Chain of Custody and Supporting Documentation

_	2	_	
	ł	•	
	3	1	
	ì	٤	
	P	ï	
	ì	1	
	ì	į	
	١	ŧ.	
į		1	
	N	0	Ļ

CHAIN OF CUSTODY RECORD

C	BOEING			CHAIN O	CHAIN OF CUSTODY RECORD	₽.	Š	SG	_				Š	# 000				Ž	MWHAR20090820_00
													1	35	135805			ă	Page: 1 of 1
Custome	Customer Information	Project Informati	ormatic	.		Pro	ect li	Project Information	atton										
Site:	SSFL	Client Name:		Boeing		8	Collector:	-	A. Ruotolo						Boeing PM:	P.W.			
Company: MWH	MWH	Sampling Event:	-	ISRA Sampling, June 2009	June 2009	ទ	Contact #:							T			+		
Report to:	Sarah Von Raesfeld	Project Number:	+	1891614.054521	1					å	queste	Requested Analyses	yses	1			4	Ins	Instructions/TAT
Address:	2121 N. California Blvd	Project Manager:	+	Alex Fischi				_				-	_			-	-		
	Suite 600	PM Phone #:		(925) 627-4627		Т			_						_			N Le	Legend: Numerical values for
	Walnut Creek	Field Contact:	#			1												ana	analyses equate to tum around time in davs
	CA	Field Contact #:	#			т-		Mer						s			-	Ī	Hold
	94596	Lab Name:		GEL Laboratories, LLC	se, LLC	_		als D						voc		-		H 3	EH - Extract/Extrude &
Email:	sarah.vonraesfeld@mwhglobal.c	al.c Lab Contact:		Jackie Trudell							PC			s by	TP				3
	sean.leffler@mwhglobal.com	Lab Address:		2040 Savage Road	oad	D2	Ene			РСВ	CB by		-	SW8	H by		-		elles out at contact.
				Charleston, SC 29407	29407	216	erget			by S	SW	_		2700	SW8	_			bellow are Turn Around
		Lab Phone:	٦	(843) 769-7388		Moist	ics 83		-	W808	8082			SIM	015E			98 E E	es.
Sample Name	яте	Matrix	Date	Time	No. of Containers	ure Soil	330 Soil	- vvater O Water	A - Soil	32 - Soil	- Water	DI-WET	M - Soil	- Water	M - Soil	- Water	OB - Soi	- Wate	Comments
EBQW2234		Water	8/20/2009	14:00	5			10	╄		2	-	╄-	9	+	+	1		
HZBS0173S001		Soil	8/20/2009	009 9:40	9	9	2	\vdash	우	유		9	우		9	+	P	1	
HZBS0173S002	3002	Soll	8/20/2009	6003	ဖ	9	9	-	우	유	T	5	우	L	9	-	5	-	
HZBS0174S001	3001	Soil	8/20/2009	10:35	9	9	2	┞	우	유		9	우		9	F	5	\perp	
HZBS0174S002	3002	Soil	8/20/2009	10:56	9	9	9		9	우	T	9	우		9	+	5	Ļ	
HZTB2003T001		Water	8/20/2009	8:49	6		T	\vdash			r	┞	L		t	╁	12		

1. Relinquished by:	Date:	2. Received by:	Date:	3. Relinquished by:	Date:	4. Received by:	Date:	
MM of Rates	8-20-04	gipallyi.	8/21/09					
Company: MWH	Time:	Company:	Time (O Company:	Company:	Time:	Company:	Time:	1
Comments:					Geotr. Data	Geotracker EDF Data Validation Package	Level IV	li

SAMPLE RECEIPT & REVIEW FORM

Clien	Client: SSFL SDG/ARCOC/Work Order: 235805					
Recei	ived By: JP			Date R	eceived: 8121/89	
Susp	ected Hazard Information	Yes	No	f Counts >	x2 area background on samples not marked "radioactive", contact Safety Group of further investigation.	
COC	Samples marked as radioactive?		\	laximum C	ounts Observed*: 30cpm	
Class	ified Radioactive II or III by RSO?		/			
COC	Samples marked containing PCBs?		\			
Shipp	ed as a DOT Hazardous?		/	azard Class	Shipped: UN#:	
Samp	les identified as Foreign Soil?		/			
	Sample Receipt Criteria	Yes	NA	e C	omments/Qualifiers (Required for Non-Conforming Items)	
1	Shipping containers received intact and sealed?	/		s	Circle Applicable: eals broken damaged container leaking container other (describe)	
2	Samples requiring cold preservation within $0 \le 6$ deg. C?	/		5.1	Preservation Method: ice bass blue ice dry ice none other (describe)	
3	Chain of custody documents included with shipment?	/				
4	Sample containers intact and sealed?			s	Circle Applicable: eals broken damaged container leaking container other (describe)	
5	Samples requiring chemical preservation at proper pH?	/		1	's, containers affected and observed pH: tion added, Lot#:	
6	VOA vials free of headspace (defined as < 6mm bubble)?	/			's and containers affected:	
7	Are Encore containers present?			(If yes, im	mediately deliver to Volatiles laboratory)	
8	Samples received within holding time?	/		Id's and te	ets affected:	
9	Sample ID's on COC match ID's on bottles?			HZ7	's and containers affected: 18 200 37001 1abkd as Trip Blank	
10	Date & time on COC match date & time on bottles?			1 no	time + date on trip blank	
11	Number of containers received match number indicated on COC?			Sample ID	's affected:	
12	COC form is properly signed in relinquished/received sections?					
Comn	Led Ly 945 1 3	16	1	5420 1410 431		

PM (or PMA) review: Initials

Subject: RE: SIRA Sample Receipt Issues - 8/21/09

From: Sarah Von Raesfeld <Sarah.E.VonRaesfeld@us.mwhglobal.com>

Date: Mon, 24 Aug 2009 13:11:02 -0600

To: Jackie Trudell < jacqueline.trudell@gel.com>, Sean Leffler < Sean.S.Leffler@us.mwhglobal.com>

Please log the samples in per the COC. The ID should be HZTB2003T001 and the collection date and time should be 8/20, 08:49.

----Original Message----

From: Jackie Trudell [mailto:jacqueline.trudell@gel.com]

Sent: Friday, August 21, 2009 11:26 AM To: Sean Leffler; Sarah Von Raesfeld

Subject: SIRA Sample Receipt Issues - 8/21/09

Sean and Sarah-

We encountered the following receipt issues:

- No containers were received for sample HZTB2003T001 (collected 8/20/09
- 3 vials were received labeled "Trip Blank" that are not marked on the COC - Samples labeled "Trip Blank" have no date or time on container

Please advise.

Thanks, Jackie

Jacqueline Trudell Project Manager GEL Laboratories, LLC 2040 Savage Road Charleston, SC (USA) 29407

Direct: 843.769.7388

Main: 843.556.8171 ext. 4406

Fax: 843.766.1178

E-mail: jacqueline.trudell@gel.com

Web: www.gel.com

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

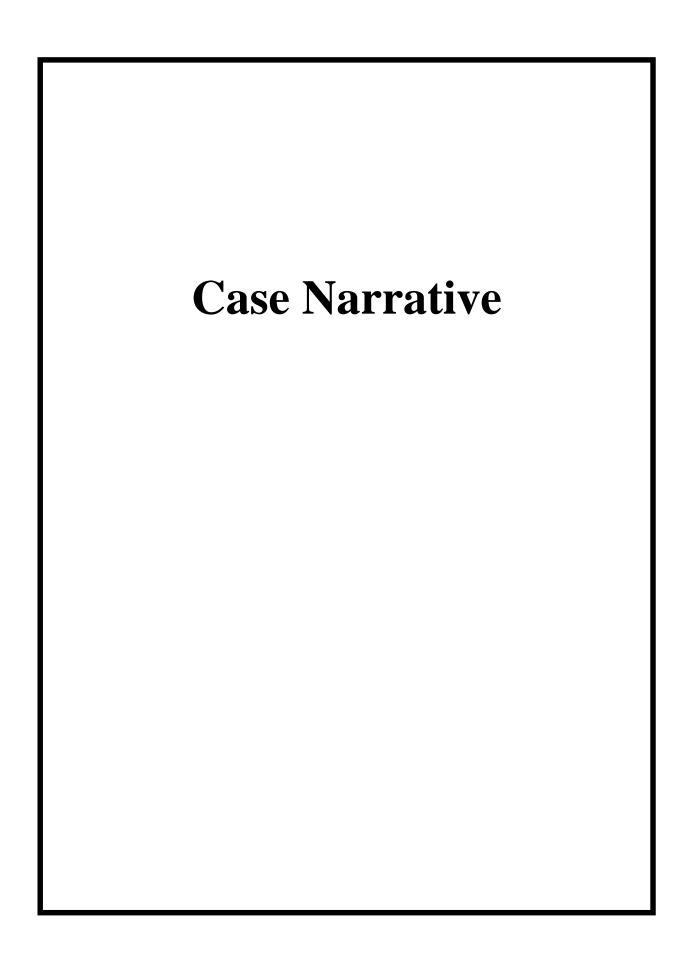
LABORATORY TASK ORDER (LTO) FORM

INSTRUCTIONS: To be completed by Environmental Contractor & Emailed to Laboratory Project Manager, CH2M HILL (boeingedms@ch2m.com) & the Data Validator at Least 48 hrs prior to need for sample containers. Project Analytical Laboratory will confirm receipt via E-Mail.

Event Name:	ISRA Sa	mpling, Feb 2009	Start:_	2/19/2009	End	2/23/2009
LTO DATE:			LTO	NUMBER	1-	
Consultant Name:		MWH	Contract Laboratory:		GEL	
Address:		l. California Blvd. Ste. 600	Address:		2040 Savage	
	Wa	alnut Creek, CA 94596		Cha	arleston, SC	29407
Contact Name:	,	Sarah Von Raesfeld	Lab Contact Name:		Cheryl Jone	es
Phone Number:		925-627-4654	Phone Number:		843-769-738	
Fax Number:		925-627-4501	Fax Number:		843-766-117	
E-mail Address:	Sarah.	VonRaesfeld@mwhglobal.com	E-mail Address:		<u>cj@gel.con</u>	<u>n</u>
			CONTAINER ORDER FORM			
Date Required:	02/19/0	09	Requested Analyses:	(S Water	Specify # of San Soil	nples) Contingent
			Dioxins - (1613B)	5	9	14
Date Sample Pickup:	NA		EPA 8015M (DRO)			
			EPA 8015M (JET FUEL)			
Ship Containers To:			EPA 8015M (CC)			
Project Site	X	(enter "X")	EPA 8260B (VOC)			
Consultant Office		(enter "X")	EPA 8270C SIM (SVOC)			
Other Location (specify in	1		EPA 8310 (PAH)			
comments)	·	_ (enter "X")	EPA 8082 (PCB)			
			Acetone (8260B)			
Container Information			EPA TO-15 VOCs (SIM)			
Trip Blank (VOA only)		_(Yes/No)	Metals (6010B/6020/7470A/7471A)			
Temp Blank (VOA Only)		_ (Yes/No)	Cadmium (6020)	5	15	10
DI Water Required?		_(Yes/No)	Arsenic (6020)	5	5	5
MS/MSD Extra Bottles?	No	_(Yes/No)	% Moisture (D2216)	0	40	30
Sample Matrix:			Lead (6020)	5	40	30
Sample Matrix:		(aslast all applicable)	Copper (6020)	5	10	5
Soil Water		_ (select all applicable) (select all applicable)	Zinc (6020) EPA TO-14 (VOCs)	<u> </u>	10	5
Valei		(select all applicable)	EFA 10-14 (VOCS)			
•			. E			
Est. Total # of Samples:	75	_ Est. Total # of EDD:	<u> </u>			
Project TAT:		LABORATORTI	Laboratory Results/Report	rts Delive	rables:	
Normal:	: X	(10 Business days)	Draft Results Fax?:		(Yes/No)	
RUSH:		(Specify- 24 / 48 / 72HRS)		Yes	(Yes/No)	
Other:		(Specify # of Days)	-		_(
		_(=,===,=,	Specify Fax/E-mail Contact Name, #, E-mail Address: S	Parah VanDa	esfeld@mwhglol	hal aam
Report Due Date:				saran.vonka	esieid@mwngioi	bai.com
Curriel Demontina Des			Send Original Reports To:		(anton V)	
Special Reporting Rec	-		Project Site _		(enter "X")	
Contingent Analysis?	No_	_(Yes/No)	Consultant Office		(enter "X")	
TIC (VOC) Required?		_(Yes/No)	Other Location (specify			
TIC (SVOC) Required?		_(Yes/No)	in comments) 	X	(enter "X")	
Data Validation Pckge.:	Tier III	(Boeing Tier I, II or III)	# of Copies Reports Req.: _	1	_	
		SPECIAL II	NSTRUCTIONS/LTO NOTES			
		CONFIRMATION	N OF TRANSMITTAL & RECEIPT			
LTO Sent By:			LTO Received By-			
Name:	Sean Lef	ffler	Name:			
Date:	02/20/09		 Date:			<u> </u>
			_			_

LABORATORY TASK ORDER (LTO) FORM (PAGE 2) ADDITIONAL REQUIRED ANALYSES

LTO DATE:		LTO NUM	MBER:]
Consultant Name:	MWH	Contract Laboratory:	GEL	
Address:	2121 N. California Blvd. Ste. 600	Address:	2040 Savage Rd.	_
	Walnut Creek, CA 94596	_	Charleston, SC 29407	_
		_		_
Contact Name:	Sarah Von Raesfeld	Lab Contact Name:	Cheryl Jones	
Phone Number:	925-627-4654	Phone Number:	843-769-7388	_
Fax Number:	925-627-4501	Fax Number:	843-766-1178	_
E-mail Address:	Sarah.VonRaesfeld@mwhglobal.com	E-mail Address:	<u>cj@gel.com</u>	_


SAMPLE CONTAINER ORDER FORM (CONTINUED)

Requested Analyses:		(Specify # of Samp	oles)
	Water	Soil	Contingent
Arsenic (6020)			
Lead (6020)	-		
Cadmium (6020)	ŀ	-	
Lithium (6020)	-		
Sodium (6020)	1		
Selenium (6020)	1	-	
Thallium (6020)	ŀ		
Zinc (6020)	-		
Boron (6010B	-		
Vanadium (6010B)			
Copper (6020)			
Zirconium (6020)			

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Data Qualifiers Definitions	10
Laboratory Certifications	12
Percent Moisture	14
GC/MS Volatile Analysis Sample Data Summary QC Summary Sample Data Standard Data QC Data Miscellaneous Data	18 25 44 63 109 203 256
GC/MS Semivolatile Analysis	271 277 299 331 451
GC Semivolatile PCB Analysis Sample Data Summary Quality Control Summary Sample Data Standards Data Quality Control Data Miscellaneous Data	535
HPLC Explosive Analysis Sample Data Summary QC Summary Sample Data Standard Data QC Data Miscellaneous Data	850 861 876 915 1018

LC/MS/MS Explosives Analysis	1087
Sample Data Summary	
Quality Control Summary	1100
Sample Data	1133
Standards Data	
Quality Control Data	
Miscellaneous Data	
GC Semivolatile DRO Analysis	1244
Sample Data Summary	
Quality Control Summary	
Sample Data	1268
Standards Data	
Quality Control Data	
Miscellaneous Data	
Metals Analysis	1377
Case Narrative	
Sample Data Summary	
Quality Control Summary	
Standards	
Raw Data	
Miscellaneous	
General Chemistry Analysis	2228
Case Narrative	
Sample Data Summary	
Quality Control Summary	
Instrument QC Data Summary	
Perchlorate	

Case Narrative for Boeing - SSFL (MWH) Work Order: 235805 SDG: 235805

September 03, 2009

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample Receipt

The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on August 21, 2009 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

The laboratory received the following samples:

Laboratory	Sample
Identification	Description
235805001	EBQW2234
235805002	HZBS0173S001
235805003	HZBS0173S002
235805004	HZBS0174S001
235805005	HZBS0174S002
235805006	HZTB2003T001

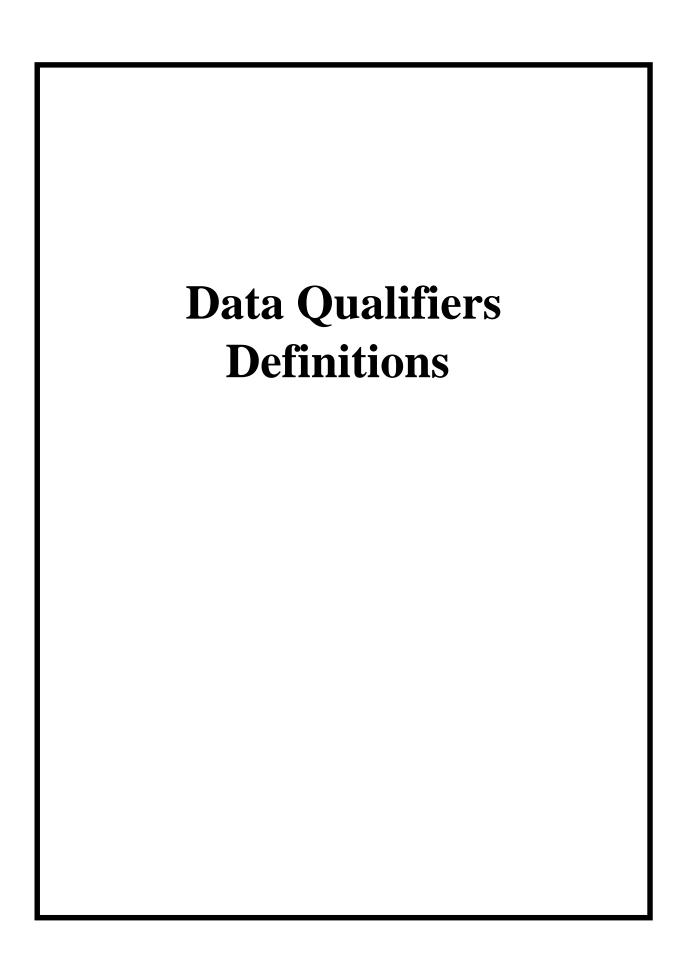
Items of Note

Santa Susanna Field Laboratory Technical Representative was contacted seeking resolution to any analytical and/or receipt issues. Please see the enclosed e-mails.

Case Narrative

Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

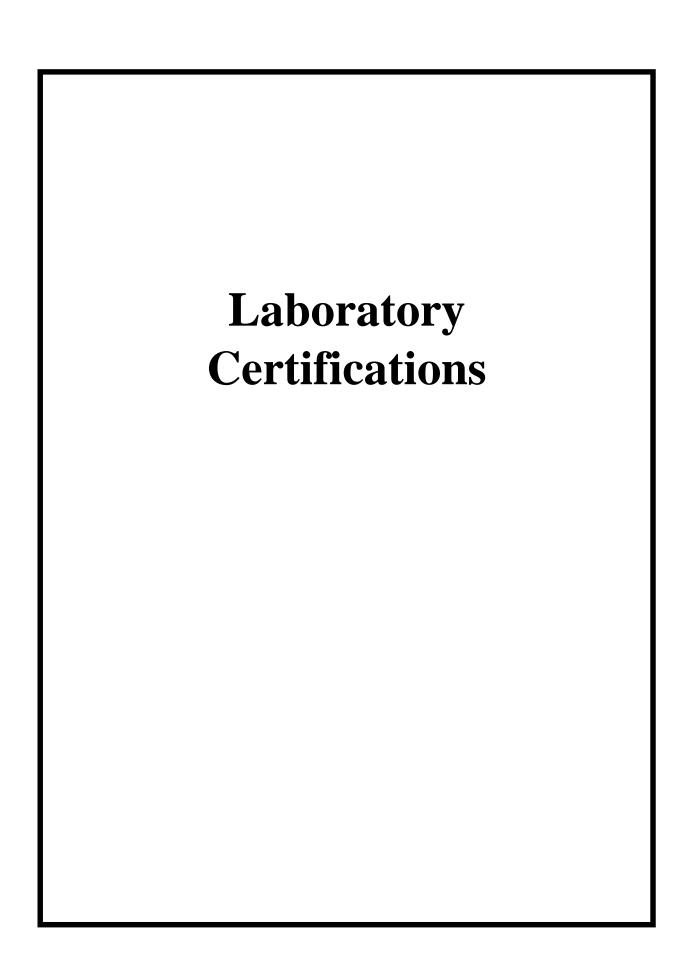
Data Package:


The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Explosives by LCMSMS, FID Flame Ionization Detector, GC Semivolatile PCB, GC/MS Semivolatile, GC/MS Volatile, General Chemistry, HPLC Explosive, Metals and Percent Moisture.

I certify that this data package is in compliance with the terms and conditions of the subcontract and task order, both technically and for the completeness, for other than the conditions detailed in the attached case narratives.

Jacqueline Trudell

Garqueline a Judel


Project Manager

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- ${
 m N/A}$ Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

List of current GEL Certifications as of 02 September 2009

State	Certification		
Arizona	AZ0668		
Arkansas	88-0651		
CLIA	42D0904046		
California – NELAP	01151CA		
Colorado	GEL		
Connecticut	PH-0169		
Dept. of Navy	NFESC 413		
EPA Region 5	WG-15J		
Florida – NELAP	E87156		
Georgia	E87156 (FL/NELAP)		
Georgia DW	967		
Hawaii	N/A		
ISO 17025	2567.01		
Idaho	SC00012		
Illinois – NELAP	200029		
Indiana	C-SC-01		
Kansas – NELAP	E-10332		
Kentucky	90129		
Louisiana – NELAP	03046		
Maryland	270		
Massachusetts	M-SC012		
Nevada	SC00012		
New Jersey – NELAP	SC002		
New Mexico	FL NELAP E87156		
New York – NELAP	11501		
North Carolina	233		
North Carolina DW	45709		
Oklahoma	9904		
Pennsylvania – NELAP	68-00485		
South Carolina	10120001/10120002		
Tennessee	TN 02934		
Texas – NELAP	T104704235-07B-TX		
U.S. Dept. of Agriculture	S-52597		
Utah – NELAP	GEL		
Vermont	VT87156		
Virginia	00151		
Washington	C1641		

DATA VALIDATION REPORT

Boeing SSFL RFI ISRA

SAMPLE DELIVERY GROUP: 235805

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL RFI ISRA

Contract Task Order: 1261.500D.00

Sample Delivery Group: 235805

Project Manager: Dixie Hambrick

Matrix: water/soil

QC Level: V

No. of Samples: 6 No. of Reanalyses/Dilutions: 0

Laboratory: GEL

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
EBQW2234	235805001	N/A	Water	8/20/2009 2:00:00 PM	314.0, 6010B, 6020, 7470A, 8015B, 8082, 8260B, 8270C, 8321A, 8330
HZBS0173S001	235805002	N/A	Soil	8/20/2009 9:40:00 AM	314.0-DI WET, 6010B, 6020, 7471A, 8015B, 8082, 8260B, 8270C, 8321A, 8330
HZBS0173S002	235805003	N/A	Soil	8/20/2009 9:57:00 AM	314.0-DI WET, 6010B, 6020, 7471A, 8015B, 8082, 8260B, 8270C, 8321A, 8330
HZBS0174S001	235805004	N/A	Soil	8/20/2009 10:35:00 AM	314.0-DI WET, 6010B, 6020, 7471A, 8015B, 8082, 8260B, 8270C, 8321A, 8330
HZBS0174S002	235805005	N/A	Soil	8/20/2009 10:56:00 AM	314.0-DI WET, 6010B, 6020, 7471A, 8015B, 8082, 8260B, 8270C, 8321A, 8330
HZTB2003T001	235805006	N/A	Water	8/20/2009 8:49:00 AM	8260B

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents a compound with a CAS number and fit greater than 80%.	Not applicable

T-II The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents a class of compound but not of sufficient identification quality to represent a specific compound.

Not applicable

T- The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents an unknown compound.

Not applicable

R The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Project:

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D The analysis with this flag should not be used because another more technically sound analysis is available.

P Instrument performance for pesticides was poor.

*II, *III Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

The analysis with this flag should not be used because another more technically sound analysis is available.

Project:

Post Digestion Spike recovery was not within control limits.

Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

Project: Boeing SSFL RFI ISRA SDG: 235805

III. Method Analyses

A. EPA METHOD 8330—Energetics

Reviewed By: P. Meeks

Date Reviewed: September 9, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Explosives, Nitroaromatics, and Nitramines (DVP-16, Rev. 0), EPA Method 8330, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The aqueous sample
 was extracted within seven days of collection and the soil samples were extracted within
 14 days of collection. All samples were analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: HMX was recovered below the control limit in both the aqueous LCS and LCSD; therefore, nondetected HMX in EBQW2234 was qualified as estimated, "UJ." All remaining recoveries and all RPDs were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on ILBS0173S001. All recoveries and all RPDs were within laboratory-established QC limits
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: FBQW2235 (233444) was the field blank and EBQW2234 was the equipment rinsate associated with the soil samples in this SDG. FBQW2235 was not analyzed for energetics and EBQW2234 had no detects above the MDL.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for energetic compounds by Method 8330.

 Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. All samples were analyzed at a 2x dilution as per the laboratory's standard operating procedure. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

B. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: September 9, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B, 6020, 7470A/7471A, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Antimony, copper, and vanadium were reported in the aqueous method blank at -3.27, -0.352, and -3.02 μg/L, respectively; therefore, these nondetected analytes were qualified as estimated, "UJ," in EBQW2234. Mercury was reported in the soil method blank at -0.00533 mg/kg; therefore, the soil mercury results were qualified as estimated, "J," for detects and, "UJ," for nondetects. Boron was reported in a bracketing CCB at -14.45 μg/L; therefore, nondetected boron in the soil samples was qualified as estimated, "UJ." Method blanks and CCBs had no detects.
- Interference Check Samples: Review is not applicable at a Level V validation; however, the reviewer noted that boron and antimony were reported in the ICSA at -23.8 and -8.6 µg/L, respectively. The soil boron and antimony results were qualified as estimated, "J," for detects and, "UJ," for nondetects.
- Blank Spikes and Laboratory Control Samples: Recoveries and the aqueous RPDs were within laboratory-established QC limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on HZBS0173S001. All RPDs were within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on HZBS0173S001. Recoveries and RPDs were within laboratory-established QC limits.

Project: Boeing SSFL RFI ISRA SDG: 235805

DATA VALIDATION REPORT

 Serial Dilution: Serial dilution analyses were performed on HZBS0173S001 and EBQW2234. For HZBS0173S001, the copper %D exceeded the control limit; therefore, copper detected in the soil samples was qualified as estimated, "J." All remaining %Ds were within the laboratory-established control limit.

- Internal Standards Performance: Review is not applicable at a Level V validation.
- Sample Result Verification: Review is not applicable at a Level V validation. As the samples in this SDG were validated at Level V, the QC information necessary to make an absolute determination of bias in the samples was not reviewed; therefore, when qualifications were applied, no bias was assigned. Several ICP-MS analytes in all soil samples were reported from 10x dilutions due to matrix interference or in order to report the analyte within the linear range of the calibration. All remaining soil ICP-MS analytes were reported from the laboratory's standard 2x dilution. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - o Field Blanks and Equipment Rinsates: FBQW2235 (233444) was the field blank and EBQW2234 was the equipment rinsate associated with the soil samples in this SDG. Thallium was detected in EBQW2234 at 0.531 μg/L; therefore, thallium detected in the soil samples was qualified as nondetected, "U," at the level of interference if detected above the RL or at the RL if detected below. There were no other detects in the field QC samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 8270C-SIM—Polynuclear Aromatic Hydrocarbons (PAHs)

Reviewed By: P. Meeks

Date Reviewed: September 9, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The aqueous sample
 was extracted within seven days of collection and the soil samples were extracted within
 14 days of collection. All samples were analyzed within 40 days of extraction.
- GC/MS Tuning: Review is not applicable at a Level V validation.

