APPENDIX G

Section 20

Outfall 008, February 16, 2009

MECX Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ISB1787

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES

SDG: ISB1787

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ISB1787
Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 008	ISB1786-01	D9B190131-001, D9C050251-001, 31439-001, F9B180218-001, CSB0581-001, 127223-1	Water	02/16/09 0830	100.2, 200.7, 200.7 (Diss), 200.8, 200.8 (Diss) 245.1, 245.1 (Diss), 525.2, 608, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 908.0, 1613B, SM2340B, SM2540D, SM4500-CN- CE

II. Sample Management

No anomalies were observed regarding sample management. The samples were received at all laboratories within the temperature limit of 4 ±2°C. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, EMS, and TestAmerica Ontario, custody seals were not required. Custody seal were present and intact upon arrival at TestAmerica-Denver, TestAmerica-St. Louis, and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ISB1787

Data Qualifier Reference Table

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ISB1787

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ISB1787

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 100.2—Asbestos

Reviewed By: P. Meeks

Date Reviewed: March 27, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 100.2, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The sample was filtered within 48 hours of collection. There is no established holding time for asbestos analysis; however, the sample was analyzed within 30 days of collection.
- Calibration: The laboratory provided no documentation for the light microscope refractive index calibration.
- Blanks: A method blank was analyzed with the site sample. Asbestos was not detected in the method blank.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: The sample result was verified against the raw data. No
 transcription errors were noted. Due to the turbidity of the sample, the standard sensitivity
 was not met. Detects reported below the reporting limit were qualified as estimated, "J,"
 and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects
 are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

B. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 30, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.
- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any estimated maximum possible concentrations (EMPCs) were qualified as estimated nondetects, "UJ," in the sample of this SDG. As the laboratory did not include EMPCs in the reported total concentration, the result for total HpCDD was not qualified. Any detects between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

C. EPA METHODS 200.7, 200.8, and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 27, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 2007, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The analytical holding times, 180 days for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995.
 Initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. The zinc CRI recovery associated with the dissolved

metals analyses was 63%; therefore, nondetected dissolved zinc in the sample was qualified as estimated, "UJ." The remaining CRI and CRA and check standards were recovered within the control limits of 70-130%.

- Blanks: Chromium was detected in the total method blank at 2.93 μg/L; therefore, total chromium detected in the sample was qualified as nondetected, "U," at the reporting limit. Zinc was reported in a CCB bracketing the dissolved metals analysis at -7.7 μg/L; therefore, nondetected dissolved zinc in the sample was qualified as estimated, "UJ." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: Recoveries were within the method-established control limits. There were detects and negative results in the ICSA associated with the ICP analyses; however, the concentration of interferents in the site sample were insufficient to cause matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within the laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for total mercury only. Both total mercury recoveries were below the control limit; therefore, total mercury detected in the sample was qualified as estimated, "J." Method accuracy for the remaining analytes was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All associated sample internal standard intensities were within 60-125% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summaries were verified against the raw data. No transcription errors or
 calculation errors were noted. Detects reported below the reporting limit were qualified as
 estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit.
 Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 608—Pesticides and PCBs

Reviewed By: K. Shadowlight Date Reviewed: March 30, 2009

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 608, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: The original extraction and analytical holding times were met. The water sample was originally extracted within seven days of collection; however, as the detect for alpha BHC was suspected to be a lab contaminant, the sample was re-extracted at TestAmerica-Irvine and another extraction was performed at TestAmerica-Denver. The re-extraction performed at TestAmerica-Denver was outside of the holding time period. The retained result (nondetect) for alpha-BHC was qualified as estimated, "UJ," in sample Outfall 008 (see the Blank section). The PCB sample was extracted within seven days of collection and the pesticide and PCB analyses were performed within 40 days of extraction.
- Calibration: The initial calibration had average %RSDs of ≤10% or r² ≥0.995 for the pesticides and PCB analyses. The %Ds for all analytes except aldrin, dieldrin, methoxychlor, chlordane, and toxaphene exceeded 15% in one or both of the low-level CCVs bracketing the pesticide analysis; therefore, the results for these target compounds were qualified as estimated, "J," for detects and "UJ," for nondetects in the retained analysis of the sample in this SDG. The ICV and remaining CCVs bracketing the sample analyses had %Ds within the QC limit of ≤15%. The ICV and CCVs %Ds bracketing the PCB analysis were ≤15%.
- Blanks: Alpha-BHC was detected at a concentration of 0.00634 µg/L in the method blank for batch 9B20074; however, the associated result for alpha BHC was rejected due to laboratory contamination (see below). There were no other target compound detects above the MDL in method blank 9B20074 associated with the original analysis of Outfall 008.

