
December 13, 2005 Meeting Status of NPDES Post Fire BMPs

<u>Agenda</u>

- •Overview of Current Operations At SSFL
- •Impacts of Fire At SSFL
- •Rebuilding & Improvement of BMPs
- •Future Activities
- •Site Tour
- •Close-out

Santa Susana Field Laboratory Regional Map

SSFL Operations Generating Discharges

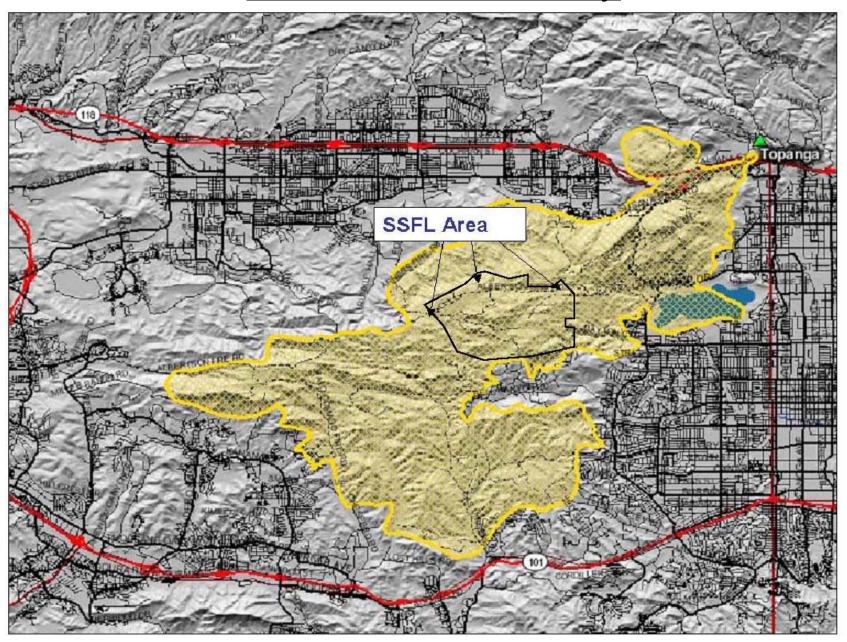
Current & Future Operations

Rocket Engine Testing

•2005 – Approximately 17 engine tests

•2006 – Possibly one more

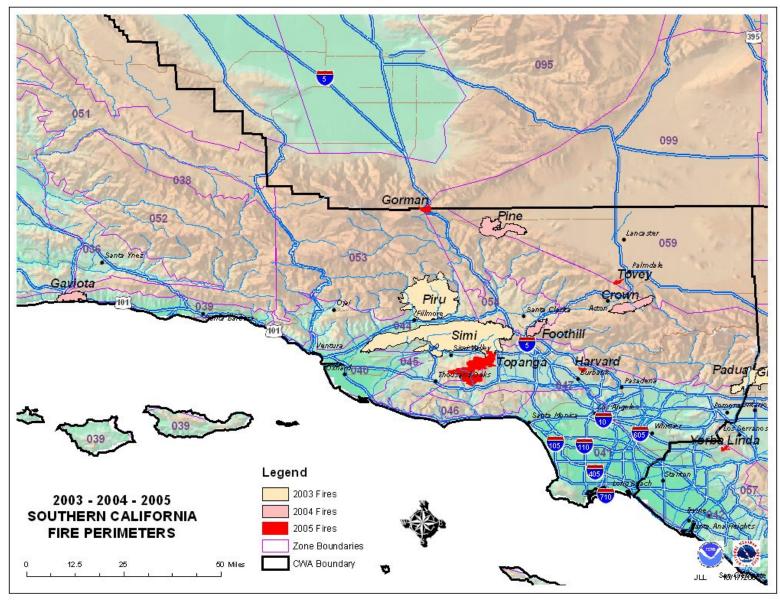
Sewage Treatment Plant Operations


•2005 - Two days of operation due to high volume of flow from rain. 2006 - None expected due to sewer line repairs and capping of old sewer lines.

Groundwater Treatment Systems

- •2005 Treatment occurred using some systems.
- •2006 Resumption of treatment to be coordinated with DTSC.