Project: Boeing SSFL RFI ISRA SDG: 235805

DATA VALIDATION REPORT

- Calibration: Review is not applicable at a Level V validation.
- Blanks: Di-n-butyl phthalate and bis(2-ethylhexyl)phthalate were detected in the water and soil method blanks at 0.323 and 0.344 µg/L and 7.09 and 8.32 mg/kg, respectively; therefore, any detects for these compounds present at less than 10x the method blank concentrations were qualified as nondetected, "U," at the reporting limits. The method blanks had no other target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and the aqueous RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on HZBS0173S001. Recoveries and RPDs were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: FBQW2235 (233444) was the field blank and EBQW2234 was the equipment rinsate associated with the soil samples in this SDG. FBQW2235 was not analyzed for PAHs and there were no reportable detects above the MDL in EBQW2234.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Review is not applicable at a Level V validation.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for PAH compounds and added phthalates by Method 8270C low-level.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. HZBS0173S001 was analyzed at a 4x dilution due to the presence of nontarget compounds. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System performance: System performance is not evaluated at a Level V validation.

D. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks

Date Reviewed: September 9, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: A laboratory duplicate analysis was performed or HZBS0173S001. The RPD was within the method-established control limit of ≤15%.
- Matrix Spike/Matrix Spike Duplicate: A matrix spike analysis was performed on HZBS0173S001. The recovery was within method-established QC limits of 80-120%.
- Sample Result Verification: The sample results reported on the sample summary forms were verified against the raw data. No transcription errors or calculation errors were noted. HZBS0173S002 was reported from a 10x dilution due to matrix interference. Any detect between the MDL and the RL was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: FBQW2235 (233444) was the field blank and EBQW2234 was the equipment rinsate associated with the soil samples in this SDG. FBQW2235 was not analyzed for perchlorate and perchlorate was not detected in EBQW2234.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

E. EPA METHOD 8082—PCBs

Reviewed By: P. Meeks

Date Reviewed: September 9, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 8082, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met for soils. EBQW2234
 was extracted one day beyond the holding time; therefore, the results (all nondetects) in
 EBQW2234 were qualified as estimated, "UJ." The soil samples were extracted within 14
 days of collection. All samples were analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Surrogates in samples analyzed at 10x or greater dilutions are considered diluted out and were not evaluated. Recoveries were within laboratoryestablished QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on HZBS0173S001. Recoveries and RPDs were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: FBQW2235 (233444) was the field blank and EBQW2234 was the equipment rinsate associated with the soil samples in this SDG. FBQW2235 was not analyzed for PCBs and there were no detects above the MDL in EBQW2234.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for Aroclors by Method 8082.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Although not routinely evaluated, the reviewer noted that the intercolumn %Ds for Aroclor 1248 and Aroclor 1260 in HZBS0174S002 exceeded 40%.

Both results were qualified as estimated, "J." HZBS0174S002 was reported from a 10x dilution in order to report target analytes within the linear range of the calibration. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

F. EPA METHOD 8015B—Extractable Total Fuel Hydrocarbons (EFHs)

Reviewed By: P. Meeks

Date Reviewed: September 9, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Total Fuel Hydrocarbons (DVP-8, Rev. 0), EPA Method 8015B, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The aqueous sample
 was extracted within seven days of collection and the soil samples were extracted within
 14 days of collection. All samples were analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: All recoveries and the aqueous RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on HZBS0174S001. Both recoveries were acceptable; however, the RPD exceeded the control limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: FBQW2235 (233444) was the field blank and EBQW2234 was the equipment rinsate associated with the soil samples in this SDG. There were no detects above the MDL in either sample.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Review is not applicable at a Level V validation. Four EFH hydrocarbon ranges were reported: C8-C11, C12-C14, C15-C20, and C21-C30.

 Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. HZBS0173S002 was analyzed at a 5x dilution due to a thick and oily extract. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

G. EPA METHOD 8260B—Volatile Organic Compounds (VOCs)

Reviewed By: P. Meeks

Date Reviewed: September 9, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Analytical holding times were met. The unpreserved aqueous samples and the frozen Encore samples were analyzed within seven days of collection.
- GC/MS Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and the soil RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG. Evaluation of method accuracy and precision was based on the blank spike results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Trip Blanks: HZTB2003T001 had no detects above the MDL.
 - Field Blanks and Equipment Rinsates: FBQW2235 (233444) was the field blank and EBQW2234 was the equipment rinsate associated with the soil samples in this SDG. FBQW2235 was not analyzed for volatiles. Chlorobenzene was detected in EBQW2234 at 0.353 µg/L, but was not detected in the site soil samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Project: Boeing SSFL RFI ISRA

DATA VALIDATION REPORT SDG: 235805

Internal Standards Performance: Review is not applicable at a Level V validation.

- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for volatile target compounds by Method 8260B.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review is not applicable at a Level V validation.

Validated Sample Result Forms: 235805

Sample Name	EBQW2234		Matrix 7	Гуре:	Water	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	235805001	Sample	Date: 8	/20/2009	2:00:00 PM	V	alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDI	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Perchlorate	14797730	4	4		1 ug/L	U	U	
Sample Name	HZBS0173S001		Matrix 7	Гуре:	Soil	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	235805002	Sample	Date: 8	/20/2009	9:40:00 AM	,	alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDI	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Perchlorate	14797730	4	4		1 ug/L	U	U	
Sample Name	HZBS0173S002		Matrix 7	Гуре:	Soil	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	235805003	Sample	Date: 8	/20/2009	9:57:00 AM	,	alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDI	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Perchlorate	14797730	40	40		10 ug/L	U	U	
Sample Name	HZBS0174S001		Matrix 7	Гуре:	Soil	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	235805004	Sample	Date: 8	/20/2009	10:35:00 AM	м у	alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDI	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Perchlorate	14797730	4	4		1 ug/L	U	U	
Sample Name	HZBS0174S002		Matrix 7	Гуре:	Soil	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	235805005	Sample	Date: 8	/20/2009	10:56:00 AM	м т	alidation Le	vel: V
Analyte	CAS No	Result	RL	MDI	Result	Lab	Validation	
		Value			Units	Qualifier	Qualifier	Notes

Analysis Method 6010B

Value Units Qualifier Qualifier Notes Aluminum 7429905 8500 20.7 7.04 mg/kg Antimony 7440360 0.342 1.04 0.342 mg/kg U UJ I Boron 7440428 1.04 5.18 1.04 mg/kg U UJ B, I Sample Name HZBS0174S002 Matrix Type: Soil Result Type: Primary Result Lab Sample Name: 235805005 Sample Date: 8/20/2009 10:56:00 AM Validation Level: V	Sample Name	EBQW2234		Matrix T	Type: Water	Result Type: Primary Res			
Nation	Lab Sample Name:	235805001	Sample Date: 8/20/2009 2:00:00 PM Vali				Validation Le	vel: V	
Antimony 7440360 3 10 3 ug/L U U U U Sample Name HZBS0173S001 Matrix Type: Soil Result Type: Primary Result Lab Sample Name: 235805002 Sample Date: 8/20/2009 9:40:00 AM Validation Level: V	Analyte	CAS No		RL					
Sample Name HZBS0173S001 Matrix Type: Soil Result Type: Primary Result Value Primary Result Value	Aluminum	7429905	68	200	68 ug/L	U	U		
Sample Name	Antimony	7440360	3	10	3 ug/L	U	UJ	В	
CAS No	Boron	7440428	15	50	15 ug/L	U	U		
Analyte CAS No Result Value RL Value MDL Units Result Units Lab Qualifier Value Validation Votes Aluminum 742905 8910 20.4 6.93 mg/kg J J J J Antimony 7440360 0.501 1.02 0.337 mg/kg J </td <td>Sample Name</td> <td>HZBS0173S001</td> <td></td> <td>Matrix 7</td> <td>Гуре: Soil</td> <td>Rest</td> <td>ult Type: Pri</td> <td>imary Result</td>	Sample Name	HZBS0173S001		Matrix 7	Гуре: Soil	Rest	ult Type: Pri	imary Result	
Notes	Lab Sample Name:	235805002	Sample	Date: 8	/20/2009 9:40:00 AM	1 1	Validation Le	vel: V	
Antimony 7440360 0.501 1.02 0.337 mg/kg J J I	Analyte	CAS No		RL					
Boron 7440428 1.02 5.1 1.02 mg/kg U UJ B, I	Aluminum	7429905	8910	20.4	6.93 mg/kg				
Name HZBS0173S002 Matrix Type: Soil Result Type: Primary Result Lab Sample Name: 235805003 Sample Date: 8/20/2009 9:57:00 AM Validation Level: V	Antimony	7440360	0.501	1.02	0.337 mg/kg	J	J	I	
Lab Sample Name	Boron	7440428	1.02	5.1	1.02 mg/kg	U	UJ	B, I	
CAS No	Sample Name	HZBS0173S002		Matrix 7	Гуре: Soil	Rest	ult Type: Pri	imary Result	
Notes	Lab Sample Name:	235805003	Sample	Date: 8	/20/2009 9:57:00 AM	1 1	Validation Level: V		
Antimony 7440360 0.352 1.07 0.352 mg/kg U UJ I	Analyte	CAS No		RL					
Boron 7440428 1.07 5.33 1.07 mg/kg U UJ B, I	Aluminum	7429905	6180	21.3	7.24 mg/kg				
Sample Name HZBS0174S001 Matrix Type: Soil Result Type: Primary Result Lab Sample Name: 235805004 Sample Date: 8/20/2009 10:35:00 AM Validation Level: V Analyte CAS No Result Value RL MDL Result Units Lab Qualifier Validation Validation Notes Aluminum 7429905 8500 20.7 7.04 mg/kg U UJ I Boron 7440360 0.342 1.04 0.342 mg/kg U UJ B, I Sample Name HZBS0174S002 Matrix Type: Soil Result Type: Primary Result Lab Sample Name: 235805005 Sample Date: 8/20/2009 10:56:00 AM Validation Level: V Analyte CAS No Result Value RL MDL Result Lab Validation Qualifier Notes Aluminum 7429905 9680 20.8 7.07 mg/kg U UJ I Antimony 7440360 0.343 1.04 0.343 mg/kg U UJ I	Antimony	7440360	0.352	1.07	0.352 mg/kg	U	UJ	I	
Lab Sample Name: 235805004 Sample Date: 8/20/2009 10:35:00 AM Validation Level: V Analyte CAS No Result Value RL MDL Result Units Lab Qualifier Validation Validation Notes Aluminum 7429905 8500 20.7 7.04 mg/kg U UJ I Boron 7440360 0.342 1.04 0.342 mg/kg U UJ B, I Sample Name HZBS0174S002 Matrix Type: Soil Result Type: Primary Result Lab Sample Name: 235805005 Sample Date: 8/20/2009 10:56:00 AM Validation Level: V Analyte CAS No Result Value RL MDL Result Lab Qualifier Validation Notes Aluminum 7429905 9680 20.8 7.07 mg/kg U UJ I Antimony 7440360 0.343 1.04 0.343 mg/kg U UJ I	Boron	7440428	1.07	5.33	1.07 mg/kg	U	UJ	B, I	
Analyte CAS No Result Value RL Value MDL Units Result Units Lab Qualifier Validation Validation Notes Aluminum 7429905 8500 20.7 7.04 mg/kg U UJ I Antimony 7440360 0.342 1.04 0.342 mg/kg U UJ B, I Boron 7440428 1.04 5.18 1.04 mg/kg U UJ B, I Sample Name HZBS0174S002 Matrix Type: Soil Result Type: Primary Result Lab Sample Name: 235805005 Sample Date: 8/20/2009 10:56:00 AM Validation Level: V Analyte CAS No Result Value RL MDL Result Lab Units Validation Qualifier Notes Aluminum 7429905 9680 20.8 7.07 mg/kg U UJ I Antimony 7440360 0.343 1.04 0.343 mg/kg U UJ I	Sample Name	HZBS0174S001		Matrix 7	Гуре: Soil	Resi	ult Type: Pr	imary Result	
Value Units Qualifier Qualifier Notes	Lab Sample Name:	235805004	Sample	Date: 8	/20/2009 10:35:00 A	M V	Validation Le	vel: V	
Antimony 7440360 0.342 1.04 0.342 mg/kg U UJ I Boron 7440428 1.04 5.18 1.04 mg/kg U UJ B, I Sample Name HZBS0174S002 Matrix Type: Soil Result Type: Primary Result Lab Sample Name: 235805005 Sample Date: 8/20/2009 10:56:00 AM Validation Level: V Analyte CAS No Result Value RL MDL Result Lab Qualifier Qualifier Notes Validation Notes Aluminum 7429905 9680 20.8 7.07 mg/kg Antimony 7440360 0.343 1.04 0.343 mg/kg U UJ I	Analyte	CAS No		RL					
Boron 7440428 1.04 5.18 1.04 mg/kg U UJ B, I	Aluminum	7429905	8500	20.7	7.04 mg/kg				
Sample NameHZBS0174S002Matrix Type:SoilResult Type:Primary ResultLab Sample Name:235805005Sample Date:8/20/2009 10:56:00 AMValidation Level:VAnalyteCAS NoResult ValueRL MDL Result Units Qualifier Qualifier Qualifier NotesAluminum7429905968020.87.07 mg/kgAntimony74403600.3431.040.343 mg/kgUUJI	Antimony	7440360	0.342	1.04	0.342 mg/kg	U	UJ	I	
Lab Sample Name: 235805005 Sample Date: 8/20/2009 10:56:00 AM Validation Level: V Analyte CAS No Result Value Units Qualifier Qualifier Notes Aluminum 7429905 9680 20.8 7.07 mg/kg Antimony 7440360 0.343 1.04 0.343 mg/kg U UJ I	Boron	7440428	1.04	5.18	1.04 mg/kg	U	UJ	B, I	
Analyte CAS No Result Value RL MDL Result Lab Validation Notes Aluminum 7429905 9680 20.8 7.07 mg/kg Antimony 7440360 0.343 1.04 0.343 mg/kg U UJ I	Sample Name	HZBS0174S002		Matrix 7	Гуре: Soil	Resi	ult Type: Pr	imary Result	
Value Units Qualifier Qualifier Notes Aluminum 7429905 9680 20.8 7.07 mg/kg Antimony 7440360 0.343 1.04 0.343 mg/kg U UJ I	Lab Sample Name:	235805005	Sample	Date: 8	/20/2009 10:56:00 A	м ,	Validation Le	vel: V	
Antimony 7440360 0.343 1.04 0.343 mg/kg U UJ I	Analyte	CAS No		RL				Validation Notes	
, , , , , , , , , , , , , , , , , , , ,	Aluminum	7429905	9680	20.8	7.07 mg/kg				
Boron 7440428 1.04 5.2 1.04 mg/kg U UJ B, I	Antimony	7440360	0.343	1.04	0.343 mg/kg	U	UJ	I	
	Boron	7440428	1.04	5.2	1.04 mg/kg	U	UJ	B, I	

Sample Name	EBQW2234		Matrix 7	Type: Water	Result Type: Primary Result Validation Level: V			
Lab Sample Name:	235805001	Sample 1	Date: 8	/20/2009 2:00:00 PM				
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Arsenic	7440382	1.6	5	1.6 ug/L	U	U		
Barium	7440393	0.6	2	0.6 ug/L	U	U		
Beryllium	7440417	0.1	0.5	0.1 ug/L	U	U		
Cadmium	7440439	0.11	1	0.11 ug/L	U	U		
Chromium	7440473	2	10	2 ug/L	U	U		
Cobalt	7440484	0.1	1	0.1 ug/L	U	U		
Copper	7440508	0.33	1	0.33 ug/L	U	UJ	В	
Lead	7439921	0.5	2	0.5 ug/L	U	U		
Molybdenum	7439987	0.167	0.5	0.167 ug/L	U	U		
Nickel	7440020	0.5	2	0.5 ug/L	U	U		
Selenium	7782492	1	5	1 ug/L	U	U		
Silver	7440224	0.2	1	0.2 ug/L	U	U		
Thallium	7440280	0.531	1	0.3 ug/L	J	J		
Vanadium	7440622	3	10	3 ug/L	U	UJ	В	
Zinc	7440666	3	10	3 ug/L	U	U		

Sample Name	HZBS0173S001		Res	Result Type: Primary Result				
Lab Sample Name:	235805002	Sample	Date: 8	/20/2009 9:40:00 AN	Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Arsenic	7440382	4.43	1.03	0.206 mg/kg				
Barium	7440393	70.7	2.06	0.514 mg/kg				
Beryllium	7440417	0.593	0.103	0.0206 mg/kg				
Cadmium	7440439	0.315	0.206	0.0206 mg/kg				
Chromium	7440473	16	3.08	1.03 mg/kg				
Cobalt	7440484	4.82	1.03	0.308 mg/kg				
Copper	7440508	8.09	0.198	0.0655 mg/kg	Е	J	A	
Lead	7439921	10.9	0.411	0.103 mg/kg				
Molybdenum	7439987	0.453	0.206	0.0617 mg/kg				
Nickel	7440020	9.62	2.06	0.514 mg/kg				
Selenium	7782492	0.514	1.03	0.514 mg/kg	U	U		
Silver	7440224	0.0966	0.206	0.0411 mg/kg	J	J		
Thallium	7440280	0.25	0.25	0.25 mg/kg		U	F, RL changed from 0.206 and MDL from 0.0617	
Vanadium	7440622	26.1	10.3	2.06 mg/kg				
Zinc	7440666	54.3	10.3	2.06 mg/kg				

Sample Name	HZBS0173S002		Res	Result Type: Primary Result Validation Level: V			
Lab Sample Name:	235805003	Sample	nple Date: 8/20/2009 9:57:00 AM				
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Arsenic	7440382	2.89	1.03	0.206 mg/kg			
Barium	7440393	63.8	2.06	0.516 mg/kg			
Beryllium	7440417	0.506	0.103	0.0206 mg/kg			
Cadmium	7440439	0.22	0.206	0.0206 mg/kg			
Chromium	7440473	13.9	3.1	1.03 mg/kg			
Cobalt	7440484	3.8	1.03	0.31 mg/kg			
Copper	7440508	7.75	0.21	0.0693 mg/kg	Е	J	A
Lead	7439921	8.32	0.413	0.103 mg/kg			
Molybdenum	7439987	0.313	0.206	0.0619 mg/kg			
Nickel	7440020	7.65	2.06	0.516 mg/kg			
Selenium	7782492	0.516	1.03	0.516 mg/kg	U	U	
Silver	7440224	0.0801	0.206	0.0413 mg/kg	J	J	
Thallium	7440280	0.22	0.22	0.22 mg/kg		Ū	F, RL changed from 0.206 and MDL from 0.0619
Vanadium	7440622	22.9	10.3	2.06 mg/kg			
Zinc	7440666	43.3	10.3	2.06 mg/kg			

Sample Name	HZBS0174S001		Resi	Result Type: Primary Result				
Lab Sample Name:	235805004	Sample	Date: 8	/20/2009 10:35:00 A	M V	Validation Level: V		
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Arsenic	7440382	3.56	1.05	0.209 mg/kg				
Barium	7440393	67.4	2.09	0.523 mg/kg				
Beryllium	7440417	0.599	0.105	0.0209 mg/kg				
Cadmium	7440439	0.185	0.209	0.0209 mg/kg	J	J		
Chromium	7440473	18.6	3.14	1.05 mg/kg				
Cobalt	7440484	4.39	1.05	0.314 mg/kg				
Copper	7440508	5.29	0.205	0.0676 mg/kg	Е	J	A	
Lead	7439921	9.9	0.419	0.105 mg/kg				
Molybdenum	7439987	0.378	0.209	0.0628 mg/kg				
Nickel	7440020	13.2	2.09	0.523 mg/kg				
Selenium	7782492	0.523	1.05	0.523 mg/kg	U	U		
Silver	7440224	0.0544	0.209	0.0419 mg/kg	J	J		
Thallium	7440280	0.217	0.217	0.217 mg/kg		U	F, RL changed from 0.209 and MDL from 0.0628	
Vanadium	7440622	25.7	10.5	2.09 mg/kg				
Zinc	7440666	44.7	10.5	2.09 mg/kg				

Sample Name	HZBS0174S002		Matrix 7	Гуре: Soil	Res	Result Type: Primary Result			
Lab Sample Name:	235805005	Sample	Date: 8	/20/2009 10:56:00 A	M v	Validation Le	vel: V		
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
Arsenic	7440382	2.47	1.05	0.21 mg/kg					
Barium	7440393	40.3	2.1	0.525 mg/kg					
Beryllium	7440417	0.489	0.105	0.021 mg/kg					
Cadmium	7440439	0.0962	0.21	0.021 mg/kg	J	J			
Chromium	7440473	16	3.15	1.05 mg/kg					
Cobalt	7440484	3.12	1.05	0.315 mg/kg					
Copper	7440508	3.87	0.203	0.0671 mg/kg	Е	J	A		
Lead	7439921	4.48	0.42	0.105 mg/kg					
Molybdenum	7439987	0.174	0.21	0.063 mg/kg	J	J			
Nickel	7440020	6.15	2.1	0.525 mg/kg					
Selenium	7782492	0.525	1.05	0.525 mg/kg	U	U			
Silver	7440224	0.042	0.21	0.042 mg/kg	U	U			
Thallium	7440280	0.21	0.21	0.21 mg/kg	J	U	F, result changed from 0.175 and MDL from 0.063		
Vanadium	7440622	24.5	10.5	2.1 mg/kg					
Zinc	7440666	34.5	10.5	2.1 mg/kg					
Analysis Method	d 7470A								
Sample Name	EBQW2234		Matrix 7	Гуре: Water	Res	ult Type: Pr	imary Result		
Lab Sample Name:	235805001	Sample	Date: 8	/20/2009 2:00:00 PM		Validation Le	vel: V		
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
Mercury	7439976	0.066	0.2	0.066 ug/L	U	U			

Analysis Method 7471A

Sample Name	HZBS0173S001		Matrix T	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805002	Sample	Date: 8/	/20/2009 9:40:00 AM	I 1	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439976	0.0172	0.0121	0.0041 mg/kg		J	В
Sample Name	HZBS0173S002		Matrix T	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805003	Sample	Date: 8/	/20/2009 9:57:00 AM	I T	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439976	0.0135	0.0123	0.00417 mg/kg		J	В
Sample Name	HZBS0174S001		Matrix T	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805004	Sample	Date: 8/	/20/2009 10:35:00 Al	М ,	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439976	0.0112	0.0109	0.00369 mg/kg		J	В
Sample Name	HZBS0174S002		Matrix T	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805005	Sample	Date: 8/	/20/2009 10:56:00 Al	м т	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439976	0.00368				UJ	В

Sample Name	EBQW2234		Matrix 7	Гуре: Water	Rest	ult Type: Pr	imary Result
Lab Sample Name:	235805001	Sample	Date: 8	/20/2009 2:00:00 PM	7	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
EFH (C12 - C14)	EFHD (C12	97.1	97.1	32 ug/L	U	U	
EFH (C15 - C20)	EFHD (C15	97.1	97.1	32 ug/L	U	U	
EFH (C21 - C30)	EFHD (C21	97.1	97.1	32 ug/L	U	U	
EFH (C8 - C11)	EFHD (C8-	97.1	97.1	32 ug/L	U	U	
Sample Name	HZBS0173S001		Matrix 7	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805002	Sample	Date: 8	/20/2009 9:40:00 AM		Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
EFH (C12 - C14)	EFHD (C12	3.43	3.43	1.13 mg/kg	U	U	
EFH (C15 - C20)	EFHD (C15	1.87	3.43	1.13 mg/kg	J	J	
EFH (C21 - C30)	EFHD (C21	21.8	3.43	1.13 mg/kg			
EFH (C8 - C11)	EFHD (C8-	3.43	3.43	1.13 mg/kg	U	U	
Sample Name	HZBS0173S002		Matrix 7	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805003	Sample	Date: 8	/20/2009 9:57:00 AM		Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
EFH (C12 - C14)	EFHD (C12	17.7	17.7	5.86 mg/kg	U	U	
EFH (C15 - C20)	EFHD (C15	17.7	17.7	5.86 mg/kg	U	U	
EFH (C21 - C30)	EFHD (C21	128	17.7	5.86 mg/kg			
EFH (C8 - C11)	EFHD (C8-	17.7	17.7	5.86 mg/kg	U	U	
Sample Name	HZBS0174S001		Matrix 7	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805004	Sample	Date: 8	/20/2009 10:35:00 AI	м •	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
EFH (C12 - C14)	EFHD (C12	3.49	3.49	1.15 mg/kg	U	U	
					т	*	
EFH (C15 - C20)	EFHD (C15	1.29	3.49	1.15 mg/kg	J	J	
EFH (C15 - C20) EFH (C21 - C30)	EFHD (C15 EFHD (C21	8.08	3.49	1.15 mg/kg 1.15 mg/kg	J	J	

Sample Name	HZBS0174S002		Matrix 1	Гуре: Soil	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805005	Sample l	Date: 8/	/20/2009 10:56:00 A	M	Validation Le	evel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
EFH (C12 - C14)	EFHD (C12	3.5	3.5	1.16 mg/kg	U	U	
EFH (C15 - C20)	EFHD (C15	3.5	3.5	1.16 mg/kg	U	U	
EFH (C21 - C30)	EFHD (C21	1.44	3.5	1.16 mg/kg	J	J	
EFH (C8 - C11)	EFHD (C8-	3.5	3.5	1.16 mg/kg	U	U	

Sample Name	EBQW2234		Matrix 7	Type: Water	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805001	Sample	Date: 8/	/20/2009 2:00:00 P	M	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Aroclor-1016	12674112	0.0971	0.0971	0.0323 ug/L	U	UJ	Н
Aroclor-1221	11104282	0.0971	0.0971	0.0323 ug/L	U	UJ	Н
Aroclor-1232	11141165	0.0971	0.0971	0.0323 ug/L	U	UJ	Н
Aroclor-1242	53469219	0.0971	0.0971	0.0323 ug/L	U	UJ	Н
Aroclor-1248	12672296	0.0971	0.0971	0.0323 ug/L	U	UJ	Н
Aroclor-1254	11097691	0.0971	0.0971	0.0323 ug/L	U	UJ	Н
Aroclor-1260	11096825	0.0971	0.0971	0.0323 ug/L	U	UJ	Н
Sample Name	HZBS0173S001		Matrix T	Type: Soil	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805002	Sample	Date: 8/	/20/2009 9:40:00 A	M T	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Aroclor-1016	12674112	3.42	3.42	1.14 ug/kg	U	U	
Aroclor-1221	11104282	3.42	3.42	1.14 ug/kg	U	U	
Aroclor-1232	11141165	3.42	3.42	1.14 ug/kg	U	U	
Aroclor-1242	53469219	3.42	3.42	1.14 ug/kg	U	U	
Aroclor-1248	12672296	3.42	3.42	1.14 ug/kg	U	U	
Aroclor-1254	11097691	4.9	3.42	1.14 ug/kg			
Aroclor-1260	11096825	4.3	3.42	1.14 ug/kg			
Sample Name	HZBS0173S002		Matrix T	Type: Soil	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805003	Sample	Date: 8/	/20/2009 9:57:00 A	M T	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Aroclor-1016	12674112	3.54	3.54	1.18 ug/kg	U	U	
Aroclor-1221	11104282	3.54	3.54	1.18 ug/kg	U	U	
Aroclor-1232	11141165	3.54	3.54	1.18 ug/kg	U	U	
Aroclor-1242	53469219	3.54	3.54	1.18 ug/kg	U	U	
Aroclor-1248	12672296	3.54	3.54	1.18 ug/kg	U	U	
Aroclor-1254	11097691	3.54	3.54	1.18 ug/kg	U	U	
Aroclor-1260	11096825	3.54	3.54	1.18 ug/kg	U	U	

