             |             | Filter w/in 24hrs of receipt at lab |   |    |   |   |   |                                                                                                                                                                                                      |                           | 10 Day:          | +               | 762                   | 1.              |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|--------------------|--------------|----------------------------|--------------|----------------|-------------|-------------|-------------------------------------|---|----|---|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|-----------------|-----------------------|-----------------|
| ANALYSIS REQUIRED    | : Cu, Pb, Hg, B, Ba,<br>I, Ni, Se, Ag, Ti,<br>5 CaCO <sub>3</sub>                                                                                                                                                                 | is Se, As, Be, Co<br>1, Sb, As, Be, Co<br>1, V, Hardness a | Fe, Mr                |                    |              |                            |              |                |             |             | ×                                   |   |    |   |   |   | COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 001 for this storm event.  These milet he added to the same work order for COC Dage 1 of 3 for Outfall 001 for the same event. | Turn-around time: (Check) | 24 Hour 72 Hour. | tegrit          | (700 Intact Office: X | <i>J</i>        |
|                      |                                                                                                                                                                                                                                   | c Toxicity                                                 | _                     | _                  |              |                            |              |                |             | ×           |                                     |   |    |   |   |   | Outtall                                                                                                                                                                                              | 5                         | 1930             | 1               | (6                    |                 |
| +                    | 4                                                                                                                                                                                                                                 | nethylhydrazine                                            | Monor                 |                    |              |                            |              | ×              | ×           |             |                                     |   |    | 1 |   | 4 | es for                                                                                                                                                                                               | 5                         | 10               |                 | 9)/                   |                 |
|                      | Total Organic Carbon<br>Gross Alpha(900.0), Gross Beta(900.0),<br>Tritium (H-3) (906.0), Sr-90 (905.0), Total<br>Combined Radium 226 (903.0 or 903.1) &<br>Radium 228 (904.0), Uranium (908.0), K-<br>40, CS-137 (901.0 or 901.1) |                                                            |                       |                    | ×            | >                          | <            |                |             |             |                                     |   | 50 |   |   |   | ork order for COC Pa                                                                                                                                                                                 | Date/Time                 | 7                | Date/Time:      | $\backslash$          | Date/Time       |
|                      |                                                                                                                                                                                                                                   | oxsne                                                      | _                     | × (a)              | _            | `                          | 5            | ^ <sub>8</sub> | 78g         | >           | _                                   | - | +  |   | H | - | S Of 3 a                                                                                                                                                                                             | / John                    | 13               | d By            |                       | 名 P             |
|                      |                                                                                                                                                                                                                                   |                                                            | Bottle #              | 24A, 24B,<br>24C V | 25 /         | 26A J                      | 268          | 27 K. 27B      | 28A, 28B    | 7 62        | 70€                                 |   |    |   |   |   | Page .                                                                                                                                                                                               | Received By               | _                | Received By     |                       | Received By     |
|                      | 001<br>001                                                                                                                                                                                                                        |                                                            | Preservative          | РC                 | - F          | None                       | None         | None           | None        | None        | None                                |   |    |   |   |   | 2 of 3 and                                                                                                                                                                                           | 2000                      |                  |                 | 2021                  |                 |
| ect:                 | Boeing-SSFL NPDES Annual Outfall 001 COMPOSITE                                                                                                                                                                                    | Phone Number:<br>(626) 568-6691<br>Fax Number:             | Sampling<br>Date/Time | is obio            | _            |                            |              |                |             |             | 16/10 otho                          |   |    |   |   |   | COC Page 2 of 3 and                                                                                                                                                                                  | 200                       |                  |                 | 5                     |                 |
| Project:             |                                                                                                                                                                                                                                   | (62£<br>Fax                                                | -                     | 61                 |              |                            |              | Α.             | Δ:          | _           | 1 46                                |   |    |   | + | 4 | F A                                                                                                                                                                                                  | Date/Time:                |                  | Date/Time:      | 240                   | Date/Time:      |
|                      | Doak                                                                                                                                                                                                                              | <u></u>                                                    | er # of Cont.         | m                  | ass 1        | - pe                       | per 1        | 2              | er 2        | be 1        |                                     | - |    |   | + | - |                                                                                                                                                                                                      | Date                      |                  | Date            | 2                     | Date            |
|                      | Suite 200                                                                                                                                                                                                                         | onwyn Ke                                                   | Containe              | VOAs               | 250 mL Glass | 2.5 Gal Cube               | 500 mL Amber | 1L Amber       | 1L Amber    | 1 Gal Cube  | 1L Poly                             |   |    |   |   |   |                                                                                                                                                                                                      |                           | /                |                 |                       |                 |
| Address              | dia<br>la Ave, 9<br>91007<br>Contaci                                                                                                                                                                                              | nager: Bronw                                               | Sample                | 3                  | ×            | *                          | \$           | *              | 8           | W           | 8                                   |   |    |   |   |   |                                                                                                                                                                                                      | ,                         | the              |                 | 7                     |                 |
| Client Name/Address. | MWH-Arcadia<br>618 Michillinda Ave, Suite 200<br>Arcadia, CA 91007<br>Test America Contact: Joseph Doak                                                                                                                           | Project Manager: Bronwyn Kelly Sampler: 5 Dur Son          | Sample<br>Description | Outfall 001        | Outfall 001  | Outfall 004                | Cottail oo   | Outfall 001    | Outfall 001 | Outfall 001 | Outfall 001                         |   |    |   |   |   |                                                                                                                                                                                                      | Relinquished By           | Stully           | Relinquished By | M                     | Relinquished By |

#### LABORATORY REPORT

Date:

February 15, 2010

Client:

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-10020702-001/002

Sample I.D.:

ITB0887-01, 04 (Outfall 001)

**Sample Control:** 

The sample was received by ATL within the recommended hold time, chilled and

with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled:

02/06/10

Date Received:

02/07/10

Temp. Received:

1.4°C

Chlorine (TRC):

Date Tested:

0.0 mg/l 02/07/10 to 02/14/10

Sample Analysis:

The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0). *Ceriodaphnia dubia* Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

#### **Result Summary:**

Acute:

Survival TUa

Fathead Minnow:

100% 0.0

Chronic:

NOEC 100%  $\frac{\text{TUc}}{1.0}$ 

Ceriodaphnia Survival: Ceriodaphnia Reproduction:

100%

1.0

**Quality Control:** 

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

#### FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0



Lab No.: A-10020702-001

Client/ID: TestAmerica ITB0887-01 Outfall 001

Start Date: 02/07/2010

#### TEST SUMMARY

Species: Pimephales promelas.

Age: 12 (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Dilution water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C.

Number of fish per chamber: 10. QA/QC Batch No.: RT-100202.

#### TEST DATA

|           |         | 100  | DO  | -0 m | # D | Dead | Analyst & Time |
|-----------|---------|------|-----|------|-----|------|----------------|
|           |         | °C   | DO  | рН   | Α   | В    | of Readings    |
| DUTIAL    | Control | 20.1 | 8-5 | 7.7  | U   | 0    | n              |
| INITIAL   | 100%    | 20,0 | 9.9 | 7,4  | 0   | 0    | 1400           |
| 24.11     | Control | 19.4 | 8.1 | 8.0  | 0   | 0    | 2              |
| 24 Hr     | 100%    | 19.2 | 8.2 | 7.9  | 0   | U    | 1700           |
| 40.77     | Control | 19.3 | 8.1 | 7.5  | 0   | 0    | La             |
| 48 Hr     | 100%    | 19.1 | 8.0 | 8.0  | 0   | 0    | 1300           |
| Danishood | Control | 19.8 | 9.2 | 8.0  | 0   | 0    | R              |
| Renewal   | 100%    | 20.4 | 9.6 | 25   | 0   | ()   | 1300           |
| 70.11     | Control | 19.4 | 7-1 | 2.5  | 0   | 0    | 2m             |
| 72 Hr     | 100%    | 19.1 | 6.8 | 7.6  | 0   | 0    | 1500           |
| 06.11-    | Control | 19.1 | 8.2 | 2.7  | 0   | D    | Ru             |
| 96 Hr     | 100%    | 19.0 | 2.9 | 7.6  | 0   | 0    | 1400           |

#### Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 7.4; Conductivity: 15 6 umho; Temp: 1.4°C; DO: 9.9 mg/l; Alkalinity: 47 mg/l; Hardness: 54 mg/l; NH<sub>3</sub>-N: 0.2 mg/l.

Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No.

Control: Alkalinity: 71 mg/l; Hardness: 10 mg/l; Conductivity: 325 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No.

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O2.

#### RESULTS

Percent Survival In: Control: 100 % 100% Sample: 100 %



# CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

#### CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0



Lab No.: A-10020702-002 Date Tested: 02/07/10 to 02/14/10

Client/ID: Test America – ITB0887-04 (Outfall 001)

#### **TEST SUMMARY**

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Source: In-laboratory culture.

Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day. Test vessel size: 30 ml. Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 7 days.

QA/QC Batch No.: RT-100207. Statistics: ToxCalc computer program.

#### RESULTS SUMMARY

| Sample Concentration | Percent Survival | Mean Number of Young<br>Per Female |
|----------------------|------------------|------------------------------------|
| Control              | 100%             | 27.9                               |
| 100% Sample          | 100%             | 33.5                               |

#### CHRONIC TOXICITY

| Survival NOEC     | 100% |
|-------------------|------|
| Survival TUc      | 1.0  |
| Reproduction NOEC | 100% |
| Reproduction TUc  | 1.0  |

#### QA/QC TEST ACCEPTABILITY

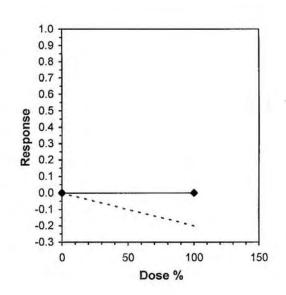
| Parameter                                                                             | Result                                                 |
|---------------------------------------------------------------------------------------|--------------------------------------------------------|
| Control survival ≥80%                                                                 | Pass (100% survival)                                   |
| ≥15 young per surviving control female                                                | Pass (27.9 young)                                      |
| ≥60% surviving controls had 3 broods                                                  | Pass (100% with 3 broods)                              |
| PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated | Pass (PMSD = $9.5\%$ )                                 |
| Statistically significantly different concentrations relative difference > 13%        | Pass (no concentration significantly different)        |
| Concentration response relationship acceptable                                        | Pass (no significant response at concentration tested) |

|              |            |        |           | aphnia Sur     |           |           |                  |        |           |               |
|--------------|------------|--------|-----------|----------------|-----------|-----------|------------------|--------|-----------|---------------|
| Start Date:  | 2/7/2010 1 | 5:00   | Test ID:  | 10020702       | С         |           | Sample ID        | ):     | ITB0887-0 |               |
| End Date:    | 2/14/2010  | 14:00  | Lab ID:   | CAATL-Ac       | uatic Tes | ting Labs | Sample Ty        | /pe:   | EFF2-Indu | ıstrial       |
| Sample Date: | 2/6/2010 0 | 6:40   | Protocol: | <b>FWCH EP</b> | A         |           | <b>Test Spec</b> | ies:   | CD-Cerioo | laphnia dubia |
| Comments:    |            |        |           |                |           |           |                  |        |           |               |
| Conc-%       | 1          | 2      | 3         | 4              | 5         | 6         | 7                | 8      | 9         | 10            |
| D-Contro     | 1.0000     | 1.0000 | 1.0000    | 1.0000         | 1.0000    | 1.0000    | 1.0000           | 1.0000 | 1.0000    | 1.0000        |
| 100          | 1.0000     | 1.0000 | 1.0000    | 1.0000         | 1.0000    | 1.0000    | 1.0000           | 1.0000 | 1.0000    | 1.0000        |

|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Isot   | onic   |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Mean   | N-Mean |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 1.0000 | 1.0000 |
| 100       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 1.0000 | 1.0000 |

| Hypothesis   | Test (1-tail, | 0.05) | NOEC | LOEC | ChV  | TU        |                                                    |     |    |     |     |    |
|--------------|---------------|-------|------|------|------|-----------|----------------------------------------------------|-----|----|-----|-----|----|
| Fisher's Exa | act Test      |       | 100  | >100 |      | 1         |                                                    |     |    |     |     |    |
| Treatments   | vs D-Control  |       |      |      |      |           |                                                    |     |    |     |     |    |
|              |               |       |      |      |      | lation (2 | 00 Resample                                        | es) |    |     |     |    |
| Point        | %             | SD    | 95%  | CL   | Skew |           |                                                    |     |    |     |     |    |
| IC05         | >100          |       |      |      |      |           |                                                    |     |    |     |     |    |
| IC10         | >100          |       |      |      |      |           |                                                    |     |    |     |     | 7. |
| IC15         | >100          |       |      |      |      |           | 1.0 T                                              |     |    |     |     |    |
| IC20         | >100          |       |      |      |      |           | 0.9                                                |     |    |     | - 1 |    |
| IC25         | >100          |       |      |      |      |           |                                                    |     |    |     | - 1 |    |
| IC40         | >100          |       |      |      |      |           | 0.8 -                                              |     |    |     |     |    |
| IC50         | >100          |       |      |      |      |           | 0.7                                                |     |    |     |     |    |
|              |               |       |      |      |      |           | g 0.6                                              |     |    |     |     |    |
|              |               |       |      |      |      |           | 0.5                                                |     |    |     |     |    |
|              |               |       |      |      |      |           | Response 0.6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |     |    |     |     |    |
|              |               |       |      |      |      |           | 0.3                                                |     |    |     |     |    |
|              |               |       |      |      |      |           | 0.2                                                |     |    |     |     |    |
|              |               |       |      |      |      |           | 0.1                                                |     |    |     |     |    |
|              |               |       |      |      |      |           | 0.0                                                |     |    |     |     |    |
|              |               |       |      |      |      |           | 0                                                  | 5   | 50 | 100 | 150 |    |

Dose %


|              |            |        | Ceriod    | aphnia Su      | rvivai and | Reprodu   | action res | st-Kebro | Juction   |               |   |
|--------------|------------|--------|-----------|----------------|------------|-----------|------------|----------|-----------|---------------|---|
| Start Date:  | 2/7/2010 1 | 15:00  | Test ID:  | 10020702       | С          |           | Sample ID  | ):       | ITB0887-0 | )4            |   |
| End Date:    | 2/14/2010  | 14:00  | Lab ID:   | CAATL-AC       | quatic Tes | ting Labs | Sample Ty  |          | EFF2-Indu |               | * |
| Sample Date: | 2/6/2010 0 | 06:40  | Protocol: | <b>FWCH EP</b> | Α          |           | Test Spec  | ies:     | CD-Cerio  | daphnia dubia |   |
| Comments:    |            |        |           |                |            |           |            |          |           |               |   |
| Conc-%       | 1          | 2      | 3         | 4              | 5          | 6         | 7          | 8        | 9         | 10            |   |
| D-Control    | 30.000     | 26.000 | 31.000    | 29.000         | 30.000     | 32.000    | 24.000     | 30.000   | 22.000    | 25.000        |   |
| 100          | 39.000     | 33.000 | 35,000    | 38.000         | 28.000     | 32.000    | 30.000     | 36.000   | 32.000    | 32.000        |   |

|           |        |        | Transform: Untransformed 1-Tailed |        |        |        | Isotonic |        |          |       |        |        |
|-----------|--------|--------|-----------------------------------|--------|--------|--------|----------|--------|----------|-------|--------|--------|
| Conc-%    | Mean   | N-Mean | Mean                              | Min    | Max    | CV%    | N        | t-Stat | Critical | MSD   | Mean   | N-Mean |
| D-Control | 27.900 | 1.0000 | 27.900                            | 22.000 | 32.000 | 12.119 | 10       |        |          |       | 30.700 | 1.0000 |
| 100       | 33.500 | 1.2007 | 33.500                            | 28.000 | 39.000 | 10.365 | 10       | -3.654 | 1.734    | 2.658 | 30.700 | 1.0000 |

| Auxiliary Tests                                              | Statistic |         | Critical |         | Skew    | Kurt    |
|--------------------------------------------------------------|-----------|---------|----------|---------|---------|---------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.05) | 0.9605    |         | 0.905    |         | -0.1751 | -0.9651 |
| F-Test indicates equal variances (p = 0.94)                  | 1.05442   |         | 6.54109  |         |         |         |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp    | MSB      | MSE     | F-Prob  | df ·    |
| Homoscedastic t Test indicates no significant differences    | 2.65764   | 0.09526 | 156.8    | 11.7444 | 0.00182 | 1, 18   |
| Treatments vs D-Control                                      |           |         |          |         |         |         |

Linear Interpolation (200 Resamples) 95% CL **Point** SD Skew IC05 >100 IC10 >100 >100 IC15 IC20 >100 IC25 >100 IC40 >100

>100



IC50

#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet



Lab No.: A-10020702-001

Client ID: TestAmerica - ITB0887-04 Outfall 001 Start Date: 02/07/2010 DAY I DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 0 hr 24hr 0 hr 0 hr 0 hr 24hr 24hr 0 lir 24hr 0 hr 24hr 0 hr 24hr Analyst Initials: MB Time of Readings: 1500 400 1400 1400 1400 1500 1500 600 8.3 8.2 DO 8.0 7.6 pH 8.0 Control 24. Temp 24.4 25.0 DO 100% pH **Additional Parameters** Control 100% Sample Conductivity (umohms) Alkalinity (mg/l CaCO3) Hardness (mg/I CaCO<sub>3</sub>) 90 2001 Ammonia (mg/l NH<sub>3</sub>-N) Source of Neonates Replicate: B D G 63 54 4E 6 F 46 40 6 I Brood ID: Number of Young Produced Total Live No. Live Analyst Sample Day Young Adults Initials A B C D Ė G H J 1 0 0 0 0 10 2 U 3 3 10 4 46 10 Control 6 5 9 10 0 6 0 0 10 7 6 10 6 26 30) 3 29 30 7 22 25 30 279 Total 0 0 1 2 10 b 3 U 4 10 100% 9 5 0 0 6 Total

Circled fourth brood not used in statistical analysis.

