APPENDIX G

Section 1

Outfall 001, February 16, 2009 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ISB1786

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	ISB1786
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 001	ISB1786-01	D9B190127-001, D9C050234-001, 31438-001, F9B180223-001, 981797-1	Water	02/16/09 1400	120.1, 180.1, 200.7, 200.7 (Diss), 200.8, 200.8 (Diss) 245.1, 245.1 (Diss), 608, 625, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 908.0, 1613B, 8315M, SM2340B, SM2540D, SM5310B

II. Sample Management

No anomalies were observed regarding sample management. The samples were received at all laboratories within the temperature limit of $4 \pm 2^{\circ}$ C. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine and Truesdail, custody seals were not required. Custody seal were present and intact upon arrival at TestAmerica-Denver, TestAmerica-St. Louis, and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifier	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found

4

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 26, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *MEC[×] Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613,* and the *National Functional Guidelines Chlorinated Dioxin/Furan Data Review* (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHOD 8315M—Hydrazines

Reviewed By: P. Meeks Date Reviewed: March 27, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 8315M, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was derivitized within three days of collection and analyzed within 3 days of derivitization.
- Calibration: Calibration criteria were met. The initial calibration r² values were ≥0.995 except for hydrazine; therefore, nondetected hydrazine was qualified as estimated, "UJ." The ICV and QCS recoveries were within 85-115%.
- Blanks: The method blank had no target compound detects above the MDL.

- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

C. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 26, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *MEC^x* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 2007, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The analytical holding times, 180 days for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995. Initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. The copper and selenium CRI recoveries associated

with the total metals analyses were 63% and 134%, respectively; therefore, total copper and selenium detected in the sample were qualified as estimated, "J." The zinc CRI recovery associated with the dissolved metals analyses was 63%; therefore, dissolved zinc detected in the sample was qualified as estimated, "J." The remaining CRI and CRA and check standards were recovered within the control limits of 70-130%.

- Blanks: Chromium and nickel were detected in the total method blank at 4.13 and 2.91 μg/L, respectively; therefore, total chromium and nickel detected in the sample were qualified as nondetected, "U," at the level of contamination if detected above the control limit or at the reporting limit if detected below. Boron was detected in the dissolved method blank at 20.9 μg/L; therefore, dissolved boron detected in the sample was qualified as nondetected, "U," at the reporting limit. Antimony was detected in CCBs bracketing the sample analyses at 0.666 and 0.412 μg/L; therefore both total and dissolved antimony detected in the sample were qualified as nondetected, "U," at the reporting the dissolved metals analysis at 0.443 μg/L; therefore, dissolved selenium detected in the sample was qualified as nondetected, "U," at the reporting limit. Selenium was detected in a CCB bracketing the dissolved metals analysis at 0.443 μg/L; therefore, dissolved selenium detected in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in a CCB bracketing the dissolved metals analysis at -7.6 μg/L; therefore, dissolved zinc detected in the sample was qualified as estimated, "J." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: Recoveries were within the method-established control limits. There were detects and negative results in the ICSA associated with the ICP analyses; however, the concentration of interferents in the site sample were insufficient to cause matrix interference. There were detects in the ICP-MS ICSA solution but the reviewer was unable to ascertain if the detects were due to matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within the laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All associated sample internal standard intensities were within 60-125% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summaries were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 608—Pesticides and PCBs

Reviewed By: K. Shadowlight Date Reviewed: March 26, 2009

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 608, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: The original extraction and analytical holding times were met. The water sample was originally extracted within seven days of collection; however, as the detect for alpha BHC was suspected to be a lab contaminant, the sample was re-extracted at TestAmerica-Irvine and another extraction was performed at TestAmerica-Denver. The reextraction performed at TestAmerica Denver was outside of the holding time period. The retained result (nondetect) for alpha-BHC was qualified as estimated, "UJ," in sample Outfall 001 (see the Blanks section).
- Calibration: The initial calibration had average %RSDs of ≤10% or r² ≥0.995 for the pesticide analysis. The %Ds for all analytes except beta-BHC, chlordane, and toxaphene exceeded 15% in one or both of the low-level CCVs bracketing the pesticide analysis; therefore, the nondetects for these analytes were qualified as estimated, "UJ," in the retained results of the sample in this SDG. As there were no confirmed detects for the retained results, the confirmation column %Ds were not evaluated. The ICV and remaining CCVs bracketing the sample analyses had %Ds within the QC limit of ≤15%.
- Blanks: The method blank associated with the retained results had no target compound detects above the MDL.

Alpha BHC was reported in sample Outfall 001; however, the laboratory suspected contamination related to one highly contaminated sample with percent level alpha-BHC. A second extraction of Outfall 001 yielded a low-level concentration of alpha BHC, indicating that the laboratory was not contamination free. The sample was sent to TestAmerica-Denver for alpha-BHC analysis. The nondetect result yielded from the TestAmerica-Denver analysis confirmed the suspicion that the original result was indeed laboratory contamination; therefore, the original sample extraction in batch 9B20074 and the alpha-

BHC result in the re-extraction from batch 9B23113 were rejected, "R," in favor of the result for alpha BHC reported in batch 9064381 from TestAmerica-Denver. Several corrective action steps have been taken by TestAmerica-Irvine including replacing glassware throughout the organics department and implementing an acid wash procedure to prevent future contamination issues.

- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs for the blank spike/blank spike duplicate pairs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed for the sample in this SDG. Method accuracy and precision was evaluated based on the blank spike/blank spike duplicate results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. The laboratory analyzed for pesticides and PCBs by EPA Method 608. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified from the raw data. The reporting limits were supported by the lower level of the initial calibration. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

E. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 25, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The aliquots for gross alpha, gross beta, cesium-137, potassium-40, and total uranium were prepared beyond the five-day holding time for unpreserved samples; therefore, the results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. All remaining aliquots were prepared within the five-day holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium, radium-226, and radium-228 chemical yields were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries and the strontium-90, radium-226, and radium-228 RPDs were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No matrix spike or MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision, when applicable, were evaluated based on LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Total uranium, normally reported in aqueous units, was converted to pCi/L using a conversion factor for naturally occurring uranium. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

The reviewer noted that the total uncertainty for potassium-40 was more than an order of magnitude larger than usually reported for site samples. The laboratory attributed this high uncertainty to a very low sample count and a slightly high background count.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

F. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: S. Dellamia Date Reviewed: March 27, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The unpreserved water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. Initial calibration average RRFs were ≥0.05 and %RSDs ≤35% or r² values ≥0.995. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had detects for benzo(g,h,i)perylene at 0.400(J) µg/L, butyl benzyl phthalate at 1.04(J) µg/L and ideno(1,2,3-cd)perylene at 0.240(J) µg/L; therefore, the detect for butyl benzyl phthalate in sample Outfall 001 was qualified as nondetected, "U," at the RL. There were no other target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. RPDs were above QC limits for bis(2-chloroethoxy)methane, 2,6dinitrotoluene, isophorone and n-nitroso-di-n-propylamine; therefore, nondetected results for all four compounds in sample Outfall 001 were qualified as estimated, "UJ." Remaining RPDs were within QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed for the sample in this SDG. Evaluation of method accuracy and precision was based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

G. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 27, 2009

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 120.1, 180.1, Standard Methods SM2540D and SM5310B, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: Analytical holding times, 24 hours for conductivity, 48 hours from collection for turbidity, 7 days for TSS, and 28 days for TOC, were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. Balance calibration logs were reviewed and found to be acceptable.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Turbidity was analyzed at a 20x dilution in order to report the analyte within the linear range of the calibration. Any detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Project 31438

Analyst: JMH

-EVEL IV

Approved By: Martha M. Maier 07-Mar-2009 08:50

Date Collected: Time Collected: Name: OCDF Total HpCDF Total HxCDF Total PeCDF Total TCDF Total HpCDD Total HxCDD Total PeCDD Totals 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDF OCDD Sample ID: Total TCDD 1,2,3,4,7,8-HxCDF 1,2,3,7,8-PeCDF Analyte Project: 1,2,3,4,6,7,8-HpCDF 1,2,3,7,8-PeCDD 2,3,7,8-TCDD Client Data 1,2,3,4,7,8,9-HpCDF 1,2,3,7,8,9-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD l,2,3,7,8,9-HxCDD ISB1786-01 ISB1786 Test America-Irvine, CA 400 16-Feb-09 Conc. (ug/L) ND A A Ŋ ND ND ND ND LL Ŋ ND ND ND ND 0.000146 0.0000114 ND NDU 0.0000119 JDNQ Ŋ 0.000643 0.0000667 0.0000139 0.00000342 0.0000412 0.0000350 ND CI 52 Dutfall J (DNQ JDNG SPND I/DNQ DL 0.000000908 0.000000841 0.00000328 0.00000312 0.00000147 0.00000263 0.00000180 0.00000167 0.00000157 0.000000676 0.00000309 0.000000671 0.000000676 0.00000147 0.000000671 0.00000305 00 ø Sample Size: Matrix: Sample Data EMPC 1.04 L Aqueous Qualifiers ب S CRS 37CI-2,3,7,8-TCDD b. Estimated maximum possible concentration. a. Sample specific estimated detection limit. Date Analyzed DB-5 QC Batch No .: Lab Sample: d. Lower control limit - upper control limit. c. Method detection limit. Footnotes Laboratory Data 13C-OCDD 13C-2,3,4,7,8-PeCDF 13C-2,3,7,8-TCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,7,8-TCDD 13C-OCDF 13C-2,3,4,6,7,8-HxCDF Labeled Standard 24-Feb-09 1907 31438-001 %R Date Analyzed DB-225 Date Received: Date Extracted: 77.9 84.6 80.8 80.9 93.4 66.2 75.6 77.7 80.2 84.3 59.6 73.2 76.1 76.5 82.8 76.0 90.1 LCL-UCL^d 26 - 123 24 - 185 17 - 157 25 - 164 23 - 140 28 - 130 32 - 141 25 - 181 21 - 178 24 - 169 28 - 143 28 - 136 26 - 152 35 - 197 17 - 157 26 - 138 29 - 147 EPA Method 1613 Qualifiers 21-Feb-09 NA 18-Feb-09

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: TestAmerica Analytical 17461 Derian Avenue, Suite 100 Irvine, CA 92614-5817

Attention:Joseph DoakSample:Water / 1 SampleProject Name:ISB1786P.O. Number:2294262Method Number:8315 (Modified)Investigation:Hydrazines

REPORT

981797 Laboratory No: **Report Date:** February 20, 2009 Sampling Date: February 16, 2009 **Receiving Date:** February 17, 2009 **Extraction Date:** February 18, 2009 Analysis Date: February 19, 2009 Units: μg/L **Reported By:** JS

Analytical Results

		Sample	Dilution	Monomethyl	u-Dimethyl	Hydrazine	Qualifier
Sample ID	Sample Descript	Amount (mL)	Factor	Hydrazine	Hydrazine		Codes
708023-MB	Method Blank	100	1	ND 🔆	ND X	ND 🔆	None
981797 Out	r-Fall 001 ISB1786-01	100	1	ND U	ND U	NDUJC	None
MDL				1.70	1.42	0.60	
PQL				5.0	5.0	1.00	
Sample Repo	orting Limits			5.0	5.0	1.00	

Note: Results based on detector #1 (UV=365nm) data.

Linda Saetern, Project Manager Analytical Services, Truesdail Laboratories, Inc.

*Analysis not validated

004

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing	Project ID:	Annual Outfall 001			
618 Michillinda Avenue, Suite 200			Sampled:	02/16/09	
Arcadia, CA 91007	Report Number:	ISB1786	Received:	02/16/09	
Attention: Bronwyn Kelly					
	יין איז היאינה לאיליי איז אינטער לאיראל ייל איז אינטער אינטער אינטער אינטער אינטער אינטער אינטער אינטער אינטער איז איז איז איז איז איז איז איז איז איז	C TEN CONSIGN TO THE OWNER AND		SAT SURGER DISLOTING AND IN SURGER	AN SOLUTION

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1786-01 (Outfall 00	1 - Water) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	46	1	02/17/09	02/17/09	
Barium	EPA 200.7	9B17091	0.0060	0.010	0.073	1	02/17/09	02/17/09	
Boron J/DNG	EPA 200.7	9B17091	0.020	0.050	0.043	1	02/17/09	02/17/09	J
Calcium	EPA 200.7	9B17091	0.050	0.10	11	1	02/17/09	02/17/09	
Iron	EPA 200.7	9B17091	0.015	0.040	8.1	1	02/17/09	02/17/09	
Magnesium	EPA 200.7	9B17091	0.012	0.020	4.6	1	02/17/09	02/17/09	

METALS

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples lested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 16 of 74>