Impact To SSFL as a Result of September 2005 Fire


2005 Fire Boundary

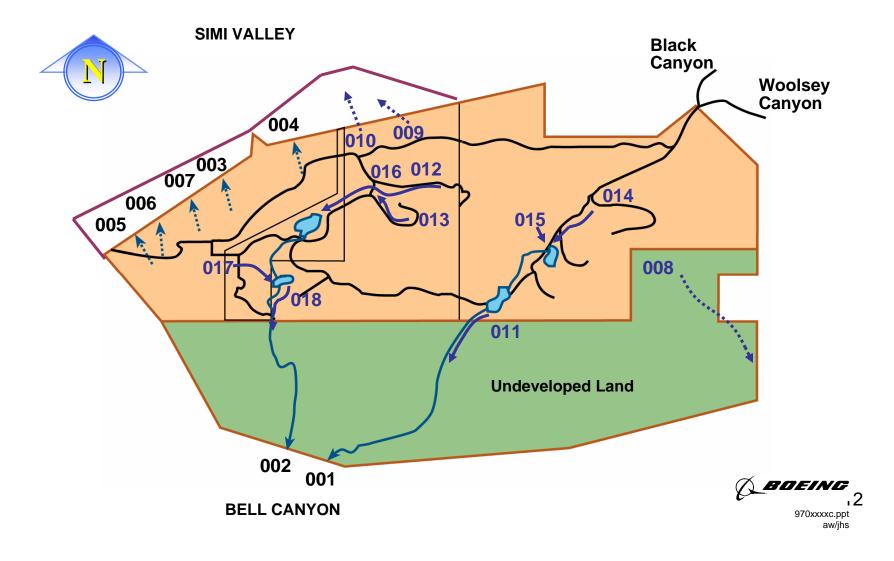
October 4th NASA IR-Image

Fires Not Uncommon in Area

Impact of September 2005 at SSFL

- Brush burned on over 2,000 acres of the site.
- 10 of the 200 structures were damaged by fire with 7 destroyed.
- Over 300 telephone and power poles were destroyed.
- High Density Polyethylene (HDPE) pipelines from the groundwater remediation systems were destroyed.
- DTSC, DOE, DHS, VCEHD, RWQCB and various fire departments have been on site to inspect and assess the fire damage.

September 2005 Fire At SSFL


<u>A Few Days After</u>

Post Fire Re-building Efforts

- •Debris from destroyed buildings removed.
- •Electricity restored to the site, phone & internet connections still being restored.
- •Telephone poles being removed.
- •BMPs re-built & improved.

Santa Susana Field Laboratory Surface Water NPDES Outfall Locations

Outfall 001 (Southeast) Before 2005 Fire

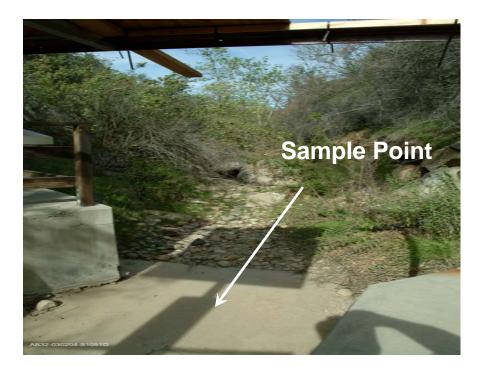
BMPs In Place

- Upstream settling pond (Perimeter Pond).
- Dense natural vegetation along entire length of drainage.

Outfall 001 (Southeast) After 2005 Fire

- Vegetation along streambed either completely destroyed or heavily damaged.
- Hillsides along drainage covered in ash that is known to contain elevated levels of naturally occurring metals and dioxins.

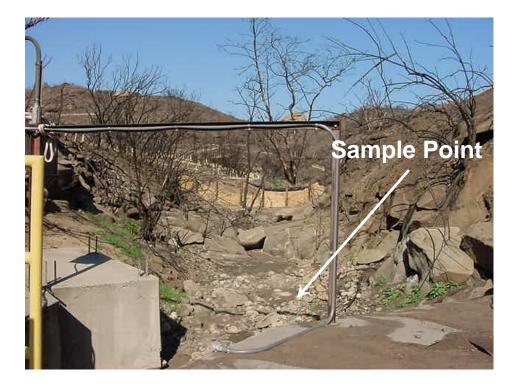
Outfall 001 (Southeast) 2 Months after 2005 Fire


- Straw wattles installed along burned areas of drainage.
- Straw bales placed in 001 streambed.
- Straw bales placed in tributary streambeds.
- Straw wattles and bales placed upstream.

Outfall 002 (Southwest) Before 2005 Fire

BMPs In Place

- Upstream settling ponds (R-2 Pond).
- Dense natural vegetation along entire length of drainage.