Alpha BHC was reported in sample Outfall 008; however, the laboratory suspected contamination related to one highly contaminated sample with percent level alpha-BHC. A second extraction of Outfall 008 yielded a low-level concentration of alpha BHC, indicating that the laboratory was not contamination free. The sample was sent to TestAmerica-Denver for alpha-BHC analysis. The nondetect result yielded from the TestAmerica-Denver analysis confirmed the suspicion that the original results were indeed laboratory contamination; therefore, the original result for alpha BHC in extraction batch 9B20074 and the sample re-extraction from batch 9B23113 were rejected, "R," in favor of the result for alpha BHC reported in batch 9064381 from TestAmerica-Denver. Several corrective action steps have been taken by TestAmerica-Irvine including replacing glassware throughout the organics department and implementing an acid wash procedure to prevent future contamination issues.

Beta-BHC was reported above the MDL in the original extraction of sample Outfall 008 and was confirmed in the re-extraction of Outfall 008 (9B23113). It should be noted that beta-BHC was also detected in the associated method blank (9B23113) at a concentration slightly below the MDL. As beta-BHC was confirmed in the re-extraction analysis, the detect for beta-BHC in the re-extraction (9B23113) was rejected, "R," in favor of the result reported in the original extraction of Outfall 008 (9B20074). Endrin aldehyde was also detected at a concentration above the MDL in the original extraction of Outfall 008 (9B20074). Although endrin aldehyde was not reported in the re-extraction analysis of Outfall 008 (9B23113), it should be noted that the analyte was detected just below the MDL; therefore, the result for endrin aldehyde in the re-extraction analysis was rejected, "R," in favor of the result reported in the original analysis of Outfall 008. The remaining analytes in the re-extraction analysis were rejected as duplicate data (see above).

- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs for the blank spike/blank spike duplicate pairs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed for the sample in this SDG. Method accuracy and precision was evaluated based on the blank spike/blank spike duplicate results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Compound identification was verified. The laboratory analyzed for pesticides and PCBs by EPA Method 608. Review of the sample chromatograms and retention times indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified from the raw data. The reporting limits were supported by the lower level of the initial calibration. Any result reported between the MDL and the reporting limit was qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.

E. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 25, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The
 aliquots for gross alpha, gross beta, cesium-137, potassium-40, and total uranium were
 prepared beyond the five-day holding time for unpreserved samples; therefore, the
 results for these analytes were qualified as estimated, "J," for detects and, "UJ," for
 nondetects. All remaining aliquots were prepared within the five-day holding time for
 unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as estimated, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium, radium-226, and radium-228 chemical yields were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries and the strontium-90, radium-226, and radium-228 RPDs were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No matrix spike or MS/MSD analyses were performed on the sample in this SDG. Method accuracy and precision, when applicable, were evaluated based on LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Total

uranium, normally reported in aqueous units, was converted to pCi/L using a conversion factor for naturally occurring uranium. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

F. EPA METHOD 525.2—Semivolatile Organic Compounds (SVOCs)

Reviewed By: P. Meeks

Date Reviewed: March 27, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within 24 hours of collection and analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The diazinon initial calibration average RRF was ≥0.05 and %RSD ≤30%. The continuing calibration RRF for diazinon was ≥0.05 and recovery was within the method QC limits of 70-130%. The reviewer could not duplicate the chlorpyrifos initial calibration; however, the calculated average RRF was ≥0.05 and the calculated %RSD ≤30%. Additionally the calculated chlorpyrifos continuing calibration RRF was ≥0.05 and the calculated recovery was within the method QC limits of 70-130%.
- Blanks: The method blank had no applicable target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.

 Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on the LCS result.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this analysis.
- System Performance: Review of the raw data indicated no problems with system performance.

G. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 27, 2009

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), Standard Methods SM2540D and SM4500-CN-C,E, and the National Functional Guidelines for Inorganic Data Review (10/04).

 Holding Times: Analytical holding times, 7 days from collection for TSS and 14 days for cyanide, were met.