24

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

 MWH-Pasadena/Boeing
 Project ID: Annual Outfall 001

 618 Michillinda Avenue, Suite 200
 Sampled: 02/16/09

 Arcadia, CA 91007
 Report Number: ISB1786
 Received: 02/16/09

 Attention: Bronwyn Kelly
 Sampled: 02/16/09
 Sampled: 02/16/09

METALS

Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Water) - cont.								
EPA 200.7	9B17091	7.0	10	ND	1	02/17/09	02/17/09	
EPA 200.8	9B17103	0.20	2.0	0.72	1	02/17/09	02/18/09	J
EPA 200.7	9B17091	0.90	2.0	ND	1	02/17/09	02/17/09	
EPA 200.7	9B17091	2.0	5.0	10	1	02/17/09	02/17/09	В
EPA 200.7	9B17091	2.0	10	2.5	1	02/17/09	02/17/09	J
EPA 200.7	9B17091	7.0	20	110	1	02/17/09	02/17/09	
EPA 200.7	9B17091	2.0	10	7.9	1	02/17/09	02/17/09	B, J
EPA 200.8	9B17103	0.11	1.0	0.14	1	02/17/09	02/18/09	J
EPA 200.7	9B17091	3.0	10	19	1	02/17/09	02/17/09	
EPA 200.7	9B17091	6.0	20	37	1	02/17/09	02/17/09	
EPA 200.8	9B17103	0.75	2.0	6.6	1	02/17/09	02/18/09	
EPA 200.8	9B17103	0.30	1.0	6.6	1	02/17/09	02/18/09	
EPA 200.8	9B17103	0.30	2.0	0.52	1	02/17/09	02/18/09	J
EPA 200.8	9B17103	0.30	1.0	ND	1	02/17/09	02/18/09	
EPA 200.8	9B17103	0.20	1.0	ND	1	02/17/09	02/18/09	
	Method Water) - cont. EPA 200.7 EPA 200.8 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8 EPA 200.8	Method Batch Water) - cont. EPA 200.7 9B17091 EPA 200.8 9B17103 EPA 200.7 9B17091 EPA 200.8 9B17103 EPA 200.8 9B17103	Method Batch MDL Limit Water) - cont. Batch Limit EPA 200.7 9B17091 7.0 EPA 200.8 9B17103 0.20 EPA 200.7 9B17091 0.90 EPA 200.7 9B17091 2.0 EPA 200.7 9B17091 3.0 EPA 200.8 9B17103 0.75 EPA 200.7 9B17091 6.0 EPA 200.8 9B17103 0.30 EPA 200.8 9B17103 0.30 EPA 200.8 9B17103 0.30 EPA 200.8 9B17103 0.30 <tr< th=""><th>Method MDL Batch Reporting Limit Water) - cont. EPA 200.7 9B17091 7.0 10 EPA 200.8 9B17103 0.20 2.0 EPA 200.7 9B17091 0.90 2.0 EPA 200.7 9B17091 0.90 2.0 EPA 200.7 9B17091 0.90 2.0 EPA 200.7 9B17091 2.0 5.0 EPA 200.7 9B17091 2.0 10 EPA 200.7 9B17091 3.0 10 EPA 200.7 9B17091 3.0 10 EPA 200.7 9B17091 3.0 10 EPA 200.7 9B17091 6.0 20 EPA 200.8 9B17103 0.30 1.0 EPA 200.8 9B17103 0.30 1.0 EPA 200.8 9</th><th>Method Batch MDL Limit Reporting Limit Sample Result Water) - cont. Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result <t< th=""><th>MethodBatchMDL LimitReporting LimitSample ResultDilution FactorWater) - cont.<<</th><th>MethodBatchMDL LimitReporting LimitSample ResultDilutionDate ExtractedWater) - cont.<th>MethodBatchMDL LimitReporting LimitSample ResultDilutionDate ExtractedDate AnalyzedWater) - cont.EPA 200.79B170917.010ND102/17/0902/17/09EPA 200.89B171030.202.00.72102/17/0902/17/09EPA 200.79B170910.902.0ND102/17/0902/17/09EPA 200.79B170910.902.0ND102/17/0902/17/09EPA 200.79B170912.05.010102/17/0902/17/09EPA 200.79B170912.0102.5102/17/0902/17/09EPA 200.79B170912.0102.5102/17/0902/17/09EPA 200.79B170912.0107.9102/17/0902/17/09EPA 200.79B170912.0107.9102/17/0902/17/09EPA 200.79B170913.0107.9102/17/0902/17/09EPA 200.89B171030.111.00.14102/17/0902/17/09EPA 200.79B170913.01019102/17/0902/17/09EPA 200.79B170913.01019102/17/0902/17/09EPA 200.89B171030.752.06.6102/17/0902/18/09EPA 200.89B171030.301.06.6102/17/090</th></th></t<></th></tr<>	Method MDL Batch Reporting Limit Water) - cont. EPA 200.7 9B17091 7.0 10 EPA 200.8 9B17103 0.20 2.0 EPA 200.7 9B17091 0.90 2.0 EPA 200.7 9B17091 0.90 2.0 EPA 200.7 9B17091 0.90 2.0 EPA 200.7 9B17091 2.0 5.0 EPA 200.7 9B17091 2.0 10 EPA 200.7 9B17091 3.0 10 EPA 200.7 9B17091 3.0 10 EPA 200.7 9B17091 3.0 10 EPA 200.7 9B17091 6.0 20 EPA 200.8 9B17103 0.30 1.0 EPA 200.8 9B17103 0.30 1.0 EPA 200.8 9	Method Batch MDL Limit Reporting Limit Sample Result Water) - cont. Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result Result <t< th=""><th>MethodBatchMDL LimitReporting LimitSample ResultDilution FactorWater) - cont.<<</th><th>MethodBatchMDL LimitReporting LimitSample ResultDilutionDate ExtractedWater) - cont.<th>MethodBatchMDL LimitReporting LimitSample ResultDilutionDate ExtractedDate AnalyzedWater) - cont.EPA 200.79B170917.010ND102/17/0902/17/09EPA 200.89B171030.202.00.72102/17/0902/17/09EPA 200.79B170910.902.0ND102/17/0902/17/09EPA 200.79B170910.902.0ND102/17/0902/17/09EPA 200.79B170912.05.010102/17/0902/17/09EPA 200.79B170912.0102.5102/17/0902/17/09EPA 200.79B170912.0102.5102/17/0902/17/09EPA 200.79B170912.0107.9102/17/0902/17/09EPA 200.79B170912.0107.9102/17/0902/17/09EPA 200.79B170913.0107.9102/17/0902/17/09EPA 200.89B171030.111.00.14102/17/0902/17/09EPA 200.79B170913.01019102/17/0902/17/09EPA 200.79B170913.01019102/17/0902/17/09EPA 200.89B171030.752.06.6102/17/0902/18/09EPA 200.89B171030.301.06.6102/17/090</th></th></t<>	MethodBatchMDL LimitReporting LimitSample ResultDilution FactorWater) - cont.<<	MethodBatchMDL LimitReporting LimitSample ResultDilutionDate ExtractedWater) - cont. <th>MethodBatchMDL LimitReporting LimitSample ResultDilutionDate ExtractedDate AnalyzedWater) - cont.EPA 200.79B170917.010ND102/17/0902/17/09EPA 200.89B171030.202.00.72102/17/0902/17/09EPA 200.79B170910.902.0ND102/17/0902/17/09EPA 200.79B170910.902.0ND102/17/0902/17/09EPA 200.79B170912.05.010102/17/0902/17/09EPA 200.79B170912.0102.5102/17/0902/17/09EPA 200.79B170912.0102.5102/17/0902/17/09EPA 200.79B170912.0107.9102/17/0902/17/09EPA 200.79B170912.0107.9102/17/0902/17/09EPA 200.79B170913.0107.9102/17/0902/17/09EPA 200.89B171030.111.00.14102/17/0902/17/09EPA 200.79B170913.01019102/17/0902/17/09EPA 200.79B170913.01019102/17/0902/17/09EPA 200.89B171030.752.06.6102/17/0902/18/09EPA 200.89B171030.301.06.6102/17/090</th>	MethodBatchMDL LimitReporting LimitSample ResultDilutionDate ExtractedDate AnalyzedWater) - cont.EPA 200.79B170917.010ND102/17/0902/17/09EPA 200.89B171030.202.00.72102/17/0902/17/09EPA 200.79B170910.902.0ND102/17/0902/17/09EPA 200.79B170910.902.0ND102/17/0902/17/09EPA 200.79B170912.05.010102/17/0902/17/09EPA 200.79B170912.0102.5102/17/0902/17/09EPA 200.79B170912.0102.5102/17/0902/17/09EPA 200.79B170912.0107.9102/17/0902/17/09EPA 200.79B170912.0107.9102/17/0902/17/09EPA 200.79B170913.0107.9102/17/0902/17/09EPA 200.89B171030.111.00.14102/17/0902/17/09EPA 200.79B170913.01019102/17/0902/17/09EPA 200.79B170913.01019102/17/0902/17/09EPA 200.89B171030.752.06.6102/17/0902/18/09EPA 200.89B171030.301.06.6102/17/090

level IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 17 of 74>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Sampled: 02/16/09

Report Number: ISB1786

Received: 02/16/09

DISSOLVED METALS

Analyta	Mathad	Batch	MDL Limit	Reporting	Sample	Dilution	Date	Date	Data Qualifiers
Analyte	Methou	Datch	Linu	Linut	Result	ractor	Extracted	Analyzeu	Quanners
Sample ID: ISB1786-01 (Outfall 00)	1 - Water) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B-Diss	[CALC]	N/A	0.33	37	1	02/17/09	02/23/09	
Barium	EPA 200.7-Diss	9B17100	0.0060	0.010	0.013	1	02/17/09	02/23/09	
Boron U/B	EPA 200.7-Diss	9B17100	0.020	0.050	0.034	1	02/17/09	02/23/09	B, J
Calcium	EPA 200.7-Diss	9B17100	0.050	0.10	9.8	1	02/17/09	02/23/09	
Iron	EPA 200.7-Diss	9B17100	0.015	0.040	0.45	1	02/17/09	02/23/09	
Magnesium	EPA 200.7-Diss	9B17100	0.012	0.020	3.0	1	02/17/09	02/23/09	
-									

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 18 of 74>

26

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

DISSOLVED METALS

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1786-01 (Ontfall 001 -	Water) - cont.								
Reporting Units: ug/l									
Arsenic U	EPA 200.7-Diss	9B17100	7.0	10	ND	1	02/17/09	02/23/09	
Antimony U/B	EPA 200.8-Diss	9B20106	0.20	2.0	1.1	1	02/20/09	02/24/09	J
Beryllium ()	EPA 200.7-Diss	9B17100	0.90	2.0	ND	1	02/17/09	02/23/09	
Chromium	EPA 200.7-Diss	9B17100	2.0	5.0	ND	1	02/17/09	02/23/09	
Cobalt	EPA 200.7-Diss	9B17100	2.0	10	ND	1	02/17/09	02/23/09	
Manganese JIONQ	EPA 200.7-Diss	9B17100	7.0	20	12	1	02/17/09	02/23/09	J
Nickel U	EPA 200.7-Diss	9B17100	2.0	10	ND	1	02/17/09	02/23/09	
Cadmium J/DNQ	EPA 200.8-Diss	9B20106	0.11	1.0	0.14	1	02/20/09	02/24/09	J
Vanadium ()	EPA 200.7-Diss	9B17100	3.0	10	ND	1	02/17/09	02/23/09	
Zine JA: III, B, DNQ	EPA 200.7-Diss	9B17100	6.0	20	15	1	02/17/09	02/23/09	J
Copper	EPA 200.8-Diss	9B20106	0.75	2.0	2.3	1	02/20/09	02/23/09	
Lead J/DWQ	EPA 200.8-Diss	9B20106	0.30	1.0	0.31	1	02/20/09	02/23/09	J
Selenium U/B	EPA 200.8-Diss	9B20106	0.30	2.0	0.42	1	02/20/09	02/23/09	J
Silver U	EPA 200.8-Diss	9B20106	0.30	1.0	ND	1	02/20/09	02/23/09	
Thallium 🕖	EPA 200.8-Diss	9B20106	0.20	1.0	ND	1	02/20/09	02/23/09	С

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 19 of 74>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

1

02/19/09 02/19/09

MWH-Pasadena/Boeing		Project ID:	Annual O	utfall 001						Carlona.
618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly	Repo	ort Number:	ISB1786				: 02/16/09 : 02/16/09	02/16/09 02/16/09		
		М	CAWW	245.1						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ISB1786-01 (Outfall 001 - V	Vater) - cont.									

0.027

0.2

ND

9050174

Reporting Units: ug/L

MCAWW 245.1

Mercury ()

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 26 of 74>

34

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

.

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly	Project ID: Annual Outfall 001 Report Number: ISB1786		Sampled: Received:	02/16/09 02/16/09	
	MCAWW 245.1-DISS	 Dilution		D-4-	Data

		MDL	Reporting	Sample	Dilution	Date	Date	Data	
Analyte	Method Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID: ISB1786-01 (Outfall 001	- Water) - cont.								
Reporting Units: ug/L									
Mercury ()	MCAWW 245.1-DISS 9050182	0.027	0.2	ND .	1	02/19/09	02/19/09		

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 27 of 74>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: ISB1786

Project ID: Annual Outfall 001

Sampled: 02/16/09 Received: 02/16/09

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

.....

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1786-01 (Outfall 001 - Wate	er) - cont.								
Reporting Units: ug/l									
4,4'-DDD	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
4,4'-DDE	EPA 608	9B20074	0.0028	0.0047	ND	0.943	02/20/09	02/22/09	
4,4'-DDT	EPA 608	9B20074	0.0038	0.0094	ND	0.943	02/20/09	02/22/09	
Aldrin	EPA 608	9B20074	0.0014	0.0047	ND	0.943	02/20/09	02/22/09	
alpha-BHC	EPA 608	9B20074	0.0024	0.0094	0.023	0.943	02/20/09	02/22/09	N2
beta-BHC	EPA 608	9B20074	0.0038	0.0094	ND	0.943	02/20/09	02/22/09	
delta-BHC	EPA 608	9B20074	0.0033	0.0047	ND	0.943	02/20/09	02/22/09	
Dieldrin	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan I	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan II	EPA 608	9B20074	0.0028	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan sulfate	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
Endrin	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endrin aldehyde	EPA 608	9B20074	0.0019	0.0094	ND	0.943	02/20/09	02/22/09	С
Endrin ketone	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
gamma-BHC (Lindane)	EPA 608	9B20074	0.0028	0.019	ND	0.943	02/20/09	02/22/09	
Heptachlor	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
Heptachlor cpoxide	EPA 608	9B20074	0.0024	0.0047	ND	0.943	02/20/09	02/22/09	
Methoxychlor	EPA 608	9B20074	0.0033	0.0047	ND	0.943	02/20/09	02/22/09	
Chlordane	EPA 608	9B20074	0.038	0.094	ND	0.943	02/20/09	02/22/09	
Toxaphene	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/22/09	
Surrogate: Decachlorobiphenyl (45-120%)					81 %				
Surrogate: Decachlorobiphenyl (45-120%)					81 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					72 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					72 %				