Outfall 002 (Southwest) After 2005 Fire

- All vegetation along streambed either completely destroyed or heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.

Outfall 002 (Southwest) 2 Months after 2005 Fire

- Straw wattles installed along burned areas of drainage.
- Straw bales placed in 002 streambed.
- Straw bales placed in tributary streambeds.
- Straw wattles and bales placed upstream.

Outfall 003 (RMHF) Before 2005 Fire

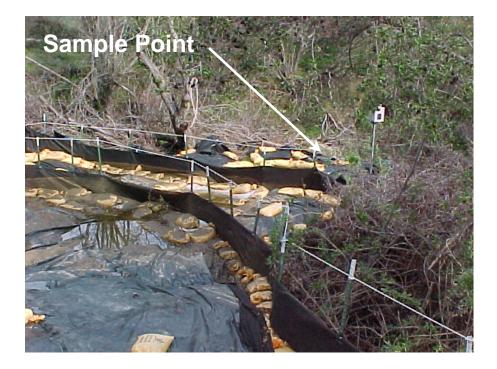
BMPs in place

- Dense natural vegetation along entire length of drainage and hillsides.
- Silt fencing in place.
- Filter bags including vermiculite and activated carbon.

Outfall 003 (RMHF) After 2005 Fire

- All vegetation along northern side of drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.
- All BMPs completely destroyed.

Outfall 003 (RMHF) 2 Months after 2005 Fire


- Straw wattles installed along burned areas of drainage and hillside.
- Straw bales placed at toe of hill.
- Loose gravel to diffuse flow
- Silt fence.
- Activated carbon filter bags.

Outfall 004 (SRE) Before 2005 Fire

BMPs in place

- Dense natural vegetation along entire length of drainage and hillsides.
- Plastic sheeting covering potentially impacted areas.
- Silt fencing in place.
- Filter bags including vermiculite and activated carbon.

Outfall 004 (SRE) After 2005 Fire

- All vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.
- All BMPs completely destroyed.

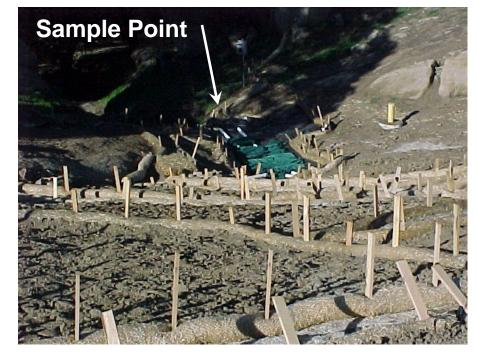
Outfall 004 (SRE) 2 Months after 2005 Fire

- Straw wattles and silt fence installed along burned areas of drainage and hillside.
- Plastic sheeting replaced.
- Sand filter with underdrain.
- Activated carbon filter bags.

Outfall 005 (FSDF 1) Before 2005 Fire

BMPs in place

- Dense seeded vegetation above drainage
- Plastic sheeting.
- Silt fencing in place.
- Filter bags including vermiculite and activated carbon.


Outfall 005 (FSDF 1) After 2005 Fire

- All vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.
- All BMPs completely destroyed.

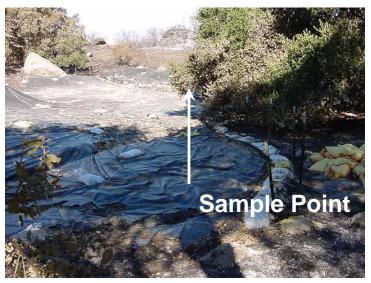
Outfall 005 (FSDF 1) 2 Months after 2005 Fire

- Straw wattles installed along burned areas of hillside.
- Sand filter trenches with underdrain.
- Straw wattles installed upstream and downstream of the trenches to protect system until vegetation can take root.
- Activated carbon filter bags.

Outfall 006 (FSDF 2) Before 2005 Fire

BMPs in place

- Rip rap swale
- Plastic sheeting.
- Multiple silt fences in place.
- Filter bags including vermiculite and activated carbon.



Outfall 006 (FSDF 2) After 2005 Fire

- All vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.
- All BMPs completely destroyed.

Outfall 006 (FSDF 2) 2 Months after 2005 Fire

- Rip rap installed upstream.
- Sand filter with underdrain.
- Activated carbon filter bags.
- Straw wattles installed around entire system until vegetation can take root.