<sup>7</sup>th day only used if <60% of the surviving control females have produced their third brood.



# CHAIN OF CUSTODY

### SUBCONTRACT ORDER TestAmerica Irvine

#### ITB0887

| ENDING | ARORATORY. |
|--------|------------|

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

#### RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756

Project Location: CA - CALIFORNIA

Receipt Temperature:

Ice: Y

| Analysis                | Units                   | Expires                             | Comments                                      |
|-------------------------|-------------------------|-------------------------------------|-----------------------------------------------|
| Sample ID: ITB0887-01 ( | Outfall 001 (Grab) - Wa | ter) Sampled: 02/06/10 10:20        |                                               |
| Bioassay-Acute 96hr     | % Survival              | 02/07/10 22:20                      | FH minnow, EPA/821-R02-012, Sub to<br>Aquatic |
| Containers Supplied:    |                         |                                     |                                               |
| 1 gal Poly (S)          |                         |                                     |                                               |
| Sample ID: ITB0887-04 ( | Outfall 001 (Composite  | e) - Water) Sampled: 02/06/10 06:40 |                                               |
| Bioassay-7 dy Chrnic    | N/A                     | 02/07/10 18:40                      | Cerio, EPA/821-R02-013, Sub to Aquatic        |
| Containers Supplied:    |                         |                                     |                                               |
| 1 gal Poly (AA)         |                         |                                     |                                               |

Released By Date/Time Received By Date/Time
Released By Date/Time Received By Date/Time



# REFERENCE TOXICANT DATA

#### FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS



QA/QC Batch No.: RT-100202

TEST SUMMARY

Species: Pimephales promelas.

Age: 13 days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

Source: In-lab culture.

Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

#### TEST DATA

|            |      | INITIAI | 3    |         |     | 24 Hr |     |      |      |      | 48 Hr |     |     |
|------------|------|---------|------|---------|-----|-------|-----|------|------|------|-------|-----|-----|
| Date/Time: | 2-2- | -10     | 1200 | 2-3     | -10 |       | 13  | OU   | 2-   | 4-10 |       | 120 | 2)  |
| Analyst:   |      | R       | ~    | Land 18 |     |       |     | en   | on   |      |       |     |     |
|            | "C   | DO      | -11  | ³C      | DO  | -11   | # D | Dead | °C   | DO   | -11   | # 0 | ead |
|            |      | DO      | рН   | 3.0     | DO  | pН    | A   | В    |      | DO   | рН    | A   | В   |
| Control    | 19.6 | 8.4     | 7.6  | 19.4    | 7.9 | 7.4   | 0   | 0    | 19.2 | 7.1  | 7.9   | 0   | 0   |
| 1.0 mg/I   | 19.6 | 8.5     | 7.6  | 19.2    | 8.0 | 7.4   | 0   | 0    | 19.2 | 7.3  | 7.7   | 0   | 0   |
| 2.0 mg/l   | 19.6 | 8.5     | 7-7  | 19.1    | 8.0 | 7.4   | 0   | 0    | 19.1 | 2.2  | 7.6   | 0   | 0   |
| 4.0 mg/l   | 19.6 | 8.5     | 22   | 19.1    | 7.6 | 24    | 0   | 0    | 19.1 | 7.2  | 7.6   | 0   | 0   |
| 8.0 mg/l   | 19.6 | 8.6     | 7.7  | 19.0    | 6.8 | 7.3   | W   | 10   | -    | -    | -     | _   | _   |

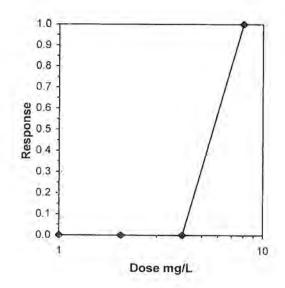
|            | R           | ENEWA | \L  |             |      | 72 Hr |     |         |      | 96 Hr |      |     |      |  |
|------------|-------------|-------|-----|-------------|------|-------|-----|---------|------|-------|------|-----|------|--|
| Date/Time: | 2-4-10 1200 |       | 2-5 | 2-5-10 1200 |      |       | )   | 2-10-10 |      |       | 1130 |     |      |  |
| Analyst:   |             | Ru    |     |             | en . |       |     |         | R    |       |      |     |      |  |
|            | °C          | DO    | pH  | "C          | DO   | 417   | # D | Dead    | °C   | DO    | sir. | # [ | Dead |  |
|            |             | DO    | pii |             | DO   | рН    | Α   | В       |      | DO    | pН   | A   | В    |  |
| Control    | 19.5        | 8.8   | 7.8 | 19.5        | 7.4  | 7.4   | 0   | 0       | 20.6 | 6.3   | 7.4  | 0   | 0    |  |
| 1.0 mg/l   | 19.5        | 8.8   | 7.8 | 19.4        | 7.4  | 7.4   | 0   | 0       | 20.6 | 6.6   | 7.4  | 0   | 0    |  |
| 2.0 mg/l   | 19.5        | 8.9   | 7.8 | 19.2        | 2.4  | 7.4   | 0   | 0       | 20.6 | 6.5   | 7.4  | 0   | 0    |  |
| 4.0 mg/l   | 19.5        | 8.9   | 7.8 | 19.2        | 2.3  | 7.4   | 0   | 0       | 20.5 | 6.4   | 2.4  | 0   | 0    |  |
| 8.0 mg/l   | -           | _     | -   | _           | -    | _     | -   | -       | -    |       |      | _   | _    |  |

Comments: Control: Alkalinity: <u>69</u> mg/l; Hardness: <u>94</u> mg/l; Conductivity: <u>330</u> umho. SDS: Alkalinity: <u>68</u> mg/l; Hardness: <u>94</u> mg/l; Conductivity: <u>333</u> umho.

Concentration-response relationship acceptable? (see attached computer analysis):

Yes (response curve normal)

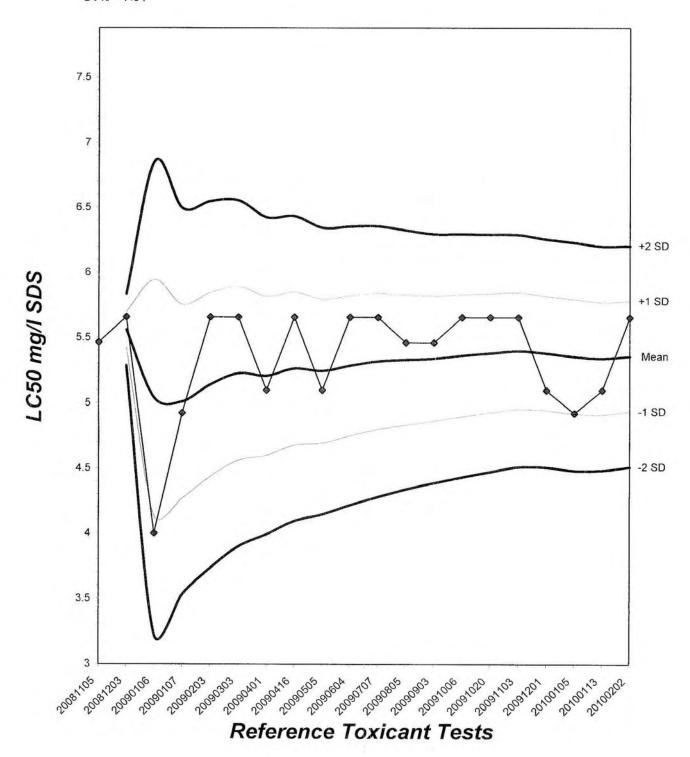
No (dose interrupted indicated or non-normal)


|                           |          |        |           | Acute Fish Test-96         | Hr Survival   |                            |
|---------------------------|----------|--------|-----------|----------------------------|---------------|----------------------------|
| Start Date:               | 2/2/2010 | 12:00  | Test ID:  | RT100202f                  | Sample ID:    | REF-Ref Toxicant           |
| End Date:                 | 2/6/2010 | 11:30  | Lab ID:   | CAATL-Aquatic Testing Labs | Sample Type:  | SDS-Sodium dodecyl sulfate |
| Sample Date:<br>Comments: | 2/2/2010 |        | Protocol: | ACUTE-EPA-821-R-02-012     | Test Species: | PP-Pimephales promelas     |
| Conc-mg/L                 | 1        | 2      |           |                            |               |                            |
| D-Control                 | 1.0000   | 1.0000 |           |                            |               |                            |
| 1                         | 1.0000   | 1.0000 |           |                            |               |                            |
| 2                         | 1.0000   | 1.0000 |           |                            |               |                            |
| 4                         | 1,0000   | 1.0000 |           |                            |               |                            |
| 8                         | 0.0000   | 0.0000 |           |                            |               |                            |

|           |        |        | Tr     | ansform: | Arcsin So | uare Root |   | Number Tot | Total<br>Number |  |
|-----------|--------|--------|--------|----------|-----------|-----------|---|------------|-----------------|--|
| Conc-mg/L | Mean   | N-Mean | Mean   | Min      | Max       | CV%       | N | Resp Num   |                 |  |
| D-Control | 1.0000 | 1.0000 | 1.4120 | 1.4120   | 1.4120    | 0.000     | 2 | 0          | 20              |  |
| 1         | 1.0000 | 1.0000 | 1.4120 | 1.4120   | 1.4120    | 0.000     | 2 | 0          | 20              |  |
| 2         | 1.0000 | 1.0000 | 1.4120 | 1.4120   | 1.4120    | 0.000     | 2 | 0          | 20              |  |
| 4         | 1.0000 | 1.0000 | 1.4120 | 1.4120   | 1.4120    | 0.000     | 2 | 0          | 20              |  |
| 8         | 0.0000 | 0.0000 | 0.1588 | 0.1588   | 0.1588    | 0.000     | 2 | 20         | 20              |  |

| Auxiliary Tests                               | Statistic        | Critical | Skew  | Kurt |
|-----------------------------------------------|------------------|----------|-------|------|
| Normality of the data set cannot be confirmed |                  |          | 13727 |      |
| Equality of variance cannot be confirmed      |                  |          |       |      |
|                                               | Graphical Method |          |       |      |

| Trim Level | EC50   |  |
|------------|--------|--|
| 0.0%       | 5.6569 |  |


5.6569



Reviewed by:

# Fathead Minnow Acute Laboratory Control Chart

CV% = 7.91



#### TEST ORGANISM LOG



# FATHEAD MINNOW - LARVAL (Pimephales promelas)

| QA/QC BATCH NO .: RT-100202                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOURCE: In-Lab Culture                                                                                                                                                |
| DATE HATCHED: 1-20-10                                                                                                                                                 |
| APPROXIMATE QUANTITY:U W                                                                                                                                              |
| APPROXIMATE QUANTITY:  GENERAL APPEARANCE:                                                                                                                            |
| # MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:                                                                                                                    |
| DATE USED IN LAB: 1 / 5 / 10                                                                                                                                          |
| AVERAGE FISH WEIGHT: 0,006 gm                                                                                                                                         |
| LOADING LIMITS: 0.65 gm/liter @ 20°C, 0.40 gm/liter @ 25°C                                                                                                            |
| Approximately 1000 fish per 10 liters limit if held overnight for acclimation without filtration @ 20°C for fish with a mean weight of 0.006 gm.                      |
| Approximately 650 fish per 10 liters limit if held overnight for acclimation without filtration @ 25°C for fish with a mean weight of 0.006 gm.                       |
| 200 ml test solution volume = 0.013 gm mean fish weight limit @ 20°C; 0.008 @ 25°C 250 ml test solution volume = 0.016 gm mean fish weight limit @ 20°C; 0.010 @ 25°C |
| ACCLIMATION WATER QUALITY:                                                                                                                                            |
| Temp.: <u>19-6</u> °C pH: <u>7-6</u> Ammonia: <u>10-1</u> mg/l NH <sub>3</sub> -N                                                                                     |
| DO: 8 4 mg/l Alkalinity: 69 mg/l Hardness: 94 mg/l                                                                                                                    |
| READINGS RECORDED BY: DATE: Z-3-/O                                                                                                                                    |



## Test Temperature Chart

Test No: RT-100202

Date Tested: 02/02/10 to 02/06/10

Acceptable Range: 20+/- 1°C





# Ceriodaphnia dubia Chronic Toxicity Test Reference Toxicant Data

# CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl



QA/QC Batch No.: RT-100207 Date Tested: 02/07/10 to 02/14/10

#### TEST SUMMARY

Test type: Daily static-renewal. Species: Ceriodaphnia dubia.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

#### RESULTS SUMMARY

| Sample Concentration | Percent Surviv | Mean Number of<br>Young Per Female |      |    |  |
|----------------------|----------------|------------------------------------|------|----|--|
| Control              | 100%           |                                    | 28.5 |    |  |
| 0.25 g/l             | 100%           |                                    | 30.9 |    |  |
| 0.5 g/l              | 100%           |                                    | 25.5 |    |  |
| 1.0 g/l              | 100%           |                                    | 15.4 | *  |  |
| 2.0 g/l              | 100%           |                                    | 2.9  | *  |  |
| 4.0 g/l              | 0%             | *                                  | 0    | ** |  |

<sup>\*</sup> Statistically significantly less than control at P = 0.05 level

\*\* Reproduction data from concentrations greater than survival NŒC are

excluded from statistical analysis.