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

ISB1786 <Page 12 of 74>

And the second s

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

Arcadia, CA 91007 Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

				MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte		Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB178	5-01RE1 (Outfall 001 - V	Vater) - cont.								
Reporting Units	s: ug/l									
4,4'-DDD	usic	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
4,4'-DDE	SILP	EPA 608	9B23113	0.0028	0.0047	ND	0.943	02/23/09	02/25/09	
4,4'-DDT	UTIC	EPA 608	9B23113	0.0038	0.0094	ND	0.943	02/23/09	02/25/09	
Aldrin	UDIC	EPA 608	9B23113	0.0014	0.0047	ND	0.943	02/23/09	02/25/09	
alpha-BHC	RD	EPA 608	9B23113	0.0024	0.0094	0.013	0.943	02/23/09	02/25/09	N2
beta-BHC	WIG U	EPA 608	9B23113	0.0038	0.0094	ND	0.943	02/23/09	02/25/09	
delta-BHC	UJIC	EPA 608	9B23113	0.0033	0.0047	ND	0.943	02/23/09	02/25/09	
Dieldrin	UJIC	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan I	UDIC	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan II	UJIC	EPA 608	9B23113	0.0028	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan sulfate	UJIC	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
Endrin	UTIC	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endrin aldehyde	UJIC	EPA 608	9B23113	0.0019	0.0094	ND	0.943	02/23/09	02/25/09	
Endrin ketone	US IC	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
gamma-BHC (Linda	ne) UJIC	EPA 608	9B23113	0.0028	0.019	ND	0.943	02/23/09	02/25/09	
Heptachlor	USC-	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
Heptachlor epoxide	UJIC	EPA 608	9B23113	0.0024	0.0047	ND	0.943	02/23/09	02/25/09	
Methoxychlor	UJIC	EPA 608	9B23113	0.0033	0.0047	ND	0.943	02/23/09	02/25/09	
Chlordane	4	EPA 608	9B23113	0.038	0.094	ND	0.943	02/23/09	02/25/09	
Toxaphene	V	EPA 608	9B23113	0.24	0.47	ND	0.943	02/23/09	02/25/09	
Surrogate: Decachlo	robiphenyl (45-120%)					88 %				
Surrogate: Decachlo	robiphenyl (45-120%)					88 %				
Surrogate: Tetrachlo	pro-m-xylene (35-115%)					83 %				
Surrogate: Tetrachlo	rropate: Tetrachloro-m-xvlene (35-115%)					83 %				

LEVEL IV

110 3 76.09

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 13 of 74>

NPDES - 26

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing	Project ID:	Annual Outfall 001		
618 Michillinda Avenue, Suite 200			Sampled:	02/16/09
Arcadia, CA 91007	Report Number:	ISB1786	Received:	02/16/09
Attention: Bronwyn Kelly				
**************************************	119.000 <u>12</u>	Constraints (1/1) Measures 11/15/ "yee yawahaada ahar na aligan sa araa ahari	ROHERPOOL TO MERSION AND AND AND AND AND AND AND AND AND AN	and a conference of the second state of the second
	C	CFR136A 608		

				MDL	Reporting	Sample	Dilution	Date	Date	Data		
Analyte		Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers		
Sample ID: ISB1786	mple ID: ISB1786-01 (Outfall 001 - Water) - cont.											
Reporting Units:	ug/L.											
alpha-BHC	USH	CFR136A 608	9064381	0.0053	0.05	ND	1	03/05/09	03/10/09	HTV		
Surrogate: Decachlor	obiphenyl (32-144)	%)				58 %						
Surrogate: Tetrachlor	nrogate: Tetrachloro-m-xylene (52-117%)					90 %						

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 25 of 74>

TestAmerica Irvine

Client Sample ID: ISB1786-01

Radiochemistry

	0011
Lab Sample ID:	F9B180
Work Order:	K7DJX
Matrix:	WATER

Outfall OO F9B180223-001 K7DJX

Date Collected: 02/16/09 1400 Date Received: 02/18/09 0930

Parameter	Result	Qual	Total Uncert. $(2 \sigma + / -)$	1	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & Hits b	Y EPA 901.1 M	IOD		pCi/L		Batch # 9	058211	Yld %
Cesium 137 UJ/H	2.6	υ	9.8		20.0	18	02/27/09	03/15/09
Potassium 40 y	-80	υ	1600			300	02/27/09	03/15/09
Gross Alpha/Beta EPA	900			pCi/L		Batch # 9	050133	Yld %
Gross Alpha J/H, C	5.5		1.6		3.0	1.1	02/24/09	03/03/09
Gross Beta J/H	4.9		1.1		4.0	1.2	02/24/09	03/03/09
TRITIUM (Distill) by	EPA 906.0 MOI)		pCi/L		Batch # 9	066052	Yld %
Tritium ()	-50	σ	170		500	300	03/07/09	03/13/09
SR-90 BY GFPC EPA-90	5 MOD			pCi/L		Batch # 9	049442	¥1d % 61
Strontium 90 U	0.06	υ	0.28		3.00	0.49	02/18/09	02/28/09
Total Uranium by KPA	ASTM 5174-91			pCi/L		Batch # 9	050413	Yld %
Total Uranium J/H, DWQ	0.547	J	0.066	-	1.35	0.42	02/19/09	03/08/09
Radium 226 by EPA 90	3.0 MOD			pCi/L		Batch # 9	049439	Y1d % 90
Radium (226) J/DAVQ	0.31	J	0.17	_	1.00	0.22	02/18/09	03/13/09
Radium 228 by GFPC EP	A 904 MOD			pCi/L		Batch # 9	049441	Yld % 80
Radium 228 U	0.17	σ	0.35		1.00	0.58	02/18/09	03/13/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only.

Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

5 of 13

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

t

Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1786-01 (Outfall 001 - Water) - cont.								
Reporting Units: ug/l								
Acenaphthene EPA 62	5 9B21046	0.094	0.47	ND	0 943	02/21/09	07/24/00	LA.
Acenaphthylene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	1
Anthracene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	1
Benzidine EPA 62	5 9B21046	N/A	4.7	ND	0.943	02/21/09	02/24/09	
Benzo(a)anthracene EPA 62	5 9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	1
Benzo(a)pyrene EPA 62	5 9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/00	1
Benzo(b)fluoranthene EPA 62	5 9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/00	
Benzo(g,h,i)perylene EPA 62	5 9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/00	1
Benzo(k)fluoranthene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
4-Bromophenyl phenyl ether EPA 62	5 9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	1
Butyl benzyl phthalate EPA 62	5 9B21046	0.66	4.7	1.1	0.943	02/21/09	02/24/00	10 DT
Bis(2-chloroethoxy)methane EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	ID B, J
Bis(2-chloroethyl)ether EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	A
Bis(2-chloroisopropyl)ether EPA 62	5 9B21046	0.094	0.47	ND	0.043	02/21/09	02/24/09	1
2-Chloronaphthalene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
4-Chlorophenyl phenyl ether EPA 62	5 9B21046	0.094	0.47	ND	0.043	02/21/09	02/24/09	1
Chrysene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Dibenz(a,h)anthracene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/03	1
Di-n-butyl phthalate EPA 62	5 9B21046	0.19	1.9	ND	0.043	02/21/09	02/24/09	
1,2-Dichlorobenzene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	}
1,3-Dichlorobenzene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
1,4-Dichlorobenzene EPA 62	5 9B21046	0.19	0.47	ND	0.943	02/21/09	02/24/09	1
3,3'-Dichlorobenzidine EPA 62	5 9B21046	N/A	4.7	ND	0.043	02/21/09	02/24/09	11 -
Diethyl phthalate EPA 62	5 9B21046	0.094	0.94	0.11	0.943	02/21/09	02/24/09	-/ / N 61
Dimethyl phthalate EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	710.1
2,4-Dinitrophenol EPA 62	5 9B21046	0.85	4.7	ND	0.943	02/21/09	02/24/09	~
2,4-Dinitrotoluene EPA 62	5 9B21046	0.19	4.7	ND	0.943	02/21/09	02/24/09	
2,6-Dinitrotoluene EPA 62	5 9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	THETT
Di-n-octyl phthalate EPA 62	5 9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	14
1,2-Diphenylhydrazine/Azobenzene EPA 62	5 9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	1
Bis(2-ethylhexyl)phthalate EPA 62	5 9B21046	1.6	4.7	ND	0.943	02/21/09	02/24/09	
Fluoranthene EPA 62:	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	1
Fluorene EPA 62	5 9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Hexachlorobenzene EPA 62	5 9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
Hexachlorobutadiene EPA 62	5 9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/00	
Hexachlorocyclopentadiene EPA 62:	5 9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
Hexachloroethane EPA 62:	5 9B21046	0.19	2.8	ND	0.943	02/21/09	02/24/00	
Indeno(1,2,3-cd)pyrene EPA 62:	5 9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	1
Isophorone EPA 62:	5 9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	11+11-
Naphthalene EPA 62:	5 9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	U.
Nitrobenzene EPA 62	5 9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	L

TestAmerica Irvine

Joseph Doak

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 10 of 74>

18

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1786-01 (Outfall 001 - Water	r) - cont.								
Reporting Units: ug/l									
N-Nitroso-di-n-propylamine	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	11-412
N-Nitrosodimethylamine	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	u
N-Nitrosodiphenylamine	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	J.
Pentachlorophenol	EPA 625	9B21046	0.094	1.9	1.5	0.943	02/21/09	02/24/09	T/09 0
Phenanthrene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	u.
Pyrene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	1
1,2,4-Trichlorobenzene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
2,4,6-Trichlorophenol	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	~
Surrogate: 2,4,6-Tribromophenol (40-120%)					74 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					76 %				
Surrogate: 2-Fluorophenol (30-120%)					63 %				
Surrogate: Nitrobenzene-d5 (45-120%)					72 %				
Surrogate: Phenol-d6 (35-120%)					66 %				
Surrogate: Terphenyl-d14 (50-125%)					95 %				

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 11 of 74>

LEVEL IV

19

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1786-01 (Outfall 001	- Water) - cont.								
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	9B24128	0.50	0.50	0.56	1	02/24/09	02/24/09	
Biochemical Oxygen Demand	SM5210B	9B17161	0.50	2.0	2.4	1	02/17/09	02/22/09	
Chloride	EPA 300.0	9B16057	0.25	0.50	10	1	02/16/09	02/17/09	
Fluoride	SM 4500-F-C	9B17074	0.020	0.10	0.12	1	02/17/09	02/17/09	В
Nitrate-N	EPA 300.0	9B16057	0.060	0.11	1.4	1	02/16/09	02/17/09	
Nitrite-N	EPA 300.0	9B16057	0.090	0.15	ND	1	02/16/09	02/17/09	
Nitrate/Nitrite-N	EPA 300.0	9B16057	0.15	0.26	1.4	1	02/16/09	02/17/09	
Residual Chlorine	EPA 330.5	9B17105	0.10	0.10	ND	1	02/17/09	02/17/09	HFT
Sulfate	EPA 300.0	9B16057	0.20	0.50	9.7	1	02/16/09	02/17/09	
Surfactants (MBAS)	SM5540-C	9B17098	0.025	0.10	0.097	1	02/17/09	02/17/09	J
Total Dissolved Solids 🛛 🚽	SM2540C	9B18065	10	10	120	1	02/18/09	02/18/09	
Total Organic Carbon	SM5310B	9B23002	0.50	1.0	10	1	02/23/09	02/23/09	
Total Suspended Solids	SM 2540D	9B21068	1.0	10	92	1	02/21/09	02/21/09	

LEVELIV

*Analysis not validated

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 20 of 74>

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Sample ID: ISB1786-01 (Outfall 001 - Water) - cont.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

		IN	ORGA	NICS	Samula	Dilution	Data	Data	Data	
			MDL	Reporting	Sample	Dilution	Date	Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	

Reporting Units: NTU								
Turbidity	EPA 180.1	9B17067	0.40	10	140	10	02/17/09	02/17/09

LEVELIV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 22 of 74>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing	Projec	ct ID:	Annual Ou	utfall 001					
618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly	Report Nun	nber:	ISB1786				Sampled: Received:	02/16/09 02/16/09	
		I	ORGA	NICS					
Analyte	Method E	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers

9B18054

Sample ID: ISB1786-01 (Outfall 001 - Water) - cont. Reporting Units: umhos/cm Specific Conductance EPA 120.1

1.0 1.0

1 02/18/09 02/18/09

120

LEVELIV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 24 of 74>

32

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ISB1786

Prepared by

MEC^x, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	ISB1786
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 001	ISB1786-01	D9B190127-001, D9C050234-001, 31438-001, F9B180223-001, 981797-1	Water	02/16/09 1400	120.1, 180.1, 200.7, 200.7 (Diss), 200.8, 200.8 (Diss) 245.1, 245.1 (Diss), 608, 625, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 908.0, 1613B, 8315M, SM2340B, SM2540D, SM5310B

II. Sample Management

No anomalies were observed regarding sample management. The samples were received at all laboratories within the temperature limit of $4 \pm 2^{\circ}$ C. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine and Truesdail, custody seals were not required. Custody seal were present and intact upon arrival at TestAmerica-Denver, TestAmerica-St. Louis, and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 26, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHOD 8315M—Hydrazines

Reviewed By: P. Meeks Date Reviewed: March 27, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 8315M, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was derivitized within three days of collection and analyzed within 3 days of derivitization.
- Calibration: Calibration criteria were met. The initial calibration r² values were ≥0.995 except for hydrazine; therefore, nondetected hydrazine was qualified as estimated, "UJ." The ICV and QCS recoveries were within 85-115%.
- Blanks: The method blank had no target compound detects above the MDL.

- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision were evaluated based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

C. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 26, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 2007, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The analytical holding times, 180 days for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995. Initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. The copper and selenium CRI recoveries associated with the total metals analyses were 63% and 134%, respectively; therefore, total copper and selenium detected in the sample were qualified as estimated, "J." The zinc CRI recovery associated with the dissolved metals analyses was 63%; therefore, dissolved zinc detected in the sample was qualified as estimated, "J." The remaining CRI and CRA and check standards were recovered within the control limits of 70-130%.
- Blanks: Chromium and nickel were detected in the total method blank at 4.13 and 2.91 μg/L, respectively; therefore, total chromium and nickel detected in the sample were qualified as nondetected, "U," at the level of contamination if detected above the control limit or at the reporting limit if detected below. Boron was detected in the dissolved method blank at 20.9 μg/L; therefore, dissolved boron detected in the sample was qualified as nondetected, "U," at the reporting limit. Antimony was detected in CCBs bracketing the sample analyses at 0.666 and 0.412 μg/L; therefore both total and dissolved antimony detected in the sample were qualified as nondetected, "U," at the reporting limit. Selenium was detected in a CCB bracketing the dissolved metals analysis at 0.443 μg/L; therefore, dissolved selenium detected in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in a CCB bracketing the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in the sample was qualified as estimated, "J." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: Recoveries were within the method-established control limits. There were detects and negative results in the ICSA associated with the ICP analyses; however, the concentration of interferents in the site sample were insufficient to cause matrix interference. There were detects in the ICP-MS ICSA solution but the reviewer was unable to ascertain if the detects were due to matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within the laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All associated sample internal standard intensities were within 60-125% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summaries were verified against the raw data. No transcription errors or

calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 608—Pesticides and PCBs

Reviewed By: K. Shadowlight Date Reviewed: March 26, 2009

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 608, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: The original extraction and analytical holding times were met. The water sample was originally extracted within seven days of collection; however, as the detect for alpha BHC was suspected to be a lab contaminant, the sample was re-extracted at TestAmerica-Irvine and another extraction was performed at TestAmerica-Denver. The re-extraction performed at TestAmerica Denver was outside of the holding time period. The retained result (nondetect) for alpha-BHC was qualified as estimated, "UJ," in sample Outfall 001 (see the Blanks section).
- Calibration: The initial calibration had average %RSDs of ≤10% or r² ≥0.995 for the pesticide analysis. The %Ds for all analytes except beta-BHC, chlordane, and toxaphene exceeded 15% in one or both of the low-level CCVs bracketing the pesticide analysis; therefore, the nondetects for these analytes were qualified as estimated, "UJ," in the retained results of the sample in this SDG. As there were no confirmed detects for the retained results, the confirmation column %Ds were not evaluated. The ICV and remaining CCVs bracketing the sample analyses had %Ds within the QC limit of ≤15%.
- Blanks: The method blank associated with the retained results had no target compound detects above the MDL.

Alpha BHC was reported in sample Outfall 001; however, the laboratory suspected contamination related to one highly contaminated sample with percent level alpha-BHC. A second extraction of Outfall 001 yielded a low-level concentration of alpha BHC, indicating

that the laboratory was not contamination free. The sample was sent to TestAmerica-Denver for alpha-BHC analysis. The nondetect result yielded from the TestAmerica-Denver analysis confirmed the suspicion that the original result was indeed laboratory contamination; therefore, the original sample extraction in batch 9B20074 and the alpha-BHC result in the re-extraction from batch 9B23113 were rejected, "R," in favor of the result for alpha BHC reported in batch 9064381 from TestAmerica-Denver. Several corrective action steps have been taken by TestAmerica-Irvine including replacing glassware throughout the organics department and implementing an acid wash procedure to prevent future contamination issues.

- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs for the blank spike/blank spike duplicate pairs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed for the sample in this SDG. Method accuracy and precision was evaluated based on the blank spike/blank spike duplicate results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. The laboratory analyzed for pesticides and PCBs by EPA Method 608. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified from the raw data. The reporting limits were supported by the lower level of the initial calibration. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

E. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 25, 2009 The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The aliquots for gross alpha, gross beta, cesium-137, potassium-40, and total uranium were prepared beyond the five-day holding time for unpreserved samples; therefore, the results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects. All remaining aliquots were prepared within the five-day holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium, radium-226, and radium-228 chemical yields were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries and the strontium-90, radium-226, and radium-228 RPDs were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No matrix spike or MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision, when applicable, were evaluated based on LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Total uranium, normally reported in aqueous units, was converted to pCi/L using a conversion factor for naturally occurring uranium. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

11

The reviewer noted that the total uncertainty for potassium-40 was more than an order of magnitude larger than usually reported for site samples. The laboratory attributed this high uncertainty to a very low sample count and a slightly high background count.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

F. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: S. Dellamia, E. Wessling Date Reviewed: March 27, 2009, April 16, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The unpreserved water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. Initial calibration average RRFs were ≥0.05 and %RSDs ≤35% or r² values ≥0.995. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had detects for benzo(g,h,i)perylene at 0.400(J) μg/L, butyl benzyl phthalate at 1.04(J) μg/L and ideno(1,2,3-cd)perylene at 0.240(J) μg/L; therefore, the detect for butyl benzyl phthalate in sample Outfall 001 was qualified as nondetected, "U," at the RL. There were no other target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. RPDs were above QC limits for benzyl alcohol, 4-chloroaniline, bis(2-chloroethoxy)methane, 2,6-dinitrotoluene, isophorone, 2-methylphenol, 4-nitroaniline and n-nitroso-di-n-propylamine; therefore, results for all eight compounds in sample Outfall 001 were qualified as estimated, "UJ." Remaining RPDs were within QC limits and no further qualifications were required.

- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed for the sample in this SDG. Evaluation of method accuracy and precision was based on LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated that there were no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

G. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 27, 2009

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 120.1, 180.1, Standard Methods SM2540D and SM5310B, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: Analytical holding times, 24 hours for conductivity, 48 hours from collection for turbidity, 7 days for TSS, and 28 days for TOC, were met.
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. Balance calibration logs were reviewed and found to be acceptable.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Turbidity was analyzed at a 20× dilution in order to report the analyte within the linear range of the calibration. Any detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Project 31438

Analyst: JMH

LEVEL IV

Approved By: Martha M. Maier 07-Mar-2009 08:50

Sample ID: ISB1	786-01 Dutfall	00				EPA N	Aethod 1613
Client Data		Sample 1	Data	Laboratory Data			
Name: Test	America-Irvine, CA	Matrix:	Aqueous	Lab Sample:	31438-001	Date Received:	18-Feb-09
Project: ISB1	-h-00	Sample S	ize: 1.04 L	QC Batch No .:	1907	Date Extracted:	21-Feb-09
Time Collected: 1400	50-V7			Date Analyzed DB-5:	24-Feb-09	Date Analyzed DB-225:	NA
Analyte	Conc. (ug/L)	DL ^a EMPC	d Qualifiers	Labeled Stands	ard	%R LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND M	0.000000671		<u>IS</u> 13C-2,3,7,8-TCI	DD	84.3 25 - 164	
1,2,3,7,8-PeCDD	ND	0.00000147		13C-1,2,3,7,8-Pe	CDD	76.1 25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.00000312		13C-1,2,3,4,7,8-J	HxCDD	80.2 32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000328		13C-1,2,3,6,7,8-J	HxCDD	77.7 28 - 130	
1,2,3,7,8,9-HxCDD	ND 4	0.00000309		13C-1,2,3,4,6,7,8	3-HpCDD	75.6 23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000667			13C-OCDD		66.2 17 - 157	
OCDD	0.000643			13C-2,3,7,8-TCI	OF	93.4 24 - 169	
2,3,7,8-TCDF	ND W	0.000000676		13C-1,2,3,7,8-Pe	CDF	80.9 24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000841		13C-2,3,4,7,8-Pe	CDF	80.8 21 - 178	
2,3,4,7,8-PeCDF	ND	0.00000908		13C-1,2,3,4,7,8-J	HxCDF	84.6 26 - 152	
1,2,3,4,7,8-HxCDF	UD	0.00000157		13C-1,2,3,6,7,8-1	HxCDF	76.0 26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.00000167		13C-2,3,4,6,7,8-1	HxCDF	82.8 28 - 136	
2,3,4,6,7,8-HxCDF	D	0.00000180		13C-1,2,3,7,8,9-J	HxCDF	76.5 29 - 147	
1,2,3,7,8,9-HxCDF	ND 4	0.00000263		13C-1,2,3,4,6,7,8	3-HpCDF	77.9 28 - 143	
1,2,3,4,6,7,8-HpCDF	0.0000119 JONS		ſ	13C-1,2,3,4,7,8,9	9-HpCDF	73.2 26 - 138	
1,2,3,4,7,8,9-HpCDF	ND U	0.00000305		13C-OCDF		59.6 17 - 157	
OCDF	0.0000412 JIDNO		J	CRS 37CI-2,3,7,8-TC	DD	90.1 35 - 197	
Totals				Footnotes			
Total TCDD	ND U	0.000000671		a. Sample specific estimate	d detection limit.		
Total PeCDD	ND 4	0.00000147		b. Estimated maximum pos	sible concentration.		
Total HxCDD	0.0000114 JONQ			c. Method detection limit.			
Total HpCDD	0.000146			d. Lower control limit - upp	er control limit.		
Total TCDF	ND	0.000000676					
Total PeCDF	0.00000342 JANQ						
Total HxCDF	0.0000139 JUNO						
Total HpCDF	0.0000350						

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: TestAmerica Analytical 17461 Derian Avenue, Suite 100 Irvine, CA 92614-5817

Attention:Joseph DoakSample:Water / 1 SampleProject Name:ISB1786P.O. Number:2294262Method Number:8315 (Modified)Investigation:Hydrazines

REPORT

981797 Laboratory No: **Report Date:** February 20, 2009 Sampling Date: February 16, 2009 **Receiving Date:** February 17, 2009 **Extraction Date:** February 18, 2009 Analysis Date: February 19, 2009 Units: μg/L **Reported By:** JS

Analytical Results

		Sample	Dilution	Monomethyl	u-Dimethyl	Hydrazine	Qualifier
Sample ID	Sample Descript	Amount (mL)	Factor	Hydrazine	Hydrazine		Codes
708023-MB	Method Blank	100	1	ND 🔆	ND X	ND 🔆	None
981797 Out	r-Fall 001 ISB1786-01	100	1	ND U	NDU	NDUJC	None
MDL				1.70	1.42	0.60	
PQL				5.0	5.0	1.00	
Sample Repo	orting Limits			5.0	5.0	1.00	

Note: Results based on detector #1 (UV=365nm) data.

Linda Saetern, Project Manager Analytical Services, Truesdail Laboratories, Inc.

*Analysis not validated

004

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing	Project ID:	Annual Outfall 001			
618 Michillinda Avenue, Suite 200			Sampled:	02/16/09	
Arcadia, CA 91007	Report Number:	ISB1786	Received:	02/16/09	
Attention: Bronwyn Kelly					
	יין איז היאינה לאיליי איז אינטער לאיראל ייל איז אינטער אינטער אינטער אינטער אינטער אינטער אינטער אינטער אינטער איז איז איז איז איז איז איז איז איז איז	C TEN CONSIGN TO THE OWNER AND		SAT SURGER DISLOTION OF STREET,	AN SOLUTION

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1786-01 (Outfall 00	1 - Water) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	46	1	02/17/09	02/17/09	
Barium	EPA 200.7	9B17091	0.0060	0.010	0.073	1	02/17/09	02/17/09	
Boron J/DNG	EPA 200.7	9B17091	0.020	0.050	0.043	1	02/17/09	02/17/09	J
Calcium	EPA 200.7	9B17091	0.050	0.10	11	1	02/17/09	02/17/09	
Iron	EPA 200.7	9B17091	0.015	0.040	8.1	1	02/17/09	02/17/09	
Magnesium	EPA 200.7	9B17091	0.012	0.020	4.6	1	02/17/09	02/17/09	

METALS

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples lested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 16 of 74>

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

 MWH-Pasadena/Boeing
 Project ID: Annual Outfall 001

 618 Michillinda Avenue, Suite 200
 Sampled: 02/16/09

 Arcadia, CA 91007
 Report Number: ISB1786
 Received: 02/16/09

 Attention: Bronwyn Kelly
 Sampled: 02/16/09
 Sampled: 02/16/09

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1786-01 (Outfall 001 -	Water) - cont.								
Reporting Units: ug/l									
Arsenic U	EPA 200.7	9B17091	7.0	10	ND	1	02/17/09	02/17/09	
Antimony U/B	EPA 200.8	9B17103	0.20	2.0	0.72	1	02/17/09	02/18/09	J
Beryllium U	EPA 200.7	9B17091	0.90	2.0	ND	1	02/17/09	02/17/09	
Chromium U/B	EPA 200.7	9B17091	2.0	5.0	10	1	02/17/09	02/17/09	В
Cobalt J/DNQ	EPA 200.7	9B17091	2.0	10	2.5	1	02/17/09	02/17/09	J
Manganese	EPA 200.7	9B17091	7.0	20	110	1	02/17/09	02/17/09	
Nickel U/B	EPA 200.7	9B17091	2.0	10	7.9	1	02/17/09	02/17/09	B, J
Cadmium J/DNQ	EPA 200.8	9B17103	0.11	1.0	0.14	1	02/17/09	02/18/09	J
Vanadium	EPA 200.7	9B17091	3.0	10	19	1	02/17/09	02/17/09	
Zinc	EPA 200.7	9B17091	6.0	20	37	1	02/17/09	02/17/09	
Copper J/ Will	EPA 200.8	9B17103	0.75	2.0	6.6	1	02/17/09	02/18/09	
Lead	EPA 200.8	9B17103	0.30	1.0	6.6	1	02/17/09	02/18/09	
Selenium JASEL, DWQ	EPA 200.8	9B17103	0.30	2.0	0.52	1	02/17/09	02/18/09	J
Silver U	EPA 200.8	9B17103	0.30	1.0	ND	1	02/17/09	02/18/09	
Thallium 🕛	EPA 200.8	9B17103	0.20	1.0	ND	1	02/17/09	02/18/09	

level IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 17 of 74>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1786-01 (Outfall 0	01 - Water) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B-Diss	[CALC]	N/A	0.33	37	1	02/17/09	02/23/09	
Barium	EPA 200.7-Diss	9B17100	0.0060	0.010	0.013	1	02/17/09	02/23/09	
Boron U/B	EPA 200.7-Diss	9B17100	0.020	0.050	0.034	1	02/17/09	02/23/09	B, J
Calcium	EPA 200.7-Diss	9B17100	0.050	0.10	9.8	1	02/17/09	02/23/09	
Iron	EPA 200.7-Diss	9B17100	0.015	0.040	0.45	1	02/17/09	02/23/09	
Magnesium	EPA 200.7-Diss	9B17100	0.012	0.020	3.0	1	02/17/09	02/23/09	

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 18 of 74>

26

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

DISSOLVED METALS

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1786-01 (Outfall 001 -	Water) - cont.								
Reporting Units: ug/l									
Arsenic U	EPA 200.7-Diss	9B17100	7.0	10	ND	1	02/17/09	02/23/09	
Antimony U/B	EPA 200.8-Diss	9B20106	0.20	2.0	1.1	1	02/20/09	02/24/09	J
Beryllium ()	EPA 200.7-Diss	9B17100	0.90	2.0	ND	1	02/17/09	02/23/09	
Chromium	EPA 200.7-Diss	9B17100	2.0	5.0	ND	1	02/17/09	02/23/09	
Cobalt	EPA 200.7-Diss	9B17100	2.0	10	ND	1	02/17/09	02/23/09	
Manganese JINQ	EPA 200.7-Diss	9B17100	7.0	20	12	1	02/17/09	02/23/09	J
Nickel U	EPA 200.7-Diss	9B17100	2.0	10	ND	1	02/17/09	02/23/09	
Cadmium J/DNQ	EPA 200.8-Diss	9B20106	0.11	1.0	0.14	1	02/20/09	02/24/09	J
Vanadium ()	EPA 200.7-Diss	9B17100	3.0	10	ND	1	02/17/09	02/23/09	
Zine JA: TT. B. DNQ	EPA 200.7-Diss	9B17100	6.0	20	15	1	02/17/09	02/23/09	J
Copper	EPA 200.8-Diss	9B20106	0.75	2.0	2.3	1	02/20/09	02/23/09	
Lead J/DWQ	EPA 200.8-Diss	9B20106	0.30	1.0	0.31	1	02/20/09	02/23/09	J
Selenium U/B	EPA 200.8-Diss	9B20106	0.30	2.0	0.42	1	02/20/09	02/23/09	J
Silver U	EPA 200.8-Diss	9B20106	0.30	1.0	ND	1	02/20/09	02/23/09	
Thallium U	EPA 200.8-Diss	9B20106	0.20	1.0	ND	1	02/20/09	02/23/09	С

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 19 of 74>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

1

02/19/09 02/19/09

MWH-Pasadena/Boeing	ł	Project ID:	Annual O	utfall 001						
618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly	Repor	t Number:	ISB1786				Sampled: Received:	02/16/09 02/16/09		
DICT A REPORT OF CONTRACT OF		М	CAWW	245.1				nan in ann ann ann ann ann ann		0000720
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ISB1786-01 (Outfall 001 - W	ater) - cont.									