• Calibration: Calibration criteria were met. The cyanide initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. Balance calibration logs were reviewed and found to be acceptable.

- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Any detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

ANALYSIS OF WATER BY TEM (EPA-600 R 94 134) EPA 100.2

LAB NO:

127223

CLIENT:

Test America

			FILTER	MEDIA DATA			
Laboratory I.D.	Client I.D.	Туре	Diameter mm	Effective Area mm^2	No. of G.O.	Analyzed Area, mm^2	Sample Volume (ml)
127223-1	ISB1787-01*	PC	47	1017	10	0.093	1
	Outfall ook						
	A CONTRACTOR OF THE PARTY OF TH						
				ļ			
							_

^{*} FOR FIBERS > 10um ONLY

ANALYTICAL RESULTS

Laboratory	Client	No	of Asbesto	s Str.	Detection			ION (MFL)	
I.D.	I.D.	All Sizes	5-9.9um	>10um	Limit (MFL)	All Sizes	5-9.9um	>10um	
127223-1	ISB1787-01*	-	-	N.D.	11	-	-	N.D.	
									+
		 							
									4
									\dashv
		-					 		1
									
									4
						ļ	 		\dashv
						 	 		
		 							

^{*} FOR FIBERS > 10um ONLY

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

Authorized Signature

PC - Polycarbonate

MCE - Mixed cellulose ester

G.O. - Grid Openings

Str - Structures

MFL - Millions of fibers per liter

TEM-7A (2009Rev.)

LEVEL IV

Analyst: JMH

Ja 3.30.09

Sample ID: ISB1	ISB1787-01 Out-fall 00 8	80					EPA M	EPA Method 1613
Client Data			Sample Data		Laboratory Data			
	Test America-Irvine, CA		Matrix:	Aqueous	Lab Sample:	31439-001	Date Received:	18-Feb-09
Date Collected: 16-Feb-0	16-Feb-09		Sample Size:	1.03 L	QC Batch No.:	1907	Date Extracted:	21-Feb-09
0000	Conc. (ug/L)	DL a	EMPC ^b	Oualifiers	Labeled Standard	lard	%R LCL-UCL ^d	Oualifiers
2.3.7. 8- TCDD	ND GI	0.000000563	63		IS 13C-2.3.7.8-TCDD	חח	85.4 25 - 164	
1,2,3,7,8-PeCDD	ND	0.00000114	4			eCDD		-
1,2,3,4,7,8-HxCDD	ND	0.00000173	ω		13C-1,2,3,4,7,8-HxCDD	-HxCDD	78.6 32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.00000175	5		13C-1,2,3,6,7,8-HxCDD	-HxCDD	77.3 28 - 130	
1,2,3,7,8,9-HxCDD	ND w	0.00000168	∞		13C-1,2,3,4,6,7,8-HpCDD	,8-HpCDD	75.2 23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000178 JUNG			<u>~</u>	13C-OCDD		64.6 17 - 157	
OCDD	0.000151				13C-2,3,7,8-TCDF	DF	89.0 24 - 169	
2,3,7,8-TCDF	ND U	0.000000627	27		13C-1,2,3,7,8-PeCDF	eCDF	78.7 24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000881	81		13C-2,3,4,7,8-PeCDF	eCDF	75.2 21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000920	20		13C-1,2,3,4,7,8-HxCDF	-HxCDF	82.9 26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000959	59		13C-1,2,3,6,7,8-HxCDF	-HxCDF	77.5 26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000975	75		13C-2,3,4,6,7,8-HxCDF	-HxCDF	81.6 28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.00000111	1		13C-1,2,3,7,8,9-HxCDF	-HxCDF	76.9 29 - 147	
1,2,3,7,8,9-HxCDF	ND <	0.00000159	9		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	74.9 28 - 143	
1,2,3,4,6,7,8-HpCDF	ND U5/*月		0.00000573	73	13C-1,2,3,4,7,8,9-HpCDF	,9-HpCDF	73.5 26 - 138	
1,2,3,4,7,8,9-HpCDF	ND * W	0.00000216	6		13C-OCDF		61.0 17 - 157	
OCDF	0.0000144 JIDNA			J	CRS 37C1-2,3,7,8-TCDD	CDD	92.4 35 - 197	
Totals					Footnotes			
Total TCDD	ND U	0.000000563	63		a. Sample specific estimat	ted detection limit.		
Total PeCDD	ND	0.00000114	4		b. Estimated maximum possible concentration.	ssible concentration.		
Total HxCDD	ND↓	0.00000172	2		c. Method detection limit.			
Total HpCDD	0.0000178 عرام		0.0000372	2	d. Lower control limit - upper control limit.	per control limit.		
Total TCDF	ND U	0.000000627	27					_
Total PeCDF	ND U	0.000000900	00					
Total HxCDF	0.00000277 T/DNO							
Total HpCDF	ND UT/米河		0.0000110	0				