11096825

91.5

Sample Name	HZBS0174S001		Matrix 7	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805004	Sample 1	Date: 8	/20/2009 10:35:00 A	M V	/alidation Le	evel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Aroclor-1016	12674112	3.49	3.49	1.16 ug/kg	U	U	
Aroclor-1221	11104282	3.49	3.49	1.16 ug/kg	U	U	
Aroclor-1232	11141165	3.49	3.49	1.16 ug/kg	U	U	
Aroclor-1242	53469219	3.49	3.49	1.16 ug/kg	U	U	
Aroclor-1248	12672296	3.49	3.49	1.16 ug/kg	U	U	
Aroclor-1254	11097691	1.7	3.49	1.16 ug/kg	J	J	
Aroclor-1260	11096825	1.7	3.49	1.16 ug/kg	J	J	
Sample Name	HZBS0174S002		Matrix 7	Гуре: Soil	Resi	ult Type: Pr	imary Result
Lab Sample Name:	235805005	Sample 1	Date: 8	/20/2009 10:56:00 A	м •	/alidation Le	evel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Aroclor-1016	12674112	34.9	34.9	11.6 ug/kg	U	U	
Aroclor-1221	11104282	34.9	34.9	11.6 ug/kg	U	U	
Aroclor-1232	11141165	34.9	34.9	11.6 ug/kg	U	U	
Aroclor-1242	53469219	34.9	34.9	11.6 ug/kg	U	U	
Aroclor-1248	12672296	274	34.9	11.6 ug/kg	P	J	*III
Aroclor-1254	11097691	222	34.9	11.6 ug/kg			

34.9

11.6 ug/kg

Aroclor-1260

*III

Sample Name	EBQW2234]	Matrix 1	Гуре: Water	Res	Result Type: Primary Result			
Lab Sample Name:	235805001	· •	Validation Level: V						
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
1,1,1,2-Tetrachloroethane	630206	1	1	0.3 ug/L	U	U			
1,1,1-Trichloroethane	71556	1	1	0.325 ug/L	U	U			
1,1,2,2-Tetrachloroethane	79345	1	1	0.25 ug/L	U	U			
1,1,2-Trichloro-1,2,2-trifluoroethane	76131	5	5	1 ug/L	U	U			
1,1,2-Trichloroethane	79005	1	1	0.25 ug/L	U	U			
1,1-Dichloroethane	75343	1	1	0.3 ug/L	U	U			
1,1-Dichloroethene	75354	1	1	0.3 ug/L	U	U			
1,1-Dichloropropene	563586	1	1	0.25 ug/L	U	U			
1,2,3-Trichlorobenzene	87616	1	1	0.332 ug/L	U	U			
1,2,3-Trichloropropane	96184	1	1	0.3 ug/L	U	U			
1,2,4-Trichlorobenzene	120821	1	1	0.3 ug/L	U	U			
1,2,4-Trimethylbenzene	95636	1	1	0.25 ug/L	U	U			
1,2-Dibromo-3-chloropropan	e 96128	1	1	0.3 ug/L	U	U			
1,2-Dibromoethane (EDB)	106934	1	1	0.25 ug/L	U	U			
1,2-Dichlorobenzene	95501	1	1	0.25 ug/L	U	U			
1,2-Dichloroethane	107062	1	1	0.25 ug/L	U	U			
1,2-Dichloropropane	78875	1	1	0.25 ug/L	U	U			
1,3,5-Trimethylbenzene	108678	1	1	0.25 ug/L	U	U			
1,3-Dichlorobenzene	541731	1	1	0.25 ug/L	U	U			
1,3-Dichloropropane	142289	1	1	0.3 ug/L	U	U			
1,4-Dichlorobenzene	106467	1	1	0.25 ug/L	U	U			
2,2-dichloropropane	594207	1	1	0.3 ug/L	U	U			
2-Butanone (MEK)	78933	5	5	1.25 ug/L	U	U			
2-Chloro-1,1,1-trifluoroethan	e 75887	10	10	3 ug/L	U	U			
2-Chloroethyl vinyl ether	110758	5	5	1.5 ug/L	U	U			
2-Chlorotoluene	95498	1	1	0.25 ug/L	U	U			
2-Hexanone	591786	5	5	1.25 ug/L	U	U			
4-Chlorotoluene	106434	1	1	0.25 ug/L	U	U			
4-Methyl-2-pentanone (MIBI	ζ) 108101	5	5	1.25 ug/L	U	U			
Acetone	67641	5	5	1.5 ug/L	U	U			
Benzene	71432	1	1	0.3 ug/L	U	U			
Bromobenzene	108861	1	1	0.25 ug/L	U	U			
Bromochloromethane	74975	1	1	0.3 ug/L	U	U			
Bromodichloromethane	75274	1	1	0.25 ug/L	U	U			
Bromoform	75252	1	1	0.25 ug/L	U	U			

Bromomethane	74839	1	1	0.3 ug/L	U	U	
Carbon Tetrachloride	56235	1	1	0.3 ug/L	U	U	
Chlorobenzene	108907	0.353	1	0.25 ug/L	J	J	
Chloroethane	75003	1	1	0.3 ug/L	U	U	
Chloroform	67663	1	1	0.25 ug/L	U	U	
Chloromethane	74873	1	1	0.3 ug/L	U	U	
Chlorotrifluoroethylene	79389	10	10	3 ug/L	U	U	
cis-1,2-Dichloroethene	156592	1	1	0.3 ug/L	U	U	
cis-1,3-Dichloropropene	10061015	1	1	0.25 ug/L	U	U	
Dibromochloromethane	124481	1	1	0.3 ug/L	U	U	
Dibromomethane	74953	1	1	0.3 ug/L	U	U	
Dichlorodifluoromethane	75718	1	1	0.3 ug/L	U	U	
Ethylbenzene	100414	1	1	0.25 ug/L	U	U	
Hexachlorobutadiene	87683	1	1	0.3 ug/L	U	U	
Isopropylbenzene	98828	1	1	0.25 ug/L	U	U	
m,p-Xylenes	136777612	2	2	0.5 ug/L	U	U	
Methylene chloride	75092	5	5	2 ug/L	U	U	
Methyl-tert-butyl ether (MTBE)	1634044	1	1	0.25 ug/L	U	U	
n-Butylbenzene	104518	1	1	0.25 ug/L	U	U	
n-Propylbenzene	103651	1	1	0.25 ug/L	U	U	
o-Xylene	95476	1	1	0.3 ug/L	U	U	
p-Isopropyltoluene	99876	1	1	0.25 ug/L	U	U	
sec-Butylbenzene	135988	1	1	0.25 ug/L	U	U	
Styrene	100425	1	1	0.25 ug/L	U	U	
tert-Butylbenzene	98066	1	1	0.25 ug/L	U	U	
Tetrachloroethene	127184	1	1	0.3 ug/L	U	U	
Toluene	108883	1	1	0.25 ug/L	U	U	
trans-1,2-Dichloroethene	156605	1	1	0.3 ug/L	U	U	
trans-1,3-Dichloropropene	10061026	1	1	0.25 ug/L	U	U	
Trichloroethene	79016	1	1	0.25 ug/L	U	U	
Trichlorofluoromethane	75694	1	1	0.3 ug/L	U	U	
Vinyl chloride	75014	1	1	0.5 ug/L	U	U	

Sample Name	HZBS0173S001		Matrix 7	Type: Soil	Resi	ult Type: Pr	imary Result	
Lab Sample Name:	235805002	Sample Date: 8/20/2009 9:40:00 AM			Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,1,1,2-Tetrachloroethane	630206	1.98	1.98	0.594 ug/kg	U	U		
1,1,1-Trichloroethane	71556	1.98	1.98	0.594 ug/kg	U	U		
1,1,2,2-Tetrachloroethane	79345	1.98	1.98	0.594 ug/kg	U	U		
1,1,2-Trichloro-1,2,2- trifluoroethane	76131	9.9	9.9	3.17 ug/kg	U	U		
1,1,2-Trichloroethane	79005	1.98	1.98	0.594 ug/kg	U	U		
1,1-Dichloroethane	75343	1.98	1.98	0.594 ug/kg	U	U		
1,1-Dichloroethene	75354	1.98	1.98	0.594 ug/kg	U	U		
1,1-Dichloropropene	563586	1.98	1.98	0.594 ug/kg	U	U		
1,2,3-Trichlorobenzene	87616	1.98	1.98	0.594 ug/kg	U	U		
1,2,3-Trichloropropane	96184	1.98	1.98	0.594 ug/kg	U	U		
1,2,4-Trichlorobenzene	120821	1.98	1.98	0.594 ug/kg	U	U		
1,2,4-Trimethylbenzene	95636	1.98	1.98	0.594 ug/kg	U	U		
1,2-Dibromo-3-chloropropan	e 96128	1.98	1.98	0.594 ug/kg	U	U		
1,2-Dibromoethane (EDB)	106934	1.98	1.98	0.594 ug/kg	U	U		
1,2-Dichlorobenzene	95501	1.98	1.98	0.594 ug/kg	U	U		
1,2-Dichloroethane	107062	1.98	1.98	0.594 ug/kg	U	U		
1,2-Dichloropropane	78875	1.98	1.98	0.594 ug/kg	U	U		
1,3,5-Trimethylbenzene	108678	1.98	1.98	0.594 ug/kg	U	U		
1,3-Dichlorobenzene	541731	1.98	1.98	0.594 ug/kg	U	U		
1,3-Dichloropropane	142289	1.98	1.98	0.594 ug/kg	U	U		
1,4-Dichlorobenzene	106467	1.98	1.98	0.594 ug/kg	U	U		
2,2-dichloropropane	594207	1.98	1.98	0.594 ug/kg	U	U		
2-Butanone (MEK)	78933	9.9	9.9	2.97 ug/kg	U	U		
2-Chloro-1,1,1-trifluoroethan	e 75887	19.8	19.8	5.94 ug/kg	U	U		
2-Chloroethyl vinyl ether	110758	9.9	9.9	2.48 ug/kg	U	U		
2-Chlorotoluene	95498	1.98	1.98	0.594 ug/kg	U	U		
2-Hexanone	591786	9.9	9.9	2.97 ug/kg	U	U		
4-Chlorotoluene	106434	1.98	1.98	0.594 ug/kg	U	U		
4-Methyl-2-pentanone (MIBI	ζ) 108101	9.9	9.9	2.48 ug/kg	U	U		
Acetone	67641	9.9	9.9	3.29 ug/kg	U	U		
Benzene	71432	1.98	1.98	0.594 ug/kg	U	U		
Bromobenzene	108861	1.98	1.98	0.594 ug/kg	U	U		
Bromochloromethane	74975	1.98	1.98	0.654 ug/kg	U	U		
Bromodichloromethane	75274	1.98	1.98	0.594 ug/kg	U	U		
Bromoform	75252	1.98	1.98	0.594 ug/kg	U	U		

Bromomethane	74839	1.98	1.98	0.594 ug/kg	U	U	
Carbon Tetrachloride	56235	1.98	1.98	0.594 ug/kg	U	U	
Chlorobenzene	108907	1.98	1.98	0.594 ug/kg	U	U	
Chloroethane	75003	1.98	1.98	0.594 ug/kg	U	U	
Chloroform	67663	1.98	1.98	0.594 ug/kg	U	U	
Chloromethane	74873	1.98	1.98	0.594 ug/kg	U	U	
Chlorotrifluoroethylene	79389	19.8	19.8	5.94 ug/kg	U	U	
cis-1,2-Dichloroethene	156592	1.98	1.98	0.594 ug/kg	U	U	
cis-1,3-Dichloropropene	10061015	1.98	1.98	0.594 ug/kg	U	U	
Dibromochloromethane	124481	1.98	1.98	0.594 ug/kg	U	U	
Dibromomethane	74953	1.98	1.98	0.594 ug/kg	U	U	
Dichlorodifluoromethane	75718	1.98	1.98	0.673 ug/kg	U	U	
Ethylbenzene	100414	1.98	1.98	0.594 ug/kg	U	U	
Hexachlorobutadiene	87683	1.98	1.98	0.594 ug/kg	U	U	
Isopropylbenzene	98828	1.98	1.98	0.594 ug/kg	U	U	
m,p-Xylenes	136777612	3.96	3.96	0.594 ug/kg	U	U	
Methylene chloride	75092	9.9	9.9	3.96 ug/kg	U	U	
Methyl-tert-butyl ether (MTBE)	1634044	1.98	1.98	0.594 ug/kg	U	U	
n-Butylbenzene	104518	1.98	1.98	0.594 ug/kg	U	U	
n-Propylbenzene	103651	1.98	1.98	0.594 ug/kg	U	U	
o-Xylene	95476	1.98	1.98	0.594 ug/kg	U	U	
p-Isopropyltoluene	99876	1.98	1.98	0.594 ug/kg	U	U	
sec-Butylbenzene	135988	1.98	1.98	0.594 ug/kg	U	U	
Styrene	100425	0.858	1.98	0.594 ug/kg	J	J	
tert-Butylbenzene	98066	1.98	1.98	0.594 ug/kg	U	U	
Tetrachloroethene	127184	1.98	1.98	0.594 ug/kg	U	U	
Toluene	108883	1.98	1.98	0.594 ug/kg	U	U	
trans-1,2-Dichloroethene	156605	1.98	1.98	0.594 ug/kg	U	U	
trans-1,3-Dichloropropene	10061026	1.98	1.98	0.594 ug/kg	U	U	
Trichloroethene	79016	1.98	1.98	0.654 ug/kg	U	U	
Trichlorofluoromethane	75694	1.98	1.98	0.594 ug/kg	U	U	
Vinyl chloride	75014	1.98	1.98	0.594 ug/kg	U	U	

Sample Name	HZBS0173S002		Matrix '	Type: Soil	Result Type: Primary Result			
Lab Sample Name:	235805003	Sample 1	Date: 8	Validation Level: V				
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,1,1,2-Tetrachloroethane	630206	1.44	1.44	0.432 ug/kg	U	U		
1,1,1-Trichloroethane	71556	1.44	1.44	0.432 ug/kg	U	U		
1,1,2,2-Tetrachloroethane	79345	1.44	1.44	0.432 ug/kg	U	U		
1,1,2-Trichloro-1,2,2- rifluoroethane	76131	7.2	7.2	2.3 ug/kg	U	U		
1,1,2-Trichloroethane	79005	1.44	1.44	0.432 ug/kg	U	U		
1,1-Dichloroethane	75343	1.44	1.44	0.432 ug/kg	U	U		
1,1-Dichloroethene	75354	1.44	1.44	0.432 ug/kg	U	U		
1,1-Dichloropropene	563586	1.44	1.44	0.432 ug/kg	U	U		
1,2,3-Trichlorobenzene	87616	1.44	1.44	0.432 ug/kg	U	U		
1,2,3-Trichloropropane	96184	1.44	1.44	0.432 ug/kg	U	U		
1,2,4-Trichlorobenzene	120821	1.44	1.44	0.432 ug/kg	U	U		
1,2,4-Trimethylbenzene	95636	1.44	1.44	0.432 ug/kg	U	U		
1,2-Dibromo-3-chloropropano	e 96128	1.44	1.44	0.432 ug/kg	U	U		
,2-Dibromoethane (EDB)	106934	1.44	1.44	0.432 ug/kg	U	U		
,2-Dichlorobenzene	95501	1.44	1.44	0.432 ug/kg	U	U		
1,2-Dichloroethane	107062	1.44	1.44	0.432 ug/kg	U	U		
1,2-Dichloropropane	78875	1.44	1.44	0.432 ug/kg	U	U		
1,3,5-Trimethylbenzene	108678	1.44	1.44	0.432 ug/kg	U	U		
1,3-Dichlorobenzene	541731	1.44	1.44	0.432 ug/kg	U	U		
1,3-Dichloropropane	142289	1.44	1.44	0.432 ug/kg	U	U		
,4-Dichlorobenzene	106467	1.44	1.44	0.432 ug/kg	U	U		
2,2-dichloropropane	594207	1.44	1.44	0.432 ug/kg	U	U		
2-Butanone (MEK)	78933	7.2	7.2	2.16 ug/kg	U	U		
2-Chloro-1,1,1-trifluoroethan	e 75887	14.4	14.4	4.32 ug/kg	U	U		
2-Chloroethyl vinyl ether	110758	7.2	7.2	1.8 ug/kg	U	U		
2-Chlorotoluene	95498	1.44	1.44	0.432 ug/kg	U	U		
2-Hexanone	591786	7.2	7.2	2.16 ug/kg	U	U		
4-Chlorotoluene	106434	1.44	1.44	0.432 ug/kg	U	U		
4-Methyl-2-pentanone (MIBI	K) 108101	7.2	7.2	1.8 ug/kg	U	U		
Acetone	67641	39.9	7.2	2.39 ug/kg				
Benzene	71432	1.44	1.44	0.432 ug/kg	U	U		
Bromobenzene	108861	1.44	1.44	0.432 ug/kg	U	U		
Bromochloromethane	74975	1.44	1.44	0.475 ug/kg	U	U		
Bromodichloromethane	75274	1.44	1.44	0.432 ug/kg	U	U		
Bromoform	75252	1.44	1.44	0.432 ug/kg	U	U		

Bromomethane	74839	1.44	1.44	0.432 ug/kg	U	U	
Carbon Tetrachloride	56235	1.44	1.44	0.432 ug/kg	U	U	
Chlorobenzene	108907	1.44	1.44	0.432 ug/kg	U	U	
Chloroethane	75003	1.44	1.44	0.432 ug/kg	U	U	
Chloroform	67663	1.44	1.44	0.432 ug/kg	U	U	
Chloromethane	74873	1.44	1.44	0.432 ug/kg	U	U	
Chlorotrifluoroethylene	79389	14.4	14.4	4.32 ug/kg	U	U	
cis-1,2-Dichloroethene	156592	1.44	1.44	0.432 ug/kg	U	U	
cis-1,3-Dichloropropene	10061015	1.44	1.44	0.432 ug/kg	U	U	
Dibromochloromethane	124481	1.44	1.44	0.432 ug/kg	U	U	
Dibromomethane	74953	1.44	1.44	0.432 ug/kg	U	U	
Dichlorodifluoromethane	75718	1.44	1.44	0.489 ug/kg	U	U	
Ethylbenzene	100414	1.44	1.44	0.432 ug/kg	U	U	
Hexachlorobutadiene	87683	1.44	1.44	0.432 ug/kg	U	U	
Isopropylbenzene	98828	1.44	1.44	0.432 ug/kg	U	U	
m,p-Xylenes	136777612	2.88	2.88	0.432 ug/kg	U	U	
Methylene chloride	75092	7.2	7.2	2.88 ug/kg	U	U	
Methyl-tert-butyl ether (MTBE)	1634044	1.44	1.44	0.432 ug/kg	U	U	
n-Butylbenzene	104518	1.44	1.44	0.432 ug/kg	U	U	
n-Propylbenzene	103651	1.44	1.44	0.432 ug/kg	U	U	
o-Xylene	95476	1.44	1.44	0.432 ug/kg	U	U	
p-Isopropyltoluene	99876	1.44	1.44	0.432 ug/kg	U	U	
sec-Butylbenzene	135988	1.44	1.44	0.432 ug/kg	U	U	
Styrene	100425	0.724	1.44	0.432 ug/kg	J	J	
tert-Butylbenzene	98066	1.44	1.44	0.432 ug/kg	U	U	
Tetrachloroethene	127184	1.44	1.44	0.432 ug/kg	U	U	
Toluene	108883	1.44	1.44	0.432 ug/kg	U	U	
trans-1,2-Dichloroethene	156605	1.44	1.44	0.432 ug/kg	U	U	
trans-1,3-Dichloropropene	10061026	1.44	1.44	0.432 ug/kg	U	U	
Trichloroethene	79016	1.44	1.44	0.475 ug/kg	U	U	
Trichlorofluoromethane	75694	1.44	1.44	0.432 ug/kg	U	U	
Vinyl chloride	75014	1.44	1.44	0.432 ug/kg	U	U	

Sample Name	Type: Soil	Res	ult Type: Pr	imary Result					
Lab Sample Name:	235805004	Sample	Date: 8/	/20/2009 10:35:00 A	M V	M Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
1,1,1,2-Tetrachloroethane	630206	1.19	1.19	0.357 ug/kg	U	U			
1,1,1-Trichloroethane	71556	1.19	1.19	0.357 ug/kg	U	U			
1,1,2,2-Tetrachloroethane	79345	1.19	1.19	0.357 ug/kg	U	U			
1,1,2-Trichloro-1,2,2- trifluoroethane	76131	5.96	5.96	1.91 ug/kg	U	U			
1,1,2-Trichloroethane	79005	1.19	1.19	0.357 ug/kg	U	U			
1,1-Dichloroethane	75343	1.19	1.19	0.357 ug/kg	U	U			
1,1-Dichloroethene	75354	1.19	1.19	0.357 ug/kg	U	U			
1,1-Dichloropropene	563586	1.19	1.19	0.357 ug/kg	U	U			
1,2,3-Trichlorobenzene	87616	1.19	1.19	0.357 ug/kg	U	U			
1,2,3-Trichloropropane	96184	1.19	1.19	0.357 ug/kg	U	U			
1,2,4-Trichlorobenzene	120821	1.19	1.19	0.357 ug/kg	U	U			
1,2,4-Trimethylbenzene	95636	1.19	1.19	0.357 ug/kg	U	U			
1,2-Dibromo-3-chloropropan	e 96128	1.19	1.19	0.357 ug/kg	U	U			
1,2-Dibromoethane (EDB)	106934	1.19	1.19	0.357 ug/kg	U	U			
1,2-Dichlorobenzene	95501	1.19	1.19	0.357 ug/kg	U	U			
1,2-Dichloroethane	107062	1.19	1.19	0.357 ug/kg	U	U			
1,2-Dichloropropane	78875	1.19	1.19	0.357 ug/kg	U	U			
1,3,5-Trimethylbenzene	108678	1.19	1.19	0.357 ug/kg	U	U			
1,3-Dichlorobenzene	541731	1.19	1.19	0.357 ug/kg	U	U			
1,3-Dichloropropane	142289	1.19	1.19	0.357 ug/kg	U	U			
1,4-Dichlorobenzene	106467	1.19	1.19	0.357 ug/kg	U	U			
2,2-dichloropropane	594207	1.19	1.19	0.357 ug/kg	U	U			
2-Butanone (MEK)	78933	5.96	5.96	1.79 ug/kg	U	U			
2-Chloro-1,1,1-trifluoroethan	e 75887	11.9	11.9	3.57 ug/kg	U	U			
2-Chloroethyl vinyl ether	110758	5.96	5.96	1.49 ug/kg	U	U			
2-Chlorotoluene	95498	1.19	1.19	0.357 ug/kg	U	U			
2-Hexanone	591786	5.96	5.96	1.79 ug/kg	U	U			
4-Chlorotoluene	106434	1.19	1.19	0.357 ug/kg	U	U			
4-Methyl-2-pentanone (MIBI	ζ) 108101	5.96	5.96	1.49 ug/kg	U	U			
Acetone	67641	7.73	5.96	1.98 ug/kg					
Benzene	71432	1.19	1.19	0.357 ug/kg	U	U			
Bromobenzene	108861	1.19	1.19	0.357 ug/kg	U	U			
Bromochloromethane	74975	1.19	1.19	0.393 ug/kg	U	U			
Bromodichloromethane	75274	1.19	1.19	0.357 ug/kg	U	U			
Bromoform	75252	1.19	1.19	0.357 ug/kg	U	U			

Bromomethane	74839	1.19	1.19	0.357 ug/kg	U	U	
Carbon Tetrachloride	56235	1.19	1.19	0.357 ug/kg	U	U	
Chlorobenzene	108907	1.19	1.19	0.357 ug/kg	U	U	
Chloroethane	75003	1.19	1.19	0.357 ug/kg	U	U	
Chloroform	67663	1.19	1.19	0.357 ug/kg	U	U	
Chloromethane	74873	1.19	1.19	0.357 ug/kg	U	U	
Chlorotrifluoroethylene	79389	11.9	11.9	3.57 ug/kg	U	U	
cis-1,2-Dichloroethene	156592	1.19	1.19	0.357 ug/kg	U	U	
cis-1,3-Dichloropropene	10061015	1.19	1.19	0.357 ug/kg	U	U	
Dibromochloromethane	124481	1.19	1.19	0.357 ug/kg	U	U	
Dibromomethane	74953	1.19	1.19	0.357 ug/kg	U	U	
Dichlorodifluoromethane	75718	1.19	1.19	0.405 ug/kg	U	U	
Ethylbenzene	100414	1.19	1.19	0.357 ug/kg	U	U	
Hexachlorobutadiene	87683	1.19	1.19	0.357 ug/kg	U	U	
Isopropylbenzene	98828	1.19	1.19	0.357 ug/kg	U	U	
m,p-Xylenes	136777612	2.38	2.38	0.357 ug/kg	U	U	
Methylene chloride	75092	5.96	5.96	2.38 ug/kg	U	U	
Methyl-tert-butyl ether (MTBE)	1634044	1.19	1.19	0.357 ug/kg	U	U	
n-Butylbenzene	104518	1.19	1.19	0.357 ug/kg	U	U	
n-Propylbenzene	103651	1.19	1.19	0.357 ug/kg	U	U	
o-Xylene	95476	1.19	1.19	0.357 ug/kg	U	U	
p-Isopropyltoluene	99876	1.19	1.19	0.357 ug/kg	U	U	
sec-Butylbenzene	135988	1.19	1.19	0.357 ug/kg	U	U	
Styrene	100425	0.471	1.19	0.357 ug/kg	J	J	
tert-Butylbenzene	98066	1.19	1.19	0.357 ug/kg	U	U	
Tetrachloroethene	127184	1.19	1.19	0.357 ug/kg	U	U	
Toluene	108883	1.19	1.19	0.357 ug/kg	U	U	
trans-1,2-Dichloroethene	156605	1.19	1.19	0.357 ug/kg	U	U	
trans-1,3-Dichloropropene	10061026	1.19	1.19	0.357 ug/kg	U	U	
Trichloroethene	79016	1.19	1.19	0.393 ug/kg	U	U	
Trichlorofluoromethane	75694	1.19	1.19	0.357 ug/kg	U	U	
Vinyl chloride	75014	1.19	1.19	0.357 ug/kg	U	U	

Sample Name	HZBS0174S002		Matrix 1	Гуре: Soil	Result Type: Primary Result			
Lab Sample Name:	235805005	Sample I	M Validation Level: V					
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,1,1,2-Tetrachloroethane	630206	1.09	1.09	0.328 ug/kg	U	U		
1,1,1-Trichloroethane	71556	1.09	1.09	0.328 ug/kg	U	U		
,1,2,2-Tetrachloroethane	79345	1.09	1.09	0.328 ug/kg	U	U		
1,1,2-Trichloro-1,2,2- rifluoroethane	76131	5.47	5.47	1.75 ug/kg	U	U		
,1,2-Trichloroethane	79005	1.09	1.09	0.328 ug/kg	U	U		
,1-Dichloroethane	75343	1.09	1.09	0.328 ug/kg	U	U		
,1-Dichloroethene	75354	1.09	1.09	0.328 ug/kg	U	U		
,1-Dichloropropene	563586	1.09	1.09	0.328 ug/kg	U	U		
1,2,3-Trichlorobenzene	87616	1.09	1.09	0.328 ug/kg	U	U		
,2,3-Trichloropropane	96184	1.09	1.09	0.328 ug/kg	U	U		
,2,4-Trichlorobenzene	120821	1.09	1.09	0.328 ug/kg	U	U		
,2,4-Trimethylbenzene	95636	1.09	1.09	0.328 ug/kg	U	U		
,2-Dibromo-3-chloropropane	96128	1.09	1.09	0.328 ug/kg	U	U		
,2-Dibromoethane (EDB)	106934	1.09	1.09	0.328 ug/kg	U	U		
,2-Dichlorobenzene	95501	1.09	1.09	0.328 ug/kg	U	U		
,2-Dichloroethane	107062	1.09	1.09	0.328 ug/kg	U	U		
,2-Dichloropropane	78875	1.09	1.09	0.328 ug/kg	U	U		
,3,5-Trimethylbenzene	108678	1.09	1.09	0.328 ug/kg	U	U		
,3-Dichlorobenzene	541731	1.09	1.09	0.328 ug/kg	U	U		
1,3-Dichloropropane	142289	1.09	1.09	0.328 ug/kg	U	U		
,4-Dichlorobenzene	106467	1.09	1.09	0.328 ug/kg	U	U		
2,2-dichloropropane	594207	1.09	1.09	0.328 ug/kg	U	U		
2-Butanone (MEK)	78933	5.47	5.47	1.64 ug/kg	U	U		
2-Chloro-1,1,1-trifluoroethan	e 75887	10.9	10.9	3.28 ug/kg	U	U		
2-Chloroethyl vinyl ether	110758	5.47	5.47	1.37 ug/kg	U	U		
2-Chlorotoluene	95498	1.09	1.09	0.328 ug/kg	U	U		
2-Hexanone	591786	5.47	5.47	1.64 ug/kg	U	U		
l-Chlorotoluene	106434	1.09	1.09	0.328 ug/kg	U	U		
l-Methyl-2-pentanone (MIBK	X) 108101	5.47	5.47	1.37 ug/kg	U	U		
Acetone	67641	5.47	5.47	1.82 ug/kg	U	U		
Benzene	71432	1.09	1.09	0.328 ug/kg	U	U		
Bromobenzene	108861	1.09	1.09	0.328 ug/kg	U	U		
Bromochloromethane	74975	1.09	1.09	0.361 ug/kg	U	U		
Bromodichloromethane	75274	1.09	1.09	0.328 ug/kg	U	U		
Bromoform	75252	1.09	1.09	0.328 ug/kg	U	U		