Outfall 007 (B/100) Before 2005 Fire

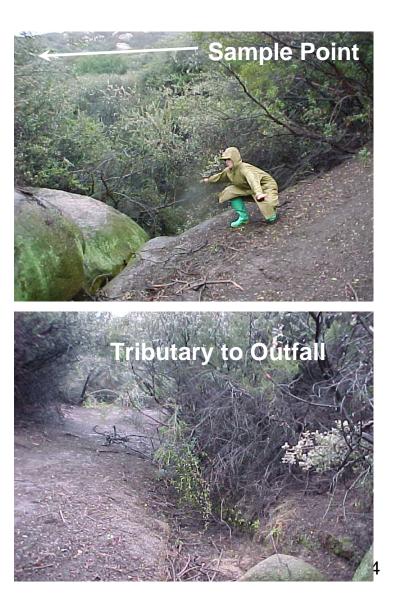
BMPs in place

- Dense seeded vegetation above drainage.
- Silt fencing in place.
- Filter bags including vermiculite and activated carbon.

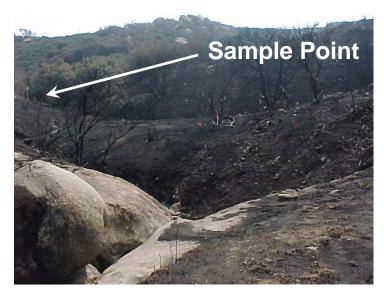
Outfall 007 (B/100) After 2005 Fire

- All vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.
- All BMPs completely destroyed.

Outfall 007 (B/100) 2 Months after 2005 Fire


- Straw wattles installed upstream
- Staw wattles and Silt fence around drainage.
- Activated carbon filter bags.

Outfall 008 (Happy Valley) Before 2005 Fire


BMPs in place

- Extensive Interim measure perchlorate clean up.
- Rip rap beds.
- Straw hay bales installed.

Outfall 008 (Happy Valley) After 2005 Fire

- All vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.
- All BMPs completely destroyed.



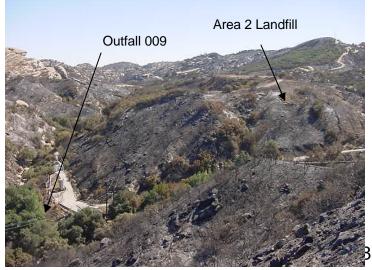
Outfall 008 (Happy Valley) 2 Months after 2005 Fire

- Rip rap installed upstream
- Straw wattles and straw bales lining drainage and former source area.
- Multiple silt fences installed.
- Straw wattles lining drainage and tributaries until vegetation can take root.
- Drainage vacuumed to removed accumulated ash

Outfall 009 (WS 13) Before 2005 Fire

BMPs in place

- Rip rap at upstream Area 2 landfill.
- Straw wattles and straw bales at Area 2 landfill.
- Silt fences in place below Area 2 landfill.



Outfall 009 (WS 13) After 2005 Fire

BMPs Damaged

- All vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.
- Most BMPs completely destroyed.

Outfall 009 (WS 13) 2 Months After 2005 Fire

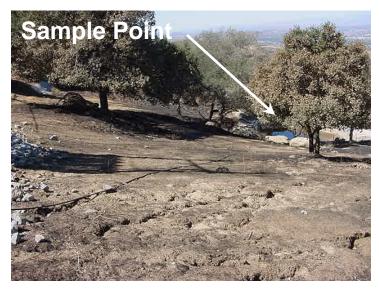
BMPs Implemented

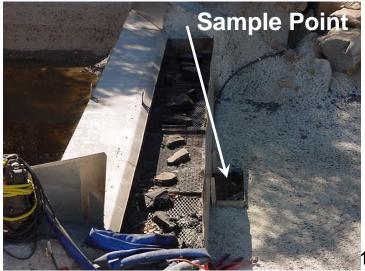
- Straw bales, Straw wattles and silt fences replaced at Area 2 landfill.
- Land based hydro-seeding at Area 2 landfill and Outfall 009.

Outfall 010 (B/203) Before 2005 Fire

BMPs in place

- Extensive Interim measure to remove mercury impacted soil.
- Gunite retaining wall and water retention basin.
- Coco mat reseeding.
- Straw bales around retention basin.
- Vermiculite filter bags in S.S. box.





Outfall 010 (B203) After 2005 Fire

BMPs Damaged

- All vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.
- All BMPs damaged.