0.027

0.2

ND

9050174

Reporting Units: ug/L

MCAWW 245.1

Mercury ()

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 26 of 74>

34

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

.

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly	Project ID: Report Number:	Annual O	utfall 001			Sampled: Received:	02/16/09 02/16/09	
โหน่มของสุของสุของการการการการการสุของสามอาณาการการการการการการการการการการการการการ	MCA	WW 24	5.1-DISS Reporting	Sample	Dilution	Date	Date	Data

Analyte	Method Bat	ch Limit	Limit	Result	Factor	Date Extracted	Analyzed	Qualifiers
Sample ID: ISB1786-01 (Outfall 001	- Water) - cont.							
Reporting Units: ug/L								
Mercury	MCAWW 245.1-DISS 9050	182 0.027	0.2	ND -	1	02/19/09	02/19/09	

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 27 of 74>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: ISB1786

Project ID: Annual Outfall 001

Sampled: 02/16/09 Received: 02/16/09

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

.....

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1786-01 (Outfall 001 - Wate	er) - cont.								
Reporting Units: ug/l									
4,4'-DDD	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
4,4'-DDE	EPA 608	9B20074	0.0028	0.0047	ND	0.943	02/20/09	02/22/09	
4,4'-DDT	EPA 608	9B20074	0.0038	0.0094	ND	0.943	02/20/09	02/22/09	
Aldrin	EPA 608	9B20074	0.0014	0.0047	ND	0.943	02/20/09	02/22/09	
alpha-BHC	EPA 608	9B20074	0.0024	0.0094	0.023	0.943	02/20/09	02/22/09	N2
beta-BHC	EPA 608	9B20074	0.0038	0.0094	ND	0.943	02/20/09	02/22/09	
delta-BHC	EPA 608	9B20074	0.0033	0.0047	ND	0.943	02/20/09	02/22/09	
Dieldrin	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan I	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan II	EPA 608	9B20074	0.0028	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan sulfate	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
Endrin	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endrin aldehyde	EPA 608	9B20074	0.0019	0.0094	ND	0.943	02/20/09	02/22/09	С
Endrin ketone	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
gamma-BHC (Lindane)	EPA 608	9B20074	0.0028	0.019	ND	0.943	02/20/09	02/22/09	
Heptachlor	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
Heptachlor cpoxide	EPA 608	9B20074	0.0024	0.0047	ND	0.943	02/20/09	02/22/09	
Methoxychlor	EPA 608	9B20074	0.0033	0.0047	ND	0.943	02/20/09	02/22/09	
Chlordane	EPA 608	9B20074	0.038	0.094	ND	0.943	02/20/09	02/22/09	
Toxaphene	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/22/09	
Surrogate: Decachlorobiphenyl (45-120%)					81 %				
Surrogate: Decachlorobiphenyl (45-120%)					81 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					72 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					72 %				

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 12 of 74>

And the second s

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

Arcadia, CA 91007 Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

				MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte		Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1786	-01RE1 (Outfall 001 - W	ater) - cont.								
Reporting Units	: ug/1									
4,4'-DDD	usic	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
4,4'-DDE	4JIC	EPA 608	9B23113	0.0028	0.0047	ND	0.943	02/23/09	02/25/09	
4,4'-DDT	ATTC	EPA 608	9B23113	0.0038	0.0094	ND	0.943	02/23/09	02/25/09	
Aldrin	JIC	EPA 608	9B23113	0.0014	0.0047	ND	0.943	02/23/09	02/25/09	
alpha-BHC	RD	EPA 608	9B23113	0.0024	0.0094	0.013	0.943	02/23/09	02/25/09	N2
beta-BHC	UTIG U	EPA 608	9B23113	0.0038	0.0094	ND	0.943	02/23/09	02/25/09	
delta-BHC	UJIC	EPA 608	9B23113	0.0033	0.0047	ND	0.943	02/23/09	02/25/09	
Dieldrin	UJIC	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan I	UDIC	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan II	UJIC	EPA 608	9B23113	0.0028	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan sulfate	UJIC	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
Endrin	UJIC	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endrin aldehyde	UJIC	EPA 608	9B23113	0.0019	0.0094	ND	0.943	02/23/09	02/25/09	
Endrin ketone	US IC	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
gamma-BHC (Lindar	e) UJIC	EPA 608	9B23113	0.0028	0.019	ND	0.943	02/23/09	02/25/09	
Heptachlor	USIC-	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
Heptachlor epoxide	UJIC	EPA 608	9B23113	0.0024	0.0047	ND	0.943	02/23/09	02/25/09	
Methoxychlor	UJIC	EPA 608	9B23113	0.0033	0.0047	ND	0.943	02/23/09	02/25/09	
Chlordane	4	EPA 608	9B23113	0.038	0.094	ND	0.943	02/23/09	02/25/09	
Toxaphene	V	EPA 608	9B23113	0.24	0.47	ND	0.943	02/23/09	02/25/09	
Surrogate: Decachlor	robiphenyl (45-120%)					88 %				
Surrogate: Decachlon	robiphenyl (45-120%)					88 %				
Surrogate: Tetrachlo	ro-m-xylene (35-115%)					83 %				
Surrogate: Tetrachlo	ro-m-xylene (35-115%)					83 %				

110 3 76.09

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 13 of 74>

NPDES - 58

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing	Project ID:	Annual Outfall 001		
618 Michillinda Avenue, Suite 200			Sampled:	02/16/09
Arcadia, CA 91007	Report Number:	ISB1786	Received:	02/16/09
Attention: Bronwyn Kelly				
ammalusyamikaanikaania — maraanikaanikaanikaisaataataanika	1980 (1980)	Construction - However, the first statistical statistical statistics	riterilipion marginalistic de la companya de la com	a ann a' agus ann an 1990 ann a' Chuir Breac Cearda in agus ann an 1990 Ceardair a Ceard Pharma
	0	CFR136A 608		

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1786-01 (Ontfall 001 - Water) - cont.										
Reporting Units	: ug/L.									
alpha-BHC	WIH	CFR136A 608	9064381	0.0053	0.05	ND	1	03/05/09	03/10/09	HTV
Surrogate: Decachlo	robiphenyl (32-144	1%)				58 %				
Surrogate: Tetrachlo	ro-m-xylene (52-11	(7%)				90 %				

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 25 of 74>

TestAmerica Irvine

Client Sample ID: ISB1786-01

Radiochemistry

	0011
Lab Sample ID:	F9B180
Work Order:	K7DJX
Matrix:	WATER

Outfall OO F9B180223-001 K7DJX

Date Collected: 02/16/09 1400 Date Received: 02/18/09 0930

Parameter	Result	Qual	Total Uncert. $(2 \sigma + / -)$		RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & Hits	by EPA 901.1	MOD		pCi/L		Batch #	9058211	Yld %
Cesium 137 UJ/H	2.6	U	9.8		20.0	18	02/27/09	03/15/09
Potassium 40 🚽 🚽	-80	υ	1600			300	02/27/09	03/15/09
Gross Alpha/Beta EPA	900			pCi/L		Batch #	9050133	Yld %
Gross Alpha J/H, C	5.5		1.6		3.0	1.1	02/24/09	03/03/09
Gross Beta 3/H	4.9		1.1		4.0	1.2	02/24/09	03/03/09
TRITIUM (Distill) by	EPA 906.0 MO	D		pCi/L		Batch #	9066052	Yld %
Tritium U	-50	σ	170		500	300	03/07/09	03/13/09
SR-90 BY GFPC BPA-9	05 MOD			pCi/L		Batch #	9049442	Yld % 61
Strontium 90 U	0.06	υ	0.28		3.00	0.49	02/18/09	02/28/09
Total Uranium by KPA	ASTM 5174-91			pCi/L		Batch #	9050413	Yld %
Total Uranium J/H, DWQ	0.547	J	0.066		1.35	0.42	02/19/09	03/08/09
Radium 226 by EPA 9	03.0 MOD			pCi/L		Batch #	9049439	Yld % 90
Radium (226) J/DA Q	0.31	J	0.17		1.00	0.22	02/18/09	03/13/09
Radium 228 by GFPC E	PA 904 MOD			pCi/L		Batch #	9049441	Yld % 80
Radium 228 U	0.17	υ	0.35		1.00	0.58	02/18/09	03/13/09

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only.

Bold results are greater than the MDC.

J Result is greater than sample detection limit but less than stated reporting limit.

U Result is less than the sample detection limit.

5 of 13

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Trvine, CA 92614 (949) 261-1022 Fax (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