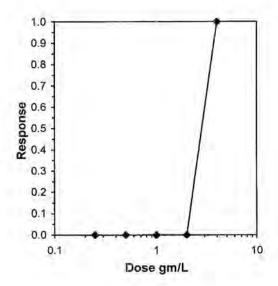
#### CHRONIC TOXICITY

| Survival LC50     | 2.8 g/l  |
|-------------------|----------|
| Reproduction IC25 | 0.66 g/l |
| Reproduction 1C25 | 0.00 g/1 |

#### QA/QC TEST ACCEPTABILITY

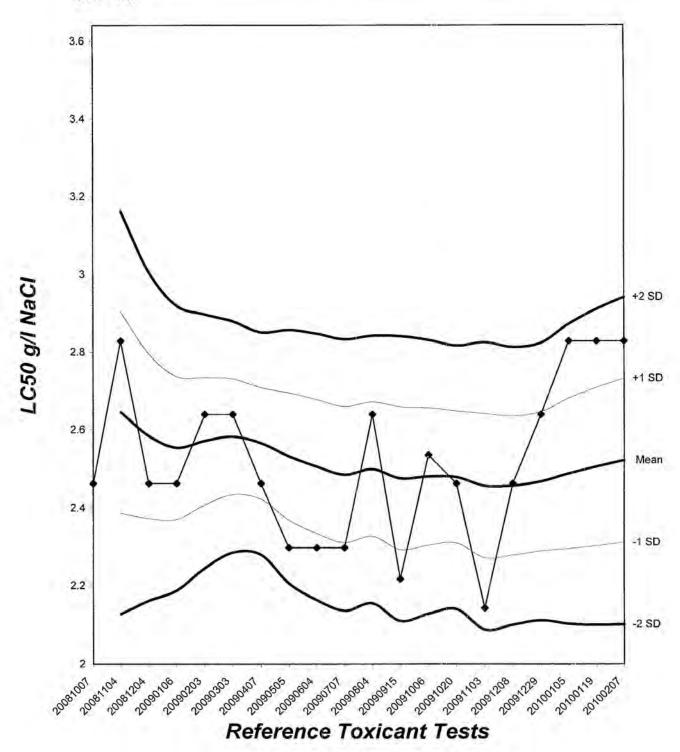
| Parameter                                        | Result                                                   |
|--------------------------------------------------|----------------------------------------------------------|
| Control survival ≥80%                            | Pass (100% Survival)                                     |
| ≥15 young per surviving control female           | Pass (28.5 young)                                        |
| ≥60% surviving controls had 3 broods             | Pass (100% with 3 broods)                                |
| PMSD <47% for reproduction                       | Pass (PMSD = 14.7%)                                      |
| Stat. sig. diff. conc. relative difference > 13% | Pass (Stat. sig. diff. conc. Relative difference = 46.0% |
| Concentration response relationship acceptable   | Pass (Response curve normal)                             |

| Start Date:            | 2/7/2010 1 | 5:00   | Test ID:  | RT100207                   | c      |        | Sample ID | ;      | REF-Ref Toxicant |                      |  |  |  |
|------------------------|------------|--------|-----------|----------------------------|--------|--------|-----------|--------|------------------|----------------------|--|--|--|
| End Date:              | 2/14/2010  | 14:00  | Lab ID:   | CAATL-Aquatic Testing Labs |        |        | Sample Ty | /pe:   |                  | lium chloride        |  |  |  |
| Sample Date:           | 2/7/2010   |        | Protocol: | FWCH EP                    | A      |        | Test Spec | ies:   | CD-Ceriod        | D-Ceriodaphnia dubia |  |  |  |
| Comments:<br>Conc-gm/L | 4          | 2      | 3         | 4                          | 5      | 6      | 7         | 8      | 9                | 10                   |  |  |  |
| D-Control              | 1.0000     | 1.0000 | 1.0000    | 1.0000                     | 1.0000 | 1.0000 | 1.0000    | 1.0000 |                  | 1.0000               |  |  |  |
| 0.25                   |            | 1.0000 | 1000000   |                            | 1.0000 | 1.0000 | 1.0000    | 1.0000 | 1.0000           | 1.0000               |  |  |  |
| 0.5                    | 1.0000     | 1.0000 | 1.0000    | 1.0000                     | 1,0000 | 1.0000 | 1.0000    | 1.0000 | 1.0000           | 1.0000               |  |  |  |
| 1                      | 1.0000     | 1.0000 | 1.0000    | 1.0000                     | 1.0000 | 1.0000 | 1.0000    | 1.0000 | 1.0000           | 1.0000               |  |  |  |
| 2                      | 1.0000     | 1.0000 | 1.0000    | 1.0000                     | 1.0000 | 1.0000 | 1.0000    | 1.0000 | 1.0000           | 1.0000               |  |  |  |
| 4                      | 0.0000     | 0.0000 | 0.0000    | 0.0000                     | 0.0000 | 0.0000 | 0.0000    | 0.0000 | 0.0000           | 0.0000               |  |  |  |


|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Number | Total  |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-am/L | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Resp   | Number |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 0      | 10     |
| 0.25      | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 0.5       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 1         | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 2         | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 4         | 0.0000 | 0.0000 | 10   | 0    | 10    | 10 |          |          | 10     | 10     |

| Hypothesis Test (1-tail, 0.05) | NOEC | LOEC | ChV     | TU |  |
|--------------------------------|------|------|---------|----|--|
| Fisher's Exact Test            | 2    | 4    | 2.82843 |    |  |
| Treatments vs D-Control        |      |      |         |    |  |

Graphical Method


Trim Level EC50 0.0% 2.8284

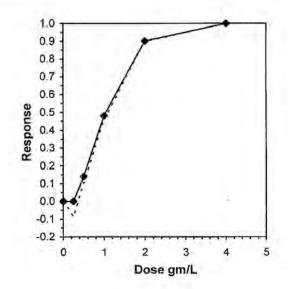
2.8284



## Ceriodaphnia Chronic Survival Laboratory Control Chart

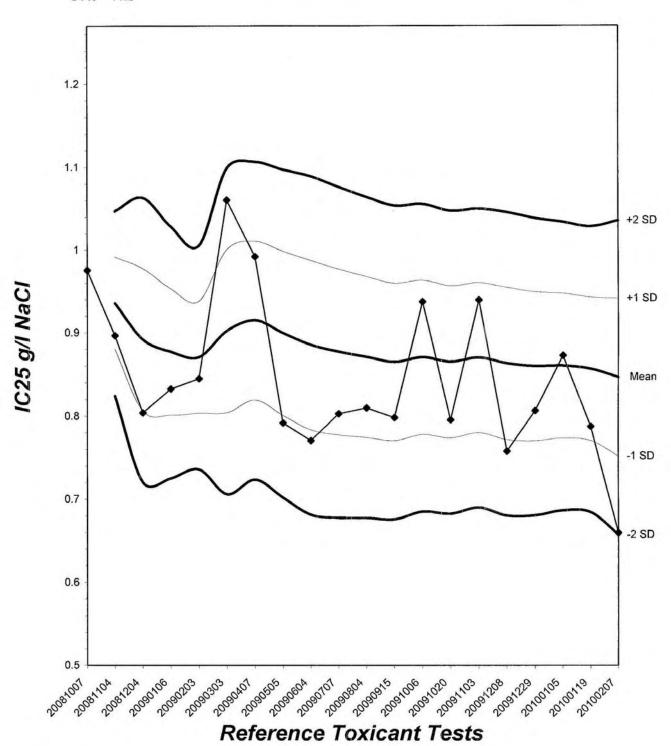
CV% = 8.34




| Start Date:            | 2/7/2010 1 | 5:00   | Test ID:  | RT100207                   | 'c     |        | Sample ID |        | REF-Ref Toxicant |               |  |
|------------------------|------------|--------|-----------|----------------------------|--------|--------|-----------|--------|------------------|---------------|--|
| End Date:              | 2/14/2010  | 14:00  | Lab ID:   | CAATL-Aquatic Testing Labs |        |        | Sample Ty | /pe:   | NACL-Soc         | lium chloride |  |
| Sample Date: Comments: | 2/7/2010   |        | Protocol: | FWCH EP                    | A      |        | Test Spec | ies:   | CD-Cerioo        | laphnia dubia |  |
| Conc-gm/L              | 1 -1       | 2      | 3         | 4                          | 5      | 6      | 7         | 8      | 9                | 10            |  |
| D-Control              | 30.000     | 29.000 | 30,000    | 32.000                     | 29.000 | 30.000 | 30.000    | 25.000 | 26.000           | 24.000        |  |
| 0.25                   | 48.000     | 29.000 | 31.000    | 31.000                     | 27.000 | 27.000 | 28.000    | 36.000 | 25.000           | 27.000        |  |
| 0.5                    | 27.000     | 26.000 | 26.000    | 28.000                     | 25.000 | 25.000 | 30.000    | 25.000 | 18.000           | 25.000        |  |
| 1                      | 24.000     | 13.000 | 15,000    | 19.000                     | 24.000 | 13.000 | 11.000    | 13.000 | 11.000           | 11.000        |  |
| 2                      | 3.000      | 3.000  | 2.000     | 3.000                      | 2.000  | 3.000  | 4.000     | 4.000  | 2.000            | 3.000         |  |
| 4                      | 0.000      | 0.000  | 0.000     | 0.000                      | 0.000  | 0.000  | 0.000     | 0.000  | 0.000            | 0.000         |  |

| Mann   | Moon                                          |                                                                                  |                                                                                                                                                                                                                                                                           | Transform                                                                                                                                                                                                                                                                                                                                                       | n: Untran                                                                                                                                                                                                                                                                                                                                                                                                                                             | sformed                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-Tailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Isot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onic |
|--------|-----------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Mean   | N-Mean                                        | Mean                                                                             | Min                                                                                                                                                                                                                                                                       | Max                                                                                                                                                                                                                                                                                                                                                             | CV%                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N                                                                                                                                                                                                                                                                                                                                        | Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N-Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 28.500 | 1.0000                                        | 28.500                                                                           | 24,000                                                                                                                                                                                                                                                                    | 32.000                                                                                                                                                                                                                                                                                                                                                          | 9.097                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 30.900 | 1.0842                                        | 30.900                                                                           | 25,000                                                                                                                                                                                                                                                                    | 48.000                                                                                                                                                                                                                                                                                                                                                          | 21.867                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                       | 110.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 25.500 | 0.8947                                        | 25.500                                                                           | 18.000                                                                                                                                                                                                                                                                    | 30.000                                                                                                                                                                                                                                                                                                                                                          | 12.158                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                       | 79.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 15.400 | 0.5404                                        | 15.400                                                                           | 11.000                                                                                                                                                                                                                                                                    | 24.000                                                                                                                                                                                                                                                                                                                                                          | 33.280                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                       | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 2.900  | 0.1018                                        | 2.900                                                                            | 2.000                                                                                                                                                                                                                                                                     | 4.000                                                                                                                                                                                                                                                                                                                                                           | 25.444                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                       | 55.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 0.000  | 0.0000                                        | 0.000                                                                            | 0.000                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|        | 28.500<br>30.900<br>25.500<br>15.400<br>2.900 | 28.500 1.0000<br>30.900 1.0842<br>25.500 0.8947<br>15.400 0.5404<br>2.900 0.1018 | Mean         N-Mean         Mean           28.500         1.0000         28.500           30.900         1.0842         30.900           25.500         0.8947         25.500           15.400         0.5404         15.400           2.900         0.1018         2.900 | Mean         N-Mean         Mean         Min           28.500         1.0000         28.500         24.000           30.900         1.0842         30.900         25.000           25.500         0.8947         25.500         18.000           15.400         0.5404         15.400         11.000           2.900         0.1018         2.900         2.000 | Mean         N-Mean         Mean         Min         Max           28.500         1.0000         28.500         24.000         32.000           30.900         1.0842         30.900         25.000         48.000           25.500         0.8947         25.500         18.000         30.000           15.400         0.5404         15.400         11.000         24.000           2.900         0.1018         2.900         2.000         4.000 | 28.500     1.0000     28.500     24.000     32.000     9.097       30.900     1.0842     30.900     25.000     48.000     21.867       25.500     0.8947     25.500     18.000     30.000     12.158       15.400     0.5404     15.400     11.000     24.000     33.280       2.900     0.1018     2.900     2.000     4.000     25.444 | Mean         N-Mean         Mean         Min         Max         CV%         N           28.500         1.0000         28.500         24.000         32.000         9.097         10           30.900         1.0842         30.900         25.000         48.000         21.867         10           25.500         0.8947         25.500         18.000         30.000         12.158         10           15.400         0.5404         15.400         11.000         24.000         33.280         10           2.900         0.1018         2.900         2.000         4.000         25.444         10 | Mean         N-Mean         Mean         Min         Max         CV%         N         Sum           28.500         1.0000         28.500         24.000         32.000         9.097         10           30.900         1.0842         30.900         25.000         48.000         21.867         10         110.50           25.500         0.8947         25.500         18.000         30.000         12.158         10         79.00           15.400         0.5404         15.400         11.000         24.000         33.280         10         56.00           2.900         0.1018         2.900         2.000         4.000         25.444         10         55.00 | Mean         N-Mean         Mean         Min         Max         CV%         N         Sum         Critical           28.500         1.0000         28.500         24.000         32.000         9.097         10           30.900         1.0842         30.900         25.000         48.000         21.867         10         110.50         76.00           25.500         0.8947         25.500         18.000         30.000         12.158         10         79.00         76.00           15.400         0.5404         15.400         11.000         24.000         33.280         10         56.00         76.00           2.900         0.1018         2.900         2.000         4.000         25.444         10         55.00         76.00 | Mean         N-Mean         Mean         Min         Max         CV%         N         Sum         Critical         Mean           28.500         1.0000         28.500         24.000         32.000         9.097         10         29.700           30.900         1.0842         30.900         25.000         48.000         21.867         10         110.50         76.00         29.700           25.500         0.8947         25.500         18.000         30.000         12.158         10         79.00         76.00         25.500           15.400         0.5404         15.400         11.000         24.000         33.280         10         56.00         76.00         15.400           2.900         0.1018         2.900         2.000         4.000         25.444         10         55.00         76.00         2.900 |      |

| Auxiliary Tests                                            |             |            |                |    | Statistic | Critical | Skew    | Kurt    |
|------------------------------------------------------------|-------------|------------|----------------|----|-----------|----------|---------|---------|
| Shapiro-Wilk's Test indicates nor                          | -normal dis | stribution | $(p \le 0.05)$ |    | 0.87968   | 0.947    | 1.72192 | 5.90298 |
| Bartlett's Test indicates unequal variances (p = 1.75E-06) |             |            |                |    | 32.1843   | 13.2767  |         |         |
| Hypothesis Test (1-tail, 0.05)                             | NOEC        | LOEC       | ChV            | TU |           |          |         |         |
| Steel's Many-One Rank Test                                 | 0.5         | 1          | 0.70711        |    |           |          |         |         |
| Total Control of D. Octobrol                               |             |            |                |    |           |          |         |         |


Treatments vs D-Control

|       |        |        |        | Linea  | ar Interpolation | (200 Resamples) |
|-------|--------|--------|--------|--------|------------------|-----------------|
| Point | gm/L   | SD     | 95%    | CL     | Skew             | 1-000           |
| IC05  | 0.3384 | 0.0442 | 0.2691 | 0.4525 | 0.4001           |                 |
| IC10  | 0.4268 | 0.0548 | 0.3537 | 0.5444 | 0.4118           |                 |
| IC15  | 0.5126 | 0.0553 | 0.4160 | 0.6069 | 0.0105           | 1.0             |
| IC20  | 0.5861 | 0.0571 | 0.4714 | 0.6748 | -0.2745          | 0.9             |
| IC25  | 0.6597 | 0.0572 | 0.5402 | 0.7608 | -0.3338          | 0.8             |
| IC40  | 0.8802 | 0.0645 | 0.7629 | 1.0101 | 0.4008           | 100             |
| IC50  | 1.0440 | 0.0882 | 0.8903 | 1.2112 | 0.2244           | 0.7             |
|       |        |        |        |        |                  | 0.6 -           |



## Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 11.2



#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

# Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-100207

Start Date: 02/07/2010

| 0 1      |       |    |    | Nu  | mbei | r of Y | oung | Produ | iced |      |      | Total         | No.            | Analyst  |
|----------|-------|----|----|-----|------|--------|------|-------|------|------|------|---------------|----------------|----------|
| Sample   | Day   | A  | В  | C   | D    | E      | F    | G     | н    | 1    | J    | Live<br>Young | Live<br>Adults | Initials |
|          | 1     | 0  | 0  | 0   | 0    | 0      | 0    | 0     | 0    | 0    | 0    | 0             | 10             | 2        |
|          | 2     | 0  | 0  | 0   | 0    | 0      | 0    | 0     | 0    | 0    | 0    | 0             | 10             | R        |
|          | 3     | 5  | 0  | 4   | 4    | 3      | 4    | 4     | 4    | 3    | 4    | 35            | 10             | R        |
| Control  | 4     | 0  | 5  | 0   | 0    | 0      | 9    | 10    | 7    | 9    | 9    | 49            | 10             | R        |
| Control  | 5     | 8  | 8  | 12  | 11   | 10     | 0    | 16    | 14   | 14   | 11   | 104           | 10             | Ly       |
|          | 6     | 0  | 0  | 0   | 0    | 0      | 17   | (19)  | (3)  | 0    | (Z)  | 17            | 10             | h        |
|          | 7     | 17 | 16 | 14  | 17   | 16     | 15)  | 0     | 0    | 0    | 0    | 80            | 10             | 1/2      |
|          | Total | 30 | 29 | 30  | 32   | 29     | 30   | 30    | 25   | 26   | 24   | 285           | 10             | 1        |
|          | 1     | 0  | 0  | 0   | 0    | 0      | 0    | 0     | 0    | 0    | 0    | C             | 10             | R        |
| 3        | 2     | 0  | 0  | 0   | 0    | 0      | 0    | 0     | 0    | 0    | 0    | 0             | 10             | Ry       |
|          | 3     | 0  | 4  | 4   | 4    | 5      | 3    | 4     | 0    | 4    | 3    | 31            | 10             | R        |
| 0.25 ~/1 | 4     | 0  | 0  | 0   | 0    | 9      | 8    | 11    | 10   | 9    | 0    | 47            | 10             | La       |
| 0.25 g/l | 5     | 11 | 8  | 8   | 10   | 13     | 0    | 13    | 11   | 12   | 8    | ad            | 10             | Ly       |
|          | 6     | 18 | 17 | 19  | 17   | (13)   | 116  | 13    | 0    | (13) | 16   | 103           | 10             | h        |
|          | 7     | 19 | 0  | (2) | (16) | 0      | 1    | 0     | 15   | 0    | (15) | 34            | 10             | 16       |
|          | Total | 88 | 29 | 31  | 31   | 27     | 27   | 28    | 36   | 25   | 27   | 309           | 10             | 1        |
|          | 1     | 0  | 0  | 0   | 0    | 0      | 0    | 0     | 0    | 0    | C    | 0             | 10             | en       |
|          | 2     | 0  | 0  | 0   | 0    | 0      | 0    | 0     | 0    | 0    | 0    | 0             | 10             | Ru       |
|          | 3     | 2  | 0  | 3   | 0    | 3      | 3    | 0     | 0    | 4    | 3    | 18            | (0)            | R        |
| 0.5 ~/1  | 4     | 0  | 4  | 4   | 2    | 5      | 0    | 6     | 4    | 6    | 5    | 36            | 10             | Lin      |
| 0.5 g/l  | 5     | 7  | 5  | 0   | 0    | 0      | 7    | 8     | 6    | 8    | 0    | 41            | 10             | Ro       |
|          | 6     | 18 | 17 | 19  | 12   | 17     | 0    | 16    | 0    | 0    | 0    | 99            | 10             | 1        |
|          | 7     | 0  | 0  | 0   | 14   | (16)   | 15   | 0     | 15   | (14) | 17   | 61            | 10             | 1        |
|          | Total | 27 | 26 | 26  | Æ    | 25     | 25   | 30    | 25   | 18   | 25   | 255           | 10             | 10       |

Circled fourth brood not used in statistical analysis.

7th day only used if <60% of the surviving control females have produced their third brood.

#### CERIODAPHNIA DUBIA CHRONIC BIOASSAY

#### Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-100207

Start Date: 02/07/2010

| 6       | <b>K</b> 200 |      |    | Nu  | ımbe | r of Y | oung l | Produ | ced |    |    | Total         | No.            | Analyst  |
|---------|--------------|------|----|-----|------|--------|--------|-------|-----|----|----|---------------|----------------|----------|
| Sample  | Day          | A    | В  | C   | D    | E      | F      | G     | Н   | 1  | J  | Live<br>Young | Live<br>Adults | Initials |
|         | 1            | 0    | 0  | 0   | 0    | 0      | 0      | 0     | 0   | 0  | 0  | 0             | 10             | 1        |
|         | 2            | 0    | 0  | 0   | 0    | 0      | 0      | 0     | 0   | 0  | 0  | 0             | 10             | En       |
|         | 3            | 3    | 0  | 2   | 3    | 3      | 0      | 0     | 2   | 2  | 0  | 15            | 10             | In       |
| 1.0/1   | 4            | 0    | 2  | 5   | 2    | 4      | 0      | 0     | 3   | 3  | 0  | 19            | 10             | La       |
| 1.0 g/l | 5            | 5    | 4  | 0   | 0    | 0      | 6      | 4     | 0   | 0  | 0  | 19            | 10             | In       |
|         | 6            | 0    | 0  | 0   | 14   | 17     | 0      | 0     | 0   | 0  | 4  | 35            | 10             | h        |
|         | 7            | 16   | 7  | 8   | 0    | 0      | 2      | 7     | 8   | 6  | 7  | 66            | 10             | 6        |
|         | Total        | 24   | 13 | 15  | 19   | 24     | 13     | -11   | 13  | (1 | 10 | 154           | 10             | 1/       |
|         | 1            | O    | 0  | 0   | 0    | 0      | 0      | C     | C   | 0  | C  | 0             | 10             | 1        |
|         | 2            | 0    | 0  | 0   | C    | C      | 0      | 0     | 0   | C  | C  | D             | 10             | 1        |
|         | 3            | 0    | 0  | 0   | 0    | 0      | 0      | 0     | 0   | C  | 0  | ()            | 10             | 2        |
| 2.0 -// | 4            | 0    | 0  | 0   | 0    | 0      | 0      | 0     | 0   | 0  | 0  | 0             | 10             | 2        |
| 2.0 g/l | 5            | 0    | 0  | 0   | 0    | 0      | C      | 0     | 0   | 0  | 0  | 0             | 10             | 2        |
|         | 6            | 0    | 0  | 2   | C    | 0      | 0      | 0     | M   | 0  | 0  | 5             | 10             | 2        |
|         | 7            | 3    | 3  | 0   | 3    | Z      | 3      | 4     | 1   | 2  | 3  | 24            | 10             | 1        |
|         | Total        | 3    | 3  | 2   | 3    | 2      | -3     | U     | 4   | 2  | 3  | 29            | 10             |          |
|         | 1            | 1000 | A  | 100 | 2    | X      | X      | X     | X   | X  | /  | 0             | 0              | 1        |
|         | 2            | -    | 1  |     |      |        | )      | 1     | 1   |    |    |               | 1              |          |
|         | 3            |      | _  | -   | -    | _      | -      | -     | -   |    |    |               | 1              |          |
| 10 - 11 | 4            | -    |    |     |      |        | -      | -     | -   |    | _  | , (           |                |          |
| 4.0 g/l | 5            | -    | -  | -   | _    | _      | -      |       | _   | -  | _  |               | _              | -        |
|         | 6            | -    | -  |     |      | -      | -      | ~     | -   | _  | -  | -             | -              | -        |
|         | 7            | _    |    | _   | -    | -      | -      | -     | -   | _  | -  | - (           | -              |          |
|         | Total        | 0    | 0  | 0   | 0    | 0      | 0      | 0     | C   | 0  | 0  | 0             | 0              | 1        |

Circled fourth brood not used in statistical analysis.

7th day only used if <60% of the surviving control females have produced their third brood.

#### C\RIODAPHNIA DUBIA CHRONIC BIOASSAY

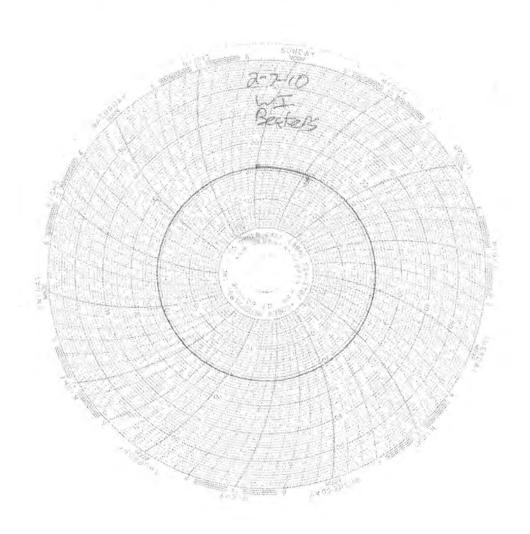
#### Reference Toxicant - NaCl Water Chemistries Raw Data Sheet



QA/QC No.: RT-100207

Start Date: 02/07/2010

| A/QC No               | o.: RT-10  | 00207     |                   |         |         |          |         |          |          |         |           | Start    | Date:0  | 2/07/20 | )10   |
|-----------------------|------------|-----------|-------------------|---------|---------|----------|---------|----------|----------|---------|-----------|----------|---------|---------|-------|
|                       |            | DA        | AY I              | DA      | Y 2     | DA       | AY 3    | DA       | Y 4      | DA      | Y 5       | DA       | Υ 6     | DA      | Y 7   |
|                       |            | Initial   | Final             | Initial | Final   | Initial  | Final   | Initial  | Final    | Initial | Final     | Initial  | Final   | Initial | Final |
| Analyst l             | initials:  | N         | 1                 |         | En      | Ba       | ho      | Ru       | Por      | 2       | Rom       | Rom      | Ru      | for     | 2/    |
| Time of R             | eadings:   | 1500      | 1430              | 1430    | 1500    | 1500     | 1400    | 1400     | 1400     | 1400    | 1500      | 15au     | 1600    | 1600    | ppi   |
|                       | DO         | 8.3       | 83                | 8.1     | 8.4     | 8,2      | 8.3     | 8.3      | 8.2      | 8.4     | 8.2       | 8.1      | 7.9     | 8.0     | 86    |
| Control               | pH         | 7-7       | 8.0               | 8.2     | 8.0     | 8.0      | 7.8     | 8.0      | 7.8      | 7.7     | 7.7       | 7.7      | 28      | 7.5     | 7-6   |
|                       | Temp       | 243       | 24.2              | 24-7    | 25.0    | 25.7     | 25.1    | 24.4     | 24.0     | 25.7    | 24.8      | 25.4     | 25.2    | 25.9    | 24.5  |
|                       | DO         | 8.4       | 8.4               | 8.2     | 8.4     | 8.2      | 8.3     | 8.3      | 8.2      | 8.4     | 8.2       | 8.1      | 8.0     | 8.0     | 7.9   |
| 0.25 g/l              | pH         | 8.0       | 7.8               | 8.0     | 8.0     | 8.0      | 7.8     | 8.0      | 2.8      | 7.7     | 7.7       | 7.7      | 7.8     | 7.5     | 7.5   |
|                       | Temp       | 24.1      | 24.2              | 24-6    | 25.1    | 25-8     | 25.2    | 24.5     | 24.2     | 25.7    | 24.9      | 25.4     | 25.3    | 25.9    | 250   |
|                       | DO         | 8.2       | 8.3               | 8.2     | 8.3     | 8.2      | 8.3     | 8.3      | 8.1      | 8.4     | 8.2       | 8-1      | 820     | 8.0     | 8.1   |
| 0.5 g/l               | рН         | 7-9       | 7-8               | 7-8     | 8.0     | 8.1      | 7-8     | 7.8      | 7.8      | 2.7     | 7.7       | 2.7      | 7.8     | 7.6     | 7-5   |
|                       | Temp       | 74.4      | 24.6              |         | 25-2    | 23.8     | 25:4    | 24.5     | 24.2     | 25.7    | 25.0      | 2575     | 25.4    | 25.8    |       |
|                       | DO         | 8-3       | 8.4               | 8.4     | 8.3     | 8.3      |         | 8.3      | 8.1      | 8.3     | 8.3       | 8.2      | 29      | 8.0     | 8-6   |
| 1.0 g/l               | pH         | 7.9       | 7-0               | 7-8     | 8.0     | 8.1      | 7-8     | 7.8      | 2.8      | 2.7     | 7.7       | 7.7      | 2.8     | 7.6     | 7.6   |
| - Au                  | Temp       | 8.2       | 24,6              | 911     | 25.2    |          | 25.4    | 24.6     | 24.1     | 25.8    | 25.0      | 25.6     | 25.4    | 77      | 100   |
| 2.0 g/l               | рН         | 7 5       | 28                | 0.9     | 8.5     | 8.3      | 8.2     | 7.8      | 2.8      | 8.3     | 8.3       | 2.8      | 8.1     | 7.7     | 7-6   |
| 2.0 g/1               | Temp       | 74.6      | 24.8              | 245     | 25.2    | 8.1      | 25.3    | 24 - 4   |          | 25.9    | 25.1      | 25.8     | 25.3    | 25.1    | 247   |
|                       | DO         | 8.3       | 8.0               | _       | _       | _        | -       | _        | _        | _       |           | -        | -       | _       |       |
| 4.0 g/l               | рН         | 8.1       | 7.7               | 1       | _       | _        | _       | 5        |          | _       | _         | ~        | 3-      | _       | -     |
|                       | Temp       | 24.5      | 25-1              |         | _       | -        |         | -        |          | _       | _         | _        | -       | -       | _     |
|                       | Di         | issolved  | l Oxyge           | en (DO) | reading | gs are i | n mg/l  | O2; Tem  | perature | (Temp   | ) reading | gs are i | n°С.    |         |       |
|                       | V          |           |                   |         |         |          | Conti   | rol      |          |         |           | High Co  | ncentra | tion    |       |
| Additional Parameters |            |           |                   | Day     | 1       | Day :    | 3       | Day 5    |          | Day 1   |           | Day 3    | D       | ay 5    |       |
|                       | Conduct    | ivity (μS | )                 |         | 34      | 9        | 335     |          | 341      | 6       | 240       | 3        | 390     | 33      | 510   |
|                       | Alkalinity |           |                   |         | 6       | -        | 68      |          | 67       |         | 67        |          | 18      | 1       | 28    |
|                       | Hardness   | (mg/l CaC | (O <sub>3</sub> ) |         | 90      |          | 93      |          | 92       |         | 90        |          | 92      |         | 12    |
|                       |            | -11       |                   |         |         |          |         | Veonates |          |         |           |          |         |         |       |
| Rep                   | licate:    |           | A 3A              | 3 B     | C       |          | D<br>hD | E 1 C    | T        |         | G         | Н        | 1       |         | 1     |




## Test Temperature Chart

Test No: RT-100207

Date Tested: 02/07/10 to 02/14/10

Acceptable Range: 25+/- 1°C





TestAmerica Laboratories, Inc.

#### ANALYTICAL REPORT

REVISED

PROJECT NO. ITB0887

MWH-Pasadena Boeing

Lot #: F0B090486

Joseph Doak

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

TESTAMERICA LABORATORIES, INC.

Project Manager

March 17, 2010

#### Case Narrative LOT NUMBER: F0B090486

#### Revised 03-17-10

This report contains the analytical results for the sample received under chain of custody by TestAmerica St. Louis on February 9, 2010. This sample is associated with your MWH-Pasadena Boeing project.

The analytical results included in this report meet all applicable quality control procedure requirements except as noted on the following page.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689**. The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Report revised to report the KPA uranium results in pCi/L.

#### Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

There are no observations or nonconformances associated with the analysis in this lot.