Project 31439

LEVEL IV

Approved By:

Martha M. Maier 07-Mar-2009 08:45

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

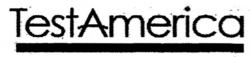
MWH-Pasadena/Boeing

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Report Number: ISB1787

Sampled: 02/16/09


Arcadia, CA 91007 Attention: Bronwyn Kelly Received: 02/16/09

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 0	08 - Water) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	66	1	02/23/09	02/24/09	
Boron	EPA 200.7	9B23087	0.020	0.050	0.061	1	02/23/09	02/24/09	
Calcium	EPA 200.7	9B23087	0.050	0.10	20	1	02/23/09	02/24/09	
Iron	EPA 200.7	9B23087	0.015	0.040	3.0	1	02/23/09	02/24/09	
Magnesium	EPA 200.7	9B23087	0.012	0.020	3.9	1	02/23/09	02/24/09	

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: ISB1787

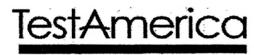
Sampled: 02/16/09

Received: 02/16/09

METALS

		r	VIL I A	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 008 - Wat	ter) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7	9B23087	40	50	3100	1	02/23/09	02/24/09	
Arsenic U	EPA 200.7	9B23087	7.0	10	ND	1	02/23/09	02/24/09	
Antimony X	EPA 200.8	9B23088	0.20	2.0	0.35	1	02/23/09	02/24/09	Ja
Beryllium ()	EPA 200.7	9B23087	0.90	2.0	ND	1	02/23/09	02/24/09	
Chromium U/B	EPA 200.7	9B23087	2.0	5.0	3.4	1	02/23/09	02/24/09	B, Ja
Nickel J/DNR	EPA 200.7	9B23087	2.0	10	3.5	1	02/23/09	02/24/09	Ja
Silver U	EPA 200.7	9B23087	6.0	10	ND	1	02/23/09	02/24/09	
Cadmium X	EPA 200.8	9B23088	0.11	1.0	ND	1	02/23/09	02/24/09	
Vanadium JIONQ	EPA 200.7	9B23087	3.0	10	6.8	1	02/23/09	02/24/09	Ja
Zinc JINQ	EPA 200.7	9B23087	6.0	20	14	1	02/23/09	02/24/09	Ja
Copper 🐇	EPA 200.8	9B23088	0.75	2.0	4.1	1	02/23/09	02/24/09	
Lead	EPA 200.8	9B23088	0.30	1.0	2.6	1	02/23/09	02/24/09	
Selenium	EPA 200.8	9B23088	0.30	2.0	ND	1	02/23/09	02/24/09	
Thallium 🖟	EPA 200.8	9B23088	0.20	1.0	ND	1	02/23/09	02/24/09	. С

LEVEL IV


*Analysis not validated

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1787 < Page 14 of 60>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Sampled: 02/16/09

Arcadia, CA 91007

Report Number: ISB1787

Received: 02/16/09

DISSOLVED METALS

		DISSOI	T TIE	MIE I ALLA					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 008	- Water) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B-Diss	[CALC]	N/A	0.33	61	1	02/20/09	02/23/09	
Boron	EPA 200.7-Diss	9B20105	0.020	0.050	0.060	1	02/20/09	02/24/09	
Calcium	EPA 200.7-Diss	9B20105	0.050	0.10	19	1	02/20/09	02/23/09	
Iron	EPA 200.7-Diss	9B20105	0.015	0.040	0.14	1	02/20/09	02/23/09	
Magnesium	EPA 200.7-Diss	9B20105	0.012	0.020	3.2	1	02/20/09	02/23/09	

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1787 < Page 15 of 60>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ISB1787