and service services in the service of the service

Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte Method Bate Limit Limit Result Factor Factor Analyze Multicer Sampie DI SISI 786-01 (Outfiell 001 - Water) - cont. Eperate N <				MDL	Reporting	Sample	Dilution	Date	Date	Data
Sample ID: ISB1786-01 (Outfall 001 - Water) - ton. Recamplifue Acemphilipiene Acemphilipiene Acemphilipiene Acemphilipiene Acemphilipiene Acemphilipiene Acemphilipiene Acemphilipiene Acemphilipiene Anthracene EPA 625 9B21046 0.094 0.477 ND 0.943 0.221.09 0.224.09 0.2	Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Benzoring trains: up1 Acemaphthylene FPA 625 9B21046 0.094 0.47 ND 0.943 0.221109 0.224109 Aniline FPA 625 9B21046 0.094 0.47 ND 0.943 0.221109 0.224109 Anihancene FPA 625 9B21046 0.094 0.47 ND 0.943 0.221109 0.224109 Benzolanihacene FPA 625 9B21046 0.094 4.7 ND 0.943 0.221109 0.224109 Benzolanihacene FPA 625 9B21046 0.094 1.9 ND 0.943 0.221109 0.224109 Benzolanihacene FPA 625 9B21046 0.094 4.7 ND 0.943 0.221109 0.224109 Benzolanihacen FPA 625 9B21046 0.094 4.7 ND 0.943 0.221109 0.224109 Benzolanihace FPA 625 9B21046 0.094 4.7 ND 0.943 0.221109 0.224109 Benzolanihace FPA 625<	Sample ID: ISB1786-01 (Outfall 001 -	- Water) - cont.								
Acenaphthylene FPA 625 9B21046 0.094 0.47 ND 0.943 022109 022409 Anilnacene EPA 625 9B21046 0.094 0.47 ND 0.943 022109 022409 Anilnacene EPA 625 9B21046 0.04 4.7 ND 0.943 022109 022409 Benzolianthracene EPA 625 9B21046 0.094 4.7 ND 0.943 022109 022409 Benzolianthracene EPA 625 9B21046 0.094 1.9 ND 0.943 022109 022409 Benzolianthracene EPA 625 9B21046 0.094 1.9 ND 0.943 022109 022409 Benzolianthracene EPA 625 9B21046 0.094 4.7 ND 0.943 022109 022409 Benzolia ald US / ITTE EPA 625 9B21046 0.94 4.7 ND 0.943 022109 022409 1.8 Benzolia ald US / ITTE EPA 625 9B21046 0.94 1.0 ND 0.943 022109 022109 0241	Reporting Units: ug/l									
Acenaphilylene EPA 625 9B21046 0.094 0.47 ND 0.943 022109 022409 Anthracene EPA 625 9B21046 0.094 0.47 ND 0.943 022109 022409 Banzolamithracene EPA 625 9B21046 0.094 0.47 ND 0.943 022109 022409 Benzolamithracene EPA 625 9B21046 0.094 1.7 ND 0.943 022109 022409 Benzolajprene EPA 625 9B21046 0.094 1.7 ND 0.943 022109 022409 Benzolajjprene EPA 625 9B21046 0.094 1.7 ND 0.943 022109 022409 Benzolajachol UJ / JETE EPA 625 9B21046 0.944 0.941 ND 0.943 022109 022409 Benzolajachol UJ / JETE EPA 625 9B21046 0.94 0.943 022109 022409 1.8 Actionarine UJ / JETE EPA 625 9B21046 0.66 4.7 1.0 0.943 022109 022409	Acenaphthene	L EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Anline EPA 625 9B21046 0.28 9.4 ND 0.933 0.221/09 0.224/09 Benzidine EPA 625 9B21046 0.944 4.7 ND 0.943 0.221/09 0.224/09 Benzolajnutracene EPA 625 9B21046 0.944 4.7 ND 0.943 0.221/09 0.224/09 Benzolajnytrene EPA 625 9B21046 0.944 1.9 ND 0.943 0.221/09 0.224/09 Benzolajnytrene EPA 625 9B21046 0.944 1.9 ND 0.943 0.221/09 0.224/09 Benzolajnjerylene EPA 625 9B21046 0.944 4.7 ND 0.943 0.221/09 0.224/09 Benzolachol US / STETE FPA 625 9B21046 0.944 4.7 ND 0.943 0.221/09 0.224/09 Harophenyl phenylether W FPA 625 9B21046 0.944 ND 0.943 0.221/09 0.224/09 4-Bromophenyl phenylether W FPA 625 9B21046 0.944 0.943 0.221/09 0.224/09 4-C	Acenaphthylene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Anthracene EPA 625 9B21046 0.047 ND 0.943 0221409 0224409 Benzo(i)amthracene EPA 625 9B21046 0.094 4.7 ND 0.943 0221409 0224409 Benzo(i)amthracene EPA 625 9B21046 0.094 1.9 ND 0.943 0221409 0224409 Benzo(i)Lioperylene EPA 625 9B21046 0.094 4.7 ND 0.943 0221409 0224409 Benzo(i)Lioperylene EPA 625 9B21046 0.094 4.7 ND 0.943 0221409 0224409 Benzo(i)Lioperylene EPA 625 9B21046 0.094 4.7 ND 0.943 0221409 0224409 Benzolinine LFA 625 9B21046 0.094 4.7 ND 0.943 0221409 0224409 Benzolinine LFA 625 9B21046 0.094 9.7 ND 0.943 0221409 0224409 Laboratine LFA 625 9B21046 0.094 0.47 ND 0.943 0221409 0224409 Laboratinine LFA 625	Aniline	EPA 625	9B21046	0.28	9.4	ND	0.943	02/21/09	02/24/09	
Benzzialnie EPA 625 9B21046 N/A 4,7 ND 0.443 0.221.09 0.224.09 Benzo(a)nprene EPA 625 9B21046 0.094 1,9 ND 0.433 0.221.09 0.224.09 Benzo(a)nprene EPA 625 9B21046 0.094 1,9 ND 0.433 0.221.09 0.224.09 Benzo(a)nprene EPA 625 9B21046 0.094 4,7 ND 0.433 0.221.09 0.224.09 Benzo(a)nprene EPA 625 9B21046 0.094 4,7 ND 0.433 0.221.09 0.224.09 Benzo(a)nprene EPA 625 9B21046 0.094 4,7 ND 0.433 0.221.09 0.224.09 Benzo(a)nprene EPA 625 9B21046 0.094 9.4 ND 0.943 0.221.09 0.224.09 Benzo(a)nprene EPA 625 9B21046 0.094 9.4 ND 0.943 0.221.09 0.224.09 Benzo(a)nprene EPA 625 9B21046 0.094 0.47 ND 0.943 0.221.09 0.224.09 Benzo(a)nprene	Anthracene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Benzo(a)anthracene EPA 625 9B21046 0.094 1.7 ND 0.943 02/21/09 02/24/09 Benzo(b)Intoranthene EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Benzo(b)Intoranthene EPA 625 9B21046 0.094 1.7 ND 0.943 02/21/09 02/24/09 Benzo(b)Intoranthene EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 Benzo(b)Intoranthene EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 Benzo(b)Intoranthene CPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 Benzo(b)Intoranthene CPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 L*Choroantine CPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Bis(2-chloroxity)methana CFA 625	Benzidine	EPA 625	9B21046	N/A	4.7	ND	0.943	02/21/09	02/24/09	
Benzodiphyrene EPA 625 9B21046 0.094 1.9 ND 0.943 0.021/09 0.021/09 Benzodiphilopenthene EPA 625 9B21046 0.094 4.7 ND 0.943 0.021/09 0.021/09 Benzodiphilopenthene EPA 625 9B21046 0.094 4.7 ND 0.943 0.021/09 0.021/09 Benzolscatic EPA 625 9B21046 0.094 4.7 ND 0.943 0.021/09 0.021/09 Benzolscatic EPA 625 9B21046 0.094 4.7 ND 0.943 0.021/09 0.021/09 Benzyl lacohol US / STLT EPA 625 9B21046 0.094 4.7 ND 0.943 0.021/09	Benzo(a)anthracene	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
Benzo(p)fluoranthene EPA 625 9B21046 0.094 1.9 ND 0.943 0221/09 0224/09 Benzo(p)fluoranthene EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 Benzo(p) fluoranthene EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 Benzyl alcohol L3 / LDI EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 4-Bromophenyl phthalate L / LDI EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 4-Chloro-ancinethylphenol LBI AcS 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 4-Chloro-ancinethylphenol LBI AcS 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 Bis(2-chloroschylphthylphenol LBI AcS 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis(2-chloroschylphthylphthalate EPA 625 9B21046 0.094 0.47 ND	Benzo(a)pyrene	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
Benzo(g),h)perylene EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 Benzo(k)(Iluoranthene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Benzyl alcohol LS / STIT EPA 625 9B21046 0.094 0.7 ND 0.943 02/21/09 02/24/09 4-Bromophenyl phenyl ether EPA 625 9B21046 0.094 0.7 ND 0.943 02/21/09 02/24/09 4-Chloro-3-methylphenol LEPA 625 9B21046 0.094 0.66 4.7 L1 0.943 02/21/09 02/24/09 4-Chloro-3-methylphenol LEPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 4-Chloro-3-methylphenol LEPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 4-Chloro-3-methylphenol EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09	Benzo(b)fluoranthene	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
Benzoki/Illoranthene EPA 625 9B21046 0.047 ND 0.043 02/21/09 02/24/09 Benzoi acid EPA 625 9B21046 0.094 0.7 ND 0.043 02/21/09 02/24/09 Benzoi acid EPA 625 9B21046 0.094 4.7 ND 0.043 02/21/09 02/24/09 4-Bromophenyl phenyl ether V EPA 625 9B21046 0.094 0.94 ND 0.433 02/21/09 02/24/09 A-Choro-amethylphenol V EPA 625 9B21046 0.094 1.9 ND 0.043 02/21/09 02/24/09 4-Choro-amethylphenol V EPA 625 9B21046 0.094 0.47 ND 0.043 02/21/09 02/24/09 4-Choro-broyimethane EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Bis(2-chhoroshprohylphether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 02/24/09	Benzo(g,h,i)perylene	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
Benzoi acid ↓ EPA 625 9B21046 0.94 4.7 ND 0.943 0221/09 0224/09 ABromophenyl phenyl ether W EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 Batyl benzyl phthalate U C EPA 625 9B21046 0.094 ND 0.943 0221/09 0224/09 J.8 4-Chloroa-inethylphenol U EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis/2-chlorosethoxylmethane U.S / STTT EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis/2-chlorosethoxylmethane U.S / STTT EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis/2-chlorosethoyllether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorosethyllether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorophenol EPA 625	Benzo(k)fluoranthene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Benzyl alcohol U\$/*T1 EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 4-Bromophenyl phenyl ether EPA 625 9B21046 0.064 4.7 I.1 0.943 0221/09 0224/09 J. B Butyl benzyl phthalate U/ EPA 625 9B21046 0.064 4.7 I.1 0.943 0221/09 0224/09 J. B 4-Chloro-3-methylphenol L EPA 625 9B21046 0.094 1.9 ND 0.943 0221/09 0224/09 0224/09 Bis(2-chlorothoxy)methane L EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis(2-chlorosispropyl)ether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorosispropylyether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chloroshenol EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorophenol EPA 625 <	Benzoic acid	V EPA 625	9B21046	2.8	19	ND	0.943	02/21/09	02/24/09	
HBromophenyl phenyl ether W EPA 625 9B21046 0.094 ND 0.943 0221/09 0224/09 Butyl henzyl phthalate U BPA 625 9B21046 0.19 ND 0.943 0221/09 0224/09 J. B 4-Chloro-amtine U J. T EPA 625 9B21046 0.19 ND 0.943 0221/09 0224/09 4-Chloro-amtine U.S.//T EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis(2-chlorosethylpether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis(2-chlorosethylpether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorosphenol EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorosphenol EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorosp	Benzyl alcohol UJ/#	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
Butyl benzyl phthalate G EPA 625 9B21046 0.66 4.7 1.1 0.943 0221/09 0224/09 J.B 4-Chloroa-methylphenol LEPA 625 9B21046 0.09 1.9 ND 0.943 0221/09 0224/09 Bis(2-chloroethoxy)methane L3 / Jan EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis(2-chloroethyl)tether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Bis(2-chloroethyl)tether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorophenol EPA 625 9B21046 0.64 0.47 ND 0.943 0221/09 0224/09 2-Chlorophenol EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 2-Chlorophenol EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09	4-Bromophenyl phenyl ether	K EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
4-Chloro-3-methylphenol L EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 4-Chloroanlline L3 L3 EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Bis(2-chloroethyl)ether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Bis(2-chloroethyl)ether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Si2(2-chloroisopropyl)ether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2-Chloroaphinhalane EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2-Chloroaphinhalane EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2-Chloroaphinhalane EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1-benz(a,h)anthracene EPA 625 9B21046 0.094 0.47 N	Butyl benzyl phthalate 🛛 🗸 🖊 🕻	5 EPA 625	9B21046	0.66	4.7	1.1	0.943	02/21/09	02/24/09	J. B
4-Chloroaniline 3 ND 0.943 02/21/09 02/21/09 02/21/09 Bis/2-chloroethylpther EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/21/09 02/21/09 Bis/2-chloroethylpther EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02	4-Chloro-3-methylphenol	U EPA 625	9B21046	0.19	1.9	ND	.0.943	02/21/09	02/24/09	
Bis(2-chloroethoxy)methane U 3 / xm EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Bis(2-chloroethy)pether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Bis(2-chloroisopropy)pether EPA 625 9B21046 0.64 4.7 ND 0.943 02/21/09 02/24/09 2-Chloronaphthalate EPA 625 9B21046 0.694 0.47 ND 0.943 02/21/09 02/24/09 2-Chlorophenol EPA 625 9B21046 0.19 0.94 ND 0.943 02/21/09 02/24/09 2-Chlorophenol EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 02/24/09 Chrysene EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 02/24/09 Dibenzofuran EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 <t< td=""><td>4-Chloroaniline</td><td>EPA 625</td><td>9B21046</td><td>0.094</td><td>1.9</td><td>ND</td><td>0.943</td><td>02/21/09</td><td>02/24/09</td><td></td></t<>	4-Chloroaniline	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