Outfall 010 (B203) 2 Months After 2005 Fire

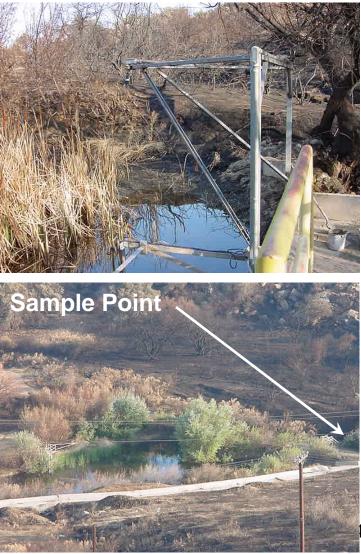
BMPs Implemented

- Added Rip rap below gunite.
- Added rocks to dissipate flow.
- Installed straw wattles.
- Installed silt fence around retention basin.
- Installed carbon filter bags.

Outfall 011 (Perimeter) Before 2005 Fire

BMPs in place

- Dense natural vegetation along entire length of drainage and hillsides.
- Settling pond to aid sediment retention.



Outfall 011 After 2005 Fire

BMPs Damaged

- All vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.

Outfall 011, 2 Months After 2005 Fire

BMPs Implemented

- Silt fence installed at discharge to Perimeter Pond.
- Installed gravel on road to prevent muddy conditions.
- Installed stainless steel gravity filter structure.
- Straw wattles, straw bales and hydromulching.

Outfall 018 Before 2005 Fire

BMPs in place

- Dense natural vegetation along entire length of drainage and hillsides.
- Settling pond to aid in sedimentation retention.
- Pilot sand/carbon duel media filter system being tested.

Outfall 018 After 2005 Fire

BMPs Damaged

- Vegetation around drainage heavily damaged.
- Hillsides along drainage covered in ash known to contain elevated levels of naturally occurring metals and dioxins.

Outfall 018, 2 Months After 2005 Fire

BMPs Implemented

- Repaired Pilot filter piping and electrical.
- Upstream placement of straw wattles, straw hay bales and hydromulching.

Additional Activities

- Vacuumed drainage areas.
- Nearly 7 miles of straw wattles installed.
- Over 430 straw bales placed.
- 6 acres of hydromulch applied around SWMUs.
- 610 acres of hydromulching to be aerially applied by late December/early January
- Carbon filter bags being used for additional solids removals.

Recent Cleanup Projects: Soil Removal Near Outfall 008 (Happy Valley Area) Perchlorate Interim Measure (Boeing – Area 1)

•Total soil excavated: ~8,000 cubic yards

•Backfilling, re-vegetation and installation of erosion control measures completed

•Surface water monitoring (Outfall 008) confirm success of perchlorate driven Interim Measure

Recent Cleanup Projects: Soil Removal near Outfall 010. (Building 203)

Mercury Interim Measure (NASA – Area 2)

- •2004 soil removal action
- •3,000 cubic yards of soil removed

Recent Cleanup Projects: Soil Removal Near Outfalls 005 & 006 (Former Sodium

Disposal Facility)

Completion of DOE (Area 4) FSDF Interim Measure

- 2000 soil removal action
- 14,900 tons of soil/sediment removed
- Helicopter lift
- Onsite soil borrow area

Compliance History

- SSFL has experienced and reported storm water violations for:
 - TCDD

- Lead

- Mercury
- Copper
- pH

- Manganese
- Sulfate
- TDS
- Iron - Surfactants
- Exceedances are generally sporadic, and reveal no clear patterns.

Boeing's Source Testing Program

- Testing has been expanded to include:
 - On-site soils, ash, and rainfall
 - Off-site soils, ash, and storm water runoff
 - From Topanga fire area, but off-site
 - From Burbank fire area
- Preliminary (unvalidated) results indicate similar concentrations on and off-site.
- Literature review from other post-fire data collection programs.
- Testing not required, but Boeing is undertaking proactively

Boeing's Source Testing Program

 Goal is to understand sources and variability of constituent concentrations in storm water, and to use this information to improve BMP effectiveness.

Boeing's BMP Testing Program

- Concentrations of key constituents in runoff through various BMP materials has been measured in lab tests:
 - Aggregate and sand
 - Hay
 - Runoff from plastic tarps
 - Hydromulch materials
- Testing not required, but Boeing is undertaking proactively

Boeing's BMP Testing Program

 Goal is to select cleanest BMP materials and to understand the potential contribution of BMP materials to storm water runoff