Bromomethane	74839	1.09	1.09	0.328 ug/kg	U	U	
Carbon Tetrachloride	56235	1.09	1.09	0.328 ug/kg	U	U	
Chlorobenzene	108907	1.09	1.09	0.328 ug/kg	U	U	
Chloroethane	75003	1.09	1.09	0.328 ug/kg	U	U	
Chloroform	67663	1.09	1.09	0.328 ug/kg	U	U	
Chloromethane	74873	1.09	1.09	0.328 ug/kg	U	U	
Chlorotrifluoroethylene	79389	10.9	10.9	3.28 ug/kg	U	U	
cis-1,2-Dichloroethene	156592	1.09	1.09	0.328 ug/kg	U	U	
cis-1,3-Dichloropropene	10061015	1.09	1.09	0.328 ug/kg	U	U	
Dibromochloromethane	124481	1.09	1.09	0.328 ug/kg	U	U	
Dibromomethane	74953	1.09	1.09	0.328 ug/kg	U	U	
Dichlorodifluoromethane	75718	1.09	1.09	0.372 ug/kg	U	U	
Ethylbenzene	100414	1.09	1.09	0.328 ug/kg	U	U	
Hexachlorobutadiene	87683	1.09	1.09	0.328 ug/kg	U	U	
Isopropylbenzene	98828	1.09	1.09	0.328 ug/kg	U	U	
m,p-Xylenes	136777612	2.19	2.19	0.328 ug/kg	U	U	
Methylene chloride	75092	5.47	5.47	2.19 ug/kg	U	U	
Methyl-tert-butyl ether (MTBE)	1634044	1.09	1.09	0.328 ug/kg	U	U	
n-Butylbenzene	104518	1.09	1.09	0.328 ug/kg	U	U	
n-Propylbenzene	103651	1.09	1.09	0.328 ug/kg	U	U	
o-Xylene	95476	1.09	1.09	0.328 ug/kg	U	U	
p-Isopropyltoluene	99876	1.09	1.09	0.328 ug/kg	U	U	
sec-Butylbenzene	135988	1.09	1.09	0.328 ug/kg	U	U	
Styrene	100425	0.371	1.09	0.328 ug/kg	J	J	
tert-Butylbenzene	98066	1.09	1.09	0.328 ug/kg	U	U	
Tetrachloroethene	127184	1.09	1.09	0.328 ug/kg	U	U	
Toluene	108883	1.09	1.09	0.328 ug/kg	U	U	
trans-1,2-Dichloroethene	156605	1.09	1.09	0.328 ug/kg	U	U	
trans-1,3-Dichloropropene	10061026	1.09	1.09	0.328 ug/kg	U	U	
Trichloroethene	79016	1.09	1.09	0.361 ug/kg	U	U	
Trichlorofluoromethane	75694	1.09	1.09	0.328 ug/kg	U	U	
Vinyl chloride	75014	1.09	1.09	0.328 ug/kg	U	U	

Sample Name	HZTB2003T001		Result Type: Primary Result				
Lab Sample Name:	235805006 Sample Date: 8/20			20/2009 8:49:00 AM Validation			vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,1,1,2-Tetrachloroethane	630206	1	1	0.3 ug/L	U	U	
1,1,1-Trichloroethane	71556	1	1	0.325 ug/L	U	U	
1,1,2,2-Tetrachloroethane	79345	1	1	0.25 ug/L	U	U	
1,1,2-Trichloro-1,2,2- rifluoroethane	76131	5	5	1 ug/L	U	U	
1,1,2-Trichloroethane	79005	1	1	0.25 ug/L	U	U	
1,1-Dichloroethane	75343	1	1	0.3 ug/L	U	U	
1,1-Dichloroethene	75354	1	1	0.3 ug/L	U	U	
1,1-Dichloropropene	563586	1	1	0.25 ug/L	U	U	
1,2,3-Trichlorobenzene	87616	1	1	0.332 ug/L	U	U	
1,2,3-Trichloropropane	96184	1	1	0.3 ug/L	U	U	
1,2,4-Trichlorobenzene	120821	1	1	0.3 ug/L	U	U	
1,2,4-Trimethylbenzene	95636	1	1	0.25 ug/L	U	U	
,2-Dibromo-3-chloropropano	e 96128	1	1	0.3 ug/L	U	U	
,2-Dibromoethane (EDB)	106934	1	1	0.25 ug/L	U	U	
1,2-Dichlorobenzene	95501	1	1	0.25 ug/L	U	U	
1,2-Dichloroethane	107062	1	1	0.25 ug/L	U	U	
1,2-Dichloropropane	78875	1	1	0.25 ug/L	U	U	
1,3,5-Trimethylbenzene	108678	1	1	0.25 ug/L	U	U	
1,3-Dichlorobenzene	541731	1	1	0.25 ug/L	U	U	
1,3-Dichloropropane	142289	1	1	0.3 ug/L	U	U	
1,4-Dichlorobenzene	106467	1	1	0.25 ug/L	U	U	
2,2-dichloropropane	594207	1	1	0.3 ug/L	U	U	
2-Butanone (MEK)	78933	5	5	1.25 ug/L	U	U	
2-Chloro-1,1,1-trifluoroethan	e 75887	10	10	3 ug/L	U	U	
2-Chloroethyl vinyl ether	110758	5	5	1.5 ug/L	U	U	
2-Chlorotoluene	95498	1	1	0.25 ug/L	U	U	
2-Hexanone	591786	5	5	1.25 ug/L	U	U	
4-Chlorotoluene	106434	1	1	0.25 ug/L	U	U	
4-Methyl-2-pentanone (MIBI	K) 108101	5	5	1.25 ug/L	U	U	
Acetone	67641	5	5	1.5 ug/L	U	U	
Benzene	71432	1	1	0.3 ug/L	U	U	
Bromobenzene	108861	1	1	0.25 ug/L	U	U	
Bromochloromethane	74975	1	1	0.3 ug/L	U	U	
Bromodichloromethane	75274	1	1	0.25 ug/L	U	U	
Bromoform	75252	1	1	0.25 ug/L	U	U	

Bromomethane	74839	1	1	0.3 ug/L	U	U	
Carbon Tetrachloride	56235	1	1	0.3 ug/L	U	U	
Chlorobenzene	108907	1	1	0.25 ug/L	U	U	
Chloroethane	75003	1	1	0.3 ug/L	U	U	
Chloroform	67663	1	1	0.25 ug/L	U	U	
Chloromethane	74873	1	1	0.3 ug/L	U	U	
Chlorotrifluoroethylene	79389	10	10	3 ug/L	U	U	
cis-1,2-Dichloroethene	156592	1	1	0.3 ug/L	U	U	
cis-1,3-Dichloropropene	10061015	1	1	0.25 ug/L	U	U	
Dibromochloromethane	124481	1	1	0.3 ug/L	U	U	
Dibromomethane	74953	1	1	0.3 ug/L	U	U	
Dichlorodifluoromethane	75718	1	1	0.3 ug/L	U	U	
Ethylbenzene	100414	1	1	0.25 ug/L	U	U	
Hexachlorobutadiene	87683	1	1	0.3 ug/L	U	U	
Isopropylbenzene	98828	1	1	0.25 ug/L	U	U	
m,p-Xylenes	136777612	2	2	0.5 ug/L	U	U	
Methylene chloride	75092	5	5	2 ug/L	U	U	
Methyl-tert-butyl ether (MTBE)	1634044	1	1	0.25 ug/L	U	U	
n-Butylbenzene	104518	1	1	0.25 ug/L	U	U	
n-Propylbenzene	103651	1	1	0.25 ug/L	U	U	
o-Xylene	95476	1	1	0.3 ug/L	U	U	
p-Isopropyltoluene	99876	1	1	0.25 ug/L	U	U	
sec-Butylbenzene	135988	1	1	0.25 ug/L	U	U	
Styrene	100425	1	1	0.25 ug/L	U	U	
tert-Butylbenzene	98066	1	1	0.25 ug/L	U	U	
Tetrachloroethene	127184	1	1	0.3 ug/L	U	U	
Toluene	108883	1	1	0.25 ug/L	U	U	
trans-1,2-Dichloroethene	156605	1	1	0.3 ug/L	U	U	
trans-1,3-Dichloropropene	10061026	1	1	0.25 ug/L	U	U	
Trichloroethene	79016	1	1	0.25 ug/L	U	U	
Trichlorofluoromethane	75694	1	1	0.3 ug/L	U	U	
Vinyl chloride	75014	1	1	0.5 ug/L	U	U	

Sample Name	EBQW2234		Matrix 7	Type: Water	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805001	Sample 1	1	Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1-Methylnaphthalene	90120	0.472	0.472	0.142 ug/L	U	U	
2-Methylnaphthalene	91576	0.472	0.472	0.142 ug/L	U	U	
Acenaphthene	83329	0.472	0.472	0.146 ug/L	U	U	
Acenaphthylene	208968	0.472	0.472	0.0943 ug/L	U	U	
Anthracene	120127	0.472	0.472	0.0943 ug/L	U	U	
Benzo(a)anthracene	56553	0.472	0.472	0.0943 ug/L	U	U	
Benzo(a)pyrene	50328	0.472	0.472	0.0943 ug/L	U	U	
Benzo(b)fluoranthene	205992	0.472	0.472	0.0943 ug/L	U	U	
Benzo(ghi)perylene	191242	0.472	0.472	0.0943 ug/L	U	U	
Benzo(k)fluoranthene	207089	0.472	0.472	0.0943 ug/L	U	U	
bis(2-ethylhexyl)phthalate	117817	0.472	0.472	0.142 ug/L	ВЈ	U	B, result changed from 0.23
Butyl benzyl phthalate	85687	0.472	0.472	0.142 ug/L	U	U	
Chrysene	218019	0.472	0.472	0.0943 ug/L	U	U	
Dibenzo(a,h)anthracene	53703	0.472	0.472	0.0943 ug/L	U	U	
Diethylphthalate	84662	0.472	0.472	0.142 ug/L	U	U	
Dimethylphthalate	131113	0.472	0.472	0.142 ug/L	U	U	
Di-n-butylphthalate	84742	0.472	0.472	0.142 ug/L	U	U	
Di-n-octyl-phthalate	117840	0.472	0.472	0.142 ug/L	U	U	
Fluoranthene	206440	0.472	0.472	0.0943 ug/L	U	U	
Fluorene	86737	0.472	0.472	0.0943 ug/L	U	U	
Indeno(1,2,3-cd)pyrene	193395	0.472	0.472	0.0943 ug/L	U	U	
Naphthalene	91203	0.472	0.472	0.142 ug/L	U	U	
n-Nitrosodimethylamine	62759	0.472	0.472	0.0943 ug/L	U	U	
Phenanthrene	85018	0.472	0.472	0.0943 ug/L	U	U	
Pyrene	129000	0.472	0.472	0.142 ug/L	U	U	

Sample Name	HZBS0173S001		Matrix 7	Гуре: Soil	Res	Result Type: Primary Result			
Lab Sample Name:	235805002	Sample l	Date: 8	/20/2009 9:40:00 AN	Validation Level: V				
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
1-Methylnaphthalene	90120	17.1	17.1	5.12 ug/kg	U	U			
2-Methylnaphthalene	91576	17.1	17.1	3.41 ug/kg	U	U			
Acenaphthene	83329	17.1	17.1	5.7 ug/kg	U	U			
Acenaphthylene	208968	17.1	17.1	5.12 ug/kg	U	U			
Anthracene	120127	17.1	17.1	3.41 ug/kg	U	U			
Benzo(a)anthracene	56553	17.1	17.1	5.12 ug/kg	U	U			
Benzo(a)pyrene	50328	17.1	17.1	5.12 ug/kg	U	U			
Benzo(b)fluoranthene	205992	17.1	17.1	5.12 ug/kg	U	U			
Benzo(ghi)perylene	191242	17.1	17.1	5.12 ug/kg	U	U			
Benzo(k)fluoranthene	207089	17.1	17.1	5.12 ug/kg	U	U			
bis(2-ethylhexyl)phthalate	117817	17.1	17.1	5.63 ug/kg	ВЈ	U	B, result changed from 16.8		
Butyl benzyl phthalate	85687	17.1	17.1	5.12 ug/kg	U	U			
Chrysene	218019	17.1	17.1	5.12 ug/kg	U	U			
Dibenzo(a,h)anthracene	53703	17.1	17.1	5.12 ug/kg	U	U			
Diethylphthalate	84662	17.1	17.1	5.12 ug/kg	U	U			
Dimethylphthalate	131113	17.1	17.1	5.12 ug/kg	U	U			
Di-n-butylphthalate	84742	17.1	17.1	5.12 ug/kg	U	U			
Di-n-octyl-phthalate	117840	17.1	17.1	5.12 ug/kg	U	U			
Fluoranthene	206440	17.1	17.1	5.12 ug/kg	U	U			
Fluorene	86737	17.1	17.1	5.12 ug/kg	U	U			
Indeno(1,2,3-cd)pyrene	193395	17.1	17.1	5.12 ug/kg	U	U			
Naphthalene	91203	17.1	17.1	5.12 ug/kg	U	U			
n-Nitrosodimethylamine	62759	17.1	17.1	3.41 ug/kg	U	U			
Phenanthrene	85018	17.1	17.1	5.12 ug/kg	U	U			
Pyrene	129000	17.1	17.1	5.36 ug/kg	U	U			

Sample Name	HZBS0173S002		Matrix 7	Гуре: Soil	Result Type: Primary Result			
Lab Sample Name:	235805003	Sample Date: 8/20/2009 9:57:00 AM			Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1-Methylnaphthalene	90120	70.9	70.9	21.3 ug/kg	U	U		
2-Methylnaphthalene	91576	70.9	70.9	14.2 ug/kg	U	U		
Acenaphthene	83329	70.9	70.9	23.7 ug/kg	U	U		
Acenaphthylene	208968	70.9	70.9	21.3 ug/kg	U	U		
Anthracene	120127	70.9	70.9	14.2 ug/kg	U	U		
Benzo(a)anthracene	56553	70.9	70.9	21.3 ug/kg	U	U		
Benzo(a)pyrene	50328	70.9	70.9	21.3 ug/kg	U	U		
Benzo(b)fluoranthene	205992	70.9	70.9	21.3 ug/kg	U	U		
Benzo(ghi)perylene	191242	70.9	70.9	21.3 ug/kg	U	U		
Benzo(k)fluoranthene	207089	70.9	70.9	21.3 ug/kg	U	U		
bis(2-ethylhexyl)phthalate	117817	70.9	70.9	23.4 ug/kg	U	U		
Butyl benzyl phthalate	85687	70.9	70.9	21.3 ug/kg	U	U		
Chrysene	218019	70.9	70.9	21.3 ug/kg	U	U		
Dibenzo(a,h)anthracene	53703	70.9	70.9	21.3 ug/kg	U	U		
Diethylphthalate	84662	70.9	70.9	21.3 ug/kg	U	U		
Dimethylphthalate	131113	70.9	70.9	21.3 ug/kg	U	U		
Di-n-butylphthalate	84742	70.9	70.9	21.3 ug/kg	U	U		
Di-n-octyl-phthalate	117840	70.9	70.9	21.3 ug/kg	U	U		
Fluoranthene	206440	70.9	70.9	21.3 ug/kg	U	U		
Fluorene	86737	70.9	70.9	21.3 ug/kg	U	U		
Indeno(1,2,3-cd)pyrene	193395	70.9	70.9	21.3 ug/kg	U	U		
Naphthalene	91203	70.9	70.9	21.3 ug/kg	U	U		
n-Nitrosodimethylamine	62759	70.9	70.9	14.2 ug/kg	U	U		
Phenanthrene	85018	70.9	70.9	21.3 ug/kg	U	U		
Pyrene	129000	70.9	70.9	22.3 ug/kg	U	U		

Sample Name	HZBS0174S001		Matrix 7	Гуре: Soil	Res	Result Type: Primary Result Validation Level: V			
Lab Sample Name:	235805004	Sample l	Date: 8	/20/2009 10:35:00 A	M v				
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
1-Methylnaphthalene	90120	17.4	17.4	5.23 ug/kg	U	U			
2-Methylnaphthalene	91576	17.4	17.4	3.49 ug/kg	U	U			
Acenaphthene	83329	17.4	17.4	5.82 ug/kg	U	U			
Acenaphthylene	208968	17.4	17.4	5.23 ug/kg	U	U			
Anthracene	120127	17.4	17.4	3.49 ug/kg	U	U			
Benzo(a)anthracene	56553	17.4	17.4	5.23 ug/kg	U	U			
Benzo(a)pyrene	50328	17.4	17.4	5.23 ug/kg	U	U			
Benzo(b)fluoranthene	205992	17.4	17.4	5.23 ug/kg	U	U			
Benzo(ghi)perylene	191242	17.4	17.4	5.23 ug/kg	U	U			
Benzo(k)fluoranthene	207089	17.4	17.4	5.23 ug/kg	U	U			
bis(2-ethylhexyl)phthalate	117817	17.4	17.4	5.75 ug/kg	ВЈ	U	B, result changed from 12.2		
Butyl benzyl phthalate	85687	17.4	17.4	5.23 ug/kg	U	U			
Chrysene	218019	17.4	17.4	5.23 ug/kg	U	U			
Dibenzo(a,h)anthracene	53703	17.4	17.4	5.23 ug/kg	U	U			
Diethylphthalate	84662	17.4	17.4	5.23 ug/kg	U	U			
Dimethylphthalate	131113	17.4	17.4	5.23 ug/kg	U	U			
Di-n-butylphthalate	84742	17.4	17.4	5.23 ug/kg	U	U			
Di-n-octyl-phthalate	117840	17.4	17.4	5.23 ug/kg	U	U			
Fluoranthene	206440	17.4	17.4	5.23 ug/kg	U	U			
Fluorene	86737	17.4	17.4	5.23 ug/kg	U	U			
Indeno(1,2,3-cd)pyrene	193395	17.4	17.4	5.23 ug/kg	U	U			
Naphthalene	91203	17.4	17.4	5.23 ug/kg	U	U			
n-Nitrosodimethylamine	62759	17.4	17.4	3.49 ug/kg	U	U			
Phenanthrene	85018	17.4	17.4	5.23 ug/kg	U	U			
Pyrene	129000	17.4	17.4	5.48 ug/kg	U	U			

Sample Name	HZBS0174S002		Matrix '	Гуре: Soil	Res	Result Type: Primary Result			
Lab Sample Name:	235805005	Date: 8	/20/2009 10:56:00 A	M V	Validation Level: V				
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
1-Methylnaphthalene	90120	17.5	17.5	5.24 ug/kg	U	U			
2-Methylnaphthalene	91576	17.5	17.5	3.5 ug/kg	U	U			
Acenaphthene	83329	17.5	17.5	5.84 ug/kg	U	U			
Acenaphthylene	208968	17.5	17.5	5.24 ug/kg	U	U			
Anthracene	120127	17.5	17.5	3.5 ug/kg	U	U			
Benzo(a)anthracene	56553	17.5	17.5	5.24 ug/kg	U	U			
Benzo(a)pyrene	50328	17.5	17.5	5.24 ug/kg	U	U			
Benzo(b)fluoranthene	205992	17.5	17.5	5.24 ug/kg	U	U			
Benzo(ghi)perylene	191242	17.5	17.5	5.24 ug/kg	U	U			
Benzo(k)fluoranthene	207089	17.5	17.5	5.24 ug/kg	U	U			
bis(2-ethylhexyl)phthalate	117817	17.5	17.5	5.77 ug/kg	ВЈ	U	B, result changed from 12.2		
Butyl benzyl phthalate	85687	17.5	17.5	5.24 ug/kg	U	U			
Chrysene	218019	17.5	17.5	5.24 ug/kg	U	U			
Dibenzo(a,h)anthracene	53703	17.5	17.5	5.24 ug/kg	U	U			
Diethylphthalate	84662	17.5	17.5	5.24 ug/kg	U	U			
Dimethylphthalate	131113	17.5	17.5	5.24 ug/kg	U	U			
Di-n-butylphthalate	84742	17.5	17.5	5.24 ug/kg	U	U			
Di-n-octyl-phthalate	117840	17.5	17.5	5.24 ug/kg	U	U			
Fluoranthene	206440	17.5	17.5	5.24 ug/kg	U	U			
Fluorene	86737	17.5	17.5	5.24 ug/kg	U	U			
Indeno(1,2,3-cd)pyrene	193395	17.5	17.5	5.24 ug/kg	U	U			
Naphthalene	91203	17.5	17.5	5.24 ug/kg	U	U			
n-Nitrosodimethylamine	62759	17.5	17.5	3.5 ug/kg	U	U			
Phenanthrene	85018	17.5	17.5	5.24 ug/kg	U	U			
Pyrene	129000	17.5	17.5	5.49 ug/kg	U	U			

Analysis Method 8321A

Sample Name	EBQW2234		Matrix 7	Гуре: Water	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805001	Sample	Date: 8	/20/2009 2:00:00 PM	I 1	Validation Le	evel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
2,4-diamino-6-nitrotoluene	6629294	1.3	1.3	0.39 ug/L	U	U	
2,6-diamino-4-nitrotoluene	59229753	1.3	1.3	0.39 ug/L	U	U	
Sample Name	HZBS0173S001		Matrix 7	Гуре: Soil	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805002	Sample	Date: 8	/20/2009 9:40:00 AM	1 1	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
2,4-diamino-6-nitrotoluene	6629294	2000	2000	500 ug/kg	U	U	
2,6-diamino-4-nitrotoluene	59229753	2000	2000	500 ug/kg	U	U	
Sample Name	HZBS0173S002	Matrix Type: Soil Result Type: Primary Res					
Lab Sample Name:	235805003	Sample	Date: 8	/20/2009 9:57:00 AM	1 1	Validation Le	evel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
2,4-diamino-6-nitrotoluene	6629294	2000	2000	500 ug/kg	U	U	
2,6-diamino-4-nitrotoluene	59229753	2000	2000	500 ug/kg	U	U	
Sample Name	HZBS0174S001		Matrix 7	Гуре: Soil	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805004	Sample	Date: 8	/20/2009 10:35:00 A	M v	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
2,4-diamino-6-nitrotoluene	6629294	2000	2000	500 ug/kg	U	U	
2,6-diamino-4-nitrotoluene	59229753	2000	2000	500 ug/kg	U	U	
Sample Name	HZBS0174S002		Matrix 7	Гуре: Soil	Res	ult Type: Pr	imary Result
Lab Sample Name:	235805005	Sample	Date: 8	/20/2009 10:56:00 A	M v	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
2,4-diamino-6-nitrotoluene	6629294	2000	2000	500 ug/kg	U	U	
2,6-diamino-4-nitrotoluene	59229753	2000	2000	500 ug/kg	U	U	

Analysis Method	d 8330						
Sample Name	EBQW2234		Matrix T	Type: Water	Res	ult Type: La	b Repeat An
Lab Sample Name:	235805001	Sample	Date: 8/	/20/2009 2:00:00 PM	•	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,3,5-Trinitrobenzene	99354	0.325	0.325	0.0649 ug/L	U	U	
2,4,6-Trinitrotoluene	118967	0.487	0.487	0.162 ug/L	U	U	
2,4-Dinitrotoluene	121142	0.487	0.487	0.162 ug/L	U	U	
2,6-Dinitrotoluene	606202	0.487	0.487	0.162 ug/L	U	U	
4-Amino-2,6-Dinitrotoluene	19406510	0.487	0.487	0.162 ug/L	U	U	
HMX	2691410	0.487	0.487	0.162 ug/L	U	UJ	L
m-Dinitrobenzene	99650	0.325	0.325	0.0649 ug/L	U	U	
n-Nitrotoluene	99081	0.325	0.325	0.126 ug/L	U	U	
Nitrobenzene	98953	0.325	0.325	0.0649 ug/L	U	U	
Nitroglycerin	55630	1.95	1.95	0.649 ug/L	U	U	
o-Nitrotoluene	88722	0.487	0.487	0.162 ug/L	U	U	
PETN	78115	1.95	1.95	0.649 ug/L	U	U	
p-Nitrotoluene	99990	0.487	0.487	0.162 ug/L	U	U	
RDX	121824	0.487	0.487	0.162 ug/L	U	U	
Гetryl	479458	1.46	1.46	0.487 ug/L	U	U	
Sample Name	HZBS0173S001		Matrix T	Type: Soil	Res	ult Type: La	b Repeat An
Lab Sample Name:	235805002	Sample	Date: 8/	/20/2009 9:40:00 AM	I T	/alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,3,5-Trinitrobenzene	99354	150	150	50 ug/kg	U	U	
2,4,6-Trinitrotoluene	118967	150	150	50 ug/kg	U	U	
2,4-Dinitrotoluene	121142	150	150	50 ug/kg	U	U	
2,6-Dinitrotoluene	606202	150	150	50 ug/kg	U	U	
2-Amino-4,6-Dinitrotoluene	35572782	150	150	50 ug/kg	U	U	
4-Amino-2,6-Dinitrotoluene	19406510	150	150	50 ug/kg	U	U	
HMX	2691410	150	150	50 ug/kg	U	U	
m-Dinitrobenzene	99650	150	150	50 ug/kg	U	U	

99081

98953

55630

88722

78115

99990

121824

479458

150

150

1000

150

500

150

150

150

150

150

1000

150

500

150

150

150

50 ug/kg

50 ug/kg

250 ug/kg

50 ug/kg

50 ug/kg

50 ug/kg

50 ug/kg

82.5 ug/kg

U

U U

U U

U

U

U

U U

U

U

U

U

U

U

m-Nitrotoluene

Nitrobenzene

Nitroglycerin

o-Nitrotoluene

p-Nitrotoluene

PETN

RDX

Tetryl

Sample Name	HZBS0173S002		Matrix 7	Гуре: Soil	Res	ult Type: La	b Repeat An
Lab Sample Name:	235805003	Sample 1	Date: 8/	/20/2009 9:57:00 AM	И	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,3,5-Trinitrobenzene	99354	150	150	50 ug/kg	U	U	
2,4,6-Trinitrotoluene	118967	150	150	50 ug/kg	U	U	
2,4-Dinitrotoluene	121142	150	150	50 ug/kg	U	U	
2,6-Dinitrotoluene	606202	150	150	50 ug/kg	U	U	
2-Amino-4,6-Dinitrotoluene	35572782	150	150	50 ug/kg	U	U	
4-Amino-2,6-Dinitrotoluene	19406510	150	150	50 ug/kg	U	U	
HMX	2691410	150	150	50 ug/kg	U	U	
m-Dinitrobenzene	99650	150	150	50 ug/kg	U	U	
m-Nitrotoluene	99081	150	150	50 ug/kg	U	U	
Nitrobenzene	98953	150	150	50 ug/kg	U	U	
Nitroglycerin	55630	1000	1000	250 ug/kg	U	U	
o-Nitrotoluene	88722	150	150	50 ug/kg	U	U	
PETN	78115	500	500	82.5 ug/kg	U	U	
p-Nitrotoluene	99990	150	150	50 ug/kg	U	U	
RDX	121824	150	150	50 ug/kg	U	U	
Tetryl	479458	150	150	50 ug/kg	U	U	