Bis(2-chloroisopropy)ether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Bis(2-chloroisopropy)ether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Bis(2-chloroisopropy)ether EPA 625 9B21046 1.6 4.7 ND 0.943 02/21/09 02/24/09 2-Chloronphthalene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2-Chloronphthalene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2-Chloronphthalene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Diben/(a,h)anthracene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Diben/(a,h)anthracene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,2-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 <td>Bis(2-chloroethoxy)methane UJ/</td> <td>*11 EPA 625</td> <td>9B21046</td> <td>0.094</td> <td>0.47</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	Bis(2-chloroethoxy)methane UJ/	*11 EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Bis(2-chloroisopropyl)ether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Bis(2-ethylhexyl)phthalate EPA 625 9B21046 1.6 4.7 ND 0.943 02/21/09 02/24/09 2-Chloronaphthalene EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 02/24/09 2-Chlorophenol EPA 625 9B21046 0.94 ND 0.943 02/21/09 02/24/09 2-Chlorophenol EPA 625 9B21046 0.94 ND 0.943 02/21/09 02/24/09 2-Chlorophenol EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 02/24/09 Dibenz/gnahtracene EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 02/24/09 1,4-Dichlorobenzene EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 02/24/09 1,4-Dichlorobenzene EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 02/24/09 1,4-Dichlorobe	Bis(2-chloroethyl)ether	U EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Bis(2-ethylhexyl)phthalate EPA 625 9B21046 1.6 4.7 ND 0.943 02/21/09 02/24/09 2-Chloronaphthalene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2-Chlorophenol EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2-Chlorophenol EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Chrysene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Dibenz(a,h)anthracene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 L2-Dichlorobenzene EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2,4-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09	Bis(2-chloroisopropyl)ether	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
2-Chloronaphthalene EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 02/24/09 2-Chlorophenol EPA 625 9B21046 0.19 0.94 ND 0.943 0221/09 02/24/09 4-Chlorophenyl phenyl ether EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 02/24/09 Dibenz(a,h)anthracene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Dibenzofiran EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,2-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,4-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 2,4-Dinchlorobenzidine EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 <td>Bis(2-ethylhexyl)phthalate</td> <td>EPA 625</td> <td>9B21046</td> <td>1.6</td> <td>4.7</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	Bis(2-ethylhexyl)phthalate	EPA 625	9B21046	1.6	4.7	ND	0.943	02/21/09	02/24/09	
2-Chlorophenol EPA 625 9B21046 0.19 0.94 ND 0.943 02/21/09 02/24/09 4-Chlorophenyl phenyl ether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Chrysene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Dibenzofaran EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Di-n-butyl phthalate EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2,4-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 2,4-Dinichorobenzidine EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09	2-Chloronaphthalene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
4-Chlorophenyl phenyl ether EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Chrysene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Dibenz(a,h)anthracene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Dibenzofuran EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 L2-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,2-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3,3-Dichlorobenzidine EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 2,4-Dichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09	2-Chlorophenol	EPA 625	9B21046	0.19	0.94	ND	0.943	02/21/09	02/24/09	
Chrysene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Dibenzofuran EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Dibenzofuran EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Di-n-butyl phthalate EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,2-Dichlorobenzene EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3,3-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3,3-Dichlorobenzldine EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 02/24/09 02/24/09 02/24/09 02/24/09 02/24/09 02/24/09 02/24/09 02/24/09 02/24/09 02/24/09 <t< td=""><td>4-Chlorophenyl phenyl ether</td><td>EPA 625</td><td>9B21046</td><td>0.094</td><td>0.47</td><td>ND</td><td>0.943</td><td>02/21/09</td><td>02/24/09</td><td></td></t<>	4-Chlorophenyl phenyl ether	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Dibenz(a,h)anthracene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Dibenzofuran EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Di-n-butyl phthalate EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,4-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 3,3-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3,3-Dichlorobenzenidine EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 2,4-Dichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 J 2,4-Dimethylphenol EPA 625 9B21046 0.94 0.47 ND 0.943 02/21/09 <t< td=""><td>Chrysene</td><td>EPA 625</td><td>9B21046</td><td>0.094</td><td>0.47</td><td>ND</td><td>0.943</td><td>02/21/09</td><td>02/24/09</td><td></td></t<>	Chrysene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Dibenzofuran EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Di-n-butyl phthalate EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 1,2-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 3,3-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3,3-Dichlorobenzidine EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 2,4-Dichlorobenzidine EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 J 2,4-Dichlorobenzidine EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 J 2,4-Dinitro-2-methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943 <td< td=""><td>Dibenz(a,h)anthracene</td><td>EPA 625</td><td>9B21046</td><td>0.094</td><td>0.47</td><td>ND</td><td>0.943</td><td>02/21/09</td><td>02/24/09</td><td></td></td<>	Dibenz(a,h)anthracene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Di-n-butyl phthalate EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 1,2-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,4-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3,3-Dichlorobenzidine EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 2,4-Dichlorobenzidine EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4-Dichlorobenzidine EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 J 2,4-Dimethylphenol EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 J 2,4-Dinitro-2-methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943	Dibenzofuran	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
1,2-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,4-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3,3'-Dichlorobenzidine EPA 625 9B21046 N/A 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dichlorobenzidine EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4-Dichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4-Dimethylphenol EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 J 2,4-Dinitro-2-methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 J 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 0	Di-n-butyl phthalate	EPA 625	9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/09	
1.3-Dichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1.4-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3.3'-Dichlorobenzidine EPA 625 9B21046 N/A 4.7 ND 0.943 02/21/09 02/24/09 2.4-Dichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 J 2.4-Dichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 J 2.4-Dimethylphenol EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 J 2.4-Dimitro-2-methylphenol EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 J 2.4-Dinitro-2-methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 J 2.4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 <td>1.2-Dichlorobenzene</td> <td>EPA 625</td> <td>9B21046</td> <td>0.094</td> <td>0.47</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	1.2-Dichlorobenzene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
I.4-Dichlorobenzene EPA 625 9B21046 0.19 0.47 ND 0.943 02/21/09 02/24/09 3,3'-Dichlorobenzidine EPA 625 9B21046 N/A 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 Diethyl phthalate EPA 625 9B21046 0.094 0.94 0.11 0.943 02/21/09 02/24/09 J 2,4-Dimethyl phthalate EPA 625 9B21046 0.094 0.94 0.11 0.943 02/21/09 02/24/09 J 2,4-Dimethyl phthalate EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Joinethyl phthalate EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitro-2-methyl phenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrooluene EPA 625 9B21046 0.19 4.7 ND 0.943	1.3-Dichlorobenzene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
3,3'-Dichlorobenzidine EPA 625 9B21046 N/A 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 Diethyl phthalate J D O EPA 625 9B21046 0.094 0.11 0.943 02/21/09 02/24/09 J 2,4-Dimethyl phthalate J D O EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 J 2,4-Dimethyl phthalate EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 J 2,4-Dimethyl phthalate EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 4,6-Dinitro-2-methyl phenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943<	1.4-Dichlorobenzene	EPA 625	9B21046	0.19	0.47	ND	0.943	02/21/09	02/24/09	
2,4-Dichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 Diethyl phthalate Image: PA 625 9B21046 0.094 0.94 0.11 0.943 02/21/09 02/24/09 J 2,4-Dimethyl phthalate EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 J 2,4-Dimethyl phthalate EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 02/24/09 Dimethyl phthalate EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 4,6-Dinitro-2-methyl phenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrophenol EPA 625 9B21046 0.85 4.7 ND 0.943 02/21/09 02/24/09 2,6-Dinitrotoluene EPA 625 9B21046 0.94 4.7 ND 0.943 02/21/09 02/24/09 Di-n-octyl phthalate EPA 625 9B21046 0.094 4.7 ND	3.3'-Dichlorobenzidine	EPA 625	9B21046	N/A	4.7	ND	0.943	02/21/09	02/24/09	
Diethyl phthalate Die EPA 625 9B21046 0.094 0.11 0.943 02/21/09 02/24/09 1 2,4-Dimethylphenol EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 02/24/09 Dimethyl phthalate EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 02/24/09 4,6-Dinitro-2-methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 02/24/09 2,4-Dinitrophenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,6-Dinitrotoluene EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 0.943	2.4-Dichlorophenol	EPA 625	9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/09	
2,4-Dimethylphenol EPA 625 9B21046 0.28 1.9 ND 0.943 02/21/09 02/24/09 Dimethyl phthalate EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 4,6-Dinitro-2-methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrophenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrophenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,6-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 Di-n-octyl phthalate EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/	Diethyl phthalate	1 0 EPA 625	9B21046	0.094	0.94	0.11	0.943	02/21/09	02/24/09	1
Dimethyl phthalate EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 4,6-Dinitro-2-methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrophenol EPA 625 9B21046 0.85 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,6-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 Di-n-octyl phthalate EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09	2.4-Dimethylphenol	EPA 625	9B21046	0.28	1.9	ND	0.943	02/21/09	02/24/09	
4,6-Dinitro-2-methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrophenol EPA 625 9B21046 0.85 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,6-Dinitrotoluene LIS/*IL EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 Di-n-octyl phthalate LISPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 TestAmerica Irvine Issee Ph Doak	Dimethyl phthalate	1 EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
2,4-Dinitrophenol EPA 625 9B21046 0.85 4.7 ND 0.943 02/21/09 02/24/09 2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,6-Dinitrotoluene U EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 2,6-Dinitrotoluene U EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 Di-n-octyl phthalate U EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 TestAmerica Irvine Isseph Doak	4.6-Dinitro-2-methylphenol	EPA 625	9B21046	0.19	4.7	ND	0.943	02/21/09	02/24/09	
2,4-Dinitrotoluene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2,6-Dinitrotoluene U EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 Di-n-octyl phthalate U EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 TestAmerica Irvine Isseeth Doak	2.4-Dinitrophenol	EPA 625	9B21046	0.85	4.7	ND	0.943	02/21/09	02/24/09	
2.6-Dinitrotoluene LAT EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 Di-n-octyl phthalate L EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 TestAmerica Irvine Ioseph Doak	2 4-Dinitrotoluene	EPA 625	9B21046	0.19	47	ND	0.943	02/21/09	02/24/09	
Di-n-octyl phthalate L EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 1,2-Diphenylhydrazine/Azobenzene L EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 TestAmerica Irvine Issee	2.6-Dinitrotoluene	EPA 625	9B21046	0.094	4.7	ND	0 943	02/21/09	02/24/09	
1,2-Diphenylhydrazine/Azobenzene EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 TestAmerica Irvine Inclusion of the second seco	Di-n-octyl phthalate	11 EPA 625	9B21046	0.094	47	ND	0.943	02/21/09	02/24/09	
TestAmerica Irvine	1.2-Diphenylhydrazine/Azobenzene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
Joseph Doak	Test America Irvine	~	1021010		TIT	TT		T	T	
	Iosanh Dook				, M				V	