SUBCONTRACT ORDER TestAmerica Irvine ITB0887 -

Revised

#### SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022

Fax: (949) 260-3297 Project Manager:

Joseph Doak

#### RECEIVING LABORATORY:

TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045 Phone:(314) 298-8566 Fax: (314) 298-8757

| Analysis                   | Due            | Expires                | Laboratory ID | Comments                                          |
|----------------------------|----------------|------------------------|---------------|---------------------------------------------------|
| Sample ID: ITB0887-04      | Water 5        | Sampled:02/06/10 06:40 |               |                                                   |
| Gamma Spec-O               | 02/17/10 12:00 | 02/06/11 06:40         |               | OutSt Louis, k-40 and cs-137 only, DO NOT FILTER! |
| Level 4 Data Package - Out | 02/17/10 12:00 | 03/06/10 06:40         |               |                                                   |
| 'Uranium, Combined-O       | 02/17/10 12:00 | 02/06/11 06:40         |               | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Strontium 90-O             | 02/17/10 12:00 | 02/06/11 06:40         |               | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Radium, Combined-O         | 02/17/10 12:00 | 02/06/11 06:40         |               | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Tritium-O                  | 02/17/10 12:00 | 02/06/11 06:40         |               | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Gross Beta-O               | 02/17/10 12:00 | 08/05/10 06:40         |               | Out St Louis, Boeing permit, DO NOT FILTER!       |
| -Gross Alpha-O             | 02/17/10 12:00 | 08/05/10 06:40         |               | Out St Louis, Boeing permit, DO NOT FILTER!       |
| Containers Supplied:       |                |                        |               |                                                   |
| 2.5 gal Poly (U)           | 500 mL Amber   | r (V)                  |               |                                                   |

| Released By | Date | Received By | Date        |
|-------------|------|-------------|-------------|
|             |      | sul Mas     | 2.9-10 1100 |
| Released By | Date | Received By | Date        |

#### TestAmerica Irvine

#### ITB0887

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297 Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045

Phone :(314) 298-8566 Fax: (314) 298-8757

Project Location: CA - CALIFORNIA

Receipt Temperature:

Ice: Y / N

| Analysis                  | Units         | Due             | Expires        | Interlab Price S  | Surch | Comments                                    |
|---------------------------|---------------|-----------------|----------------|-------------------|-------|---------------------------------------------|
| Sample ID: ITB0887-04 (Ou | tfall 001 (Co | emposite) - Wat | er) Sampled    | 1: 02/06/10 06:40 | 0     |                                             |
| Gross Alpha-O             | pCi/L         | 02/17/10        | 08/05/10 06:40 | \$90.00           | 50%   | Out St Louis, Boeing permit, DO NOT FILTER! |
| Gross Beta-O              | pCi/L         | 02/17/10        | 08/05/10 06:40 | \$90.00           | 50%   | Out St Louis, Boeing permit, DO NOT FILTER! |
| Level 4 Data Package - Ou | t N/A         | 02/17/10        | 03/06/10 06:40 | \$0.00            | 0%    |                                             |
| Radium, Combined-O        | pCi/L         | 02/17/10        | 02/06/11 06:40 | \$200.00          | 50%   | Out St Louis, Boeing permit, DO NOT FILTER! |
| Strontium 90-O            | pCi/L         | 02/17/10        | 02/06/11 06:40 | \$140.00          | 50%   | Out St Louis, Boeing permit, DO NOT FILTER! |
| Tritium-O                 | pCi/L         | 02/17/10        | 02/06/11 06:40 | \$80.00           | 50%   | Out St Louis, Boeing permit, DO NOT FILTER! |
| Uranium, Combined-O       | pCi/L         | 02/17/10        | 02/06/11 06:40 | \$100.00          | 50%   | Out St Louis, Boeing permit, DO NOT FILTER! |
| Containers Supplied:      |               |                 |                |                   |       |                                             |
| 2.5 gal Poly (U)          | 500 mL Am     | ber (V)         |                |                   |       |                                             |

Magula Salay 28ho 17:00
Released By Date/Time

Fed E/

2/8/10 17:00

| Į    | 2017-11-11                         | SIICU .                                                              | E3 /4 = | - 4         | y            | 10,482                            | 489                                           |
|------|------------------------------------|----------------------------------------------------------------------|---------|-------------|--------------|-----------------------------------|-----------------------------------------------|
| THE  | LEADER IN ENVIRONM                 | ENTAL TESTING                                                        |         |             | 4            | 73.484                            | 491                                           |
| C    | CONDITION                          | UPON RECEIPT FORM                                                    |         |             | ч            | 15,465                            | 494                                           |
|      | Client:                            | TA Sovine                                                            | 1/17    |             | 4            | 78(486)                           | 495                                           |
|      | Quote No:                          | 77435, 95044                                                         | -       | 100         |              |                                   |                                               |
| 3    | COC/RFA No:                        | Relaw                                                                |         | 122         |              |                                   |                                               |
| niti | ated By:                           | N .                                                                  | Da      | ite: 2      | .9.          | 10                                | Time: //00                                    |
| 70.5 |                                    |                                                                      | 7000    | ormatio     |              |                                   | 7 mile                                        |
|      | Shipper: (F                        | edEx UPS DHL Courier Clie                                            | nt Ot   | her:        |              | Mi                                | ultiple Packages: (Y) N                       |
| hip  | ping # (s):*                       |                                                                      |         |             |              | Sample Tem                        | perature (s):**                               |
| 1.   | 4289 2                             | 133 2309 MB 6.                                                       |         |             |              | 1. am                             | been 6.                                       |
|      |                                    | 7.                                                                   |         |             |              |                                   |                                               |
|      |                                    | 8.                                                                   |         |             |              |                                   |                                               |
|      |                                    | 9.                                                                   |         |             |              |                                   |                                               |
|      |                                    |                                                                      |         |             |              |                                   | 10.                                           |
|      |                                    |                                                                      |         | 18 P.O.     |              |                                   | ot, note contents below. Temperature          |
|      |                                    | for yes, "N" for no and "N/A" for not applicable):                   |         |             |              |                                   | ls-Liquid or Rad tests- Liquid or Solids      |
| (    | Y N                                | Are there custody seals present on the cooler?                       | 8.      | Y(N)        | ):           | Are there custo                   | ody seals present on bottles?                 |
|      | Y N/A                              | Do custody seals on cooler appear to be tampered with?               | 9.      | Y N         | N/A          | tampered with                     |                                               |
|      | O) N                               | Were contents of cooler frisked after opening, but before unpacking? | 10.     | YN          | N/A3         | Was sample re<br>make note belo   | ceived with proper pH1? (If not,              |
|      | N N Sug. K                         | Sample received with Chain of                                        | 11.(    | N           |              |                                   | ed in proper containers?                      |
| 5.   | SN) N/A                            | Does the Chain of Custody match<br>sample ID's on the container(s)?  | 12.     | Y N         | N/A          | Headspace in \ (If Yes, note samp | VOA or TOX liquid samples?<br>ole ID's below) |
| i, ' | YN                                 | Was sample received broken?                                          | 13.     | RON         | N/A          | Was Internal C                    | OC/Workshare received?                        |
|      | N X                                | Is sample volume sufficient for analysis?                            |         | _           |              |                                   | by original TestAmerica lab?                  |
| or I | The second second                  | ANL, Sandia) sites, phy of ALL containers received (TB0887)          |         | erified, EX | CEPT VO      | DA, TOX and soils.                |                                               |
| Oth  |                                    | 180001                                                               | 36      |             |              |                                   |                                               |
|      |                                    | -88 SN 2.9.18                                                        | 97      |             | - 1          | hickery                           | chains were                                   |
|      |                                    | 94                                                                   | 98      | ,           | ~            | evening.                          | raushod for                                   |
|      |                                    | 88                                                                   | , 99    |             | Z            | and a                             | - Line Trengo                                 |
| -    |                                    |                                                                      |         |             | D            | ong pr                            | ajer.                                         |
| _    | Ni 1 de                            |                                                                      | 300     |             |              | -PAGAA                            | 0001.                                         |
| -    |                                    |                                                                      | 590     |             | 17           | DUBUUL                            | abel time is 1315                             |
| _    |                                    |                                                                      | 12      |             | C-           | oi read                           | 20 1254                                       |
| -    | ective Action:                     | 96                                                                   |         |             |              | ÷                                 |                                               |
|      | ective Action:<br>Client Contact N | ame:                                                                 | 1       | nformed     | by:          |                                   |                                               |
| 3    | Sample(s) proce                    | ssed "as is"                                                         |         |             |              |                                   |                                               |
|      | Sample(s) on ho<br>ect Management  |                                                                      | If rele | ased, not   | ify:<br>ate: | 2-110-1                           | 10                                            |
|      |                                    | THE TOTAL                                                            |         | -           |              | 2 110 1                           | U                                             |

#### **METHODS SUMMARY**

#### F0B090486

| PARAMETER                              | ANALYTICAL<br>METHOD | PREPARATION<br>METHOD |
|----------------------------------------|----------------------|-----------------------|
| Gamma Spectroscopy - Cesium-137 & Hits | EPA 901.1 MOD        |                       |
| Gross Alpha/Beta EPA 900               | EPA 900.0 MOD        | EPA 900.0             |
| H-3 by Distillation & LSC              | EPA 906.0 MOD        |                       |
| Radium-226 by GFPC                     | EPA 903.0 MOD        |                       |
| Radium-228 by GFPC                     | EPA 904 MOD          |                       |
| Strontium 90 by GFPC                   | EPA 905 MOD          |                       |
| Total Uranium By Laser Ph osphorimetry | ASTM 5174-91         |                       |
| References:                            |                      |                       |
| ACTM Annual Book Of ACTM Standards     |                      |                       |

ASTM Annual Book Of ASTM Standards.

EPA "EASTERN ENVIRONMENTAL RADIATION FACILITY RADIOCHEMISTRY

PROCEDURES MANUAL" US EPA EPA 520/5-84-006 AUGUST 1984

#### SAMPLE SUMMARY

#### F0B090486

| WO #  | SAMPLE# | CLIENT SAMPLE ID | SAMPLED DATE | SAMP<br>TIME |
|-------|---------|------------------|--------------|--------------|
| LVF6M | 001     | ITB0887-04       | 02/06/10     | 06:40        |
| LVFOM | 1034    | 1150667-04       | 02/00/10     |              |

#### NOTE (S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

#### TestAmerica Irvine

#### Client Sample ID: ITB0887-04

#### Radiochemistry

Lab Sample ID: F0B090486-001

Work Order: Matrix:

LVF6M WATER Date Collected:

02/06/10 0640

Date Received:

02/09/10 1100

| Parameter        | Result         | Qual   | Total<br>Uncert.<br>(2 g+/-) | RL    | mdc     | Prep<br>Date | Analysis<br>Date |
|------------------|----------------|--------|------------------------------|-------|---------|--------------|------------------|
| Gamma Cs-137 & H | its by EPA 901 | .1 MOD |                              | pCi/L | Batch # | 0042136      | Yld %            |
| Cesium 137       | 1.3            | ü      | 8.1                          | 20.0  | 15      | 02/11/10     | 02/19/10         |
| Potassium 40     | -180           | Ü      | 810                          |       | 290     | 02/11/10     | 02/19/10         |
| Gross Alpha/Beta | EPA 900        |        |                              | pCi/L | Batch # | 0043108      | Yld %            |
| Gross Alpha      | 6.9            |        | 1.9                          | 3.0   | 1.6     | 02/10/10     | 02/19/10         |
| Gross Beta       | 8.1            |        | 1.3                          | 4.0   | 1.2     | 02/10/10     | 02/19/10         |
| SR-90 BY GFPC E  | PA-905 MOD     |        |                              | pCi/L | Batch # | 0041162      | Yld % 47         |
| Strontium 90     | -0.24          | ū      | 0.34                         | 3.00  | 0.64    | 02/10/10     | 02/19/10         |
| TRITIUM (Distill | ) by EPA 906.0 | MOD    |                              | pCi/L | Batch # | 0049035      | Yld %            |
| Tritium          | 65             | Ü      | 65                           | 500   | 96      | 02/18/10     | 02/18/10         |
| Total Uranium by | KPA ASTM 5174  | -91    |                              | pCi/L | Batch # | 0053280      | Yld %            |
| Total Uranium    | 0,369          | J      | 0.042                        | 0.693 | 0.21    | 02/23/10     | 02/26/10         |
| Radium 226 by E  | PA 903.0 MOD   |        |                              | pCi/L | Batch # | 0041160      | Yld % 73         |
| Radium (226)     | 0.06           | Ü      | 0.12                         | 1.00  | 0.21    | 02/10/10     | 02/26/10         |
| Radium 228 by GF | PC EPA 904 MOD | (-     |                              | pCi/L | Batch # | 0060257      | Yld % 89         |
| Radium 228       |                | U      | 0.25                         | 1.00  | 0.41    | 03/01/10     | 03/05/10         |

Data are incomplete without the case narrative.

#### METHOD BLANK REPORT

# Radiochemistry

Client Lot ID: F0B090486

Matrix:

WATER

| Parameter       | Result         | Qual     | Total<br>Uncert.<br>(2 $\sigma$ +/-) | RL    | MDC       |       | Prep<br>Date | Lab Sample ID<br>Analysis<br>Date |
|-----------------|----------------|----------|--------------------------------------|-------|-----------|-------|--------------|-----------------------------------|
| Radium 228 by G | FPC EPA 904 MC | OD       | pCi/L                                | Batch | # 0060257 | Yld % | 88 1         | F0C010000-257B                    |
| Radium 228      | 0.08           | U        | 0.23                                 | 1.00  | 0.39      |       | 03/01/10     | 03/05/10                          |
| Radium 226 by   | EPA 903.0 MOD  |          | pCi/L                                | Batch | # 0041160 | Yld % | 95 1         | F0B100000-160B                    |
| Radium (226)    | 0.092          | U        | 0.095                                | 1.00  | 0.14      |       | 02/10/10     | 02/26/10                          |
| SR-90 BY GFPC   | EPA-905 MOD    |          | pCi/L                                | Batch | # 0041162 | Yld % | 80 1         | F0B100000-162B                    |
| Strontium 90    | -0.15          | u        | 0.20                                 | 3.00  | 0.38      |       | 02/10/10     | 02/19/10                          |
| Gamma Cs-137 &  | Hits by EPA 90 | 01.1 MOD | pCi/L                                | Batch | # 0042136 | Yld % | 1            | F0B110000-136B                    |
| Cesium 137      | 1.8            | U        | 7.7                                  | 20.0  | 14        |       | 02/11/10     | 02/19/10                          |
| Potassium 40    | -80            | U        | 620                                  |       | 210       |       | 02/11/10     | 02/19/10                          |
| Gross Alpha/Bet | a EPA 900      |          | pCi/L                                | Batch | # 0043108 | Yld % | 1            | F0B120000-108B                    |
| Gross Alpha     | -0.28          | U        | 0.35                                 | 2.00  | 0.87      |       | 02/10/10     | 02/19/10                          |
| Gross Beta      | -0.23          | U        | 0.62                                 | 4.00  | 1.1       |       | 02/10/10     | 02/19/10                          |
| TRITIUM (Distil | 1) by EPA 906. | 0 MOD    | pCi/L                                | Batch | # 0049035 | Yld % | 1            | F0B180000-035B                    |
| Tritium         | 165            | J        | 85                                   | 500   | 95        |       | 02/18/10     | 02/18/10                          |
| Total Uranium b | y KPA ASTM 517 | 4-91     | pCi/L                                | Batch | # 0053280 | Yld % | 1            | F0B220000-280B                    |
| Total Uranium   | 0.0460         | U        | 0.0057                               | 0.693 | 0.21      |       | 02/23/10     | 02/26/10                          |

#### NOTE (S)

Data are incomplete without the case narrative.