Sample Name	HZBS0174S001		Matrix 7	Гуре: Soil	Res	ult Type: La	b Repeat An
Lab Sample Name:	235805004	Sample l	Date: 8	/20/2009 10:35:00 A	M v	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,3,5-Trinitrobenzene	99354	150	150	50 ug/kg	U	U	
2,4,6-Trinitrotoluene	118967	150	150	50 ug/kg	U	U	
2,4-Dinitrotoluene	121142	150	150	50 ug/kg	U	U	
2,6-Dinitrotoluene	606202	150	150	50 ug/kg	U	U	
2-Amino-4,6-Dinitrotoluene	35572782	150	150	50 ug/kg	U	U	
4-Amino-2,6-Dinitrotoluene	19406510	150	150	50 ug/kg	U	U	
HMX	2691410	150	150	50 ug/kg	U	U	
m-Dinitrobenzene	99650	150	150	50 ug/kg	U	U	
m-Nitrotoluene	99081	150	150	50 ug/kg	U	U	
Nitrobenzene	98953	150	150	50 ug/kg	U	U	
Nitroglycerin	55630	1000	1000	250 ug/kg	U	U	
o-Nitrotoluene	88722	150	150	50 ug/kg	U	U	
PETN	78115	500	500	82.5 ug/kg	U	U	
p-Nitrotoluene	99990	150	150	50 ug/kg	U	U	
RDX	121824	150	150	50 ug/kg	U	U	
Tetryl	479458	150	150	50 ug/kg	U	U	

Sample Name	HZBS0174S002		Matrix 7	Г уре: Soil	Res	ult Type: La	b Repeat An
Lab Sample Name:	235805005	Sample	Date: 8/	/20/2009 10:56:00 A	M T	Validation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,3,5-Trinitrobenzene	99354	150	150	50 ug/kg	U	U	
2,4,6-Trinitrotoluene	118967	150	150	50 ug/kg	U	U	
2,4-Dinitrotoluene	121142	150	150	50 ug/kg	U	U	
2,6-Dinitrotoluene	606202	150	150	50 ug/kg	U	U	
2-Amino-4,6-Dinitrotoluene	35572782	150	150	50 ug/kg	U	U	
4-Amino-2,6-Dinitrotoluene	19406510	150	150	50 ug/kg	U	U	
HMX	2691410	150	150	50 ug/kg	U	U	
m-Dinitrobenzene	99650	150	150	50 ug/kg	U	U	
m-Nitrotoluene	99081	150	150	50 ug/kg	U	U	
Nitrobenzene	98953	150	150	50 ug/kg	U	U	
Nitroglycerin	55630	1000	1000	250 ug/kg	U	U	
o-Nitrotoluene	88722	150	150	50 ug/kg	U	U	
PETN	78115	500	500	82.5 ug/kg	U	U	
p-Nitrotoluene	99990	150	150	50 ug/kg	U	U	
RDX	121824	150	150	50 ug/kg	U	U	
Tetryl	479458	150	150	50 ug/kg	U	U	

Chain of Custody and Supporting Documentation

CHAIN OF CUSTODY RECORD

	C	O BOEING				CHAIN OF CUSTODY RECORD	F CUSTO	7	ECC	SRD					# 000			_	MWHMM20090824_00
	5											7	8	135913					Page: 1 of 1
	Custome	Customer Information		Project Informat	rmatton	_		ę.	ect in	Project Information	tlon								
	Site:	SSFL		Client Name:	Ď	Boeing		8	Collector:	-	M. Milman-Barris	Barris				å	Boeing PM:		
_	Company: MWH	MWH		Sampling Event:	_	ISRA Sampling, June 2009	June 2009	ខ្ល	Contact #:							-			
	Report to:	Report to: Sarah Von Raesfeld		Project Number:	+	1891614.054521						Redu	ested/	Requested Analyses	ses	-			Instructions/TAT
_	Address:	2121 N. California Blvd	-	Project Manager:	+	Alex Fischi		Т					_			_			
		Suite 600	-	PM Phone #:	9)	(925) 627-4627		T											Legena: Numerical values for
		Walnut Creek		Field Contact:		Benjamin Stewart	t												analyses equate to turn around time in days
		CA	 	Field Contact #:	\vdash	(818) 266-1378								Met		S			H- Hold
		94596		Lab Name:	O	GEL Laboratories, LLC	s, LLC	1						ais b	. 50				EH - Extract/Extrude & Hold
	Email:	sarah.vonraesfeld@mwhglobal.c Lab Contact:	pal.c	Lab Contact:	7	Jackie Trudell		T						y 601			VOC		
_		sean.leffler@mwhglobal.com		Lab Address:		2040 Savage Road	ad	D2:			Meta			0/60			by S		Note: Values in the cells
_					0	Charleston, SC 29407	29407	216			ls 60			20/74			SW82		bellow are Turn Around
_				Lab Phone:	80	(843) 769-7388		Moist			20 Ct			170A			260B		60
	Sample Name	яте		Matrix	Date	Time	No. of Containers	ure Soil	B - Soil	Water - Water	ı Water	Copper	er Lead	- Water	- Water	- Water DI-WET	- Water		Comments
	CNBS0137S001	3001	Soil		8/24/2009	13:01	2	2	9	-		2	2		-	\vdash			
-	CNBS0138S001	3001	Soil		8/24/20	13:14	2	2	S	-		2	2			H			
_	EBQW2236		Water		8124120	4/2009 14:00	8			9	9		우		\vdash	L			
_	FBQW2239		Water		8/24/2009	14:00	+	L		9		\vdash	L	9	10	10	9		

I. Relinquished by:	Date;	2. Received by:	Date:	3. Relinquished by:	Date:	4. Received by:	Date:
Nargueth. Welst.	60/mz/8	7. M. Stelleino	8/23/00				
Company: MWH	17.00 (4.00	company:	- 28 - 28 - 20	Company:	Time:	Company:	Time:
Comments:					Geot	Geotracker EDF	
					Data	Data Validation Package 💌 Level IV	Level IV

SAMPLE RECEIPT & REVIEW FORM

Cliente				
Client: 55 F1				SDG/ARCOC/Work Order: 235913
Received By: Rms				Date Received: 8/25/09
Suspected Hazard Information	Yes	No	*If (Counts > x2 area background on samples not marked "radioactive", contact Radiation Safety Group of further investigation.
COC/Samples marked as radioactive?		V	Max	ximum Counts Observed*:
Classified Radioactive II or III by RSO?	1_	_		20 com
COC/Samples marked containing PCBs?	_	14		
Shipped as a DOT Hazardous?	↓_	1	Haz	ard Class Shipped: UN#:
Samples identified as Foreign Soil?	<u></u>	1	1	
Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	/			Circle Applicable: seals broken damaged container leaking container other (describe)
Samples requiring cold preservation within 0 ≤ 6 deg. C?	/			Preservation Method: (ice bags) blue ice dry ice none other (describe)
Chain of custody documents included with shipment?	/			
4 Sample containers intact and sealed?	1		/	Seals broken damaged container leaking container other (describe) TECCISES (1) 12 ambet 10 FB QW 2239 by
5 Samples requiring chemical preservation at proper pH?	1		- 1	Sample ID's, containers affected and observed pH: If Preservation added, Lot#:
VOA vials free of headspace (defined as < 6mm bubble)?	\		5	Sample ID's and containers affected:
7 Are Encore containers present?				If yes, immediately deliver to Volatiles laboratory)
8 Samples received within holding time?	/			d's and tests affected:
Sample ID's on COC match ID's on bottles?)			ample ID's and containers effected:
Date & time on COC match date & time on bottles?	1			ample ID's affected:
Number of containers received match number indicated on COC?	1		S	ample ID's affected:
COC form is properly signed in relinquished/received sections?	/			
omments:				
Fx: 9457 3161 4126				
. ~ .				
				i i.
PM (or PMA) review: Initials	s		JT	Date Date 9 2.5 09

Subject: ISRA Sample Receipt Issues - 8/25/09

From: Jackie Trudell < jacqueline.trudell@gel.com>

Date: Tue, 25 Aug 2009 11:20:41 -0400

To: Sarah E VonRaesfeld < Sarah. E. VonRaesfeld @us.mwhglobal.com >, Sean S Leffler

<Sean.S.Leffler@us.mwhglobal.com>

Sarah-

We received one 1L Amber container broken for sample FBQW2239. We will have enough volume to proceed with analysis.

Thanks, Jackie

_-

Jacqueline Trudell Project Manager GEL Laboratories, LLC 2040 Savage Road

Charleston, SC (USA) 29407

Direct: 843.769.7388

Main: 843.556.8171 ext. 4406

Fax: 843.766.1178

E-mail: jacqueline.trudell@gel.com

Web: www.gel.com

LABORATORY TASK ORDER (LTO) FORM

INSTRUCTIONS: To be completed by Environmental Contractor & Emailed to Laboratory Project Manager, CH2M HILL (boeingedms@ch2m.com) & the Data Validator at Least 48 hrs prior to need for sample containers. Project Analytical Laboratory will confirm receipt via E-Mail.

Event Name:	ISRA Sar	mpling, Feb 2009	Start: _	2/19/2009	_ End:	2/23/2009
LTO DATE:			LTO	NUMBER:		
Consultant Name:		MWH	Contract Laboratory:		GEL	
Address:		. California Blvd. Ste. 600	Address:		040 Savage F	
	Wa	lnut Creek, CA 94596		Cha	rleston, SC 2	9407
Contact Name:		Sarah Von Raesfeld	Lab Contact Name:		Cheryl Jones	
Contact Name: Phone Number:		925-627-4654	_ Lab Contact Name: _ Phone Number:		843-769-738	
Fax Number:		925-627-4501	Fax Number:		843-766-117	
E-mail Address:	Sarah.\	VonRaesfeld@mwhglobal.com	E-mail Address:		cj@gel.com	
		-	ONTAINER ORDER FORM			
Date Required:	02/19/0		Requested Analyses:	(Sr	pecify # of Sam	oles)
•			·	Water	Soil	Contingent
			Dioxins - (1613B)	5	9	14
Date Sample Pickup:	<u>NA</u>		EPA 8015M (DRO)			
0 0			EPA 8015M (JET FUEL)			
Ship Containers To:	V	(EPA 8015M (CC)			
Project Site Consultant Office	X	_ (enter "X") _ (enter "X")	EPA 8260B (VOC)			
Other Location (specify in		- (enter X)	EPA 8270C SIM (SVOC) EPA 8310 (PAH)			
comments)		(enter "X")	EPA 8082 (PCB)			
,		_(onto, x)	Acetone (8260B)			
Container Information	:		EPA TO-15 VOCs (SIM)			
Trip Blank (VOA only)	Yes	(Yes/No)	Metals (6010B/6020/7470A/7471A)			
Temp Blank (VOA Only)	No	(Yes/No)	Cadmium (6020)	5	15	10
DI Water Required?	No	(Yes/No)	Arsenic (6020)	5	5	5
MS/MSD Extra Bottles?	No	_(Yes/No)	% Moisture (D2216)	0	40	30
Comple Metrice			Lead (6020)	5	40	30
Sample Matrix:	V	(aalaat all annliaahla)	Copper (6020)	5 5	10	5
Soil Water	X	_ (select all applicable) _ (select all applicable)	Zinc (6020) EPA TO-14 (VOCs)	<u>ə</u>	10	
Vapor		(select all applicable)	EFA 10-14 (VOCS)[
·		_	_			
Est. Total # of Samples:	75	_ Est. Total # of EDDs	5_ EPORTING REQUIREMENTS			
Project TAT:		LABORATORT	Laboratory Results/Repo	rts Delivera	ables:	
Normal:	X	(10 Business days)	Draft Results Fax?:		(Yes/No)	
RUSH:		(Specify- 24 / 48 / 72HRS)	Draft Results E-mail?:	Yes	(Yes/No)	
Other:		(Specify # of Days)	Specify Fax/E-mail Contact		-	
Report Due Date:		_		Sarah.VonRae	sfeld@mwhgloba	al.com
.,			Send Original Reports To:		<u>, </u>	
Special Reporting Req	uireme	nts:	Project Site		(enter "X")	
Contingent Analysis?	No	(Yes/No)	Consultant Office		(enter "X")	
-	NI-	- `	Other Location (specify		- ' '	
TIC (VOC) Required? TIC (SVOC) Required?	No No	_(Yes/No) _(Yes/No)	in comments)	X	(enter "X")	
Data Validation Pckge.:		(Boeing Tier I, II or III)	# of Copies Reports Req.:	1	_(enter X)	
- Data Validation Forgo	1101 111	_				
		SPECIAL IN	STRUCTIONS/LTO NOTES			
		CONFIRMATION	OF TRANSMITTAL & RECEIPT	-		
LTO Sent By:			LTO Received By-			
Name:	Sean Lef	fler	Name:			
	02/20/09		Date:			
Jaic.	,-0,00		Date: _			-

LABORATORY TASK ORDER (LTO) FORM (PAGE 2) ADDITIONAL REQUIRED ANALYSES

LTO DATE:		LTO NUM	MBER:]
Consultant Name:	MWH	Contract Laboratory:	GEL	
Address:	2121 N. California Blvd. Ste. 600	Address:	2040 Savage Rd.	_
	Walnut Creek, CA 94596	_	Charleston, SC 29407	_
		_		_
Contact Name:	Sarah Von Raesfeld	Lab Contact Name:	Cheryl Jones	
Phone Number:	925-627-4654	Phone Number:	843-769-7388	_
Fax Number:	925-627-4501	Fax Number:	843-766-1178	_
E-mail Address:	Sarah.VonRaesfeld@mwhglobal.com	E-mail Address:	<u>cj@gel.com</u>	_

SAMPLE CONTAINER ORDER FORM (CONTINUED)

Requested Analyses:		(Specify # of Samp	oles)
	Water	Soil	Contingent
Arsenic (6020)			
Lead (6020)	-		
Cadmium (6020)	ŀ	-	
Lithium (6020)	-		
Sodium (6020)	1		
Selenium (6020)	1	-	
Thallium (6020)	ŀ		
Zinc (6020)	-		
Boron (6010B	-		
Vanadium (6010B)			
Copper (6020)			
Zirconium (6020)			

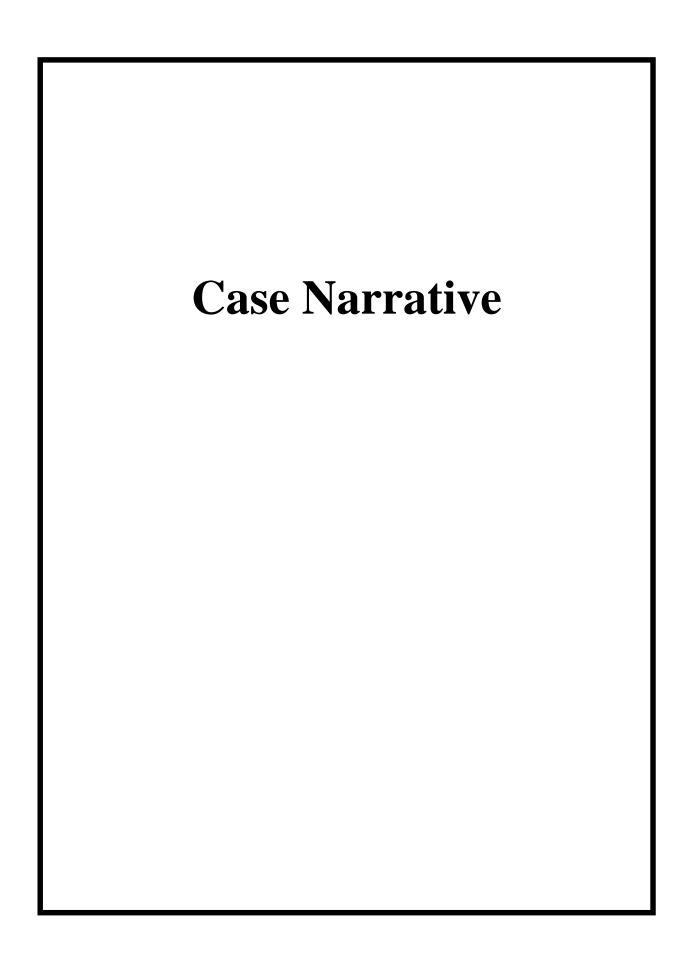
1062 coo(05

MWHMM20090824_00

000

CHAIN OF CUSTODY RECORD

Collector M. Milman-Barris	å [.		135913	8	6					Page:
Sife: SSFL Sife: SSFL Milkingn: Build Sarah Von Raesfeld Sarah Von Raesfeld Project Numbar: 1891 8 analy Numbar: 1891 8 analy Numbar: 1892 8 analy Milking Build Sarah Von Raesfeld Project Numbar: 1891 8 analy Numbar: 1891 8 analy Numbar: 1892 8 analy Milking Build Sarah Von Raesfeld Project Numbar: 1891 8 analy Numbar: 1891 8 analy Numbar: 1892 8 analy Milking Build Sarah Von Raesfeld Project Numbar: 1892 8 analy Numbar: 1	ਹ ੇ	ustome	r Information	Project Inform	natton		-	Proje	ct infe	rmat	동								
Company: MWH Sampling Event: ISSNA Sampling, June 2009 Contact #: Report to: Sarah Von Raesfeld Project Number: 1891614 054521 Report to: Sarah Von Raesfeld Project Manager: 1891614 054521 Report to: Sarah Von Raesfeld Project Manager: Report to: Sarah Von Raesfeld Project Manager: Report to: Sarah Von Raesfeld Project Manager: Report to: Re	5	<u>:</u>	SSFL	Client Name:	Boeing	_		Collec		M. Will	man-Ba	irris				Boeil	ng PM:		
Name Page	8	ompany:	MWH	Sampling Even	 	sampling, Ju		Conta	# #										
Address: 1211 N. California Blvd Project Manager: Alex Fischi Address: 12121 N. California Blvd Project Manager: Alex Fischi Address: 12121 N. California Blvd Project Manager: Alex Fischi Address: 12121 N. California Blvd Project Manager: Alex Fischi Address: 12121 N. California Blvd Project Manager: 12121 N. Cali	8	eport to:	Sarah Von Raesfeld	Project Numbe	1	14.054521			1			Rednes	ited A	nalyse	8			Instructions/TAT	ਚ
Sample None Field Contact	Ad	ddress:	2121 N. California Blvd	Project Manage	+-	schi												 Legend:	
Field Contact: Benjamin Stewart Field Contact: Benjamin Stewart Field Contact: Benjamin Stewart Field Contact: GEL Laboratories, LLC			Suite 600	PM Phone #:	(925) 6	127-4627												 Numerical values for analyses equate to the	8 8
CA Field Confact #: (816) 268-1378 CA Field Confact #: (816) 268-1378 CA CA CA CA CA CA CA C			Walnut Creek	Field Contact:	Benjan	nin Stewart					-							 around	.≣
CABSO1385001 CABS			CA	Field Contact #		966-1378								Meta				 ¥.	-, i
Sample Name			94596	Lab Name:	GEL LA	aboratories,	TIC							ls by	rerc			 무	5
CARTING Charleston, SC 29407	EF	mail:	sarah.vonraesfeld@mwhglobal.c	Lab Contact:	Jackie	Trudell											voc		
Charleston, SC 28407			sean.leffler@mwhglobal.com	Lab Address:	2040 S	savage Roa	•										by S	 Note: Values in the cells	70
Sample Name Matrix Date Time Containers No. of CNBSO1375001 Incomplex Incomplex <t< td=""><td></td><td></td><td></td><td></td><td>Charle</td><td>ston, SC 29</td><td>1407</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>W820</td><td> Dellow a</td><td>Ĭ</td></t<>					Charle	ston, SC 29	1407										W820	 Dellow a	Ĭ
Sample Name Matrix Date Time Containers No. of c				Lab Phone:	(843) 7	769-7388											50B -		
CNBSO137SOO1 CNBSO137SOO1 CNBSO138SOO1 EBGW2236 Water REGW2239 Wat	L	mple Na	me	Matrix	Date	Time	No. of Containers										Water	Comr	흳
CUNSO1385001 Soil 8/24/2009 13:14 2 5 5 6 7 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	1	VBS01378			8/24/2009	13:01	2	ıs	ις L										1
EBQW2236 Water 8/24/2009 14:00 3 10 10 10 10 10 10 10 10 10 10 10 10 10	3	VBS0138S			8/24/2009	13:14	7	c c	-2			-				_			
, FBQW2239 Water 8/24/2009 14:00 11 10 10 10 10 10 10 10	<u> </u>	3QW2236	Wate		8/24/2009	14:00	ю		٤		5		10						
	1	3QW2239	Wate		8/24/2009	14:00	11	\vdash	<u> </u>	무		<u> </u>		⊢	ļ	_	0		


4ha) # 0m

1. Relinquished by:	Date:	2. Received by:	Date: 3. Relinquished by:	Date: 4. F	4. Received by:	Date:
Margnet Mile 12 8	80/22/8 Vg	7. m. Stolling	8/25/06 M. Stolling	18/25/09 U	Mec	9:4
Company: MWH	Time: (7:00	dompany:	Time: Company: (1700 col	Company	Time:
Comments:	7.0 (Ush	7	croth from 3.6 No working		Geotracker EDF □ Data Validation Package ☑ Level IV	

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Data Qualifiers Definitions	10
Laboratory Certifications	12
Subcontract Data Dioxins	14
Percent Moisture	492
GC/MS Volatile Analysis Sample Data Summary QC Summary Sample Data Standard Data QC Data Miscellaneous Data	496 502 506 516 523 617 642
GC/MS Semivolatile Analysis Sample Data Summary QC Summary Sample Data Standard Data QC Data Miscellaneous Data	647 653 655 666 673 725 752
HPLC Explosive Analysis Sample Data Summary QC Summary Sample Data Standard Data QC Data Miscellaneous Data	764 771 774 781 789 848 870
C/MS/MS Explosives Analysis	879 884 886 913 918 966

Miscellaneous Data	979
GC Semivolatile PCB Analysis Sample Data Summary Quality Control Summary Sample Data Standards Data Quality Control Data Miscellaneous Data	
Metals Analysis Case Narrative Sample Data Summary Quality Control Summary Standards Raw Data Miscellaneous	1115 1121 1126 1169 1181
General Chemistry Analysis Case Narrative Sample Data Summary Quality Control Summary Instrument QC Data Summary Perchlorate	1498 1503 1506 1509

Case Narrative for Boeing - SSFL (MWH) Work Order: 235913 SDG: 235913

September 03, 2009

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample Receipt

The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on August 25, 2009 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

The laboratory received the following samples:

Laboratory	Sample
Identification	Description
235913001	CNBS0137S001
235913002	CNBS0138S001
235913003	EBQW2236
235913004	FBQW2239

Items of Note

Santa Susanna Field Laboratory Technical Representative was contacted seeking resolution to any analytical and/or receipt issues. Please see the enclosed e-mails.

Case Narrative

Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Explosives by LCMSMS, GC Semivolatile PCB, GC/MS Semivolatile, GC/MS Volatile, General Chemistry, HPLC Explosive, Metals, Percent Moisture and Dioxins (Cape Fear Analytical).

I certify that this data package is in compliance with the terms and conditions of the subcontract and task order, both technically and for the completeness, for other than the conditions detailed in the attached case narratives.

Jacqueline Trudell

Jacqueline a Judel

Project Manager

ORIGIN ID: CHSA SAMPLE RECEIVING GEL LABORATORIES, LLC 2040 SAVAGE RD. 25AUG09 ACTWGT: 22.2 LB CAD: 0078060/CAFE2431

CHARLESTON, SC 29407 UNITED STATES US

BILL SENDER

TO CHRIS CORNWELL
CAPE FEAR ANALYTICAL, LLC
3306 KITTY HAWK ROAD, STE 120

WILMINGTON NC 28405

DEPT: CHEMISTY LAB - 20100

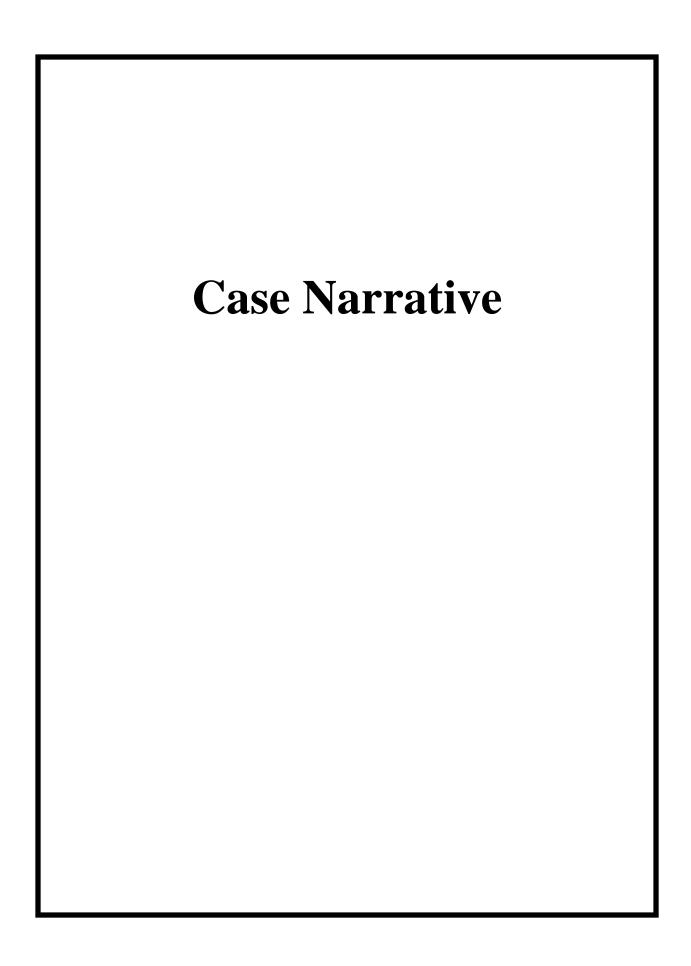
TRK# 9457 3163 1611

WED - 26AUG AA PRIORITY OVERNIGHT

XH ILMA

28405 NC-US GSO

250-354 TRIT 12/08



And the second of the second o

		SAME	LE K	ECEIPT CHECKLIST
Client: GEL				Work Order:
Received By: Chais Comi	Je_	11		Date Received: 8 26 0 9
Suspected Hazard Information Shipped as DOT Hazardous? Samples identified as Foreign Soil?	Yes	NA	No	
Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)
Shipping containers received intact and sealed?	/			Circle Applicable: seals broken damaged container leaking container other(describe)
2 Samples requiring cold preservation within 0-6°C?	/		·	ice bags) blue ice dry ice none other (describe)
3 Chain of Custody documents included with shipment?				
4 Samples requiring chemical preservation at proper pH?	/			Sample IDs, containers affected and pH observed: If preservative added, Lot#:
5 VOA vials free of headspace <6mm bubble?		1		Sample IDs, containers affected:
6 Are Encore containers present?		1		(If YES, immediately deliver to volatiles laboratory)
7 Samples received within holding time?				Sample IDs, tests affected:
8 Sample IDs on COC match IDs on containers?	/			Sample IDs, containers affected:
Date & time of COC match date & time on containers?	/			Sample IDs, containers affected:
Number of containers received match number indicated on COC?	/			Sample IDs, containers affected:
COC form is properly signed in relinquished/received sections?	/			
Comments: No Vesido	al	d	مار	orin present.
PM review: Initi	als: _			Date:

Page 4 of 477

HDOX Case Narrative Boeing (BOEN) SDG 1044

Method/Analysis Information

Product: Dioxins/Furans by EPA Method 1613B in Solids

Analytical Method: EPA Method 1613B

Extraction Method: SW846 3540C

Analytical Batch Number: 1372, 1453

Clean Up Batch Number: 1433, 1312

Extraction Batch Number: 1253, 1393

Sample Analysis

The following samples were analyzed using the analytical protocol as established in EPA Method 1613B:

Sample ID	Client ID
1044001	CNBS0137S001
1044002	CNBS0138S001
1044003	EBQW2236
12000207	Method Blank (MB)
12000208	1044001(CNBS0137S001) Matrix Spike (MS)
12000209	1044001(CNBS0137S001) Matrix Spike Duplicate (MSD)
12000210	Laboratory Control Sample (LCS)
12000211	Laboratory Control Sample Duplicate (LCSD)
12000232	Method Blank (MB)
12000233	Laboratory Control Sample (LCS)
12000234	Laboratory Control Sample Duplicate (LCSD)

Samples 1044 001 and 002 in this SDG were analyzed on an "dry weight" basis. Samples 1044 003 in this SDG were analyzed on a "as received" basis.