Sampled: 02/16/09 Received: 02/16/09

Attention: Bronwyn Kelly

DISSOLVED METALS

			- ,						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfail 00	8 - Water) - cont.								
Reporting Units: ug/I									
Aluminum	EPA 200.7-Diss	9B20105	40	50	160	1	02/20/09	02/23/09	
Arsenic ()	EPA 200.7-Diss	9B20105	7.0	10	ND	1	02/20/09	02/23/09	
Antimony. X	EPA 200.8-Diss	9B20106	0.20	2.0	0.33	1	02/20/09	02/25/09	Ja
Beryllium ()	EPA 200.7-Diss	9B20105	0.90	2.0	ND	1	02/20/09	02/23/09	
Chromium	EPA 200.7-Diss	9B20105	2.0	5.0	ND	1	02/20/09	02/23/09	
Nickel	EPA 200.7-Diss	9B20105	2.0	10	ND	1	02/20/09	02/23/09	
Silver	EPA 200.7-Diss	9B20105	6.0	10	ND	1	02/20/09	02/23/09	
Cadmium	EPA 200.8-Diss	9B20106	0.11	1.0	ND	1	02/20/09	02/23/09	C
Vanadium U	EPA 200.7-Diss	9B20105	3.0	10	ND	1	02/20/09	02/23/09	
Zinc UJ/B, XIII	EPA 200.7-Diss	9B20105	6.0	20 .	ND	1	02/20/09	02/23/09	
Copper -	EPA 200.8-Diss	9B20106	0.75	2.0	2.0	1	02/20/09	02/23/09	
Lead	EPA 200.8-Diss	9B20106	0.30	1.0	ND	1	02/20/09	02/23/09	
Selenium	EPA 200.8-Diss	9B20106	0.30	2.0	0.68	1	02/20/09	02/23/09	Ja
Thallium 🗸	EPA 200.8-Diss	9B20106	0.20	1.0	ND	1	02/20/09	02/23/09	С

LEVEL IV

*Analysis not validated

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1787 < Page 16 of 60>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 008

Report Number: ISB1787

Sampled: 02/16/09

Received: 02/16/09

MCAWW 245.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 008	- Water) - cont.								
Reporting Units: ug/L									
Mercury J/Q	MCAWW 245.1	9065187	0.027	0.2	0.029	1	03/09/09	03/09/09	J

I EVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1787 < Page 20 of 60>

17461 Derian Avenue. Suite 100, Irvinc, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: ISB1787

Sampled: 02/16/09

Received: 02/16/09

MCAWW 245.1-DISS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 008	- Water) - cont.								
Reporting Units: ug/L Mercury U	MCAWW 245.1-DISS 9	050182	0.027	0.2	ND	1	02/19/09	02/19/09	

FVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1787 < Page 21 of 60>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ISB1787

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 008 - Wate	r) - cont.								
Reporting Units: ug/l	-,								
4,4'-DDD USIC	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
4.4'-DDE 457c	EPA 608	9B20074	0.0028	0.0047	ND	0.943	02/20/09	02/22/09	
4.4'-DDT USIC	EPA 608	9B20074	0.0038	0.0094	ND	0.943	02/20/09	02/22/09	
Aldrin	EPA 608	9B20074	0.0014	0.0047	ND	0.943	02/20/09	02/22/09	
alpha-BHC RID	EPA 608	9B20074	0.0024	0.0047	0.012	0.943	02/20/09	02/22/09	N2
beta-BHC JONQ, C	EPA 608	9B20074	0.0038	0.0094	0.0052	0.943	02/20/09	02/22/09	Ja
delta-BHC	EPA 608	9B20074	0.0033	0.0047	ND	0.943	02/20/09	02/22/09	
Dieldrin	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan I	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan II	EPA 608	9B20074	0.0028	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan sulfate	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
Endrin UJIC	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endrin aldehyde JDNA, C	EPA 608	9B20074	0.0019	0.0094	0.0027	0.943	02/20/09	02/22/09	C, Ja
Endrin ketone USIC	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
gamma-BHC (Lindane) MIIC	EPA 608	9B20074	0.0028	0.019	ND	0.943	02/20/09	02/22/09	
Heptachlor UTIC	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
Heptachlor epoxide	EPA 608	9B20074	0.0024	0.0047	ND	0.943	02/20/09	02/22/09	
Methoxychlor	EPA 608	9B20074	0.0033	0.0047	ND	0.943	02/20/09	02/22/09	
Chlordane	EPA 608	9B20074	0.038	0.094	ND	0.943	02/20/09	02/22/09	
Toxaphene	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/22/09	
Surrogate: Decachlorobiphenyl (45-120%)					75 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					67 %				I