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 10 of 75>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

Attention: Bronwyn Kelly

AnalycMethodBarchBarchReportingSampleDilutionDateDateDateSampel D: ISBI76-01 (Outfill 001 - Water) - cont. Reporting Units: ug1FluoranteneEPA 62598210460.0940.47ND0.943022100022400FluoranteneEPA 62598210460.0940.47ND0.943022100022400HexachlorobenzeneEPA 62598210460.0940.094ND0.943022100022400HexachlorobenzeneEPA 62598210460.0941.9ND0.943022100022400HexachlorobenzeneEPA 62598210460.0944.7ND0.943022100022400HexachlorobenzeneEPA 62598210460.0941.9ND0.943022100022400HexachlorochaneEPA 62598210460.0941.9ND0.943022100022400Idento(1,2,3-cd)pyreneEPA 62598210460.094ND0.9430221000224002-MethylhapithaleneEPA 62598210460.094ND0.9430221000224002-MethylhapithaleneEPA 62598210460.094ND0.9430221000224002-NitroantineEPA 62598210460.094ND0.9430221000224003-NitroantineEPA 62598210460.094ND0.9430221000224003-NitroantineEPA 62598210460.094ND	ACID & BASE/NEUTRALS BY GC/MS (EPA 625)										
Sample ID: ISBI 786-01 (Outfall 001 - Water) - cont. Reporting Unis: up1 Fluorentene EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Hexachlorobutadiene EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 Hexachlorobutadiene EPA 625 9B21046 0.94 ND 0.943 0221/09 0224/09 Hexachlorobutadiene EPA 625 9B21046 0.94 4.7 ND 0.943 0221/09 0224/09 Hexachlorocyclopentidiene EPA 625 9B21046 0.94 4.7 ND 0.943 0221/09 0224/09 Ladent(12,3-cd)pyrene EPA 625 9B21046 0.944 ND 0.943 0221/09 0224/09 2-Methylaphalalene EPA 625 9B21046 0.944 ND 0.943 0221/09 0224/09 2-Methylaphenol EPA 625 9B21046 0.944 ND 0.943 0221/09 0224/09 2-Methylaphenol EPA 625 9B21046 0.944 ND 0.943	Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Reporting Units: ug/l Fluorente EPA 625 9B21046 0.0943 0.2/24/09 Fluorente EPA 625 9B21046 0.0943 0.2/24/09 Hexachlorobenzene EPA 625 9B21046 0.0943 0.2/24/09 Hexachlorobendance EPA 625 9B21046 0.0943 0.2/24/09 Hexachlorobendance EPA 625 9B21046 0.0943 0.2/24/09 Lexachlorobendance EPA 625 9B21046 0.094 ND 0.943 0.2/24/09 Lexachlorobendance EPA 625 9B21046 0.094 ND 0.943 0.2/24/09 LexA 625 9B21046 0.094 ND 0.943 0.2/24/09 2-Methylphenol EPA 625	Sample ID: ISB1786-01 (Outfall 001 - V	Vater) - cont.									
Fluoranthene CA EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Hexachlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 0221/09 0224/09 Hexachlorobenzene EPA 625 9B21046 0.094 ND 0.943 0221/09 0224/09 Hexachlorobenzene EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 Hexachlorocethane EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 2-Methylnaphthalene EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 2-Methylnaphthalene EPA 625 9B21046 0.094 ND 0.943 0221/09 0224/09 2-Mitrohjnenol EPA 625 9B21046 0.94 ND 0.943 0221/09 0224/09 2-Nitroaniline EPA 625 9B21046 0.94 ND 0.943 0221/09 0224/09 2-Nitroaniline EPA 625 9B21046	Reporting Units: ug/l										
Fluorene FPA 625 9B21046 0.094 0.947 ND 0.943 0221/09 0224/09 Hexachlorobutadiene EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 Hexachlorobutadiene EPA 625 9B21046 0.19 1.9 ND 0.943 0221/09 0224/09 Hexachlorocyclopentadiene EPA 625 9B21046 0.19 2.8 ND 0.943 0221/09 0224/09 Ideno(1,2,3-cd)pyrene EPA 625 9B21046 0.094 1.9 ND 0.943 0221/09 0224/09 2-Methylphenol LS/AIN EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 2-Methylphenol LS/AIN EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 2-Methylphenol LS/AIN EPA 625 9B21046 0.94 1.9 ND 0.943 0221/09 0224/09 2-Nitroaniline EPA 625 9B21046 0.94 1.7 ND 0.943 0221/09 <td>Fluoranthene</td> <td>L EPA 625</td> <td>9B21046</td> <td>0.094</td> <td>0.47</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	Fluoranthene	L EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09		
Hexachlorobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Hexachlorobudiene EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 Hexachlorocyclopentadiene EPA 625 9B21046 0.19 2.8 ND 0.943 02/21/09 02/24/09 Indeno(1,2,3-cd)pyrene EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 2-Methylnaphthalene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Methylnaphthalene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Methylnenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.944 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.94 ND 0.943 02/21/09 02/24/09 2-Nitroaniline	Fluorene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09		
Hexachlorobutadiene EPA 625 9B21046 0.19 1.9 ND 0.943 0221/09 0224/09 Hexachlorocyclopentadiene EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 Indeno(1,2,3-cd)pyrene EPA 625 9B21046 0.094 1.9 ND 0.943 0221/09 0224/09 2-Methylinaphthatene EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 2-Methylinaphthatene EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 2-Methylinaphthatene EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 2-Methylinbenof LS / Acim EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 0224/09 2-Nitroanitine EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 0224/09 2-Nitroanitine EPA 625 9B21046 0.094 1.9 ND 0.943 0221/09 0224/0	Hexachlorobenzene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09		
Hexachlorocyclopentadiene EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 02/24/09 Hexachlorocethane EPA 625 9B21046 0.19 2.8 ND 0.943 0221/09 02/24/09 Isophorone QCS / Arm EPA 625 9B21046 0.094 1.9 ND 0.943 0221/09 02/24/09 2-Methylnaphthalene EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 02/24/09 2-Methylnaphthalene EPA 625 9B21046 0.094 0.94 ND 0.943 0221/09 02/24/09 2-Methylnaphtalene EPA 625 9B21046 0.094 1.9 ND 0.943 0221/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 02/24/09 4-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 0221/09 02/24/09 <	Hexachlorobutadiene	EPA 625	9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/09		
Hexachloroethane EPA 625 9B21046 0.19 2.8 ND 0.943 02/21/09 02/24/09 Indeno(1,2,3-cd)pyrene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Methylmaphthalene K EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Methylmaphthalene K EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Methylphenol K EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 </td <td>Hexachlorocyclopentadiene</td> <td>EPA 625</td> <td>9B21046</td> <td>0.094</td> <td>4.7</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	Hexachlorocyclopentadiene	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09		
Indeno(1,2,3-cd)pyrene EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Isophorone CLS/A·IN EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Methylphalone N EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Methylphenol U.S / K·IN EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 2-Methylphenol U.S / K·IN EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 <td>Hexachloroethane</td> <td>EPA 625</td> <td>9B21046</td> <td>0.19</td> <td>2.8</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	Hexachloroethane	EPA 625	9B21046	0.19	2.8	ND	0.943	02/21/09	02/24/09		
Isophorone U.S / A III EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 2-Methylnaphthalene K EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 2-Methylnaphthalene LEPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 2-Methylnaphthalene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 3-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 4-Nitroaniline EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 4-Nitrosocimienpropulamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosocimphenylamine </td <td>Indeno(1,2,3-cd)pyrene</td> <td>🗣 EPA 625</td> <td>9B21046</td> <td>0.094</td> <td>1.9</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	Indeno(1,2,3-cd)pyrene	🗣 EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09		
2-Methylnaphthalene K EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 2-Methylphenol KPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 4-Methylphenol EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 Naphthalene EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 3-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 4-Nitroaniline EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 N-Nitroso-di-in-propylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitroso-di-in-propylamine EPA 625 <	Isophorone UJ/AIN	EPA 625	9B21046	0,094	0.94	ND	0.943	02/21/09	02/24/09		
2-Methylphenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Naphthalene EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 Shiroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 3-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 4-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 4-Nitrophenol EPA 625 9B21046 0.47 4.7 ND 0.943 02/21/09 02/24/09 4-Nitrophenol EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodiphenylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodiphenylamine	2-Methylnaphthalene	K EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09		
4-Methylphenol LPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 Naphthalene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 4-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 Nitrobenzene EPA 625 9B21046 0.47 4.7 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 4-Nitroso-din-propylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitroso-din-propylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitroso-din-propylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09	2-Methylphenol US/ KII	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09		
Naphthalene EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 2-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 3-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 4-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 Nitrobenzene EPA 625 9B21046 0.94 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 4-Nitrosodinethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodiphenylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Petachbrophenol // TTC EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 02/24/09 P	4-Methylphenol	EPA 625	9B21046	0.19	4.7	ND	0.943	02/21/09	02/24/09		
2-Nitroaniline EPA 625 9B21046 0.094 4.7 ND 0.943 02/21/09 02/24/09 3-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 4-Nitroaniline EPA 625 9B21046 0.47 4.7 ND 0.943 02/21/09 02/24/09 Nitrobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 4-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodiphenylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Pentachlorophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Ph	Naphthalene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09		
3-Nitroaniline EPA 625 9B21046 0.19 4.7 ND 0.943 02/21/09 02/24/09 4-Nitroaniline M/mitrobenzene EPA 625 9B21046 0.47 4.7 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 4-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 4-Nitrosodin-propylamine UT / +mt EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Pentachlorophenol // EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Phenathrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09	2-Nitroaniline	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09		
4-Nitroaniline Line EPA 625 9B21046 0.47 4.7 ND 0.943 02/21/09 02/24/09 Nitrobenzene LiepA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 4-Nitrosodin-propylamine LT / LTT EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodiphenylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodiphenylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Pentachlorophenol // DHO EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Phenanthrene EPA 625 9B21046 0.094 1.9 I.5 0.943 02/21/09 02/24/09 1 1,2,4,5-Trichlorophenol EPA 625 9B21046 0.094 0.47 ND<	3-Nitroaniline	LEPA 625	9B21046	0.19	4.7	ND	0.943	02/21/09	02/24/09		
Nitrobenzene LEPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 2-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 4-Nitrophenol EPA 625 9B21046 2.4 4.7 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Pentachlorophenol // DPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 1 Phenanthrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1 Pyrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09	4-Nitroaniline	EPA 625	9B21046.	0.47	4.7	ND	0.943	02/21/09	02/24/09		
2-Nitrophenol EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 4-Nitrophenol EPA 625 9B21046 2.4 4.7 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodiphenylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Pentachlorophenol J D+Q EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 1 Phenanthrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1 Phenol EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1 2 2 2 2 4 0.94 0.94 0.943 02/21/09 </td <td>Nitrobenzene</td> <td>V EPA 625</td> <td>9B21046</td> <td>0.094</td> <td>0.94</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	Nitrobenzene	V EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09		
4-Nitrophenol EPA 625 9B21046 2.4 4.7 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodiphenylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Pentachlorophenol J DNQ EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Phenanthrene EPA 625 9B21046 0.094 1.9 1.5 0.943 02/21/09 02/24/09 1 Phenol EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1 Pyrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1 2.4,5-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0	2-Nitrophenol	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09		
N-Nitroso-di-n-propylamine UT EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Pentachlorophenol Image: Dec addition of the second sec	4-Nitrophenol	EPA 625	9B21046	2.4	4.7	ND	0.943	02/21/09	02/24/09		
N-Nitrosodimethylamine EPA 625 9B21046 0.094 1.9 ND 0.943 02/21/09 02/24/09 Pentachlorophenol D 0.943 02/21/09 02/24/09 1 Pentachlorophenol D 0.943 02/21/09 02/24/09 1 Pentachlorophenol D 0.943 02/21/09 02/24/09 1 Phenanthrene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Phenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Pyrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,2,4-Trichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2,4,5-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 <td>N-Nitroso-di-n-propylamine 11/1/</td> <td>EPA 625</td> <td>9B21046</td> <td>0.094</td> <td>1.9</td> <td>ND</td> <td>0.943</td> <td>02/21/09</td> <td>02/24/09</td> <td></td>	N-Nitroso-di-n-propylamine 11/1/	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09		
N-Nitrosodiphenylamine EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 Pentachlorophenol J Dec EPA 625 9B21046 0.094 1.5 0.943 02/21/09 02/24/09 J Phenanthrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 J Phenol EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 J Pyrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 I.2,4-Trichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2,4,5-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 Surrogate: 2,4,6-Tribromophenol (40-120%) EPA 625 9B21046 0.094 0.94 ND 0.943 <td>N-Nitrosodimethylamine</td> <td>LA EPA 625</td> <td>9B21046</td> <td>0.094</td> <td>1.9</td> <td>ND</td> <td>0.943</td> <td>02/21/00</td> <td>02/24/09</td> <td></td>	N-Nitrosodimethylamine	LA EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/00	02/24/09		
Pentachlorophenol DNQ EPA 625 9B21046 0.094 1.9 1.5 0.943 02/21/09 02/24/09 1 Phenanthrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1 Phenol EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 Pyrene EPA 625 9B21046 0.28 0.94 ND 0.943 02/21/09 02/24/09 1,2,4-Trichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2,4,5-Trichlorobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 Surrogate: 2.4.6-Tribromop	N-Nitrosodiphenylamine	4 EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09		
Phenanthrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/24/09 02/24/09 Phenol EPA 625 9B21046 0.28 0.94 ND 0.943 02/21/09 02/24/09 Pyrene EPA 625 9B21046 0.28 0.94 ND 0.943 02/21/09 02/24/09 1,2,4-Trichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2,4,5-Trichlorobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 Surrogate: 2,4,6-Tribromophenol (40-120%) EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Surrogate: 2-Fluorobiphenyl (50-120%) EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09	Pentachlorophenol J DNO	EPA 625	9B21046	0.094	1.9	1.5	0.943	02/21/09	02/24/09	12	
Phenol EPA 625 9B21046 0.28 0.94 ND 0.943 02/21/09 02/24/09 Pyrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 1,2,4-Trichlorobenzene EPA 625 9B21046 0.094 0.47 ND 0.943 02/21/09 02/24/09 2,4,5-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4,6-Tribromophenol (40-120%) EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Swrrogate: 2-Fluorobiphenyl (50-120%) File File 63 % 63 % 63 % 63 % 63 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % <	Phenanthrene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/00	02/24/09		
Pyrene EPA 625 9B21046 0.094 0.47 ND 0.943 02/24/09 1,2,4-Trichlorobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/24/09 2,4,5-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Surrogate: 2,4,6-Tribromophenol (40-120%) EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 Surrogate: 2-Fluorobiphenyl (50-120%) 76 % 76 % 63 % 76 % 63 % Surrogate: Nitrobenzene-d5 (45-120%) 72 % 66 % 72 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 % 66 %	Phenol	EPA 625	9B21046	0.28	0.94	ND	0.943	02/21/00	02/24/09		
1,2,4-Trichlorobenzene EPA 625 9B21046 0.094 0.94 ND 0.943 02/24/09 2,4,5-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/24/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Surrogate: 2,4,6-Tribromophenol (40-120%) EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Surrogate: 2-Fluorobiphenyl (50-120%) 74 % 76 % 76 % 76 % Surrogate: Nitrobenzene-d5 (45-120%) 72 % 72 % 66 % 72 % Surrogate: Phenol-d6 (35-120%) 66 % 66 % 72	Pyrene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09		
2,4,5-Trichlorophenol EPA 625 9B21046 0.19 1.9 ND 0.943 02/21/09 02/24/09 2,4,6-Trichlorophenol EPA 625 9B21046 0.094 0.94 ND 0.943 02/21/09 02/24/09 Surrogate: 2.4.6-Tribromophenol (40-120%) File 74 % 74 % Surrogate: 2-Fluorobiphenyl (50-120%) 76 % 63 % Surrogate: Nitrobenzene-d5 (45-120%) 72 % Surrogate: Phenol-d6 (35-120%) 66 % Surrogate: Tembered d14 (60 1158() 66 %	1,2,4-Trichlorobenzene	EPA 625	9B21046	0.094	0.94	ND	0.043	02/21/09	02/24/09		
2,4,6-Trichlorophenol EPA 625 9B21046 0.094 ND 0.943 02/21/09 02/24/09 Surrogate: 2,4,6-Tribromophenol (40-120%) 74 % Surrogate: 2-Fluorobiphenyl (50-120%) 76 % Surrogate: 2-Fluorophenol (30-120%) 63 % Surrogate: Nitrobenzene-d5 (45-120%) 72 % Surrogate: Phenol-d6 (35-120%) 66 %	2,4,5-Trichlorophenol	EPA 625	9B21046	0.19	19	ND	0.943	02/21/09	02/24/09		
Surrogate: 2,4,6-Tribromophenol (40-120%) 74 % Surrogate: 2-Fluorobiphenyl (50-120%) 76 % Surrogate: 2-Fluorophenol (30-120%) 63 % Surrogate: Nitrobenzene-d5 (45-120%) 72 % Surrogate: Phenol-d6 (35-120%) 66 %	2.4.6-Trichlorophenol	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09		
Surrogate: 2-Fluorobiphenyl (50-120%) 76 % Surrogate: 2-Fluorophenol (30-120%) 63 % Surrogate: Nitrobenzene-d5 (45-120%) 72 % Surrogate: Phenol-d6 (35-120%) 66 % Surrogate: Temphenol d14 (50-135%) 66 %	Surrogate: 2.4.6-Tribromophenol (40-12	0%)	7021010	0.074	0.74	74 04	0.945	02/21/09	02/24/09		
Surrogate: 2-Fluorophenol (30-120%) 63 % Surrogate: Nitrobenzene-d5 (45-120%) 72 % Surrogate: Phenol-d6 (35-120%) 66 % Surrogate: Tambamid d14 (50, 135%) 66 %	Surrogate: 2-Fluorobiphenvl (50-120%)					76 0/					
Surrogate: Nitrobenzene-d5 (45-120%) 72 % Surrogate: Phenol-d6 (35-120%) 66 % Surrogate: Temphenul d14 (50, 135%) 66 %	Surrogate: 2-Fluorophenol (30-120%)					62 0/					
Surrogate: Phenol-d6 (35-120%) 66 %	Surrogate: Nitrobenzene-d5 (45-120%)					73 0/					
500 70 00 70	Surrogate: Phenol-d6 (35-120%)					66 0/					
Surrogate. 1erphenvi-a14 (30-123%) 05.02	Surrogate: Terphenvl-d14 (50-125%)					05 02					

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 11 of 75>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: ISB1786

Sampled: 02/16/09 Received: 02/16/09

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1786-01 (Outfall 001 -	Water) - cont.								
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	9B24128	0.50	0.50	0.56	1	02/24/09	02/24/09	
Biochemical Oxygen Demand	SM5210B	9B17161	0.50	2.0	2.4	1	02/17/09	02/22/09	
Chloride	EPA 300.0	9B16057	0.25	0.50	10	1	02/16/09	02/17/09	
Fluoride	SM 4500-F-C	9B17074	0.020	0.10	0.12	1	02/17/09	02/17/09	в
Nitrate-N	EPA 300.0	9B16057	0.060	0.11	1.4	1	02/16/09	02/17/09	
Nitrite-N	EPA 300.0	9B16057	0.090	0.15	ND	1	02/16/09	02/17/09	
Nitrate/Nitrite-N	EPA 300.0	9B16057	0.15	0.26	1.4	1	02/16/09	02/17/09	
Residual Chlorine	EPA 330.5	9B17105	0.10	0.10	ND	1	02/17/09	02/17/09	HFT
Sulfate	EPA 300.0	9B16057	0.20	0.50	9.7	1	02/16/09	02/17/09	
Surfactants (MBAS)	SM5540-C	9B17098	0.025	0.10	0.097	1	02/17/09	02/17/09	J
Total Dissolved Solids	SM2540C	9B18065	10	10	120	1	02/18/09	02/18/09	
Total Organic Carbon	SM5310B	9B23002	0.50	1.0	10	1	02/23/09	02/23/09	
Total Suspended Solids	SM 2540D	9B21068	1.0	10	92	1	02/21/09	02/21/09	

LEVELIV

*Analysis not validated

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 20 of 74>

28

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Sample ID: ISB1786-01 (Outfall 001 - Water) - cont.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

		IN	ORGA MDL	NICS Reporting	Sample	Dilution	Date	Date	Data			
Arcadia, CA 91007 Attention: Bronwyn Kelly	rt Number:	ISB1786	constat statements for accounter sectors	Natural Contraction of Salary Natural Systems		Received	Received: 02/16/09					
MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200		Project ID:	Annual O	utfall 001			Sampled	: 02/16/09	02/16/09			
£												

Reporting Units: NTU								
Turbidity	EPA 180.1	9B17067	0.40	10	140	10	02/17/09	02/17/09

LEVELIV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 22 of 74>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing	Projec	ct ID:	Annual Ou	utfall 001					
618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly	Report Nun	nber:	ISB1786				Sampled: Received:	02/16/09 02/16/09	
		I	ORGA	NICS					
Analyte	Method B	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers

9B18054

Sample ID: ISB1786-01 (Outfall 001 - Water) - cont. Reporting Units: umhos/cm Specific Conductance EPA 120.1

1.0 1.0

1 02/18/09 02/18/09

120

LEVELIV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1786 <Page 24 of 74>

32