Preparation/Analytical Method Verification SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 2.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (ICV or CCV) met the acceptance criteria.

Quality Control (QC) Information

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

QC Sample Designation

A matrix spike and matrix spike duplicate analysis was not required for this SDG.

Matrix Spike (MS) Recovery Statement

The MS recoveries were within the established acceptance limits.

Matrix Spike Duplicate (MSD) Recovery Statement

The MSD recoveries were within the established acceptance limits.

MS/MSD Relative Percent Difference (RPD) Statement

The RPD(s) between the MS and MSD met the acceptance limits.

Technical Information

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

Sample were re-analyzed to confirm 2,3,7,8-TCDF concentration. 1044001 (CNBS0137S001), 1044002 (CNBS0138S001), 12000208 (CNBS0137S001) and 12000209 (CNBS0137S001)- Batch 1372.

Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.

Manual Integrations

Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were not required for any data file in this SDG.

Additional Comments

No additional comments needed

System Configuration

This analysis was performed on a Waters Autospec Premier high-resolution GC/MS system.

DATA VALIDATION REPORT

Boeing SSFL RFI ISRA

SAMPLE DELIVERY GROUP: 235913

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

Project: Boeing SSFL RFI ISRA SDG: 235913

DATA VALIDATION REPORT

I. INTRODUCTION

Task Order Title: Boeing SSFL RFI ISRA

Contract Task Order: 1261.500D.00

Sample Delivery Group: 235913

Project Manager: Dixie Hambrick

Matrix: water/soil

QC Level: V

No. of Samples: 4 nalvses/Dilutions: 0

No. of Reanalyses/Dilutions: 0 Laboratory: GEL

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
CNBS0137S001	235913001	1044001	Soil	8/24/2009 1:01:00 PM	1613B, 6020
CNBS0138S001	235913002	1044002	Soil	8/24/2009 1:14:00 PM	1613B, 6020
EBQW2236	235913003	1044003	Water	8/24/2009 2:00:00 PM	1613B, 6020
FBQW2239	235913004	N/A	Water	8/24/2009 2:00:00 PM	314, 6010B,
					6020, 7470A,
					8082, 8260B,
					8270C, 8321A,
					8330

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Project:

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
T-I	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents a compound with a CAS number and fit greater than 80%.	Not applicable

Project: Boeing SSFL RFI ISRA SDG: 235913

DATA VALIDATION REPORT

T-II The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents a class of compound but not of sufficient identification quality to represent a specific compound.

Not applicable

T- The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents an unknown compound.

Not applicable

R The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D The analysis with this flag should not The analysis with this flag should not be used because another more be used because another more technically sound analysis is technically sound analysis is available. available. Ρ Instrument performance for Post Digestion Spike recovery was

*11, *111 Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be

pesticides was poor.

found.

not within control limits. Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses."

The number following the asterisk (*) will indicate the report section where a description of the problem

can be found.

Project: Boeing SSFL RFI ISRA SDG: 235913

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: P. Meeks

Date Reviewed: September 11, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (08/02).

- Holding Times: Extraction and analytical holding times were met. The samples were extracted and analyzed within one year of collection.
- Instrument Performance: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The soil method blank had 18 detects below the reporting limit and the aqueous method blank had 11 detects below the reporting limit. 2,3,4,7,8-PeCDF and 1,2,3,4,6,7,8-HpCDF were qualified as nondetected, "U," at the EDL in EBQW2236. The following compounds were qualified as nondetected, "U," at the EDL or the level of contamination in CNBS0137S001: 1,2,3,7,8,9-HxCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, OCDF, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, and 2,3,4,7,8-PeCDF. The following compounds were qualified as nondetected, "U," at the EDL in CNBS0138S001: 1,2,3,4,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 2,3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, OCDF, and 2,3,7,8-TCDF. As a portion of the totals were represented by the qualified compounds, totals were also qualified as estimated, "J."
- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613. The RPDs were within the laboratory-established control limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: EBQW2236 was the equipment rinsate associated with the samples in this SDG. 2,3,4,6,7,8-HxCDF was detected in EBQW2236 at 0.857 pg/L, but was not reportable in the site soil samples. The samples in this SDG had no identified field blank.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Project: Boeing SSFL RFI ISRA

DATA VALIDATION REPORT SDG: 235913

 Internal Standards Performance: Internal standard recoveries are not routinely evaluated at a Level V validation; however, the recoveries were reported on the sample result summaries. The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.

- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The laboratory performed a confirmation analyses for 2,3,7,8-TCDF and reported the confirmation results. As the confirmation results yielded results similar to the initial results, the confirmation results were rejected, "R," in favor of the initial results.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Estimated maximum possible concentrations (EMPCs) were identified in the sample of this SDG, as denoted by the laboratory "K," code. For individual isomers identified as EMPCs, the results were qualified as estimated nondetects, "UJ." EMPCs reported as totals were qualified as estimated, "J," as only a portion of the total was identified as an EMPC. The laboratory calculated and reported compound-specific detection limits. Any detect below the laboratory lower calibration level was qualified as estimated, "J." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHOD 8330—Energetics

Reviewed By: P. Meeks

Date Reviewed: September 11, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Explosives, Nitroaromatics, and Nitramines (DVP-16, Rev. 0), EPA Method 8330, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG. Evaluation of method accuracy was based on the blank spike results.

Project: Boeing SSFL RFI ISRA

DATA VALIDATION REPORT SDG: 235913

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: The sample in this SDG was identified as a field blank. There were no detects in the sample.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for energetic compounds by Method 8330.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

C. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: September 11, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B, 6020, 7470A/7471A, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Antimony was detected in the aqueous method blank at 9.91 µg/L; therefore, antimony detected in FBQW2239 was qualified as nondetected, "U," at the reporting limit. Method blanks and CCBs had no other applicable detects.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries and the aqueous RPDs were within laboratory-established QC limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed or CNBS0137S001. The RPDs were within the laboratory-established control limit.

 Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on CNBS0137S001. Recoveries and RPDs were within laboratory-established QC limits.

- Serial Dilution: Serial dilution analyses were performed on EBQW2236 for the 6020 analytes, on FBQW2239 for all analytes, and on CNBS0137S001. All %Ds were within method-established QC limits
- Internal Standards Performance: Review is not applicable at a Level V validation.
- Sample Result Verification: Review is not applicable at a Level V validation. As the samples in this SDG were validated at Level V, the QC information necessary to make an absolute determination of bias in the samples was not reviewed; therefore, when qualifications were applied, no bias was assigned. Lead in the soil samples were reported from the laboratory's standard 2x dilution and due to matrix interference copper in the soil samples was reported from a 10x dilution. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: FBQW2239 was the field blank and EBQW2236 was the equipment rinsate associated with the soil samples in this SDG. There were no applicable detects in either field QC sample.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 8270C—Polynuclear Aromatic Hydrocarbons (PAHs)

Reviewed By: P. Meeks

Date Reviewed: September 11, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The aqueous sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.

 Blanks: Bis(2-ethylhexyl)phthalate was detected in the method blank at 0.323 µg/L; therefore, the detect for this compound in FBQW2239 was qualified as nondetected, "U," at the reporting limit. The method blank had no other target compound detects above the MDL.

- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG. Evaluation of method accuracy was based on the blank spike results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: The sample in this SDG was identified as a field blank. There were no reportable detects in FBQW2239.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Review is not applicable at a Level V validation.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for PAH compounds and added phthalates by Method 8270C low-level.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System performance: System performance is not evaluated at a Level V validation.

E. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks

Date Reviewed: September 11, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (7/02).

Holding Times: The analytical holding time, 28 days, was met.

- Calibration: Review is not applicable at a Level V validation.
- Blanks: the method blank and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: the recovery was within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No matrix spike analysis was performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: The sample result reported on the sample result summary was verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: The sample in this SDG was identified as a field blank. Perchlorate was not detected in FBQW2239
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

F. EPA METHOD 8082—PCBs

Reviewed By: P. Meeks

Date Reviewed: September 11, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 8082, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The aqueous sample was extracted within 14 days of collection and analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no target compound detects above the MDL.

 Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.

- Surrogate Recovery: The recovery was within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG. Evaluation of method accuracy was based on the blank spike results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: The sample in this SDG was identified as a field blank. There were no detects above the MDL in FBQW2239.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for Aroclors by Method 8082.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

G. EPA METHOD 8260B—Volatile Organic Compounds (VOCs)

Reviewed By: P. Meeks

Date Reviewed: September 11, 2009

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Analytical holding times were met. The aqueous sample was analyzed within 14 days of collection.
- GC/MS Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.

Surrogate Recovery: Recoveries were within laboratory-established QC limits.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG. Evaluation of method accuracy was based on the blank spike results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Trip Blanks: This SDG had no identified trip blank.
 - Field Blanks and Equipment Rinsates: The sample in this SDG was identified as a field blank. There were no detects above the MDL in FBQW2239.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Review is not applicable at a Level V validation.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for volatile target compounds by Method 8260B.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review is not applicable at a Level V validation.

Validated Sample Result Forms: 235913

Analysis Method 1613B

Sample Name Lab Sample Name:	CNBS0137S001	Matrix Type: Soil Sample 8/24/2009 1:01:00 PM				u lt Type: Pr V alidation	imary V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	
1001670H CDD	25022460		2.26	0.174	Quanner		Notes
1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF	35822469 67562394	2.81 2.26	2.26 2.26	0.174 pg/g 2.26 pg/g	J	U	B, result changed from 0.685 and EDL from
1,2,3,4,7,8,9-HpCDF	55673897	0.124	2.26	0.124 pg/g	U	U	
1,2,3,4,7,8-HxCDD	39227286	2.26	2.26	2.26 pg/g	JK	UJ	*III, result changed from 0.168 and
1,2,3,4,7,8-HxCDF	70648269	2.26	2.26	2.26 pg/g	J	U	B, result changed from 0.304 and EDL from
1,2,3,6,7,8-HxCDD	57653857	0.103	2.26	0.103 pg/g	U	U	
1,2,3,6,7,8-HxCDF	57117449	2.26	2.26	2.26 pg/g	J	U	B, result changed from 0.116 and EDL from
1,2,3,7,8,9-HxCDD	19408743	2.26	2.26	2.26 pg/g	J	U	B, result changed from 0.132 and EDL from
1,2,3,7,8,9-HxCDF	72918219	0.0902	2.26	0.0902 pg/g	U	U	
1,2,3,7,8-PeCDD	40321764	0.0913	2.26	0.0913 pg/g	U	U	
1,2,3,7,8-PeCDF	57117416	2.26	2.26	2.26 pg/g	J	U	B, result changed from 0.601 and EDL from
2,3,4,6,7,8-HxCDF	60851345	2.26	2.26	2.26 pg/g	JK	UJ	*III, result changed from 0.134 and
2,3,4,7,8-PeCDF	57117314	2.26	2.26	2.26 pg/g	J	U	B, result changed from 0.196 and EDL from
2,3,7,8-TCDD	1746016	0.083	0.453	0.083 pg/g	U	U	

Analysis Method	1613B						
2,3,7,8-TCDF	51207319	0.453	0.453	0.453 pg/g		U	B, RL changed from 0.453 and EDL from
2,3,7,8-TCDF	51207319	0.404	0.453	0.119 pg/g	J	R	D
OCDD	3268879	34.9	4.53	0.219 pg/g			
OCDF	39001020	4.53	4.53	4.53 pg/g	J	U	B, result changed from 2.4 and EDL from
Total HpCDD	37871004	9.25	2.26	0.174 pg/g			
Total HpCDF	38998753	1.8	2.26	0.0759 pg/g	J	J	В

2.26

2.26

2.26

2.26

0.453

0.453

 $0.0964\ pg/g$

 $0.0621\ pg/g$

0.0913 pg/g

0.0464 pg/g

0.083 pg/g

 $0.161\ pg/g$

J

J

J

J

В

J

J

J

J

*III, B

*III, B

В

В

1.29

1.78

0.375

3.97

0.17

2.48

Total HxCDD

Total HxCDF

Total PeCDD

Total PeCDF

Total TCDD

Total TCDFs

34465468

55684941

36088229

30402154

41903575

55722275

Analysis Method 1613B

Anaiysis meino	a 1013 b						
Sample Name	CNBS0138S001	N	Matrix T	ype: Soil	Res	sult Type: Pr	imary
Lab Sample Name:	1044002	Sample	8/2	24/2009 1:14:00 F	PM	Validation	V
Analyte	CAS No	Result Value	RL	MDL Resul	t Lab Qualifier	Validation	Validation Notes
1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF	35822469 67562394	0.297 2.08	2.08 2.08	0.098 pg/g 2.08 pg/g	l l	J U	B, result changed from 0.214 and EDL from
1,2,3,4,7,8,9-HpCDF	55673897	2.08	2.08	2.08 pg/g	JK	UJ	*III, result changed from 0.194 and
1,2,3,4,7,8-HxCDD	39227286	2.08	2.08	2.08 pg/g	J	U	B, result changed from 0.214 and EDL from
1,2,3,4,7,8-HxCDF	70648269	2.08	2.08	2.08 pg/g	1	U	B, result changed from 0.189 and EDL from
1,2,3,6,7,8-HxCDD	57653857	0.183	2.08	0.0646 pg/g	J	J	
1,2,3,6,7,8-HxCDF	57117449	2.08	2.08	2.08 pg/g	1	U	B, result changed from 0.196 and EDL from
1,2,3,7,8,9-HxCDD	19408743	2.08	2.08	2.08 pg/g	1	U	B, result changed from 0.204 and EDL from
1,2,3,7,8,9-HxCDF	72918219	2.08	2.08	2.08 pg/g	JK	UJ	*III, result changed from 0.206 and
1,2,3,7,8-PeCDD	40321764	0.194	2.08	0.0503 pg/g	J	J	
1,2,3,7,8-PeCDF	57117416	0.224	2.08	0.0425 pg/g	JK	J	*III
2,3,4,6,7,8-HxCDF	60851345	2.08	2.08	2.08 pg/g	1	U	B, result changed from 0.213 and EDL from
2,3,4,7,8-PeCDF	57117314	2.08	2.08	2.08 pg/g	JK	UJ	*III, result changed from 0.218 and

Analysis Method	1613B						
2,3,7,8-TCDD	1746016	0.0543	0.415	0.0543 pg/g	U	U	
2,3,7,8-TCDF	51207319	0.415	0.415	0.415 pg/g	J	U	B, result changed from 0.33 and EDL from 0.06
2,3,7,8-TCDF	51207319	0.34	0.415	0.131 pg/g	J	R	D
OCDD	3268879	4.15	4.15	4.15 pg/g	JK	UJ	*III, result changed from 0.87 and EDL
OCDF	39001020	4.15	4.15	4.15 pg/g	J	U	B, result changed from 0.576 and EDL from
Total HpCDD	37871004	0.424	2.08	0.098 pg/g	J	J	
Total HpCDF	38998753	0.409	2.08	0.0616 pg/g	J	J	*III, B
Total HxCDD	34465468	0.601	2.08	0.06 pg/g	J	J	В
Total HxCDF	55684941	0.804	2.08	0.038 pg/g	J	J	*III, B
Total PeCDD	36088229	0.194	2.08	0.0503 pg/g	J	J	
Total PeCDF	30402154	0.442	2.08	0.0264 pg/g	J	J	*III
Total TCDD	41903575	0.0731	0.415	0.0543 pg/g	J	J	
Total TCDFs	55722275	0.879	0.415	0.06 pg/g	В	J	В

Analysis Method 1613B

Sample Name	EBQW2236	Matrix Type: Water			Result Type: Primary			
Lab Sample Name:	1044003	Sample	8/24/2009 2:00:00 PM		•	Validation	V	
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes	
1,2,3,4,6,7,8-HpCDD	35822469	1.4	23.8	1.4 pg/L	U	U		
1,2,3,4,6,7,8-HpCDF	67562394	23.8	23.8	23.8 pg/L	J	U	B, result changed from 0.838 and EDL from	
1,2,3,4,7,8,9-HpCDF	55673897	1.29	23.8	1.29 pg/L	U	U		
1,2,3,4,7,8-HxCDD	39227286	1.02	23.8	1.02 pg/L	U	U		
1,2,3,4,7,8-HxCDF	70648269	0.688	23.8	0.688 pg/L	U	U		
1,2,3,6,7,8-HxCDD	57653857	1.13	23.8	1.13 pg/L	U	U		
1,2,3,6,7,8-HxCDF	57117449	0.743	23.8	0.743 pg/L	U	U		
1,2,3,7,8,9-HxCDD	19408743	1.13	23.8	1.13 pg/L	U	U		
1,2,3,7,8,9-HxCDF	72918219	0.911	23.8	0.911 pg/L	U	U		
1,2,3,7,8-PeCDD	40321764	0.852	23.8	0.852 pg/L	U	U		
1,2,3,7,8-PeCDF	57117416	0.876	23.8	0.876 pg/L	U	U		
2,3,4,6,7,8-HxCDF	60851345	0.8	23.8	0.718 pg/L	J	J		
2,3,4,7,8-PeCDF	57117314	23.8	23.8	23.8 pg/L	J	U	B, result changed from 0.724 and EDL from	
2,3,7,8-TCDD	1746016	0.943	4.76	0.943 pg/L	U	U		
2,3,7,8-TCDF	51207319	1.09	4.76	1.09 pg/L	U	U		
OCDD	3268879	2.17	47.6	2.17 pg/L	U	U		
OCDF	39001020	2.27	47.6	2.27 pg/L	U	U		
Total HpCDD	37871004	1.4	23.8	1.4 pg/L	U	U		
Total HpCDF	38998753	0.838	23.8	0.81 pg/L	J	J		
Total HxCDD	34465468	1.02	23.8	1.02 pg/L	U	U		
Total HxCDF	55684941	1.54	23.8	0.688 pg/L	J	J		
Total PeCDD	36088229	0.852	23.8	0.852 pg/L	U	U		
Total PeCDF	30402154	1.6	23.8	0.564 pg/L	J	J		
Total TCDD	41903575	0.943	4.76	0.943 pg/L	U	U		
Total TCDFs	55722275	1.09	4.76	1.09 pg/L	U	U		

Analysis Method 314.0-DI WET

Sample Name	FBQW2239	N	Aatrix T	ype: Water	Res	ult Type: Pr	imary
Lab Sample Name:	235913004	Sample	8/	24/2009 2:00:00 PM	•	Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
Perchlorate	14797730	4	4	1 ug/L	U	U	
Analysis Metho	od 6010B						
Sample Name	FBQW2239	N	Aatrix T	'ype: Water	Res	ult Type: Pr	imary
Lab Sample Name:	235913004	Sample	8/	24/2009 2:00:00 PM	•	Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
Analyte Aluminum	CAS No 7429905		RL 200	MDL Result		Validation U	
·		Value			Qualifier		

Analysis Method 6020

Sample Name	CNBS0137S001	Matrix Type: Soil			Result Type: Primary		
Lab Sample Name:	235913001	Sample	8/2	24/2009 1:01:00 PM	,	Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
Copper	7440508	8.23	1.01	0.333 mg/kg			
Lead	7439921	9.57	0.404	0.101 mg/kg			
Sample Name	CNBS0138S001]	Matrix T	ype: Soil	Res	ult Type: Pr	imary
Lab Sample Name:	235913002	Sample	8/2	24/2009 1:14:00 PM	,	Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
Copper	7440508	11.3	1.02	0.336 mg/kg			
Lead	7439921	7.19	0.407	0.102 mg/kg			
Sample Name	EBQW2236]	Matrix T	ype: Water	Res	ult Type: Pr	imary
Lab Sample Name:	235913003	Sample	8/2	24/2009 2:00:00 PM	,	Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
Copper	7440508	1.09	1	0.33 ug/L			
Lead	7439921	0.5	2	0.5 ug/L	U	U	
Sample Name	FBQW2239]	Matrix T	ype: Water	Res	ult Type: Pr	imary
Lab Sample Name:	235913004	Sample	8/2	24/2009 2:00:00 PM	,	Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
Arsenic	7440382	1.6	5	1.6 ug/L	U	U	
Barium	7440393	0.6	2	0.6 ug/L	U	U	
Beryllium	7440417	0.1	0.5	0.1 ug/L	U	U	
Cadmium	7440439	0.11	1	0.11 ug/L	U	U	
Chromium	7440473	2	10	2 ug/L	U	U	
Cobalt	7440484	0.1	1	0.1 ug/L	U	U	
Copper	7440508	0.33	1	0.33 ug/L	U	U	
Lead	7439921	0.5	2	0.5 ug/L	U	U	
Molybdenum	7439987	0.167	0.5	0.167 ug/L	U	U	
Nickel	7440020	0.5	2	0.5 ug/L	U	U	
Selenium	7782492	1	5	1 ug/L	U	U	
Silver	7440224	0.2	1	0.2 ug/L	U	U	
Thallium	7440280	0.3	1	0.3 ug/L	U	U	
Vanadium	7440622	3	10	3 ug/L	U	U	
Zinc	7440666	3	10	3 ug/L	U	U	

Analysis Method 7470A

Sample Name	FBQW2239]	Matrix T	ype: Water	Res	sult Type: Pr	imary
Lab Sample Name:	235913004	Sample	8/2	24/2009 2:00:00 PM		Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
Mercury	7439976	0.066	0.2	0.066 ug/L	U	U	
Analysis Metho	od 8082						
Sample Name	FBQW2239	1	Matrix T	ype: Water	Res	sult Type: Pr	imary
Lab Sample Name:	235913004	Sample	8/2	24/2009 2:00:00 PM		Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
Aroclor-1016	12674112	0.0952	0.0952	0.0317 ug/L	U	U	
Aroclor-1221	11104282	0.0952	0.0952	0.0317 ug/L	U	U	
Aroclor-1232	11141165	0.0952	0.0952	0.0317 ug/L	U	U	
Aroclor-1242	53469219	0.0952	0.0952	0.0317 ug/L	U	U	
Aroclor-1248	12672296	0.0952	0.0952	0.0317 ug/L	U	U	
Aroclor-1254	11097691	0.0952	0.0952	0.0317 ug/L	U	U	
Aroclor-1260	11096825	0.0952	0.0952	0.0317 ug/L	U	U	

Analysis Method 8260B

Sample Name	FBQW2239	Matrix Type: Water			Result Type: Primary		
Lab Sample Name:	235913004	Sample	8/	24/2009 2:00:00 PM		Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
1,1,1,2-Tetrachloroethane	630206	1	1	0.3 ug/L	U	U	
1,1,1-Trichloroethane	71556	1	1	0.325 ug/L	U	U	
1,1,2,2-Tetrachloroethane	79345	1	1	0.25 ug/L	U	U	
1,1,2-Trichloro-1,2,2-trifluoroethane	76131	5	5	1 ug/L	U	U	
1,1,2-Trichloroethane	79005	1	1	0.25 ug/L	U	U	
1,1-Dichloroethane	75343	1	1	0.3 ug/L	U	U	
1,1-Dichloroethene	75354	1	1	0.3 ug/L	U	U	
1,1-Dichloropropene	563586	1	1	0.25 ug/L	U	U	
1,2,3-Trichlorobenzene	87616	1	1	0.332 ug/L	U	U	
1,2,3-Trichloropropane	96184	1	1	0.3 ug/L	U	U	
1,2,4-Trichlorobenzene	120821	1	1	0.3 ug/L	U	U	
1,2,4-Trimethylbenzene	95636	1	1	0.25 ug/L	U	U	
1,2-Dibromo-3-chloropropan	e 96128	1	1	0.3 ug/L	U	U	
1,2-Dibromoethane (EDB)	106934	1	1	0.25 ug/L	U	U	
1,2-Dichlorobenzene	95501	1	1	0.25 ug/L	U	U	
1,2-Dichloroethane	107062	1	1	0.25 ug/L	U	U	
1,2-Dichloropropane	78875	1	1	0.25 ug/L	U	U	
1,3,5-Trimethylbenzene	108678	1	1	0.25 ug/L	U	U	
1,3-Dichlorobenzene	541731	1	1	0.25 ug/L	U	U	
1,3-Dichloropropane	142289	1	1	0.3 ug/L	U	U	
1,4-Dichlorobenzene	106467	1	1	0.25 ug/L	U	U	
2,2-dichloropropane	594207	1	1	0.3 ug/L	U	U	
2-Butanone (MEK)	78933	5	5	1.25 ug/L	U	U	
2-Chloro-1,1,1-trifluoroethar	ne 75887	10	10	3 ug/L	U	U	
2-Chloroethyl vinyl ether	110758	5	5	1.5 ug/L	U	U	
2-Chlorotoluene	95498	1	1	0.25 ug/L	U	U	
2-Hexanone	591786	5	5	1.25 ug/L	U	U	
4-Chlorotoluene	106434	1	1	0.25 ug/L	U	U	
4-Methyl-2-pentanone (MIB)	K) 108101	5	5	1.25 ug/L	U	U	
Acetone	67641	5	5	1.5 ug/L	U	U	
Benzene	71432	1	1	0.3 ug/L	U	U	
Bromobenzene	108861	1	1	0.25 ug/L	U	U	
Bromochloromethane	74975	1	1	0.3 ug/L	U	U	
Bromodichloromethane	75274	1	1	0.25 ug/L	U	U	
Bromoform	75252	1	1	0.25 ug/L	U	U	