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Arcadia, CA 91007

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Report Number: ISB1787

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01RE1 (Ou	tfall 008 -	Water) - cont.							•	
Reporting Units: ug/l		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						-		
4,4'-DDD	RID	EPA 608	9B23113	0.0019	0.0048	ND	0.957	02/23/09	02/25/09	
4,4'-DDE	1	EPA 608	9B23113	0.0029	0.0048	ND	0.957	02/23/09	02/25/09	
4,4'-DDT		EPA 608	9B23113	0.0038	0.0096	ND	0.957	02/23/09	02/25/09	
Aldrin		EPA 608	9B23113	0.0014	0.0048	ND	0.957	02/23/09	02/25/09	
alpha-BHC		EPA 608	9B23113	0.0024	0.0048	0.0098	0.957	02/23/09	02/25/09	N2
beta-BHC		EPA 608	9B23113	0.0038	0.0096	0.0068	0.957	02/23/09	02/25/09	Ja
delta-BHC		EPA 608	9B23113	0.0033	0.0048	ND	0.957	02/23/09	02/25/09	
Dieldrin	1.	EPA 608	9B23113	0.0019	0.0048	ND	0.957	02/23/09	02/25/09	
Endosulfan I		ĖPA 608	9B23113	0.0019	0.0048	ND	0.957	02/23/09	02/25/09	
Endosulfan II		EPA 608	9B23113	0.0029	0.0048	ND	0.957	02/23/09	02/25/09	
Endosulfan sulfate		EPA 608	9B23113	0.0029	0.0096	ND	0.957	02/23/09	02/25/09	
Endrin		EPA 608	9B23113	0.0019	0.0048	ND	0.957	02/23/09	02/25/09	
Endrin aldehyde		EPA 608	9B23113	0.0019	0.0096	ND	0.957	02/23/09	02/25/09	
Endrin ketone		EPA 608	9B23113	0.0029	0.0096	ND	0.957	02/23/09	02/25/09	
gamma-BHC (Lindane)		EPA 608	9B23113	0.0029	0.019	ND	0.957	02/23/09	02/25/09	
Heptachlor	4	EPA 608	9B23113	0.0029	0.0096	ND	0.957	02/23/09	02/25/09	
Heptachlor epoxide	1	EPA 608	9B23113	0.0024	0.0048	ND	0.957	02/23/09	02/25/09	
Methoxychlor	(EPA 608	9B23113	0.0033	0.0048	ND	0.957	02/23/09	02/25/09	
Chlordane		EPA 608	9B23113	0.038	0.096	ND	0.957	02/23/09	02/25/09	
Toxaphene	V	EPA 608	9B23113	0.24	0.48	ND	0.957	02/23/09	02/25/09	
Surrogate: Decachlorobiphenyl (4	15-120%)					87 %				
Surrogate: Tetrachloro-m-xylene						81%				

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Report Number: ISB1787

Sampled: 02/16/09

Arcadia, CA 91007

Received: 02/16/09

Attention: Bronwyn Kelly

CFR136A 608

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 00	8 - Water) - cont.								
Reporting Units: ug/L alpha-BHC									
alpha-BHC	CFR136A 608	9064381	0.0053	0.05	ND	1	03/05/09	03/10/09	HTV
Surrogate: Decachlorobiphenyl (32-			53 %						
Surrogate: Tetrachloro-m-xylene (52			86 %						

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Sampled: 02/16/09

Arcadia, CA 91007

Report Number: ISB1787

Received: 02/16/09

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 0	08 - Water) - cont.								
Reporting Units: ug/l									
Aroclor 1016	U EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1221	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1232	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1242	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1248	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1254	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1260	₩ EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Surrogate: Decachlorobiphenyl (45	i-120%)				90 %				

LEVEL IV

TestAmerica Irvine

TestAmerica Irvine

Client Sample ID: ISB1787-01

Outfall 008

Radiochemistry

Lab Sample ID: F9B180218-001 Work Order:

Matrix:

K7DJD WATER Date Collected:

02/16/09 0830

Date Received:

02/18/09 0930

Batch # 9049441

0.54

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Cs-137 & Hits	by EPA 901	.1 MOD	p	Ci/L	Batch # :	9058211	Yld %
Cesium 137 UJ/H	3.2	υ	8.8	20.0	16	02/27/09	03/14/09
Potassium 40 🌵 🌡	-50	υ	380		240	02/27/09	03/14/09
Gross Alpha/Beta EF	A 900		p	Ci/L	Batch # 9	9050133	Yld %
Gross Alpha VJ/H,C	1.9	σ	1.3	3.0	1.9	02/24/09	03/03/09
Gross Beta J/H	4.7		1.1	4.0	1.4	02/24/09	03/03/09
TRITIUM (Distill) b	y EPA 906.0	MOD	p(Ci/L	Batch # 9	9066052	Yld %
Tritium ()	300	σ	200	500	310	03/07/09	03/13/09
SR-90 BY GFPC EPA-	905 MOD		po	Ci/L	Batch # 9	049442	Yld % 36
Strontium 90 U	0.34	υ	0.46	3.00	0.76	02/18/09	02/28/09
Total Uranium by KP	A ASTM 5174	-91	p(Ci/L	Batch # S	050413	Yld %
Total Uranium J/H, DON	Q 0.549	J	0.062	0.677	0.21	02/19/09	03/08/09
Radium 226 by EPA	903.0 MOD		po	Ci/L	Batch # 9	049439	Yld % 76
Radium (226) 1/000	0.24	J	0.15	1.00	0.19	02/18/09	03/13/09

pCi/L

0.30

1.00

LEVEL IV

-0.05

σ

Radium 228 by GFPC EPA 904 MOD

Radium 228 (

NOTE(S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Yld % 68

02/18/09 03/13/09

Result is greater than sample detection limit but less than stated reporting limit.

Result is less than the sample detection limit.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Report Number: ISB1787

Sampled: 02/16/09

Received: 02/16/09

Arcadia, CA 91007 Attention: Bronwyn Kelly

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 008 -	Water) - cont.								
Reporting Units: ug/l									
Chlorpyrifos U	EPA 525.2	C9B1701	0.10	1.0	ND	1	02/17/09	02/17/09	
Diazinon J	EPA 525.2	C9B1701	0.24	0.25	ND	1	02/17/09	02/17/09	
Surrogate: 1,3-Dimethyl-2-nitrobenzen	e (70-130%)				108 %				
Surrogate: 1,3-Dimethyl-2-nitrobenzen	e (70-130%)				108 %				
Surrogate: Triphenylphosphate (70-130	7%)				126%				
Surrogate: Triphenylphosphate (70-130	0%)				126%				
Surrogate: Perylene-d12 (70-130%)					112%				
Surrogate: Perylene-d12 (70-130%)					112%				

Level IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1787 < Page 19 of 60>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 008

Report Number: ISB1787

Sampled: 02/16/09

Received: 02/16/09

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1787-01 (Outfall 00	8 - Water) - cont.								
Reporting Units: mg/l									
Ammonia-N (Distilled) *	SM4500NH3-C	9B24128	0.50	0.50	1.1	1	02/24/09	02/24/09	
Chloride *	EPA 300.0	9B16057	0.25	0.50	8.0	1	02/16/09	02/16/09	
Total Cyanide	SM4500-CN-C,E	9B19142	0.0022	0.0050	0.0087	1	02/19/09	02/19/09	
Fluoride	SM 4500-F-C	9B20008	0.020	0.10	0.23	1	02/20/09	02/20/09	В
Nitrate-N	EPA 300.0	9B16057	0.060	0.11	1.9	1	02/16/09	02/16/09	
Nitrite-N	EPA 300.0	9B16057	0.090	0.15	ND	1	02/16/09	02/16/09	
Nitrate/Nitrite-N	EPA 300.0	9B16057	0.15	0.26	1.9	1	02/16/09	02/16/09	
Sulfate	EPA 300.0	9B16057	0.20	0.50	10	1	02/16/09	02/16/09	
Total Dissolved Solids	SM2540C	9B18065	10	10	140	1	02/18/09	02/18/09	
Total Suspended Solids	SM 2540D	9B21068	1.0	10	55	1	02/21/09	02/21/09	

LEVEL W

*Analysis not validated

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

ISB1787 < Page 17 of 60>