MDC is determined using instrument performance only

# Laboratory Control Sample Report

# Radiochemistry

Client Lot ID: F0B090486

Matrix:

WATER

|                   |                  |         | Total                       |                |       | Lab   | Sample ID            |
|-------------------|------------------|---------|-----------------------------|----------------|-------|-------|----------------------|
| Parameter         | Spike Amount     | Result  | Uncert.<br>(2 $\sigma$ +/-) | MDC            | % Yld | % Rec | QC Control<br>Limits |
| Radium 226 by E   | PA 903.0 MOD     |         | pCi/L                       | 903.0 MOD      |       | F0B1  | .00000-160C          |
| Radium (226)      | 11.3             | 10.4    | 1.1                         | 0.2            | 97    | 93    | (68 - 136)           |
|                   | Batch #:         | 0041160 |                             | Analysis Date  | 02/2  | 6/10  |                      |
| SR-90 BY GFPC E   | PA-905 MOD       |         | pCi/L                       | 905 MOD        |       | F0B1  | .00000-162C          |
| Strontium 90      | 6.80             | 6.82    | 0.77                        | 0.34           | 83    | 100   | (80 - 130)           |
|                   | Batch #:         | 0041162 |                             | Analysis Date  | 02/1  | 9/10  |                      |
| Gamma Cs-137 & H  | its by EPA 901.1 | MOD     | pCi/L                       | 901.1 MOD      |       | F0B1  | .10000-136C          |
| Americium 241     | 141000           | 140000  | 11000                       | 500            |       | 99    | (87 - 110)           |
| Cesium 137        | 53100            | 52900   | 3000                        | 200            |       | 100   | (90 - 110)           |
| Cobalt 60         | 87900            | 88000   | 5000                        | 200            |       | 100   | (89 - 110)           |
|                   | Batch #:         | 0042136 |                             | Analysis Date  | 02/1  | 9/10  |                      |
| Gross Alpha/Beta  | EPA 900          |         | pCi/L                       | 900.0 MOD      |       | F0B1  | 20000-108C           |
| Gross Beta        | 68.0             | 71.6    | 6.0                         | 1              |       | 105   | (58 - 133)           |
|                   | Batch #:         | 0043108 |                             | Analysis Date  | 02/1  | 9/10  |                      |
| Gross Alpha/Beta  | EPA 900          | 174.01  | pCi/L                       | 900.0 MOD      |       | F0B1  | 20000-108C           |
| Gross Alpha       | 49.4             | 34.8    | 4.3                         | 1.2            |       | 70    | (62 - 134)           |
|                   | Batch #:         | 0043108 |                             | Analysis Date: | 02/1  | 9/10  |                      |
| TRITIUM (Distill) | by EPA 906.0 M   | OD      | pCi/L                       | 906.0 MOD      |       | F0B1  | 80000-035C           |
| Tritium           | 4530             | 4440    | 460                         | 90             |       | 98    | (85 - 112)           |
|                   | Batch #:         | 0049035 |                             | Analysis Date: | 02/18 | 3/10  |                      |
| Total Uranium by  | KPA ASTM 5174-9  | 1       | pCi/L                       | 5174-91        |       | F0B2  | 20000-280C           |
| Total Uranium     | 27.7             | 30.2    | 3.6                         | 0.2            |       | 109   | (90 - 120)           |
|                   | Batch #:         | 0053280 |                             | Analysis Date: | 02/2  | 6/10  |                      |
| Total Uranium by  | KPA ASTM 5174-9  | 1       | pCi/L                       | 5174-91        |       | F0B2  | 20000-280C           |
| Total Uranium     | 5.54             | 5.97    | 0.61                        | 0.21           |       | 108   | (90 - 120)           |
|                   | Batch #:         | 0053280 |                             | Analysis Date: | 02/2  | 5/10  |                      |

# Laboratory Control Sample/LCS Duplicate Report

# Radiochemistry

Client Lot ID: FOB090486

Matrix:

WATER

|              |        |              |              | Total               |          |          | Lab                      | Sample ID  |
|--------------|--------|--------------|--------------|---------------------|----------|----------|--------------------------|------------|
| Parameter    |        | Spike Amount | Result       | Undert.<br>(2 g+/-) | * Yld    | % Rec    | QC Control<br>Limits     | Precision  |
| Radium 228 b | y GFPC | EPA 904 MOD  | pC           | 21/L 904 MOI        | )        |          | F0C0                     | 10000-257C |
| Radium 228   | Spk 2  | 6.40<br>6.40 | 6,23<br>6,35 | 0.74<br>0.77        | 87<br>84 | 97<br>99 | (60 = 142)<br>(60 = 142) | 2 %RPD     |
|              |        | Batch #:     | 0060257      |                     | Analysi  | s Date:  | 03/05/10                 |            |

#### MATRIX SPIKE REPORT

## Radiochemistry

Client Lot Id:

F0B090473

Matrix: V

WATER

Date Sampled:

02/05/10

Date Received:

02/09/10

|                          |                 |                 |                             |                         | 573.5    | QC Sample | e ID                 |
|--------------------------|-----------------|-----------------|-----------------------------|-------------------------|----------|-----------|----------------------|
| Parameter                | Spike<br>Amount | Spike<br>Result | Total<br>Uncert.<br>(2c+/-) | Spike Samp<br>Yld. Resu | DIRECT   | tyld trec | QC Control<br>Limits |
| TRITIUM (Distill) by EPA | 906.0           | MOD             | pCi/L                       | 906.0                   | MOD      | F0B090473 | 3-001                |
| Tritium                  | 4530            | 4650            | 470                         | 122                     | 77       | 100       | (62 - 147)           |
|                          | Batch           | #: 0049035      | An                          | alysis Date:            | 02/18/10 |           |                      |
| Gross Alpha/Beta EPA 900 | )               |                 | pCi/L                       | 900.0                   | MOD      | F0B090470 | 0-001                |
| Gross Alpha              | 49.4            | 47.2            | 5.2                         | 2.00                    | 0.88     | 91        | (35 - 150)           |
|                          | Batch           | #: 0043108      | An                          | alysis Date:            | 02/18/10 |           |                      |
| Gross Alpha/Beta EPA 900 | )               |                 | pCi/L                       | 900.0                   | MOD      | F0B090470 | 0-001                |
| Gross Beta               | 68.0            | 79.0            | 6.6                         | 3.9                     | 1.2      | 110       | (54 - 150)           |
|                          | Batch           | #: 0043108      | An                          | alysis Date:            | 02/18/10 |           |                      |

Calculations are performed before rounding to avoid round-off errors in calculated results.

Data are incomplete without the case narrative,

# MATRIX SPIKE/MATRIX SPIKE DUPLICATE REPORT

# Radiochemistry

Client Lot ID:

F0B090470

Matrix: WATER Date Sampled:

02/07/10 1143

Date Received: 02/09/10 1100

|               |        |                 |                    | Total               |              |                  |      | Total                |     | QC Sampl | e ID                 |
|---------------|--------|-----------------|--------------------|---------------------|--------------|------------------|------|----------------------|-----|----------|----------------------|
| Parameter     |        | Spike<br>Amount | SPIKE<br>Result    | Uncert.<br>(2 o+/-) | Spike<br>Yld | SAMPLE<br>Result |      | Uncert. (2 or +/-) * | Yld | *Rec     | QC Control<br>Limits |
| Total Uranium | by KPA | ASTM 5          |                    | pCi/L               |              | 174-91           |      |                      | FO  | B09047   | 0-001                |
| Total Uranium |        | 27.7            | 29.7               | 3,1                 |              | 0.566            | J    | 0.068                |     | 105      | (62 - 150            |
| TOTAL STATE   | Spk2   | 27.7            | 30,0               | 3.1                 |              | 0.566            | J    | 0.068<br>Precision   | .:  | 106<br>1 | (62 - 150<br>%RPD    |
|               |        | Batch           | <b>#</b> : 0053280 | Ana                 | lysis d      | ate:             | 02/2 | 6/10                 |     |          |                      |

#### DUPLICATE EVALUATION REPORT

#### Radiochemistry

Client Lot ID: FOB090486

Matrix:

WATER

Date Sampled: 02/05/10

Date Received: 02/09/10

|                    |                  |        | Total              |          |                   |        | Total               |       | QC Sample ID |      |
|--------------------|------------------|--------|--------------------|----------|-------------------|--------|---------------------|-------|--------------|------|
| Parameter          | SAMPLE<br>Result |        | Uncert.<br>(2σ+/-) | % Yld    | DUPLICA<br>Result | TE     | Uncert.<br>(2 g+/-) | % Y1d | Precisi      | on   |
| Radium 226 by EPA  | 903.0 MOD        |        |                    | pCi/L    | 903.              | O MOD  |                     |       | F0B090467-00 | )1   |
| Radium (226)       | 0.089            | U      | 0.098              | 92       | 0.07              | U      | 0.16                | 92    | 31           | %RPD |
|                    | Bato             | h #:   | 0041160            | (Sample) | 0041              | 160 (D | uplicate)           |       |              |      |
| Gamma Cs-137 & Hit | s by EPA 90      | 01.1   | MOD                | pCi/L    | 901.              | 1 MOD  |                     |       | F0B090470-00 | )1   |
| Cesium 137         | -2.9             | U      | 9.0                |          | 1.2               | U      | 7.8                 |       | 479          | %RPD |
| Potassium 40       | -100             | U      | 43000              |          | -50               | U      | 230                 |       | 93           | %RPD |
|                    | Bato             | h #:   | 0042136            | (Sample) | 0042              | 136 (D | uplicate)           |       |              |      |
| Gross Alpha/Beta E | PA 900           |        |                    | pCi/L    | 900.              | 0 MOD  |                     |       | F0B090470-00 | )1   |
| Gross Alpha        | 2.00             | J      | 0.88               |          | 0.84              | U      | 0.66                |       | 82           | %RPD |
| Gross Beta         | 3.9              | J      | 1.2                |          | 3.2               | J      | 1.1                 |       | 20           | %RPD |
|                    | Bato             | h #:   | 0043108            | (Sample) | 0043              | 108 (D | uplicate)           |       |              |      |
| TRITIUM (Distill)  | by EPA 906       | . 0 MO | D                  | pCi/L    | 906.              | 0 MOD  |                     |       | F0B090470-00 | 1    |
| Tritium            | 114              | J      | 75                 |          | 80                | U      | 66                  |       | 35           | %RPD |
|                    | Bato             | h #:   | 0049035            | (Sample) | 0049              | 035 (D | uplicate;           |       |              |      |
| SR-90 BY GFPC EPA  | -905 MOD         |        |                    | pCi/L    | 905               | MOD    |                     |       | F0B090475-00 | 1    |
| Strontium 90       | -0.05            | U      | 0.23               | 72       | -0.15             | U      | 0.23                | 69    | 97           | %RPD |
|                    | Bato             | h #:   | 0041162            | (Sample) | 0041              | 162 /1 | uplicate)           |       |              |      |

# SUBCONTRACT ORDER TestAmerica Irvine

ITB0887

987726

# **SENDING LABORATORY:**

TestAmerica Irvine 17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

#### RECEIVING LABORATORY:

Truesdail Laboratories-SUB 14201 Franklin Avenue Tustin, CA 92680

Phone: (714) 730-6239 Fax: (714) 730-6462

Project Location: CA - CALIFORNIA

°C

Receipt Temperature:

Rec'd 02/08/10

Ice: Y / N

| Standard TAT is reque   | sted unless specific due d | late is requested. => Due Date:  | Initials:                                         |
|-------------------------|----------------------------|----------------------------------|---------------------------------------------------|
| Analysis                | Units                      | Expires                          | Comments                                          |
| Sample ID: ITB0887-04 ( | Outfall 001 (Composite)    | - Water) Sampled: 02/06/10 06:40 |                                                   |
| Hydrazine-OUT           | ug/l                       | 02/09/10 06:40                   | Sub Truesdail for<br>Monomethylhydrazine, J flags |
| Containers Supplied:    |                            |                                  | Level 4 Data Package 2                            |
| 1 L Amber (W)           | 1 L Amber (X)              |                                  | 1111                                              |



For Sample Condition See Form Attached

| Magutta     | lalor.     | d. Straken  | ure 2/8,  | 10 16:00    |
|-------------|------------|-------------|-----------|-------------|
| Released By | Date/Tirne | Received By | Date/Time | 70.00       |
| Released By | Date/Time  | Received By | Date/Time | Page 1 of 1 |

# TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING



14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: Test America - Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614-5817

Attention: Joseph Doak
Sample: Water / 1 Sample

Project Name: ITB0887
Project Number: ITB0887

Method Number: EPA 8315 (Modified)
Investigation: Hydrazines

REPORT

Report Date: February 11, 2010

Sampling Date: February 6, 2010

Receiving Date: February 8, 2010
Extraction Date: February 8, 2010
Analysis Date: February 9, 2010

Units: µg/L

Reported By: JS

# **Analytical Results**

| Sample ID               | Sample Description | Sample<br>Amount (mL) | Dilution<br>Factor | Monomethył<br>Hydrazine | u-Dimethyl<br>Hydrazine | Hydrazine |      |
|-------------------------|--------------------|-----------------------|--------------------|-------------------------|-------------------------|-----------|------|
| 708690-MB               | Method Blank       | 100                   | 1                  | ND                      | ND                      | ND        | - 18 |
| 987726                  | ITB0887-04         | 100                   | 1                  | N                       | R                       | S         | - 1  |
| MDL                     |                    |                       |                    | 0.857                   | 1.42                    | 0.452     |      |
| PQL                     |                    |                       |                    | 5.0                     | 5.0                     | 1.00      | - 1  |
| Sample Reporting Limits | ng Limits          |                       |                    | 5.0                     | 5.0                     | 1.00      | 1    |

Note: Results based on detector #1 (UV=365nm) data.

Linda Saetern, Project Manager Analytical Services, Truesdail Laboratories, Inc.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

# TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Client:

Test America - Irvine

Irvine, CA 92614-5817

17461 Derian Avenue, Suite 100

Project Number: Method Number:

EPA 8315 (Modified) Hydrazines Client Contact:

Sample:

Joseph Doak Water / 1 Sample

Run Batch No.:

Extraction: 5138; Analysis: 678

Investigation:

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

QC Lab. No.: 708690 Project Lab. No.: 987726

Project Lab. No.: 987726 Spiked Sample ID: 987712

Report Date: February 1

Sampling Date: February 6, 2010
Receiving Date: February 8, 2010

Extraction Date: February 8, 2010
Analysis Date: February 9, 2010
Reported By: JS

Quality Control/Quality Assurance Calibration Report

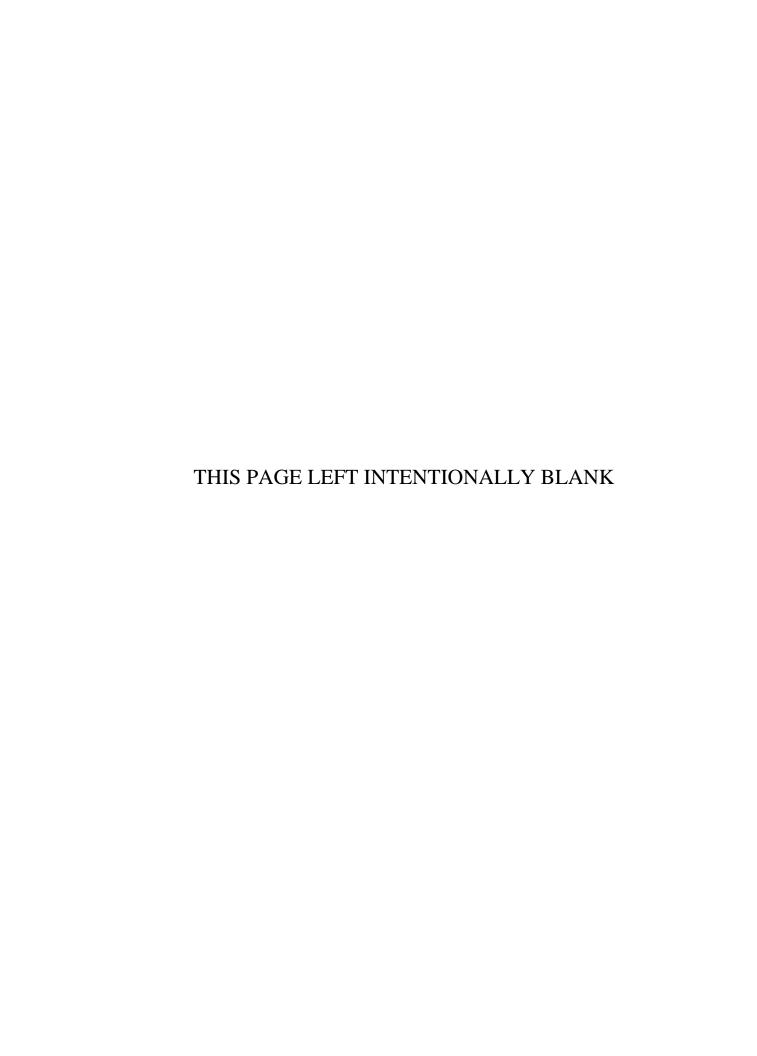
QCS

|                      | ICV                      |                        |         |         |      |
|----------------------|--------------------------|------------------------|---------|---------|------|
| Parameter            | Theoretical Value (ug/L) | Measured  Value (ug/L) | Percent | Control | Flag |
| Monomethyl Hydrazine | 25.0                     | 25.1                   | 100     | 85-115  | PASS |
| u-Dimethyl Hydrazine | 25.0                     | 25.7                   | 103     | 85-115  | PASS |
| Hydrazine            | 5.0                      | 4.76                   | 95.2    | 85-115  | PASS |