Analysis Method 8260B

74839	1	1	0.3	ug/L	U	U
56235	1	1	0.3	ug/L	U	U
108907	1	1	0.25	ug/L	U	U
75003	1	1	0.3	ug/L	U	U
67663	1	1	0.25	ug/L	U	U
74873	1	1	0.3	ug/L	U	U
79389	10	10	3	ug/L	U	U
156592	1	1	0.3	ug/L	U	U
10061015	1	1	0.25	ug/L	U	U
124481	1	1	0.3	ug/L	U	U
74953	1	1	0.3	ug/L	U	U
75718	1	1	0.3	ug/L	U	U
100414	1	1	0.25	ug/L	U	U
87683	1	1	0.3	ug/L	U	U
98828	1	1	0.25	ug/L	U	U
136777612	2	2	0.5	ug/L	U	U
75092	5	5	2	ug/L	U	U
1634044	1	1	0.25	ug/L	U	U
104518	1	1	0.25	ug/L	U	U
103651	1	1	0.25	ug/L	U	U
95476	1	1	0.3	ug/L	U	U
99876	1	1	0.25	ug/L	U	U
135988	1	1	0.25	ug/L	U	U
100425	1	1	0.25	ug/L	U	U
98066	1	1	0.25	ug/L	U	U
127184	1	1	0.3	ug/L	U	U
108883	1	1	0.25	ug/L	U	U
156605	1	1	0.3	ug/L	U	U
10061026	1	1	0.25	ug/L	U	U
79016	1	1	0.25	ug/L	U	U
75694	1	1	0.3	ug/L	U	U
75014	1	1	0.5	ug/L	U	U
	56235 108907 75003 67663 74873 79389 156592 10061015 124481 74953 75718 100414 87683 98828 136777612 75092 1634044 104518 103651 95476 99876 135988 100425 98066 127184 108883 156605 10061026 79016 75694	56235 1 108907 1 75003 1 67663 1 74873 1 79389 10 156592 1 10061015 1 124481 1 74953 1 75718 1 100414 1 87683 1 98828 1 136777612 2 75092 5 1634044 1 104518 1 103651 1 99876 1 135988 1 100425 1 98066 1 127184 1 108883 1 156605 1 10061026 1 79016 1 75694 1	56235 1 1 108907 1 1 75003 1 1 67663 1 1 74873 1 1 79389 10 10 156592 1 1 10061015 1 1 124481 1 1 75718 1 1 100414 1 1 87683 1 1 98828 1 1 136777612 2 2 75092 5 5 1634044 1 1 104518 1 1 195476 1 1 99876 1 1 135988 1 1 100425 1 1 98066 1 1 127184 1 1 106605 1 1 10061026 1 1 <td< td=""><td>56235 1 1 0.3 108907 1 1 0.25 75003 1 1 0.3 67663 1 1 0.25 74873 1 1 0.3 79389 10 10 3 156592 1 1 0.3 10061015 1 1 0.25 124481 1 1 0.3 75718 1 1 0.3 75718 1 1 0.3 98828 1 1 0.3 98828 1 1 0.25 136777612 2 2 0.5 75092 5 5 2 1634044 1 1 0.25 103651 1 1 0.25 95476 1 1 0.25 135988 1 1 0.25 100425 1 1 0.25</td><td>56235 1 1 0.3 ug/L 108907 1 1 0.25 ug/L 75003 1 1 0.3 ug/L 67663 1 1 0.25 ug/L 74873 1 1 0.3 ug/L 79389 10 10 3 ug/L 156592 1 1 0.3 ug/L 10061015 1 1 0.25 ug/L 124481 1 1 0.3 ug/L 74953 1 1 0.3 ug/L 75718 1 1 0.3 ug/L 87683 1 1 0.25 ug/L 87683 1 1 0.25 ug/L 98828 1 1 0.25 ug/L 136777612 2 2 0.5 ug/L 1634044 1 1 0.25 ug/L 1634044 1 1 0.25 ug/L 195476 1 1 0.25 ug/L 99876 1 1 0.25 ug/L <</td><td>56235 1 1 0.3 ug/L U 108907 1 1 0.25 ug/L U 75003 1 1 0.25 ug/L U 67663 1 1 0.25 ug/L U 74873 1 1 0.3 ug/L U 79389 10 10 3 ug/L U 156592 1 1 0.3 ug/L U 10061015 1 1 0.25 ug/L U 124481 1 1 0.3 ug/L U 74953 1 1 0.3 ug/L U 75718 1 1 0.3 ug/L U 100414 1 1 0.25 ug/L U 87683 1 1 0.25 ug/L U 98828 1 1 0.25 ug/L U 136777612 2 2 0.5 ug/L U 1634044 1 1 0.25 ug/L U 10</td></td<>	56235 1 1 0.3 108907 1 1 0.25 75003 1 1 0.3 67663 1 1 0.25 74873 1 1 0.3 79389 10 10 3 156592 1 1 0.3 10061015 1 1 0.25 124481 1 1 0.3 75718 1 1 0.3 75718 1 1 0.3 98828 1 1 0.3 98828 1 1 0.25 136777612 2 2 0.5 75092 5 5 2 1634044 1 1 0.25 103651 1 1 0.25 95476 1 1 0.25 135988 1 1 0.25 100425 1 1 0.25	56235 1 1 0.3 ug/L 108907 1 1 0.25 ug/L 75003 1 1 0.3 ug/L 67663 1 1 0.25 ug/L 74873 1 1 0.3 ug/L 79389 10 10 3 ug/L 156592 1 1 0.3 ug/L 10061015 1 1 0.25 ug/L 124481 1 1 0.3 ug/L 74953 1 1 0.3 ug/L 75718 1 1 0.3 ug/L 87683 1 1 0.25 ug/L 87683 1 1 0.25 ug/L 98828 1 1 0.25 ug/L 136777612 2 2 0.5 ug/L 1634044 1 1 0.25 ug/L 1634044 1 1 0.25 ug/L 195476 1 1 0.25 ug/L 99876 1 1 0.25 ug/L <	56235 1 1 0.3 ug/L U 108907 1 1 0.25 ug/L U 75003 1 1 0.25 ug/L U 67663 1 1 0.25 ug/L U 74873 1 1 0.3 ug/L U 79389 10 10 3 ug/L U 156592 1 1 0.3 ug/L U 10061015 1 1 0.25 ug/L U 124481 1 1 0.3 ug/L U 74953 1 1 0.3 ug/L U 75718 1 1 0.3 ug/L U 100414 1 1 0.25 ug/L U 87683 1 1 0.25 ug/L U 98828 1 1 0.25 ug/L U 136777612 2 2 0.5 ug/L U 1634044 1 1 0.25 ug/L U 10

Analysis Method 8270C SIM

2,6-diamino-4-nitrotoluene

Sample Name	FBQW2239	N	Matrix T	ype: Water	Res	imary	
Lab Sample Name:	235913004	Sample	8/2	24/2009 2:00:00 PM	,	V	
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
1-Methylnaphthalene	90120	0.476	0.476	0.143 ug/L	U	U	
2-Methylnaphthalene	91576	0.476	0.476	0.143 ug/L	U	U	
Acenaphthene	83329	0.476	0.476	0.148 ug/L	U	U	
Acenaphthylene	208968	0.476	0.476	0.0952 ug/L	U	U	
Anthracene	120127	0.476	0.476	0.0952 ug/L	U	U	
Benzo(a)anthracene	56553	0.476	0.476	0.0952 ug/L	U	U	
Benzo(a)pyrene	50328	0.476	0.476	0.0952 ug/L	U	U	
Benzo(b)fluoranthene	205992	0.476	0.476	0.0952 ug/L	U	U	
Benzo(ghi)perylene	191242	0.476	0.476	0.0952 ug/L	U	U	
Benzo(k)fluoranthene	207089	0.476	0.476	0.0952 ug/L	U	U	
bis(2-ethylhexyl)phthalate	117817	0.476	0.476	0.143 ug/L	ВЈ	U	B, result changed from
Butyl benzyl phthalate	85687	0.476	0.476	0.143 ug/L	U	U	
Chrysene	218019	0.476	0.476	0.0952 ug/L	U	U	
Dibenzo(a,h)anthracene	53703	0.476	0.476	0.0952 ug/L	U	U	
Diethylphthalate	84662	0.476	0.476	0.143 ug/L	U	U	
Dimethylphthalate	131113	0.476	0.476	0.143 ug/L	U	U	
Di-n-butylphthalate	84742	0.476	0.476	0.143 ug/L	U	U	
Di-n-octyl-phthalate	117840	0.476	0.476	0.143 ug/L	U	U	
Fluoranthene	206440	0.476	0.476	0.0952 ug/L	U	U	
Fluorene	86737	0.476	0.476	0.0952 ug/L	U	U	
Indeno(1,2,3-cd)pyrene	193395	0.476	0.476	0.0952 ug/L	U	U	
Naphthalene	91203	0.476	0.476	0.143 ug/L	U	U	
n-Nitrosodimethylamine	62759	0.476	0.476	0.0952 ug/L	U	U	
Phenanthrene	85018	0.476	0.476	0.0952 ug/L	U	U	
Pyrene	129000	0.476	0.476	0.143 ug/L	U	U	
Analysis Metho	d 8321A						
Sample Name	FBQW2239	N	Matrix T	ype: Water	Result Type: Primary		
Lab Sample Name:	235913004	Sample	8/2	24/2009 2:00:00 PM	,	Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
2,4-diamino-6-nitrotoluene	6629294	1.3	1.3	0.39 ug/L	U	U	

59229753 1.3 1.3 0.39 ug/L U U

Analysis Method 8330

Sample Name	FBQW2239	N	Aatrix T	ype: Water	Res	ult Type: La	b Repeat
Lab Sample Name:	235913004	Sample	8/2	24/2009 2:00:00 PM		Validation	V
Analyte	CAS No	Result Value	RL	MDL Result	Lab Qualifier	Validation	Validation Notes
1,3,5-Trinitrobenzene	99354	0.325	0.325	0.0649 ug/L	U	U	
2,4,6-Trinitrotoluene	118967	0.487	0.487	0.162 ug/L	U	U	
2,4-Dinitrotoluene	121142	0.487	0.487	0.162 ug/L	U	U	
2,6-Dinitrotoluene	606202	0.487	0.487	0.162 ug/L	U	U	
4-Amino-2,6-Dinitrotoluene	19406510	0.487	0.487	0.162 ug/L	U	U	
HMX	2691410	0.487	0.487	0.162 ug/L	U	U	
m-Dinitrobenzene	99650	0.325	0.325	0.0649 ug/L	U	U	
m-Nitrotoluene	99081	0.325	0.325	0.126 ug/L	U	U	
Nitrobenzene	98953	0.325	0.325	0.0649 ug/L	U	U	
Nitroglycerin	55630	1.95	1.95	0.649 ug/L	U	U	
o-Nitrotoluene	88722	0.487	0.487	0.162 ug/L	U	U	
PETN	78115	1.95	1.95	0.649 ug/L	U	U	
p-Nitrotoluene	99990	0.487	0.487	0.162 ug/L	U	U	
RDX	121824	0.487	0.487	0.162 ug/L	U	U	
Tetryl	479458	1.46	1.46	0.487 ug/L	U	U	

Chain of Custody and Supporting Documentation

CHAIN OF CUSTODY RECORD

O	O BOEING			CHAIN OF	CHAIN OF CUSTODY RECORD	DY R	ပ္သ	8					# 200			MWHAR20090826_01
		***************************************										73(236114	•		Page: 1 of 1
Custome	Customer Information	Project Information	rmatio	_		Proj	ect In	Project Information	tion							***************************************
Site:	SSFL	Client Name:	1	Boeing		S	Collector:		Allison-Ruotolo	otolo				Boeing PM:	y PM:	
Company: MWH	MWH	Sampling Event:	_	ISRA Sampling, August 2009	August 2009	Cont	Contact #:									
Report to:	Report to: Sarah Von Raesfeld	Project Number:		1891614.05462						Req	ueste	Requested Analyses	ses			Instructions/TAT
Address:	2121 N. California Blvd	Project Manager:	ger: B	BFS									_	_		
	Suite 600	PM Phone #:		(818) 266-1378												Legend: Numerical values for
	Walnut Creek	Field Contact:		Benjamin Stewart	+	_										analyses equate to turn around time in days
	CA	Field Contact #:		(818) 266-1378		_										H-Hold
	94596	Lab Name:		GEL Laboratories, LLC	s, LLC											EH - Extract/Extrude &
Email:	sarah.vonraesfeld@mwhglobal.c	oal.c Lab Contact:		Jackie Trudell		,										1
	sarah.vonraesfeld@mwhglobal.c	oal.c Lab Address:		2040 Savage Road	ad	D2:			Meta							 Note: Values in the colle
				Charleston, SC 29407	9407	216 1			ds 60							bellow are Turn Around
		Lab Phone:	2	(843) 769-7388		Moist			20 Zı							·see:
Sample Name	тме	Matrix	Date	Time	No. of Containers	ıre Soil	- Water B - Soil	oil Zinc	Water							 Comments
EBQW2245		Water	8/26/2009	15:48	6		9	_	9		\vdash		-	_	-	
HZET0900S001	1001	Soil	8/26/2009	14:55	-	0	10	유			\vdash		H		\vdash	
HZET0901S001	1001	Soil	8/26/2009	15:30	-	9	9	5			\vdash		H		-	
• HZET0902S001	1001	Soil	8/26/2009	14:25	2	2	10	9			-				-	MS/MSD
• HZET0903S001	001	Soil	8/26/2009	14:40	-	5	2	2		T	\vdash		-		-	
HZET0904S001	001	Soil	8/26/2009	15:10	-	9	9	2		T	İ		H		-	

1. Relinquished by:	Date:	2. Received by:	Date:	3. Relinquished by:	Date:	4. Received by:	Date:
XU4 m, R.M. 8-24-09	8-24-09	9.40.01	8 1276°				
Company: MWH	Time:	Gorhplany:	Time: Company:	Company:	Time:	Company:	Time:
Comments:		70.00			Geo	Geotracker EDF	

SAMPLE RECEIPT & REVIEW FORM

Client: SSE/			
Received By: TO			SDG/ARCOC/Work Order: 28611
7,7+	T		Date Received: 8/27/07
Suspected Hazard Information	Yes	ž	*If Counts > x2 area background on samples not marked "radioactive", contact the Radiation Safety Group of further investigation.
COC/Samples marked as radioactive?		-	Maximum Counts Observed*: 40 com
Classified Radioactive II or III by RSO?			
COC/Samples marked containing PCBs?			
Shipped as a DOT Hazardous?	_	\leq	Hazard Class Shipped: UN#:
Samples identified as Foreign Soil?		\leq	
Sample Receipt Criteria	Yes	NA	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?			Circle Applicable: seals broken damaged container leaking container other (describe)
Samples requiring cold preservation within 0 ≤ 6 deg. C?	1		Preservation Method: ice bags blue ice dry ice none other (describe)
Chain of custody documents included with shipment?			
4 Sample containers intact and sealed?	/		Circle Applicable: seals broken damaged container leaking container other (describe)
5 Samples requiring chemical preservation at proper pH?		-	Sample ID's, containers affected and observed pH: If Preservation added, Lot#:
VOA vials free of headspace (defined as < 6mm bubble)?		1	Sample ID's and containers affected:
7 Are Encore containers present?			(If yes, immediately deliver to Volatiles laboratory)
8 Samples received within holding time?			Id's and tests affected:
Sample ID's on COC match ID's on bottles?	/		Sample ID's and containers affected:
Date & time on COC match date & time on bottles?	7	1	Sample ID's affected:
Number of containers received match number indicated on COC?	/		Sample ID's affected:
COC form is properly signed in relinquished/received sections?			
PM (or PMA) review: Initial			570 Date 8/27/09

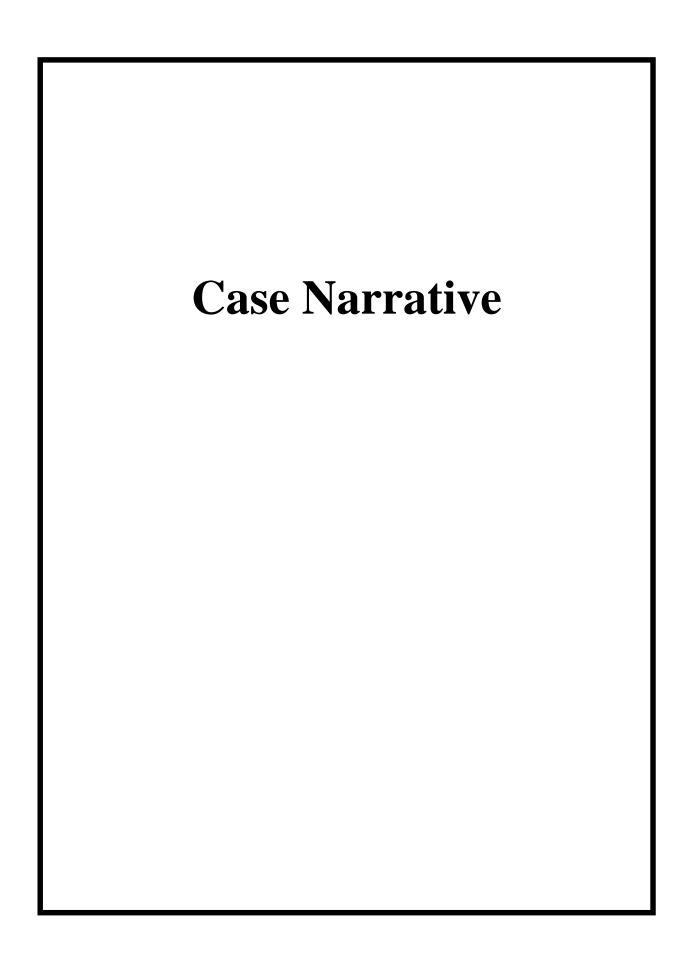
LABORATORY TASK ORDER (LTO) FORM

INSTRUCTIONS: To be completed by Environmental Contractor & Emailed to Laboratory Project Manager, CH2M HILL (boeingedms@ch2m.com) & the Data Validator at Least 48 hrs prior to need for sample containers. Project Analytical Laboratory will confirm receipt via E-Mail.

Event Name:	ISRA Sar	mpling, August 2009	Start:	8/24/2009	End:	9/30/2009
LTO DATE:			LTO	NUMBER:		
Consultant Name:		MWH	Contract Laboratory:		GEL	
Address:		I. California Blvd. Ste. 600	Address:		040 Savage F	
	Wa	Inut Creek, CA 94596	_	Cha	rleston, SC 2	9407
Contact Name		Sarah Van Daastald	Lab Cantact Name		la alvia Tuvala	
Contact Name: Phone Number:		Sarah Von Raesfeld 925-627-4654	Lab Contact Name: _ Phone Number:		Jackie Trude 843-769-738	
Fax Number:		925-627-4501	Frione Number:		843-766-117	
E-mail Address:	Sarah.\	VonRaesfeld@mwhglobal.com	E-mail Address:		line.trudell@g	
			NTAINER ORDER FORM			
Date Required:		SAMIFLE CO	Requested Analyses:	(Sı	pecify # of Sam	ples)
•			·	Water	Soil	Contingent
			Dioxins (1613B)	15	124	0
Date Sample Pickup:			EPA 8015M (DRO)			
			EPA 8015M (JET FUEL)			
Ship Containers To:		(, m, m)	EPA 8015M (CC)			
Project Site		_(enter "X")	TCE (8260B)	5	12	0
Consultant Office Other Location (specify in		_(enter "X")	EPA 8270C SIM (SVOC) EPA 8310 (PAH)			
comments)		(enter "X")	EPA 8082 (PCB)	3	5	0
•		_(enter X)	Nickel (6020)	5	10	0
Container Information:			Chromium (6020)	5	10	0
Trip Blank (VOA only)	No	(Yes/No)	Silver (6020)	5	10	0
Temp Blank (VOA Only)	No	(Yes/No)	Cadmium (6020)	10	35	0
DI Water Required?	No	(Yes/No)	Arsenic (6020)	5	10	0
MS/MSD Extra Bottles?	No	_(Yes/No)	% Moisture (D2216)	0	170	0
OI- M-(-!			Lead (6020)	10	65	0
Sample Matrix:	V	(11HH	Copper (6020)	10	75	0
Soil ₋ Water	X	_ (select all applicable) (select all applicable)	Zinc (6020) Mercury by 7471A/7470A	<u>5</u>	20 25	0
Vvaler_ Vapor		(select all applicable)	Mercury by 1411A/1410A	<u> </u>	23	
· -		_, , , , ,				
Est. Total # of Samples:	175	_ Est. Total # of EDDs _	PORTING REQUIREMENTS			
Project TAT:		LABORATORT RE	Laboratory Results/Repo	rts Delivera	ables:	
Normal:	Х	(10 Business days)	Draft Results Fax?:		(Yes/No)	
RUSH:	5	(Specify- 24 / 48 / 72HRS)	Draft Results E-mail?:	Yes	(Yes/No)	
Other:		(Specify # of Days)			<u> </u>	
Report Due Date:		-	Specify Fax/E-mail Contact Name, #, E-mail Address:	Sarah VonRae	sfeld@mwhglob	al.com
			Send Original Reports To:	<u> </u>	5.5.a ©g.55	
Special Reporting Req	uireme	ents:	Project Site		(enter "X")	
Contingent Analysis?	No	(Yes/No)	Consultant Office		(enter "X")	
TIC (VOC) Required?	No	(Yes/No)	Other Location (specify		-	
TIC (SVOC) Required?	No	_(Yes/No)	in comments)	Х	(enter "X")	
Data Validation Pckge.:		- ' ′	# of Copies Reports Req.:	1	_(-,,,,,	
-			TRUCTIONS/LTO NOTES		_	
		OF EGIAL INC	THOUTION OF ETO NOTES			
		CONFIRMATION (OF TRANSMITTAL & RECEIPT	-		
LTO Sent By:			LTO Received By-			
Name:	Sarah Vo	on Raesfeld	Name:			
·-	09/02/09		Date:			_
Date.	55,52,65		Date			-

LABORATORY TASK ORDER (LTO) FORM (PAGE 2) ADDITIONAL REQUIRED ANALYSES

ADDITIONAL RE	EQUIRED ANALTSES
	LTO NUMBER.


LTO DATE:		LTO NU	MBER:
Consultant Name:	MWH	Contract Laboratory:	GEL
Address:	2121 N. California Blvd. Ste. 600	Address:	2040 Savage Rd.
_	Walnut Creek, CA 94596		Charleston, SC 29407
Contact Name:	Sarah Von Raesfeld	Lab Contact Name:	Jackie Trudell
Phone Number:	925-627-4654	Phone Number:	843-769-7388
Fax Number:	925-627-4501	Fax Number:	843-766-1178
E-mail Address:	Sarah.VonRaesfeld@mwhglobal.com	E-mail Address:	jacqueline.trudell@gel.com
_	·	•	·

SAMPLE CONTAINER ORDER FORM (CONTINUED)

Requested Analyses:		(Specify # of Samp	oles)
	Water	Soil	Contingent
Arsenic (6020)		1	
Lead (6020)	-	ı	
Cadmium (6020)		1	
Lithium (6020)	-	1	
Sodium (6020)	I	I	
Selenium (6020)	I	ı	
Thallium (6020)	-	1	
Zinc (6020)			
Boron (6010B	-	1	
Vanadium (6010B)			
Copper (6020)	-	ı	
Zirconium (6020)			

Table of Contents

Case Narrative	1
Chain of Custody and Supporting Documentation	4
Data Qualifiers Definitions	9
Laboratory Certifications	11
Subcontract Data Dioxins	13
Percent Moisture	543
Case NarrativeSample Data SummaryQuality Control SummaryStandards	547 548 553 560 580 583

Case Narrative for Boeing - SSFL (MWH) Work Order: 236116 SDG: 236116

September 03, 2009

Laboratory Identification:

GEL Laboratories LLC 2040 Savage Road Charleston, South Carolina 29407 (843) 556-8171

Summary:

Sample Receipt

The samples arrived at GEL Laboratories LLC, Charleston, South Carolina on August 27, 2009 for analysis. The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

The laboratory received the following samples:

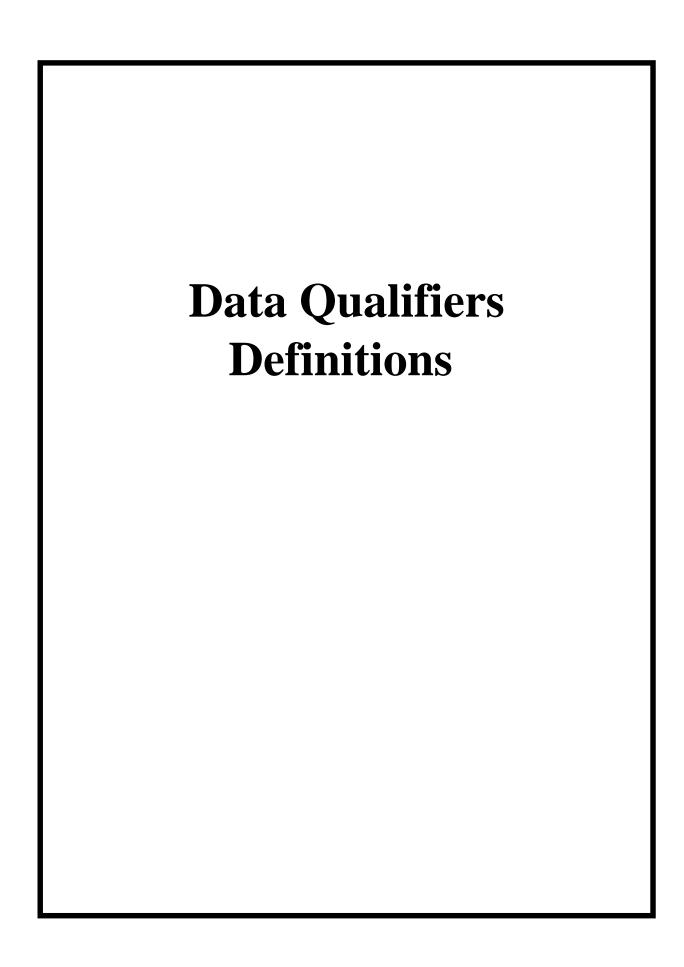
Laboratory	Sample
Identification	Description
236116001	EBQW2245
236116002	HZET0900S001
236116003	HZET0901S001
236116004	HZET0902S001
236116005	HZET0903S001
236116006	HZET0904S001

Items of Note

Santa Susanna Field Laboratory Technical Representative was contacted seeking resolution to any analytical and/or receipt issues. Please see the enclosed e-mails.

Case Narrative

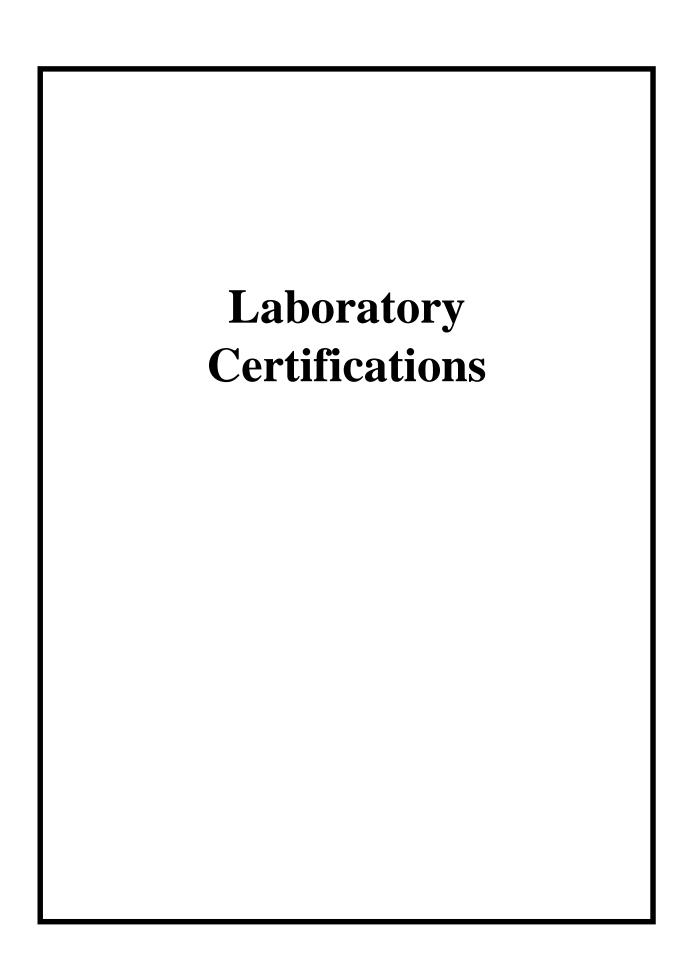
Sample analyses were conducted using methodology as outlined in GEL Laboratories, LLC (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.


Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Data Package Qualifier Definitions and data from the following fractions: Metals, Percent Moisture and Dioxins (Cape Fear Analytical).

I certify that this data package is in compliance with the terms and conditions of the subcontract and task order, both technically and for the completeness, for other than the conditions detailed in the attached case narratives.

Jacqueline Trudell


Project Manager

Data Review Qualifier Definitions

Qualifier Explanation

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- B Metals-Either presence of analyte detected in the associated blank, or MDL/IDL < sample value < PQL
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- d 5-day BOD-The 2:1 depletion requirement was not met for this sample
- E Organics-Concentration of the target analyte exceeds the instrument calibration range
- E Metals-%difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- H Analytical holding time was exceeded
- h Preparation or preservation holding time was exceeded
- J Value is estimated
- N Metals-The Matrix spike sample recovery is not within specified control limits
- N Organics-Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- ${
 m N/A}$ Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more
- ND Analyte concentration is not detected above the reporting limit
- UI Gamma Spectroscopy-Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z Paint Filter Test-Particulates passed through the filter, however no free liquids were observed.

List of current GEL Certifications as of 01 September 2009

State	Certification
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California – NELAP	01151CA
Colorado	GEL
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA Region 5	WG-15J
Florida – NELAP	E87156
Georgia	E87156 (FL/NELAP)
Georgia DW	967
Hawaii	N/A
ISO 17025	2567.01
Idaho	SC00012
Illinois – NELAP	200029
Indiana	C-SC-01
Kansas – NELAP	E-10332
Kentucky	90129
Louisiana – NELAP	03046
Maryland	270
Massachusetts	M-SC012
Nevada	SC00012
New Jersey – NELAP	SC002
New Mexico	FL NELAP E87156
New York – NELAP	11501
North Carolina	233
North Carolina DW	45709
Oklahoma	9904
Pennsylvania – NELAP	68-00485
South Carolina	10120001/10120002
Tennessee	TN 02934
Texas – NELAP	T104704235-07B-TX
U.S. Dept. of Agriculture	S-52597
Utah – NELAP	GEL
Vermont	VT87156
Virginia	00151
Washington	C1641

DATA VALIDATION REPORT

Boeing SSFL RFI ISRA

SAMPLE DELIVERY GROUP: 236116

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

Project: Boeing SSFL RFI ISRA SDG: 236116

DATA VALIDATION REPORT

I. INTRODUCTION

Task Order Title: Boeing SSFL RFI ISRA

Contract Task Order: 1261.500D.00

Sample Delivery Group: 236116

Project Manager: Dixie Hambrick

Matrix: water/soil

QC Level: V

No. of Samples: 6
No. of Reanalyses/Dilutions: 0

Laboratory: GEL

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
EBQW2245	236116001	1045006	WATER	8/26/2009 3:48:00 PM	1613B, 6020
HZET0900S001	236116002	1045001	SOIL	8/26/2009 2:55:00 PM	1613B, 6020
HZET0901S001	236116003	1045002	SOIL	8/26/2009 3:30:00 PM	1613B, 6020
HZET0902S001	236116004	1045003	SOIL	8/26/2009 2:25:00 PM	1613B, 6020
HZET0903S001	236116005	1045004	SOIL	8/26/2009 2:40:00 PM	1613B, 6020
HZET0904S001	236116006	1045005	SOIL	8/26/2009 3:10:00 PM	1613B, 6020

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents a compound with a CAS number and fit greater than 80%.	Not applicable

Project: Boeing SSFL RFI ISRA SDG: 236116

DATA VALIDATION REPORT

T-II The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents a class of compound but not of sufficient identification quality to represent a specific compound.

Not applicable

T- The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. The tentative identification represents an unknown compound.

Not applicable

R The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Project: Boeing SSFL RFI ISRA SDG: 236116

DATA VALIDATION REPORT

Qualification Code Reference Table Cont.

D The analysis with this flag should not be used because another more technically sound analysis is available. The analysis be used because technically s available.

P Instrument performance for pesticides was poor.

*II, *III Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

The analysis with this flag should not be used because another more technically sound analysis is available.

Post Digestion Spike recovery was not within control limits.

Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

Project: Boeing SSFL RFI ISRA

DATA VALIDATION REPORT SDG: 236116

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: P. Meeks

Date Reviewed: October 13, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (08/02).

- Holding Times: Extraction and analytical holding times were met. The samples were extracted and analyzed within one year of collection.
- Instrument Performance: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The soil method blank had detects for all but two target compounds. Individual isomers detected below the reporting limit or at concentrations less than 5x the method blank concentration were qualified as nondetected, "U," at the reporting limit if detected below the reporting limit or at the level of contamination if detected above. All totals were qualified as estimated, "J," due to detects in the soil method blank. Total PeCDF was detected in the aqueous method blank; therefore, total PeCDF was qualified as estimated, "J," in EBQW2245.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613 and the RPDs were within the laboratoryestablished control limits.
- MS/MSD analyses were performed on HZER0902S001. Recoveries were within the acceptance criteria listed in Table 6 of Method 1613 and the RPDs were within the laboratory-established control limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - o Field Blanks and Equipment Rinsates: EBQW2245 was identified as the equipment rinsate associated with the samples in this SDG. Total PeCDF was detected in this sample at 1.05 pg/L. Total PeCDF detected in HZET0900S001 and HZET0903S001 was qualified as estimated, "J." There were no other detects above the EDL in EBQW2245. This SDG had no identified field blank.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

DATA VALIDATION REPORT Project: Boeing SSFL RFI ISRA SDG: 236116

 Internal Standards Performance: Internal standard recoveries are not routinely evaluated at a Level V validation; however, the recoveries were reported on the sample result summaries. The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.

- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The laboratory performed and reported confirmation analyses for all TCDF detects. As the confirmation analyses resulted in results similar to the original analyses, the reviewer rejected, "R," the confirmation analyses in all samples except HZET0902S001 favor of the original analyses. The original TCDF result for HZET0902S001 was reported as an estimated maximum possible concentration (EMPC); however, as the confirmation result was not reported as an EMPC, the reviewer rejected, "R," the original result in favor of the confirmation result in HZET0902S001.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. The laboratory calculated and reported compound-specific detection limits (EDLs). EMPCs were identified in the samples of this SDG and qualified with a "K" by the laboratory. Any EMPC was qualified as estimated, "UJ," in the samples of this SDG. EMPCs reported as totals were qualified as estimated, "J," as only a portion of the total was identified as an EMPC. Any detect below the laboratory lower calibration level was qualified as estimated, "J." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHOD 6020—Zinc

Reviewed By: P. Meeks

Date Reviewed: October 13, 2009

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 6020, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, six months for ICP-MS metals, was met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no applicable detects.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries and the aqueous RPD were within laboratory-established QC limits.

DATA VALIDATION REPORT Project: Boeing SSFL RFI ISRA SDG: 236116

Laboratory Duplicates: A laboratory duplicate analysis was performed on HZET0902S001.
 The RPD was within the method-established control limit.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on HZET0902S001. Recoveries and the RPD were within laboratory-established QC limits.
- Serial Dilution: Serial dilution analyses were performed on HZET0902S001 and EBQW2245. The %Ds were within the method-established control limit.
- Internal Standards Performance: Review is not applicable at a Level V validation.
- Sample Result Verification: Review is not applicable at a Level V validation. As the samples in this SDG were validated at Level V, the QC information necessary to make an absolute determination of bias in the samples was not reviewed; therefore, when qualifications were applied, no bias was assigned. The soil results were reported from the laboratory's standard 2x dilution for soils. Any result reported between the MDL and the reporting limit was qualified as estimated, "J." Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: FBQW2239 (235913) was the field blank and EBQW2245 was identified as the equipment rinsate associated with the samples in this SDG. Zinc was not detected in this sample.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms: 236116

Sample Name	EBQW2245		Matrix [Гуре: Water	Resi	Result Type: Primary Result		
Lab Sample Name:	1045006	Sample 1	Date: 8	/26/2009 3:48:00 PM	Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,2,3,4,6,7,8-HpCDD	35822469	2.6	23.8	2.6 pg/L	U	U		
1,2,3,4,6,7,8-HpCDF	67562394	1.39	23.8	1.39 pg/L	U	U		
1,2,3,4,7,8,9-HpCDF	55673897	2.32	23.8	2.32 pg/L	U	U		
1,2,3,4,7,8-HxCDD	39227286	1.65	23.8	1.65 pg/L	U	U		
1,2,3,4,7,8-HxCDF	70648269	1.06	23.8	1.06 pg/L	U	U		
1,2,3,6,7,8-HxCDD	57653857	1.77	23.8	1.77 pg/L	U	U		
1,2,3,6,7,8-HxCDF	57117449	1.13	23.8	1.13 pg/L	U	U		
1,2,3,7,8,9-HxCDD	19408743	1.8	23.8	1.8 pg/L	U	U		
1,2,3,7,8,9-HxCDF	72918219	1.47	23.8	1.47 pg/L	U	U		
1,2,3,7,8-PeCDD	40321764	1.28	23.8	1.28 pg/L	U	U		
1,2,3,7,8-PeCDF	57117416	0.821	23.8	0.821 pg/L	U	U		
2,3,4,6,7,8-HxCDF	60851345	1.13	23.8	1.13 pg/L	U	U		
2,3,4,7,8-PeCDF	57117314	1.05	23.8	1.05 pg/L	U	U		
2,3,7,8-TCDD	1746016	1.32	4.75	1.32 pg/L	U	U		
2,3,7,8-TCDF	51207319	1.63	4.75	1.63 pg/L	U	U		
OCDD	3268879	4.83	47.5	4.83 pg/L	U	U		
OCDF	39001020	5.3	47.5	5.3 pg/L	U	U		
Total HpCDD	37871004	2.6	23.8	2.6 pg/L	U	U		
Total HpCDF	38998753	1.39	23.8	1.39 pg/L	U	U		
Total HxCDD	34465468	1.65	23.8	1.65 pg/L	U	U		
Total HxCDF	55684941	1.06	23.8	1.06 pg/L	U	U		
Total PeCDD	36088229	1.28	23.8	1.28 pg/L	U	U		
Total PeCDF	30402154	1.05	23.8	0.741 pg/L	J	J	В	
Total TCDD	41903575	1.32	4.75	1.32 pg/L	U	U		
Total TCDFs	55722275	1.63	4.75	1.63 pg/L	U	U		

Sample Name	HZET0900S001		Matrix 7	Гуре: Soil	Result Type: Primary Result				
Lab Sample Name:	1045001	Sample 1	Date: 8	/26/2009 2:55:00 PM	1	Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
,2,3,4,6,7,8-HpCDD	35822469	2.21	2.21	2.21 pg/g	JK	UJ	*III, result changed from 0.39 and EDL from 0.246		
1,2,3,4,6,7,8-HpCDF	67562394	0.149	2.21	0.108 pg/g	J	J			
1,2,3,4,7,8,9-HpCDF	55673897	0.167	2.21	0.167 pg/g	U	U			
1,2,3,4,7,8-HxCDD	39227286	0.121	2.21	0.121 pg/g	U	U			
1,2,3,4,7,8-HxCDF	70648269	0.076	2.21	0.076 pg/g	U	U			
1,2,3,6,7,8-HxCDD	57653857	0.14	2.21	0.14 pg/g	U	U			
1,2,3,6,7,8-HxCDF	57117449	2.21	2.21	2.21 pg/g	JK	UJ	*III, result changed from 0.105 and EDL from 0.0831		
1,2,3,7,8,9-HxCDD	19408743	0.137	2.21	0.137 pg/g	U	U			
1,2,3,7,8,9-HxCDF	72918219	0.115	2.21	0.115 pg/g	U	U			
1,2,3,7,8-PeCDD	40321764	0.105	2.21	0.105 pg/g	U	U			
1,2,3,7,8-PeCDF	57117416	2.21	2.21	2.21 pg/g	JK	UJ	*III, result changed from 0.129 and EDL from 0.0785		
2,3,4,6,7,8-HxCDF	60851345	0.088	2.21	0.088 pg/g	U	U			
2,3,4,7,8-PeCDF	57117314	0.0875	2.21	0.0875 pg/g	U	U			
2,3,7,8-TCDD	1746016	0.0988	0.443	0.0988 pg/g	U	U			
2,3,7,8-TCDF	51207319	0.443	0.443	0.443 pg/g	J	U	B, result changed from 0.335 and EDL from 0.114		
2,3,7,8-TCDF	51207319	0.443	0.443	0.443 pg/g	J	R	D		
OCDD	3268879	4.43	4.43	4.43 pg/g	J	U	B, result changed from 2.09 and EDL from 0.427		
OCDF	39001020	0.358	4.43	0.358 pg/g	U	U			
Гotal HpCDD	37871004	0.749	2.21	0.246 pg/g	J	J	В, *Ш		
Гotal HpCDF	38998753	0.149	2.21	0.108 pg/g	J	J	В		
Γotal HxCDD	34465468	0.121	2.21	0.121 pg/g	U	U			
Гotal HxCDF	55684941	0.22	2.21	0.076 pg/g	J	J	В, *Ш		
Total PeCDD	36088229	0.105	2.21	0.105 pg/g	U	U			

Total PeCDF	30402154	0.216	2.21	0.0551 pg/g	J	J	B, F, *III
Total TCDD	41903575	0.0988	0.443	0.0988 pg/g	U	U	
Total TCDFs	55722275	0.792	0.443	0.114 pg/g		J	В
Sample Name	HZET0901S001		Matrix 7	Гуре: Soil	Res	ult Type: Pr	rimary Result
Lab Sample Name:	1045002	Sample	Date: 8	/26/2009 3:30:00 PM		/alidation Le	evel: V
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822469	0.197	2.44	0.197 pg/g	U	U	
1,2,3,4,6,7,8-HpCDF	67562394	2.44	2.44	2.44 pg/g	JK	ŪJ	*III, result changed from 0.156 and EDL from 0.118
1,2,3,4,7,8,9-HpCDF	55673897	0.18	2.44	0.18 pg/g	U	U	
1,2,3,4,7,8-HxCDD	39227286	0.121	2.44	0.121 pg/g	U	U	
1,2,3,4,7,8-HxCDF	70648269	0.0823	2.44	0.0823 pg/g	U	U	
1,2,3,6,7,8-HxCDD	57653857	0.14	2.44	0.14 pg/g	U	U	
1,2,3,6,7,8-HxCDF	57117449	0.0869	2.44	0.0869 pg/g	U	U	
1,2,3,7,8,9-HxCDD	19408743	0.137	2.44	0.137 pg/g	U	U	
1,2,3,7,8,9-HxCDF	72918219	0.12	2.44	0.12 pg/g	U	U	
1,2,3,7,8-PeCDD	40321764	0.0904	2.44	0.0904 pg/g	U	U	
1,2,3,7,8-PeCDF	57117416	0.0727	2.44	0.0727 pg/g	U	U	
2,3,4,6,7,8-HxCDF	60851345	0.0928	2.44	0.0928 pg/g	U	U	
2,3,4,7,8-PeCDF	57117314	0.0803	2.44	0.0803 pg/g	U	U	
2,3,7,8-TCDD	1746016	0.11	0.487	0.11 pg/g	U	U	
2,3,7,8-TCDF	51207319	0.487	0.487	0.487 pg/g	1	Ū	B, result changed from 0.351 and EDL from 0.112
2,3,7,8-TCDF	51207319	0.487	0.487	0.487 pg/g	JK	R	D
OCDD	3268879	0.37	4.87	0.37 pg/g	U	U	
OCDF	39001020	0.339	4.87	0.339 pg/g	U	U	
Total HpCDD	37871004	0.197	2.44	0.197 pg/g	U	U	
Total HpCDF	38998753	0.156	2.44	0.118 pg/g	J	J	В, *Ш
Total HxCDD	34465468	0.121	2.44	0.121 pg/g	U	U	
Total HxCDF	55684941	0.146	2.44	0.0823 pg/g	J	J	В
Total PeCDD	36088229	0.0904	2.44	0.0904 pg/g	U	U	
Total PeCDF	30402154	0.0573	2.44	0.0573 pg/g	U	U	
Total TCDD	41903575	0.11	0.487	0.11 pg/g	U	U	
Total TCDFs	55722275	0.807	0.487	0.112 pg/g		J	В, *Ш

Sample Name	HZET0902S001		Matrix 7	Гуре: Soil	Result Type: Primary Result			
Lab Sample Name:	1045003	Sample 1	Date: 8	/26/2009 2:25:00 PM	Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,2,3,4,6,7,8-HpCDD	35822469	2.3	2.3	2.3 pg/g	JK	UJ	*III, result changed from 0.212 and EDL from 0.201	
,2,3,4,6,7,8-HpCDF	67562394	0.107	2.3	0.107 pg/g	U	U		
,2,3,4,7,8,9-HpCDF	55673897	0.158	2.3	0.158 pg/g	U	U		
1,2,3,4,7,8-HxCDD	39227286	0.136	2.3	0.136 pg/g	U	U		
,2,3,4,7,8-HxCDF	70648269	0.0765	2.3	0.0765 pg/g	U	U		
,2,3,6,7,8-HxCDD	57653857	0.153	2.3	0.153 pg/g	U	U		
,2,3,6,7,8-HxCDF	57117449	0.0798	2.3	0.0798 pg/g	U	U		
,2,3,7,8,9-HxCDD	19408743	0.151	2.3	0.151 pg/g	U	U		
,2,3,7,8,9-HxCDF	72918219	0.117	2.3	0.117 pg/g	U	U		
,2,3,7,8-PeCDD	40321764	0.0964	2.3	0.0964 pg/g	U	U		
,2,3,7,8-PeCDF	57117416	0.0756	2.3	0.0756 pg/g	U	U		
2,3,4,6,7,8-HxCDF	60851345	0.0853	2.3	0.0853 pg/g	U	U		
2,3,4,7,8-PeCDF	57117314	0.082	2.3	0.082 pg/g	U	U		
2,3,7,8-TCDD	1746016	0.108	0.461	0.108 pg/g	U	U		
2,3,7,8-TCDF	51207319	0.326	0.461	0.135 pg/g	JK	R	D	
2,3,7,8-TCDF	51207319	0.361	0.461	0.132 pg/g	J	J		
OCDD	3268879	4.61	4.61	4.61 pg/g	J	U	B, result changed from 0.802 and EDL from 0.359	
OCDF	39001020	0.363	4.61	0.363 pg/g	U	U		
Total HpCDD	37871004	0.415	2.3	0.201 pg/g	J	J	В, *Ш	
Total HpCDF	38998753	0.107	2.3	0.107 pg/g	U	U		
Total HxCDD	34465468	0.136	2.3	0.136 pg/g	U	U		
Total HxCDF	55684941	0.0765	2.3	0.0765 pg/g	U	U		
Total PeCDD	36088229	0.0964	2.3	0.0964 pg/g	U	U		
Total PeCDF	30402154	0.0586	2.3	0.0586 pg/g	U	U		
Total TCDD	41903575	0.108	0.461	0.108 pg/g	U	U		
Γotal TCDFs	55722275	0.794	0.461	0.135 pg/g		J	В, *Ш	

Sample Name	HZET0903S001		Matrix T	Гуре: Soil	Res	Result Type: Primary Result			
Lab Sample Name:	1045004	Sample I	Date: 8/	/26/2009 2:40:00 PM	И	Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
,2,3,4,6,7,8-HpCDD	35822469	2.32	2.32	2.32 pg/g	JK	UJ	*III, result changed from 0.388 and EDL from 0.179		
,2,3,4,6,7,8-HpCDF	67562394	0.221	2.32	0.119 pg/g	J	J			
,2,3,4,7,8,9-HpCDF	55673897	2.32	2.32	2.32 pg/g	JK	UJ	*III, result changed from 0.199 and EDL from 0.182		
1,2,3,4,7,8-HxCDD	39227286	2.32	2.32	2.32 pg/g	J	U	B, result changed from 0.169 and EDL from 0.151		
,2,3,4,7,8-HxCDF	70648269	2.32	2.32	2.32 pg/g	JK	UJ	*III, result changed from 0.132 and EDL from 0.0997		
1,2,3,6,7,8-HxCDD	57653857	2.32	2.32	2.32 pg/g	JK	UJ	*III, result changed from 0.232 and EDL from 0.159		
1,2,3,6,7,8-HxCDF	57117449	2.32	2.32	2.32 pg/g	JK	UJ	*III, result changed from 0.167 and EDL from 0.1		
1,2,3,7,8,9-HxCDD	19408743	2.32	2.32	2.32 pg/g	JK	UJ	*III, result changed from 0.23 and EDL from 0.163		
1,2,3,7,8,9-HxCDF	72918219	0.18	2.32	0.129 pg/g	J	J			
,2,3,7,8-PeCDD	40321764	2.32	2.32	2.32 pg/g	JK	UJ	*III, result changed from 0.13 and EDL from 0.109		
1,2,3,7,8-PeCDF	57117416	0.16	2.32	0.0828 pg/g	J	J			
2,3,4,6,7,8-HxCDF	60851345	2.32	2.32	2.32 pg/g	JK	UJ	*III, result changed from 0.156 and EDL from 0.105		
2,3,4,7,8-PeCDF	57117314	0.154	2.32	0.0852 pg/g	J	J			

2,3,7,8-TCDD	1746016	0.0969	0.464	0.0969 pg/g	U	U	
2,3,7,8-TCDF	51207319	0.464	0.464	0.464 pg/g	J	U	B, result changed from 0.267 and EDL from 0.123
2,3,7,8-TCDF	51207319	0.464	0.464	0.464 pg/g	J	R	D
OCDD	3268879	4.64	4.64	4.64 pg/g	J	U	B, result changed from 1.38 and EDL from 0.327
OCDF	39001020	4.64	4.64	4.64 pg/g	J	U	B, result changed from 0.672 and EDL from 0.33
Total HpCDD	37871004	0.598	2.32	0.179 pg/g	J	J	В, *Ш
Total HpCDF	38998753	0.419	2.32	0.119 pg/g	J	J	В, *Ш
Total HxCDD	34465468	0.631	2.32	0.144 pg/g	J	J	B, *III
Total HxCDF	55684941	0.635	2.32	0.0997 pg/g	J	J	В, *Ш
Total PeCDD	36088229	0.13	2.32	0.109 pg/g	J	J	B, *III
Total PeCDF	30402154	0.314	2.32	0.0551 pg/g	J	J	B, F
Total TCDD	41903575	0.0969	0.464	0.0969 pg/g	U	U	
Total TCDFs	55722275	0.657	0.464	0.123 pg/g		J	В

Sample Name	HZET0904S001		Matrix 7	Гуре: Soil	Res	Result Type: Primary Result			
Lab Sample Name:	1045005	Sample 1	Date: 8	/26/2009 3:10:00 PN	1	Validation Level: V			
Analyte	CAS No	Result Value	RL	MDL Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
1,2,3,4,6,7,8-HpCDD	35822469	3.94	2.35	0.226 pg/g					
1,2,3,4,6,7,8-НрСDF	67562394	2.35	2.35	2.35 pg/g	JK	UJ	*III, result changed from 1.13 and EDL from 0.144		
1,2,3,4,7,8,9-HpCDF	55673897	0.211	2.35	0.211 pg/g	U	U			
1,2,3,4,7,8-HxCDD	39227286	2.35	2.35	2.35 pg/g	JK	UJ	*III, result changed from 0.614 and EDL from 0.161		
1,2,3,4,7,8-HxCDF	70648269	2.35	2.35	2.35 pg/g	J	U	B, result changed from 0.425 and EDL from 0.11		
1,2,3,6,7,8-HxCDD	57653857	0.178	2.35	0.178 pg/g	U	U			
1,2,3,6,7,8-HxCDF	57117449	0.533	2.35	0.127 pg/g	J	J			
1,2,3,7,8,9-HxCDD	19408743	0.772	2.35	0.178 pg/g	J	J			
1,2,3,7,8,9-HxCDF	72918219	0.18	2.35	0.18 pg/g	U	U			
1,2,3,7,8-PeCDD	40321764	2.35	2.35	2.35 pg/g	JK	UJ	*III, result changed from 0.222 and EDL from 0.126		
1,2,3,7,8-PeCDF	57117416	0.755	2.35	0.155 pg/g	J	J			
2,3,4,6,7,8-HxCDF	60851345	2.35	2.35	2.35 pg/g	J	U	B, result changed from 0.25 and EDL from 0.133		
2,3,4,7,8-PeCDF	57117314	0.45	2.35	0.16 pg/g	J	J			
2,3,7,8-TCDD	1746016	0.133	0.471	0.133 pg/g	U	U			
2,3,7,8-TCDF	51207319	0.755	0.755	0.755 pg/g		U	B, RL changed from 0.471 and EDL from 0.281		
2,3,7,8-TCDF	51207319	0.68	0.471	0.159 pg/g		R	D		
OCDD	3268879	23	4.71	0.337 pg/g					
OCDF	39001020	4.71	4.71	4.71 pg/g	J	U	B, result changed from 1.7 and EDL from 0.346		

Total HpCDD	37871004	10.3	2.35	0.226 pg/g		J	В
Total HpCDF	38998753	1.79	2.35	0.144 pg/g	J	J	В, *Ш
Total HxCDD	34465468	4.26	2.35	0.158 pg/g		J	В, *Ш
Total HxCDF	55684941	3.68	2.35	0.11 pg/g		J	В
Total PeCDD	36088229	2.74	2.35	0.126 pg/g		J	В, *Ш
Total PeCDF	30402154	6.86	2.35	0.0574 pg/g		J	В
Total TCDD	41903575	0.689	0.471	0.133 pg/g		J	В
Total TCDFs	55722275	7.75	0.471	0.281 pg/g		J	В

Analysis Method 6020

Sample Name	EBQW2245		Matrix 7	Type: V	Vater	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	236116001	Sample	Date: 8.	/26/2009 3	3:48:00 PM	V	alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Zinc	7440666	3	10		3 ug/L	U	U	
Sample Name	HZET0900S001		Matrix 7	Type: S	Soil	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	236116002	Sample	Date: 8.	/26/2009 2	2:55:00 PM	V	alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Zinc	7440666	38.7	2.05	0.41	1 mg/kg			
Sample Name	HZET0901S001		Matrix 7	Type: S	oil	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	236116003	Sample	Date: 8	/26/2009 3	3:30:00 PM	v	alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Zinc	7440666	66.6	2.32	0.46	4 mg/kg			
Sample Name	HZET0902S001		Matrix 7	Type: S	Soil	Resu	ılt Type: Pr	imary Result
Lab Sample Name:	236116004	Sample	Date: 8	/26/2009 2	2:25:00 PM	V	alidation Le	vel: V
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Zinc	7440666							
	7440666	43.1	1.97	0.39	5 mg/kg			
Sample Name	HZET0903S001	43.1		0.39: Type: S		Resu	ılt Type: Pr	imary Result
Sample Name Lab Sample Name:			Matrix 7	Type: S			ılt Type: Pr	
-	HZET0903S001		Matrix 7	Type: S	Soil		alidation Le	
Lab Sample Name:	HZET0903S001 236116005	Sample Result	Matrix 7	Type: S //26/2009 2 MDL	Soil 2:40:00 PM Result	V Lab	Validation Le	vel: V
Lab Sample Name: Analyte	HZET0903S001 236116005 CAS No	Sample Result Value	Matrix 7 Date: 8 RL 2.19	Type: S //26/2009 2 MDL	Goil 2:40:00 PM Result Units 8 mg/kg	V Lab Qualifier	Validation Le	vel: V Validation Notes
Lab Sample Name: Analyte Zinc	HZET0903S001 236116005 CAS No	Sample Result Value	Matrix 7	Type: S //26/2009 2 MDL 0.433 Type: S	Goil 2:40:00 PM Result Units 8 mg/kg	Lab Qualifier Resu	Validation Le Validation Qualifier	Validation Notes
Lab Sample Name: Analyte Zinc Sample Name	HZET0903S001 236116005 CAS No 7440666 HZET0904S001	Sample Result Value	Matrix 7	Type: S //26/2009 2 MDL 0.433 Type: S //26/2009 3	Goil 2:40:00 PM Result Units 8 mg/kg Goil	Lab Qualifier Resu	Validation Le Validation Qualifier ult Type: Pr	Validation Notes