Hydrazine u-Dimethyl Hydrazine Monomethyl Hydrazine **Parameter** Theoretical Value (ug/L) 50.0 50.0 10.0 Value (ug/L) Measured 48.0 10.2 46.4 Recovery Percent 96.0 92.7 102 Control 85-115 85-115 Limits 85-115 PASS PASS PASS Flag

Quality Control/Quality Assurance Spikes Report

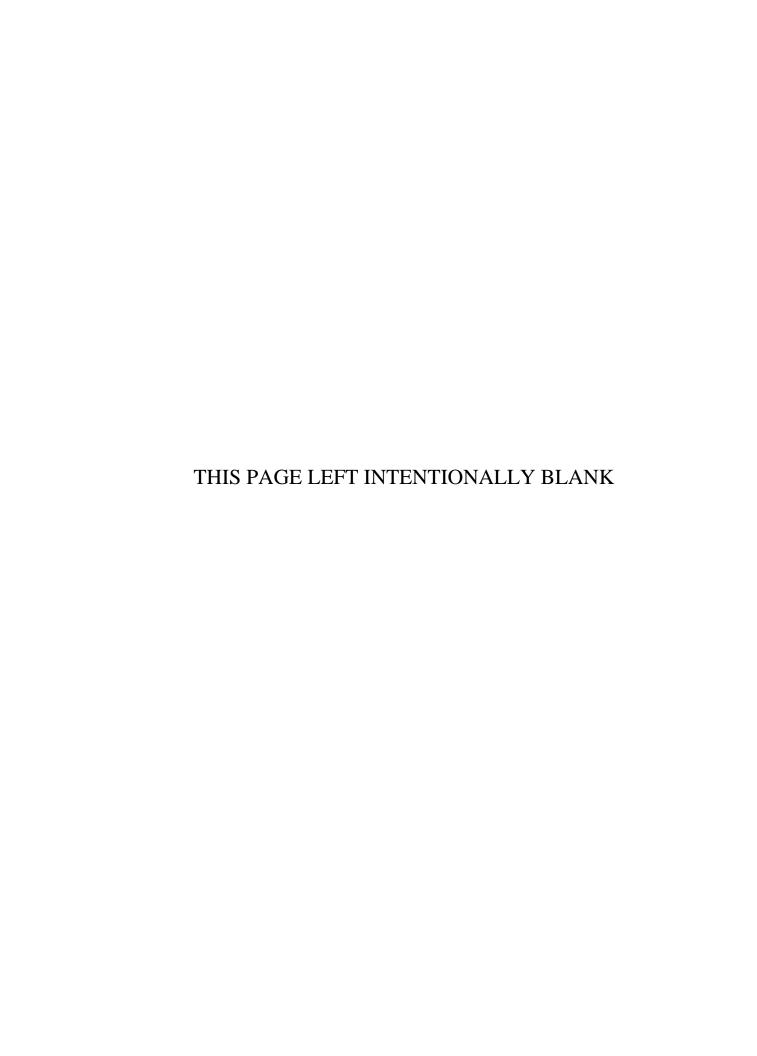
MS/MSD


|                      |        | LCS/LCSI | CSD           |     |       |              |            |      |     |           |
|----------------------|--------|----------|---------------|-----|-------|--------------|------------|------|-----|-----------|
|                      | Spiked |          | Recovered     |     | Per   | Percent      | LCS/       |      | င္ပ | Control   |
|                      | Conc.  | č        | Concentration | 2   | Recov | Recovery (%) | LCSD       | Flag | Ē   | Limits    |
| Parameter            | ug/L   | LCS      | LCSD          | MB  |       | LCSD         | RPD        |      | %D  | % Rec.    |
| Monomethyl Hydrazine | 50.0   | 52.3     | 50.8          | 0.0 | 105   | 102          | 2.93%      | PASS | 20  | 50-150    |
| u-Dimethyl Hydrazine | 50.0   | 53.4     | 51.6          | 0.0 | 107   | 103          | 3.30%      | PASS | 20  | 50-150    |
| Hydrazine            | 10.0   | 11.3     | 11.0          | 0.0 | 113   | 110          | 2.77% PASS | PASS | 20  | 20 50-150 |
|                      |        |          |               |     |       |              |            |      |     |           |

| გ _  | Recovered<br>Concentration | tion a | Recov | Percent<br>Recovery (%) | MSD   | Flag | Acc    | Accuracy<br>Control Limits |
|------|----------------------------|--------|-------|-------------------------|-------|------|--------|----------------------------|
| NS   | MSD                        | Sample | NS    | MSD                     | RPD   |      | %<br>D | % Rec                      |
| 41.5 | 40.8                       | 0.00   | 83.0  | 81.7                    | 1.55% | PASS | 20     | 50-150                     |
| 44.9 | 45.7                       | 0.00   | 89.7  | 91.4                    | 1.91% | PASS | 20     | 50-150                     |
| 10.3 | 10.7                       | 0.00   | 103   | 107                     | 3.33% | PASS | 20     | 50-150                     |

Note: Results based on detector #1 (UV=365nm) data.

Linda Saetern, Project Manager
Analytical Services, Truesdail Laboratories, Inc.


This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



# **APPENDIX G**

# **Section 5**

Outfall 002 - January 18 & 19, 2010  $\label{eq:mecx} \mbox{MEC$X$ Data Validation Report}$ 





# DATA VALIDATION REPORT

# **Boeing SSFL NPDES**

SAMPLE DELIVERY GROUP: ITA1330

Prepared by

MEC<sup>X</sup>, LP 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITA1330 Project Manager: B. Kelly

Matrix: Water
QC Level: IV

No. of Samples: 2
No. of Reanalyses/Dilutions: 1

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

| Client ID                  | Laboratory ID | Sub-<br>Laboratory ID                   | Matrix | Collected                | Method                                                                                                                                                                                      |
|----------------------------|---------------|-----------------------------------------|--------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outfall 002<br>(Composite) | ITA1330-02    | F0A210540-<br>001,<br>G0A210526-<br>001 | Water  | 1                        | ASTM 5174-91, 180.1, 200.7, 200.7<br>(Diss), 200.8, 200.8 (Diss), 245.1,<br>245.1 (Diss), 1613B, 900.0 MOD,<br>EPA 901.1 MOD, 903.0 MOD, 904<br>MOD, 905 MOD, 906.0 MOD,<br>1613B, SM 2540D |
| Outfall 002<br>(Composite) | ITA1330-02RE1 | G0A210526-<br>001                       | WATER  | 1/19/2010<br>11:56:00 AM | 1613B                                                                                                                                                                                       |
| Outfall 002<br>(Grab)      | ITA1330-01    | N/A                                     | Water  | 1/18/2010<br>1:00:00 PM  | 120.1, SM2540F                                                                                                                                                                              |

#### **II. Sample Management**

No anomalies were observed regarding sample management. The sample receipt temperature was not noted by TestAmerica-St Louis; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were present upon receipt at TestAmerica-West Sacramento and TestAmerica-St. Louis. As the samples were delivered to the remaining laboratories by courier, no custody seals were necessary. If necessary, the client ID was added to the sample result summary by the reviewer.

# **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.                                                          | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

# **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of standards used for the calibration was incorrect                    |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| E         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| 1         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

#### **Qualification Code Reference Table Cont.**

D The analysis with this flag should not The analysis with this flag should not be used because another more be used because another more technically sound analysis is technically sound analysis is available. available. Ρ Instrument performance for Post Digestion Spike recovery was pesticides was poor. not within control limits. **DNQ** The reported result is above the The reported result is above the method detection limit but is less than method detection limit but is less than the reporting limit. the reporting limit. \*||, \*||| Unusual problems found with the Unusual problems found with the data that have been described in data that have been described in Section II, "Sample Management," or Section II, "Sample Management," Section III, "Method Analyses." The or Section III, "Method Analyses." number following the asterisk (\*) will The number following the asterisk indicate the report section where a (\*) will indicate the report section description of the problem can be where a description of the problem found. can be found.

DATA VALIDATION REPORT SDG: ITA1330

# III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: February 25, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for all compounds except 2,3,7,8-TCDF, total TCDF, all of the HxCDD isomers, and total HxCDD. Any sample detects for individual target compound isomers present at concentrations less than five times the method blank concentrations were qualified as nondetected, "U," at the RL. Results for totals were qualified as nondetected, "U," if all peaks comprising the total were

present in the method blank at less than five times the blank concentrations. Several detects in the method blank did not meet ratio criteria and were reported as EMPCs; however, due to the extent of contamination present in the method blank, it was the reviewer's professional opinion that those results be utilized to qualify applicable sample results. Results for totals that included peaks meeting ratio criteria that were not present in the method blank were qualified as estimated, "J," as only a portion of the total was considered method blank contamination.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. A confirmation analysis was performed for 2,3,7,8-TCDF. The confirmation result was rejected, "R," in favor of the original result.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample detects. The laboratory calculated and reported compound-specific detection limits. Any reported totals not qualified as nondetects for method blank contamination that included EMPCs were qualified as estimated, "J." Any detects between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

# B. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: February 25, 2010

The sample listed in Table 1 for these analyses were validated based on the guidelines outlined in the MEC<sup>x</sup> Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Nickel was detected in the dissolved method blank; therefore, nickel detected in the dissolved fraction was qualified as nondetected, "U," at the reporting limit. Cadmium was detected in a CCB bracketing the dissolved fraction; therefore, cadmium detected in the dissolved fraction was qualified as nondetected, "U," at the reporting limit. Method blanks and CCBs had no other applicable detects.
- Interference Check Samples: Recoveries were within the method- (6010B) or laboratory-(6020) established control limits. Most analytes were detected in the ICP-MS ICSA but the reviewer was not able to determine if the detects in the sample were due to method interference. There were no target compounds present in the ICP ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.

Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration. Chromium, manganese, nickel, copper, and zinc were not bracketed by an internal standard of lower mass; therefore, the results for these analytes were qualified as estimated, "J," for detects or, "UJ," for nondetects.

• Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

Cadmium and selenium were detected marginally above the control limit in the dissolved fraction but were not detected in the total fraction.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: February 25, 2010

The sample listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

Holding Times: The tritium sample was analyzed within 180 days of collection. The
aliquot for total uranium was prepared one day beyond 3x the five-day holding time for
unpreserved samples; therefore, total uranium detected in the sample was qualified as
estimated, "J." Aliquots for gross alpha and gross beta were prepared beyond the fiveday analytical holding time for unpreserved samples; therefore, results for these analytes
were qualified as estimated, "J," for detects and, "UJ," for nondetects. Aliquots for

radium-226, radium-228, strontium-90, and gamma spectroscopy were prepared within the five-day holding time for unpreserved aqueous samples.

• Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." All remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yield were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: Tritium was detected in the method blank but was not detected in the site sample.
   There were no other analytes detected in the method blanks or KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs (radium-226, radium-228, strontium-90) were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
  data package. The sample results and MDAs reported on the sample result form were
  verified against the raw data and no calculation or transcription errors were noted. Any
  detects between the MDA and the reporting limit were qualified as estimated, "J," and
  coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
  valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: February 25, 2010

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC<sup>X</sup> Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1 and 180.1, and SM2540D, SM2540F and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times were met.
- Calibration: Calibration criteria were met. The conductivity and turbidity check standard recoveries were considered acceptable.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: A laboratory duplicate analysis was performed for TSS. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Turbidity was analyzed at a 5× dilution in order to report the analyte within the linear range of the calibration. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - o Field Duplicates: There were no field duplicate samples identified for this SDG.

# Validated Sample Result Forms: ITA1330

| Analysis Metho          | od ASTM        | 5174-           | 91        |           |                 |                  |                         |                     |
|-------------------------|----------------|-----------------|-----------|-----------|-----------------|------------------|-------------------------|---------------------|
| Sample Name             | Outfall 002 (C | omposite)       | ) Matri   | іх Туре:  | WATER           | V                | alidation Le            | vel: IV             |
| <b>Lab Sample Name:</b> | ITA1330-02     | Sam             | ple Date: | 1/19/2010 | ) 11:56:00 AM   | М                |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Uranium           | 7440-61-1      | 0.218           | 0.693     | 0.21      | pCi/L           | Jb               | J                       | H, DNQ              |
| Analysis Metho          | od EPA 1       | 20.1            |           |           |                 |                  |                         |                     |
| Sample Name             | Outfall 002 (G | rab)            | Matri     | іх Туре:  | Water           | V                | alidation Le            | vel: IV             |
| <b>Lab Sample Name:</b> | ITA1330-01     | Sam             | ple Date: | 1/18/2010 | 0 1:00:00 PM    |                  |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Specific Conductance    | NA             | 91              | 1.0       | 1.0       | umhos/c         |                  |                         |                     |
| Analysis Metho          | od EPA 1       | 80.1            |           |           |                 |                  |                         |                     |
| Sample Name             | Outfall 002 (C | omposite)       | ) Matri   | іх Туре:  | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:        | ITA1330-02     | Sam             | ple Date: | 1/19/2010 | ) 11:56:00 AM   | М                |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Turbidity               | Turb           | 110             | 5.0       | 0.20      | NTU             |                  |                         |                     |
| Analysis Metho          | od EPA 2       | 00.7            |           |           |                 |                  |                         |                     |
| Sample Name             | Outfall 002 (C | omposite)       | ) Matri   | іх Туре:  | Water           | 7                | alidation Le            | vel: IV             |
| Lab Sample Name:        | ITA1330-02     | Sam             | ple Date: | 1/19/2010 | ) 11:56:00 AM   | М                |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Barium                  | 7440-39-3      | 0.056           | 0.010     | 0.0060    | mg/l            |                  |                         |                     |
| Iron                    | 7439-89-6      | 2.0             | 0.040     | 0.015     | mg/l            |                  |                         |                     |
| Zinc                    | 7440-66-6      | 14              | 20        | 6.0       | ug/l            | Ja               | J                       | *III, DNQ           |

Monday, March 22, 2010 Page 1 of 6

# Analysis Method EPA 200.7-Diss

| Sample Name          | Outfall 002 (C | omposite)       | Matri     | x Type:  | Water           | 7                    | alidation Le            | vel: IV             |
|----------------------|----------------|-----------------|-----------|----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name:     | ITA1330-02     | Samj            | ple Date: | 1/19/201 | 0 11:56:00 A    | M                    |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Barium, dissolved    | 7440-39-3      | 0.039           | 0.010     | 0.0060   | mg/l            |                      |                         |                     |
| Iron, dissolved      | 7439-89-6      | 0.069           | 0.040     | 0.015    | mg/l            |                      |                         |                     |
| Zinc, dissolved      | 7440-66-6      | ND              | 20        | 6.0      | ug/l            |                      | UJ                      | *III                |
| Analysis Method      | d EPA 2        | 200.8           |           |          |                 |                      |                         |                     |
| Sample Name          | Outfall 002 (C | omposite)       | Matri     | x Type:  | Water           | V                    | alidation Le            | vel: IV             |
| Lab Sample Name:     | ITA1330-02     | Samj            | ple Date: | 1/19/201 | 0 11:56:00 A    | M                    |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Arsenic              | 7440-38-2      | 1.9             | 1.0       | 0.90     | ug/l            |                      |                         |                     |
| Beryllium            | 7440-41-7      | 0.14            | 0.50      | 0.10     | ug/l            | Ja                   | J                       | DNQ                 |
| Cadmium              | 7440-43-9      | ND              | 1.0       | 0.10     | ug/l            |                      | U                       |                     |
| Chromium             | 7440-47-3      | 3.3             | 2.0       | 0.90     | ug/l            |                      | J                       | *III                |
| Copper               | 7440-50-8      | 4.4             | 2.0       | 0.50     | ug/l            |                      | J                       | *III                |
| Lead                 | 7439-92-1      | 2.0             | 1.0       | 0.20     | ug/l            |                      |                         |                     |
| Manganese            | 7439-96-5      | 86              | 1.0       | 0.70     | ug/l            |                      | J                       | *III                |
| Nickel               | 7440-02-0      | 3.3             | 2.0       | 0.50     | ug/l            |                      | J                       | *III                |
| Selenium             | 7782-49-2      | ND              | 2.0       | 0.50     | ug/l            |                      | U                       |                     |
| Analysis Method      | d EPA 2        | 200.8-D         | iss       |          |                 |                      |                         |                     |
| Sample Name          | Outfall 002 (C | omposite)       | Matri     | x Type:  | Water           | Validation Level: IV |                         |                     |
| Lab Sample Name:     | ITA1330-02     | Samj            | ple Date: | 1/19/201 | 0 11:56:00 A    | M                    |                         |                     |
| Analyte              | CAS No         | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Arsenic, dissolved   | 7440-38-2      | ND              | 1.0       | 0.90     | ug/l            |                      | U                       |                     |
| Beryllium, dissolved | 7440-41-7      | ND              | 0.50      | 0.10     | ug/l            |                      | U                       |                     |
| Cadmium, dissolved   | 7440-43-9      | ND              | 1.0       | 0.10     | ug/l            | Ja                   | U                       | В                   |
| Chromium, dissolved  | 7440-47-3      | ND              | 2.0       | 0.90     | ug/l            |                      | UJ                      | *III                |
| Copper, dissolved    | 7440-50-8      | 2.6             | 2.0       | 0.50     | ug/l            |                      | J                       | *III                |
| Lead, dissolved      | 7439-92-1      | 0.26            | 1.0       | 0.20     | ug/l            | Ja                   | J                       | DNQ                 |
| Manganese, dissolved | 7439-96-5      | 20              | 1.0       | 0.70     | ug/l            |                      | J                       | *III                |
| Nickel, dissolved    | 7440-02-0      | ND              | 2.0       | 0.50     | ug/l            | Ja                   | UJ                      | *III, B             |
| Selenium, dissolved  | 7782-49-2      | 0.65            | 2.0       | 0.50     | ug/l            | Ja                   | J                       | DNQ                 |

Monday, March 22, 2010 Page 2 of 6

# Analysis Method EPA 245.1

| Sample Name        | Outfall 002 (Co | omposite)       | ) Matri   | x Type:   | Water           | 7                | Validation Le           | vel: IV             |
|--------------------|-----------------|-----------------|-----------|-----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:   | ITA1330-02      | Samj            | ple Date: | 1/19/2010 | 11:56:00 A      | M                |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury            | 7439-97-6       | ND              | 0.00020   | 0.00010   | mg/l            |                  | U                       |                     |
| Analysis Metho     | od EPA 2        | 45.1-D          | iss       |           |                 |                  |                         |                     |
| Sample Name        | Outfall 002 (Co | omposite)       | ) Matri   | х Туре:   | Water           | 7                | Validation Le           | vel: IV             |
| Lab Sample Name:   | ITA1330-02      | Samj            | ple Date: | 1/19/2010 | 11:56:00 A      | M                |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Mercury, dissolved | 7439-97-6       | ND              | 0.00020   | 0.00010   | mg/l            | С                | U                       |                     |
| Analysis Metho     | od EPA 9        | 00.0 M          | IOD       |           |                 |                  |                         |                     |
| Sample Name        | Outfall 002 (Co | omposite)       | ) Matri   | x Type:   | WATER           | 7                | Validation Le           | vel: IV             |
| Lab Sample Name:   | ITA1330-02      | Samp            | ple Date: | 1/19/2010 | 11:56:00 A      | M                |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Gross Alpha        | 12587-46-1      | 3.9             | 3         | 2.3       | pCi/L           |                  | J                       | H, C                |
| Gross Beta         | 12587-47-2      | 9.5             | 4         | 1.8       | pCi/L           |                  | J                       | Н                   |
| Analysis Metho     | od EPA 9        | 01.1 M          | 10D       |           |                 |                  |                         |                     |
| Sample Name        | Outfall 002 (Co | omposite)       | ) Matri   | x Type:   | WATER           | 7                | Validation Le           | vel: IV             |
| Lab Sample Name:   | ITA1330-02      | Samj            | ple Date: | 1/19/2010 | 11:56:00 A      | M                |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Cesium 137         | 10045-97-3      | 0               | 20        | 6.3       | pCi/L           | U                | U                       |                     |
| Potassium 40       | 13966-00-2      | -60             | 0         | 290       | pCi/L           | U                | U                       |                     |
| Analysis Metho     | od EPA 9        | 03.0 M          | IOD       |           |                 |                  |                         |                     |
| Sample Name        | Outfall 002 (Co | omposite)       | ) Matri   | х Туре:   | WATER           | 1                | Validation Le           | vel: IV             |
| Lab Sample Name:   | ITA1330-02      | Samj            | ple Date: | 1/19/2010 | 11:56:00 A      | M                |                         |                     |
| Analyte            | CAS No          | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium (226)       | 13982-63-3      | 0.017           | 1         | 0.19      | pCi/L           | U                | U                       |                     |

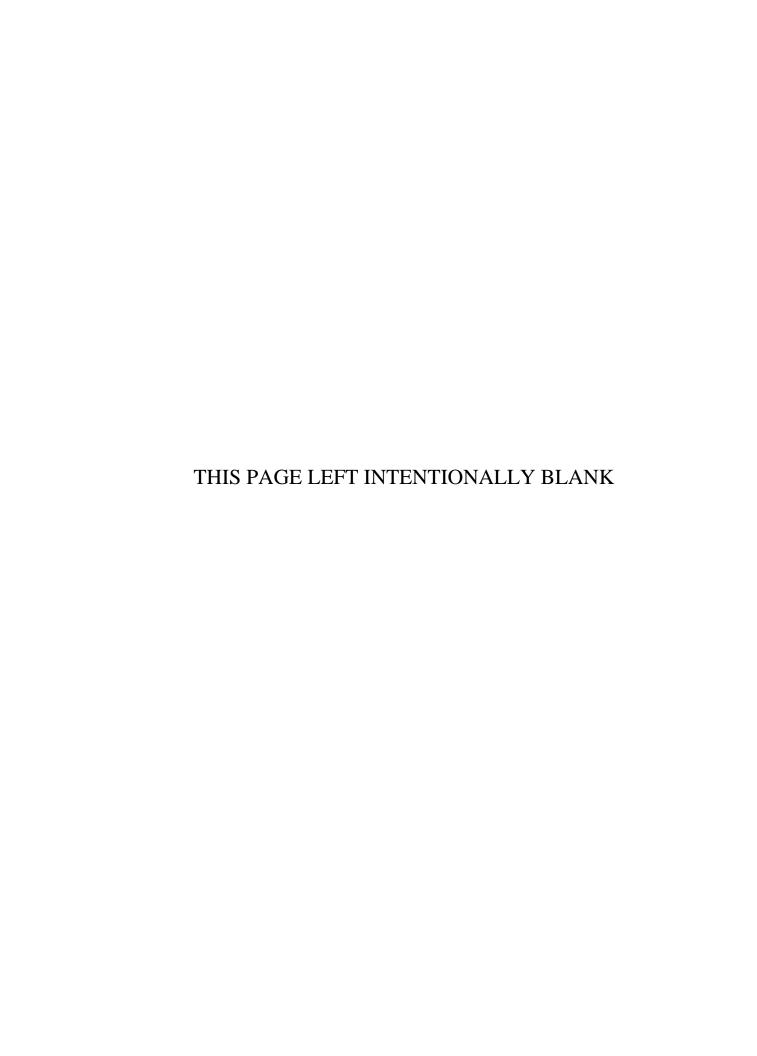
Monday, March 22, 2010 Page 3 of 6

# Analysis Method EPA 904 MOD

| Sample Name      | Outfall 002 (Co | omposite)       | Matri     | іх Туре: | WATER           | 7                | Validation Le           | vel: IV             |
|------------------|-----------------|-----------------|-----------|----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name: | ITA1330-02      | Samp            | ole Date: | 1/19/201 | 0 11:56:00 A    | M                |                         |                     |
| Analyte          | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Radium 228       | 15262-20-1      | 0.62            | 1         | 0.95     | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9        | 05 MO           | D         |          |                 |                  |                         |                     |
| Sample Name      | Outfall 002 (Co | omposite)       | Matri     | іх Туре: | WATER           | V                | Validation Le           | vel: IV             |
| Lab Sample Name: | ITA1330-02      | Samp            | ole Date: | 1/19/201 | 0 11:56:00 A    | M                |                         |                     |
| Analyte          | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Strontium-90     | 10098-97-2      | 0.09            | 3         | 0.7      | pCi/L           | U                | U                       |                     |
| Analysis Metho   | od EPA 9        | 06.0 M          | OD        |          |                 |                  |                         |                     |
| Sample Name      | Outfall 002 (Co | omposite)       | Matri     | іх Туре: | WATER           | V                | Validation Le           | vel: IV             |
| Lab Sample Name: | ITA1330-02      | Samp            | ole Date: | 1/19/201 | 0 11:56:00 A    | M                |                         |                     |
| Analyte          | CAS No          | Result<br>Value | RL        | MDL      | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Tritium          | 10028-17-8      | 36              | 500       | 140      | pCi/L           | U                | U                       |                     |

Monday, March 22, 2010 Page 4 of 6

# Analysis Method EPA-5 1613B


| Sample Name            | Outfall 002 (Co | omposite)       | Matrix    | Type:     | WATER           | 7                | alidation Le            | vel: IV             |
|------------------------|-----------------|-----------------|-----------|-----------|-----------------|------------------|-------------------------|---------------------|
| Lab Sample Name:       | ITA1330-02      | Samp            | le Date:  | 1/19/2010 | 11:56:00 A      | M                |                         |                     |
| Analyte                | CAS No          | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| 1,2,3,4,6,7,8-HpCDD    | 35822-46-9      | 5.7e-005        | 0.000048  | 0.00001   | ug/L            | Ba               |                         |                     |
| 1,2,3,4,6,7,8-HpCDF    | 67562-39-4      | ND              | 0.000048  | 0.000001  | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,4,7,8,9-HpCDF    | 55673-89-7      | ND              | 0.000048  | 0.000002  | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,4,7,8-HxCDD      | 39227-28-6      | ND              | 0.000048  | 0.000008  | ug/L            |                  | U                       |                     |
| 1,2,3,4,7,8-HxCDF      | 70648-26-9      | ND              | 0.000048  | 0.000000  | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,6,7,8-HxCDD      | 57653-85-7      | ND              | 0.000048  | 0.000008  | ug/L            |                  | U                       |                     |
| 1,2,3,6,7,8-HxCDF      | 57117-44-9      | ND              | 0.000048  | 0.000000  | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,7,8,9-HxCDD      | 19408-74-3      | ND              | 0.000048  | 0.000007  | ug/L            |                  | U                       |                     |
| 1,2,3,7,8,9-HxCDF      | 72918-21-9      | ND              | 0.000048  | 0.000000  | ug/L            | J, Ba            | U                       | В                   |
| 1,2,3,7,8-PeCDD        | 40321-76-4      | ND              | 2.5e-006  | 0.000003  | ug/L            | J, Q, Ba         | U                       | В                   |
| 1,2,3,7,8-PeCDF        | 57117-41-6      | ND              | 1.4e-006  | 0.000000  | ug/L            | J, Q, Ba         | U                       | В                   |
| 2,3,4,6,7,8-HxCDF      | 60851-34-5      | ND              | 0.000048  | 0.000000  | ug/L            | J, Ba            | U                       | В                   |
| 2,3,4,7,8-PeCDF        | 57117-31-4      | ND              | 1.9e-006  | 0.000000  | ug/L            | J, Q, Ba         | U                       | В                   |
| 2,3,7,8-TCDD           | 1746-01-6       | ND              | 0.0000096 | 0.000001  | ug/L            |                  | U                       |                     |
| 2,3,7,8-TCDF           | 51207-31-9      | ND              | 4.4e-007  | 0.000000  | ug/L            | J, Q, Ba         | U                       | В                   |
| 2,3,7,8-TCDF           | 51207-31-9      | ND              | 0.0000096 | 0.000005  | ug/L            |                  | R                       | D                   |
| OCDD                   | 3268-87-9       | 0.00072         | 0.000096  | 0.000006  | ug/L            | Ba               |                         |                     |
| OCDF                   | 39001-02-0      | ND              | 0.000096  | 0.000001  | ug/L            | J, Ba            | U                       | В                   |
| Total HpCDD            | 37871-00-4      | 0.00011         | 0.000048  | 0.00001   | ug/L            | Ba               | J                       | В                   |
| Total HpCDF            | 38998-75-3      | 4e-005          | 0.000048  | 0.000001  | ug/L            | J, Ba            | J                       | B, DNQ              |
| Total HxCDD            | 34465-46-8      | ND              | 0.000048  | 0.000007  | ug/L            |                  | U                       |                     |
| Total HxCDF            | 55684-94-1      | 2.1e-005        | 2.1e-005  | 0.000000  | ug/L            | J, Q, Ba         | J                       | B, *III, DNQ        |
| Total PeCDD            | 36088-22-9      | ND              | 2.5e-006  | 0.000003  | ug/L            | J, Q, Ba         | U                       | В                   |
| Total PeCDF            | 30402-15-4      | ND              | 3.3e-006  | 0.000000  | ug/L            | J, Q, Ba         | U                       | В                   |
| Total TCDD             | 41903-57-5      | ND              | 0.0000096 | 0.000001  | ug/L            |                  | U                       |                     |
| Total TCDF             | 55722-27-5      | ND              | 4.4e-007  | 0.000000  | ug/L            | J, Q, Ba         | U                       | В                   |
| Analysis Metho         | od SM 25        | 40D             |           |           |                 |                  |                         |                     |
| Sample Name            | Outfall 002 (Co | omposite)       | Matrix    | Type:     | Water           | V                | alidation Le            | vel: IV             |
| Lab Sample Name:       | ITA1330-02      | Samp            | le Date:  | 1/19/2010 | 11:56:00 A      | M                |                         |                     |
| Analyte                | CAS No          | Result<br>Value | RL        | MDL       | Result<br>Units | Lab<br>Qualifier | Validation<br>Qualifier | Validation<br>Notes |
| Total Suspended Solids | TSS             | 49              | 10        | 1.0       | mg/l            |                  |                         |                     |

Monday, March 22, 2010 Page 5 of 6

# Analysis Method SM2540F

| Sample Name             | Outfall 002 (G | Matri           | Matrix Type: Water |           |                 | Validation Level: IV |                         |                     |
|-------------------------|----------------|-----------------|--------------------|-----------|-----------------|----------------------|-------------------------|---------------------|
| Lab Sample Name:        | ITA1330-01     | Samj            | ole Date:          | 1/18/2010 | 1:00:00 PM      |                      |                         |                     |
| Analyte                 | CAS No         | Result<br>Value | RL                 | MDL       | Result<br>Units | Lab<br>Qualifier     | Validation<br>Qualifier | Validation<br>Notes |
| Total Settleable Solids | Set Solids     | 0.30            | 0.10               | 0.10      | ml/l            |                      |                         |                     |

Monday, March 22, 2010 Page 6 of 6

